Трансформатор тока для частного дома: обзор, характеристики, советы по выбору

Дом

Содержание

Трансформаторы тока для электросчетчиков — советы электрика

Трансформаторы тока для электросчетчиков – характеристики и варианты подключения

При эксплуатации энергетических систем разного типа часто возникают ситуации, требующие осуществить перевод электрических величин в аналоги с определенными соотношениями.

Трансформаторы тока для электросчетчиков позволяют значительно расширить стандартные пределы измерений приборами учёта.

Номинальное напряжение трансформатора тока

Одним из основных параметров, относящихся к трансформаторам тока для электрических счётчиков, является уровень номинального напряжения, который указывается в паспорте на прибор. Номинальные значения напряжения варьируется от 0.66кВт до 1150кВт:

  • 0,66 кВт;
  • 6.0 кВт;
  • 10 кВт;
  • 15 кВт;
  • 20 кВт;
  • 24 кВт;
  • 27 кВт;
  • 35 кВт;
  • 110 кВт;
  • 150 кВт;
  • 220 кВт;
  • 330 кВт;
  • 500 кВт;
  • 750 кВт;
  • 1150 кВт.

Номинальные значения уровня первичного тока на электрической цепи обозначают токовые показатели на первичной трансформаторной обмотке.

Параметры вторичного номинального тока — это стандартные показатели на обмотке вторичного типа. Определение таких токовых потоков осуществляется по номинальным значениям мощности и напряжения.

При этом первичный тип обмотки подключается к источнику электрической энергии, а замыкание вторичной обмотки приходится на устройства измерительного или защитного типа, с низкими показателями внутреннего сопротивления.

Действующие параметры номинального или линейного напряжения, в условиях которых сохраняется работоспособность измерительного токового трансформатора, обязательно указываются в сопроводительной документации и отражены в таблице для прибора.

Класс точности

При правильном выборе токового трансформаторного устройства у потребителя появляется реальная возможность подключать измерительные и защитные приборы к высоковольтным электрическим линиям. Уровень класса точности – одна из наиважнейших характеристик, указывающих на измерительную погрешность, которая не должна быть выше, чем параметры по нормативным документам.

Класс точности определяется несколькими основными факторами, включая погрешности по току и углу, а также показатели относительной полной погрешности. Первые два понятия всегда характеризуются током намагничивания.

Принцип работы трансформатора тока

В приборах промышленного назначения используется несколько классов точности:

В соответствии с действующим на сегодняшний день в нашей стране ГОСТом, класс точности должен быть ориентирован на токовые погрешности, поэтому для показателей в ±40′ предполагается класс 0.5, а для ±80′ – класс 1.0. Следует отметить, что классы 3.0 и 10Р по существующим правилам не нормируются.

Обратите внимание

Наличие в маркировке буквенного обозначения «S» свидетельствует о классе точности в пределах 0.01-1.2.

Класс 10Р используется в защитных цепях, а нормирование осуществляется в соответствии с относительной полной погрешностью не более десяти процентов.

Допускается применение приборов с классом точности 1.0, но только если электрический счетчик обладает классом точности в две единицы.

Измерительно-информационная система, представленная устройствами, выполняющими приём, обработку и передачу данных, а также приборами учёта, способна формировать корректные показатели только при высокой точности токовых трансформаторов.

Для учёта в коммерческой сфере уровень класса точности должен составлять 0.5S, а для учёта технического – 1.0S.

Номинальный ток вторичной обмотки

Строение вторичной обмотки у токовых трансформаторов, которые предназначены для напряжения не более тысячи вольт, имеет некоторые отличия. На высоковольтном приборе устанавливается как минимум две вторичные обмотки.

Принцип их действия аналогичен функционированию повышающего трансформатора. Вне зависимости от уровня мощности первичной обмотки, номинальные показатели тока на вторичной обмотке, как правило, стабильно составляют 5А.

Конструкция трансформатора тока

Номинальные значения вторичного тока «I2н» указываются в таблице прилагаемого к устройству паспорта. Номинальные токи на вторичной обмотке равны единице или 5А, но вторые показатели допускаются исключительно в устройствах с первичными токами, не превышающими 4000А.

Однако, допускается также изготовление современных токовых трансформаторных приборов по индивидуальным заказам с номинальными показателями токов вторичного типа на уровне 2.0А или 2,5А.

Номинальный ток первичной обмотки

В зависимости от конструкционных особенностей первичной обмотки, трансформаторы тока могут быть не только многовитковыми, но также одновитковыми и шинными.

На сегодняшний день наибольшее распространение получил второй вариант исполнения устройства.

Одновитковые модели токовых трансформаторов представлены разновидностями, не имеющими индивидуальную первичную обмотку или с наличием индивидуальной обмотки первичного типа.

Для одновитковых моделей без собственной первичной обмотки характерно встроенное, шинное или разъемное выполнение. Первичный токовый уровень, в этом случае, всегда определяется в соответствии со стандартизированными номинальными токами.

Токи номинальные первичного типа «I1н» указываются в паспортных табличных данных трансформаторного прибора, и определяют стандартные коэффициенты трансформации в виде соотношения номинальных токовых показателей на двух видах обмотки устройства.

Подбирать коэффициент трансформации необходимо в строгом соответствии с расчетной нагрузкой, а также с обязательным учетом возможности функционирования установленного устройства в аварийных ситуациях. Токовый номинал на первичной обмотке не может быть меньше, чем максимальные рабочие значения тока эксплуатируемой электрической установки: I2ном. тт>Imах.эу.

Допускается использовать приборы, имеющие завышенные показатели коэффициента при условии максимального уровня нагрузки присоединения тока на вторичной обмотке в 40% и более от номинального тока электросчетчика. Требования при минимальной рабочей нагрузке составляют 5% или более.

Схема подключения

Рассмотрим, как подключить трансформатор тока. В зависимости от конструктивных особенностей трансформатора тока для электрических счётчиков различается несколько видов таких приборов:

  • токовые трансформаторы, предназначенные для наружного монтажа в ОРУ;
  • токовые трансформаторы, предназначенные для закрытого монтажа распределительных устройств;
  • токовые трансформаторы встроенного типа;
  • токовые трансформаторы, предназначенные для монтажа на изоляторы проходного типа;
  • токовые трансформаторы в переносном или мобильном исполнении.

Токовыми трансформаторами обеспечивается полноценная изоляция эксплуатируемых силовых электрических цепей. Измерительное устройство в быту – гарантия безопасной работы, поэтому специалисты рекомендуют использовать так называемую гальваническую развязку. К недостаткам этого способа установки можно отнести достаточно большое количество электропроводов.

Подключение счетчика электрической энергии через токовые трансформаторы осуществляется посредством десятижильных кабелей. В конструкции применяются раздельные цепи, как на ток, так и напряжение. Стандартная схема установки предполагает обязательное подсоединение трех элементов электросчетчика с соблюдением правил полярности при прямом чередовании фаз относительно «U».

Схема подключения электросчетчика через трансформаторы тока

В процессе самостоятельного монтажа измерительных приборов электрической энергии, токовые трансформаторы подключаются к цепным разрывам при помощи специальных, очень удобных в применении зажимов «Л-1» и «Л-2».

Видео на тему

Источник: https://proprovoda.ru/elektrooborudovanie/transformatory/toka-dlya-elektroschetchikov. html

О счетчиках просто

Доброе время суток, дорогие читатели!

Давненько я ничего не писал. Тому есть причина. Делаю ремонт.

Хотел было снять несколько роликов о монтаже проводки в квартире, но понял что это не совсем интересно.

Поэтому сегодня статья о счетчиках электрической энергии.

Пафосный и занудный вариант ее я выбросил и решил писать, как будто рассказываю рядовому гражданину, например Вам, который ничего о счетчиках е знает.

Когда-то у меня в перечне работ лаборатории был вид работ : проверка и наладка цепей учета. Даже методика была. А в электрических сетях служба по контролю за учетом электроэнергии вообще входила в состав лаборатории, по крайней мере у нас в Рязани…

Впрочем, начнем.

Итак, счетчики бывают однофазные и трехфазные. Первые в основном применяются в частном секторе (дома, квартиры, гаражи), вторые везде.

По типу подключения счетчики делятся на:

счетчики прямого включения

на рисунке изображено подключение однофазного счетчика.

счетчики включаемые через трансформаторы тока. Про трансформаторы тока статья уже на сайте. Читайте с удовольствием.

на рисунке изображено подключение трехфазного счетчика через трансформаторы тока.

Чем обуславливается выбор типа подключения? Ожидаемым током нагрузки.

Обычно счетчики прямого включения рассчитаны не более чем на 100 А. Обращайте внимание на максимальный допустимый ток счетчика в паспорте или на самом счетчике, т.к. бывают счетчики на 6 А, которые применяют либо для подключения через трансформаторы тока, либо там где нагрузка мала.

Важно

Чем обусловлен выпуск счетчиков на разный максимальный возможный ток? Минимизацией погрешности измерений.  Предпочтительнее всего когда нагрузка счетчика не превышает 2/3 максимального возможного тока.

Почему бы не выпускать счетчики подключаемые только через трансформаторы тока? Потому что трансформаторы тока так же вносят ошибку в результат измерений.

Поэтому энергоснабжающие организации выбрали золотую середину: стараются убрать трансформаторы тока с коэффициентом трансформации менее 100/5, предписывая установку счетчиков прямого включения в этом случае.

Какие часто возникают вопросы по однофазным счетчикам?

Благодаря тому, что межповерочный интервал счетчика электрической энергии составляет 16 лет (уточнить его можно  в паспорте на счетчик) о нем благополучно забыли.

Но счетчик это измерительный прибор, который необходимо поверять через определенный промежуток времени, чтобы удостовериться , что он все еще правильно учитывает электроэнергию.

С недавних пор об этом вспомнили и пошли гражданам предписания о необходимости поверить прибор учета, а то и заменить.

Чем обосновано требование замены счетчика? Ранее класс точности счетчика должен был быть не хуже 2,5, теперь требования ужесточились, и требуются счетчики с классом точности не хуже 2,0.

Отмечу, что чем меньше число обозначающее класс точности, тем точнее измерение.

В процессе своей деятельности я сталкивался со счетчиками класс точности которых 0,2.

Кроме самого счетчика имеется куча требований к антуражу:

— Высота установки счетчика 0,8 – 1,7 м от пола до клемной колодки.

— Провода для подключения должны быть сечением не менее 2,5 мм2 если они из меди и не менее 4 мм2  если они из алюминия. И желательно чтобы жила была не многопроволочной.

— Перед счетчиком должно быть коммутирующее устройство – автоматический выключатель или выключатель нагрузки – это сейчас, а ранее применялись пакетные выключатели. Лучше если оно будет двухполюсным. Т.е. при отключении коммутирующего устройства обрывается не только фаза,но и ноль.

Для чего это нужно? Для безопасного обслуживания прибора учета.

— После счетчика обычно ставятся автоматические выключатели.

Советую замену счетчика отдать на откуп энергоснабжающей организации.

Почему? Дело в том что эта услуга не так дорога, зато работа будет выполнена настоящими профессионалами, которые потом еще счетчик и опломбируют. Если же Вы сами счетчик поменяете или установите, с Вас все равно возьмут те же деньги за проверку правильности подключения и последующую опломбировку.

Совет

Схема подключения счетчика всегда приводится в паспорте на счетчик и часто дублируется на обратной стороне крышки клемной колодки:

На рисунке обратная сторона крышки однофазного счетчика.

Гораздо больше вопросов по трехфазным счетчикам.

Трехфазные счетчики бывают на 380 В и на 100 В. Вторые применяются для установки приборов учета на стороне 6 – 10кВ с питанием их от трансформаторов напряжения.

Читайте статью о трансформаторах напряжения на сайте с удовольствием.

Кроме того есть масса особенностей при включении счетчика через трансформаторы тока. Кстати, схемы их подключения так же приводятся в паспорте на счетчик.

На рисунке простейшая схема включения счетчика через трансформаторы тока.

Следует учитывать обязательно направление протекания тока через трансформаторы тока. Если один из трансформаторов перевернуть (Л1 и Л2 поменять местами), а И1 и И2 оставить подключенными по прежнему, то показания счетчика будут неверны.

Аналогично будет и если И1 и И2 одного из трансформаторов тока поменять местами.

Так же  нельзя напряженческие проводники и токовые от разных фаз подключать на одну группу контактов счетчика. ( например, контакты 1, 2, 3 предназначены для подключения фазы “А” и если на клеммах 1 и 3 подключены токовые цепи фазы “А”, то на клемму 2 сажать проводник с напряжением фазы “В” нельзя)

Для правильности измерений электронными счетчиками так же важна правильность чередования фаз. Правильность чередования фаз у современных счетчиков можно легко определить используя специальное программное обеспечение или прибор “ВАФ”.

Это не касается электромагнитных счетчиков.

Еще Вы можете столкнуться со счетчиком для измерения только реактивной энергии. Их легко определить по типу. В нем обязательно будет буква “Р”, а на клеммнике не будет клеммы для подключения нуля.

Современные электронные счетчики измеряют и активную и реактивную мощность и еще много чего.

А на возникшие у Вас вопросы по поводу учета электроэнергии я обязательно отвечу.

На сем прощаюсь и желаю успехов!

Источник: http://elektrolaboratoriy.ru/2015/04/25/o-schetchikax-prosto/

Замена электросчетчиков – Электрика – Некоторые советы

Главная / Некоторые советы / Электрика / Замена электросчетчиков

Электрический счетчик – это прибор, который ведет учет электроэнергии, потребляемой в быту и на производственных предприятиях. На сегодняшний день рынок предлагает широкий выбор различных счетчиков, чтобы подобрать подходящий, нужно разобраться какие они бывают.

Счетчики разделяют по типу работы на индукционные и электронные. Индукционные счетчики более дешевый вариант, а электронные надежнее и точнее. Также бывают однофазные и трехфазные счетчики для различных сетей.

Класс точности электросчетчиков делится от 0.2 до 2.5. Эта цифра показывает уровень погрешности прибора. Не так давно был введен новый ГОСТ, согласно которому в быту могут использоваться приборы с классом точности не меньше 2 процентов.

Обратите внимание

Тогда как ранее допускалась погрешность в измерения 2.5.
В зависимости от подключения электросчетчики бывают прямого включения и подключаемые через трансформаторы. Если общая нагрузка не превышает 100 ампер, можно использовать счетчик прямого включения.

При большей нагрузке следует подключаться через трансформатор тока.

Существует 2 класса напряжения: 220/380 В и 100 В.

Бывают однотарифные, двухтарифные и многотарифные модели. Двухтарифные приборы позволяют учитывать количество истраченной энергии отдельно в дневное время и в ночное. Использование таких приборов помогает значительно сэкономить финансы. Ведь стоимость на энергию отличается почти в 2 раза в разное время суток.

В квартирных домах зачастую счетчики устанавливаются на лестничной клетке, в специальных электрощитах. Доверяйте замену приборов профессионалам, которые придерживаются всех норм и правил безопасности. Только специалисты могут тут же предложить качественный монтаж. Они установят любой счетчик в короткие сроки и подготовят всю необходимую документацию.

Не пытайтесь заменить электрические счетчики самостоятельно. Повреждать пломбу и демонтировать действующий электросчетчик без разрешения энергоснабжающей организации запрещено. Да и при наличии такого разрешения право осуществлять работу имеют только лицензированные организации. В противном случае вам могут начислить штрафы или пересмотреть тарифы.

После установки прибора нужно пригласить специалиста из энергоснабжения для проверки его состояния и опломбирования.
Существует ряд требований, применяемых к установке электроизмерительного прибора. Это и условия помещения, и составление предварительных расчетов, схем, и расстояние между зазорами.

Следите за четким соблюдением этих параметров, чтобы не сталкиваться с трудностями в дальнейшем.

Современные светодиодные встроенные светильники

Делал евроремонт в своей квартире, и нужно было установить осветительные приборы в подвесной потолок. Чтобы они было современные и экономичные.

Решил приобрести светодиодные светильники потолочные накладные, ведь данные приборы являются и стильными, и современными, и очень экономичными.

Остановил свой выбор именно на таком виде освещения после того как прочитал в разных источниках информацию, что данные системы…

Основные поломки кофемашины и решение их

У тех, кто обожает ароматный и вкусный кофе, наверняка, на кухне есть кофейная машина, которая помогает приготовить напиток быстро и весьма вкусно.

Если вдруг кофемашина не взбивает молоко или с ней случилась еще какая-нибудь неприятность, то конечно, нужно будет сдавать ее в ремонт. Качественный ремонт кофемашин в Москве – отличное решение.

Здесь и обслуживание на…

Как устранить в частном доме нехватку тепла?

Умеренно прохладный воздух в жилом помещении – это, скорее, преимущество, ведь небольшой холодок бодрит организм, заставляет его адаптироваться к таким условиям, закаляться, соответственно, крепнуть. Но граница между комфортной прохладой и температурой, при которой ноги начинают мерзнуть, а в носу подозрительно хлюпать, очень условна и может составлять 2-3 градуса. Если вы дрожите, все время кутаетесь, болеете,…

Важно

Не так давно возникла очень большая и не приятная проблема. В гараже, который служил на совесть не только моей машине, но и последнее время, в нем долгое время хранились различные вещи. Со временем, накопилась ржавчина на одной из стен, и со временем, появилась большая дыра. На ремонт и монтаж гаража денег не было, да и…

Электрообогрев открытых площадок – эффективно, безопасно, экономично

Скользкие ступени и тротуары, покрытые льдом, – типичная проблема, возникающая с наступлением холодов.

Прекрасное решение предлагает компания «Эликс», реализующая кабельные системы обогрева любых площадок (ступеней, пандусов, тротуаров и т. д.), находящихся под открытым небом.

Электрическая система обогрева открытых площадок – только плюсы Традиционные способы удаления наледи и снега (реагенты, песок, соль, механическая очистка) не всегда…

Источник: https://www.ktovdome.ru/nekotorye_sovety/406/15088.html

Как подключить электросчетчик через трансформаторы тока?

Схем такого подключения существует несколько. Разберем все эти схемы применительно к трехфазному варианту включения. Для чего нужны электросчетчики? Вообще счетчики нужны для того, чтобы учитывать электрическую энергию, потребленную в трех- и четырехпроводных сетях с частотой тока, равной 50 герц.
Счетчики трехфазного типа бывают следующих видов:

  • 3*57.7/100 В;
  • 3*230/400 В.

К источнику электроэнергии такие счетчики необходимо подключать с использованием измерительных трансформаторов тока, рассчитанных на вторичный ток 5 А и трансформаторов напряжения со вторичным напряжением 100 В.

Рассматриваемые тут схемы применимы к любым типам счетчиков (и к аппаратам индукционного типа, и к электронным).

Первое, что необходимо помнить, выполняя подключение, это то, что при подключении необходимо соблюдение полярности подключения обмоток (Л1, Л2 – первичная; И1, И2 – вторичная) у трансформаторов тока. Полярность обмоток трансформаторов напряжения, так же, подлежит обязательной перепроверке. Сами трансформаторы, тоже нужно выбирать правильно.

О принципах подключения с использованием трансформаторов тока

Начнем рассматривать схемы подключения со счетчиков, имеющих полукосвенное включение. Таких схем существует несколько.

Десятипроводная

В этой

Заземление в частном доме

Содержание

Для чего вообще нужно заземление?

Главная роль заземления — это безопасность. Построение эффективной системы защиты от поражения электрическим током невозможно без системы заземления. Даже само по себе заземление металлического корпуса уменьшает напряжение прикосновения при нарушении изоляции внутри оборудования. А для большей надежности применяется устройство защитного отключения (т.н. УЗО), которое отключает электроприборы при нарушении изоляции и возникновении опасного напряжения на их корпусах. А эффективность работы УЗО во многом зависит от качества системы заземления. Как это сделать и как все это работает, я постарался описать в этой статье.

Система TN-C-S

В системе TN-C-S от глухозаземленной нейтрали подстанции до ввода в здание проходит провод PEN, совмещающий в себе функции нулевого (N) и защитного (PE) проводов. При вводе он разделяется на два провода: PE и N. Первый из них играет роль защитного (заземляющего), второй — рабочего нулевого провода.

 

Система TT

В системе TT — все то же самое, но нулевой провод, идущий от глухозаземленной нейтрали подстанции, не берет на себя функцию защитного, а исполняет только роль нулевого рабочего провода N. Провод (шина) PE организуется отдельно, с помощью автономного заземлителя и с N нигде не соединяется.

 

Почему ПУЭ рекомендует систему TN-C-S

Так почему же ПУЭ рекомендует применение системы заземления TN-C-S в качестве основной системы в наших электросетях? Ведь у этой системы есть очень существенный недостаток: в случае обрыва или отгорания нулевого провода по пути от подстанции до потребителя все корпуса и металлические конструкции, соединенные с PE, сразу же оказываются под опасным, относительно земли, напряжением. И тот, кто к ним прикоснется, рискует получить опасный для жизни удар током.

Зато есть и большое преимущество: при повреждении изоляции или какой-либо еще ситуации, приводящей к замыканию фазного провода на корпус, получается ситуация, аналогичная короткому замыканию. В результате возникает большой ток, приводящий к срабатыванию автомата защиты. В системе TT в этом случае большого тока не будет, поэтому защита от КЗ далеко не всегда сработает. Почему так получается? Потому, что ток течет не по PEN-проводу, как в предыдущем случае, а идет через землю. Представим себе, что сопротивление заземлителя 4 Ом, плюс еще сопротивление заземлителя на подстанции тоже не нулевое. В такой ситуации сила тока будет не более 50А, на который не отреагирует даже 10-амперный автомат категории C (справедливости ради, надо сказать, что он все-таки сработает, но не по отсечке, а по перегрузке, через некоторое время). Но, если взять частный сектор, то зачастую там сопротивление заземлителя не 4 Ом, а намного больше, и токи замыкания на землю намного меньше.

Для чего нужно УЗО?

К счастью, есть такие устройства, как УЗО, которые реагируют даже на небольшие (десятки миллиампер) токи утечки на землю, поэтому они обязательны в системах TT. Сопротивление заземлителя для четкой работы УЗО на номинал 300 мА должно быть не менее 4 Ом, для 100 мА — 14 Ом, 30 мА — 47 Ом.

Что бывает, когда защитное устройство не срабатывает? Если это автомат в системе TN-C-S, то большой ток короткого замыкания может вызвать плавление проводов и пожар. Если же неисправно УЗО в системе ТТ, то на корпусах электроприборов будет опасное для жизни напряжение. Поэтому мой вам совет: к выбору устройств защиты подходите с максимальной ответственностью, периодически проверяйте их работоспособность в процессе эксплуатации, применяйте при возможности дублирование. Например, помимо общего, ставьте на отходящие линии дополнительные УЗО или дифавтоматы, хотя бы на те линии, где наибольшая опасность (ванная, кухня и т.п.). Вообще, разрабатывай я правила, я бы ввел обязательную двухступенчатую дифференциальную защиту.

Теперь к вопросу о том, стоит ли ставить УЗО в системе TN-C-S. Однозначно стоит. Конечно же, от описанного выше обрыва нулевого провода оно не спасет, но при утечке тока на землю оно сработает и предотвратит дальнейшее развитие неисправности на ранней стадии, когда его значение недостаточно для срабатывания автомата.

Меры по недопущению разрушения PEN

Какие меры предпринимает ПУЭ по недопущению разрушения PEN? В первую очередь — должна быть обеспечена механическая защита , а если уж обрыва не избежать, то чтобы это был не нулевой провод, а кабель целиком. То есть, если это воздушная линия, то вести ее многожильным СИПом, раздельные провода на опорах для TN-C-S непригодны. Ибо зацепит ковшом экскаватор или самосвал кузовом, а нулевой провод обычно нижним идет и его гораздо чаще цепляют, а еще может упасть дерево, трактор въехать в столб, сильный ветер, обледенение… — ну а дальше последствия, о которых мы уже упомянули выше. Помимо усиления и объединения в общую оболочку, нулевой провод периодически повторно заземляется, через каждые 200 метров для районов с низкой грозовой активностью, и через каждые 100 метров для районов с числом грозовых часов более 40 в году. И еще, при применении TN-C-S обязательным условием является система уравнивания потенциалов (СУП, ДСУП). Это значит, что все металлическое (трубы, арматура, ванна и т.д.) соединяются с проводом PE. И даже в случае обрыва нуля на всех металлических конструкциях в доме будет, пусть и отличный от земли, но везде одинаковый, потенциал. А в частных домах, в которых есть приусадебное хозяйство, надворные постройки и т.д., зачастую СУП организовать не удается, тогда следует однозначно делать TT.

Нужно ли свое заземление при подключении к системе TN-C-S? Лишним не будет. Причем, чем лучше заземление, тем больший ток может по нему течь. Это надо учитывать при выборе сечения провода от щитка к заземлителю, а также от опоры к щитку (который, кстати, при любой выделенной мощности не может быть менее 16 кв.мм).

Для чего применяется система уравнивания потенциалов

Теперь о СУП — системе уравнивания потенциалов. К дому подходят различные инженерные коммуникации: водопровод, газ, канализация и т.д. В случае неисправности в электросети (хотя бы то же пресловутое отгорание нуля или, например, пробой изоляции на корпус какого-либо электроприбора) возможно появление опасной разности потенциалов (т.е. напряжения) между шиной PE (т.е. корпусами электроприборов) и трубами или другими металлическими конструкциями, которые имеют с ними контакт. Чтобы этого не случилось, все  стационарные металлические конструкции (трубы, арматура, ванны, раковины, поддоны, дверные рамы и т.д.) соединяются с системой заземления проводами достаточного сечения. При этом, прежде чем заземлить газовую трубу, нужно выполнить ряд требований и согласовать с соответствующей службой.

Кроме СУП, часто встречается такое понятие, как ДСУП — дополнительная система уравнивания потенциалов. Это относится к ванным комнатам и другим помещениям, где соседствуют вода и электричество. То есть в помещении с повышенной влажностью ставится коробочка с клеммником, называется коробка уравнивания потенциалов (КУП), от которой заземляющие проводники разводятся ко всем металлическим конструкциям. Кстати, если трубы пластиковые, то делаются специальные металлические вставки, которые тоже подсоединяются к системе ДСУП. Также, если в полу имеется система электрообогрева или проходит электропроводка, то между ними и покрытием пола укладывается сетка из арматуры, которая тоже соединяется с ДСУП. Приспособлений для присоединения заземления к чему-либо существует великое множество, на все случаи, некоторые из них для убедительности привожу на фото ниже:

Кстати, нельзя применять СУП в отдельно взятой квартире многоквартирного дома. Это чревато тяжелыми последствиями. Вообще, данная статья написана в основном для владельцев частных домов, которым приходится заботиться об электробезопасности самостоятельно. Квартиры — это отдельный вопрос, здесь многое зависит от того, когда построен дом, когда в нем был капитальный ремонт, какая система электропроводки в доме. Конечно, все нюансы такого сложного вопроса в рамках одной статьи охватить невозможно, поэтому консультируйтесь всегда со специалистом на месте, и доверяйте такую работу только квалифицированным работникам. Ибо от этого завистит жизнь ваша и окружающих вас людей.

Свое заземление в частном секторе

Теперь о самих заземлителях. Обычно из делают из стальных стержней (уголок, арматура, трубы), которые забивают в землю как можно глубже. Часто встречаются рекомендации делать заземление из трех штырей, забитых вертикально, расположенных равносторонним треугольником и соединенных при помощи сварки металлической полосой или арматурой. В этом случае нужно знать, что чем ближе электроды расположены друг к другу, тем меньше их суммарная эффективность. Если эти же три электрода расположить вдоль одной линии, будет совсем не хуже, а даже немного лучше. Эффективность заземлителей определяют по сопротивлению растеканию, которое измеряется при помощи специальных приборов по определенной методике. Чем ниже это сопротивление, тем лучше. В сети — на блогах, в форумах и даже на корпоративных сайтах часто можно встретить упрощенные методы замера сопротивления заземления. Многие из них откровенно дилетантские либо очень не точные. В одной из следующих статей я подробно остановлюсь на этом и разъясню все в деталях. А пока просто доверьтесь профессионалам.

Обычно верхние слои почвы обладают большим удельным сопротивлением, чем нижние, поэтому заземлители стараются вогнать в землю как можно глубже. Для механизации этого процесса можно использовать пневматические и электрические вибромолоты или отбойные молотки со специальными наконечниками. Часто бывает, что трех штырей недостаточно, тогда делают больше. Расстояние между штырями должно быть достаточно большим, лучше всего раза в два большим, чем их длина. Но можно обойтись и одиночным заземлителем, если загнать его очень глубоко. Такая конструкция получила название глубинно-модульной системы заземления. Как это делается, можно посмотреть на ролике ниже.

Как сделать заземление — видео


Ниже приведен более бюджетный вариант монтажа заземления. Здесь заземляющие электроды соединяются между собой без резьбы. По утверждениям производителей, прочное соединение достигается благодаря расплющиванию нижнего конца штыря в гнезде. Конечно, здесь возникают вопросы о том, насколько надежен и долговечен такой контакт, но видео достаточно убедительно.


И для любителей консервативных подходов, предлагаем познакомиться с традиционным методом построения заземляющего устройства, с применением нескольких электродов, соединенных между собой с помощью сварки. Вместо прутов арматуры, рекомендуемых в данном видеоматериале, в случае их отсутствия, можно применять другие виды металлического проката: уголки, трубы и т.д. Длину электродов лучше брать побольше, чем они длиннее, тем качественней будет заземление.


Как измерять сопротивление заземляющего устройства

По этому поводу существует множество заблуждений, кочующих с одного сайта на другой, и передающихся от одного недоэлектрика к другому. Вот типичный пример, с которым я категорически не согласен, взятый кстати, с одного из топовых сайтов (ссылка):


Даже не знаю, смеяться здесь или плакать. Мало того, что потенциальный и токовый измерительные щупы здесь соединены между собой шлейфом, так еще для измерений предлагается использовать мегаомметр (!). Якобы для того, чтобы приложить к электродам достаточно высокое напряжение. Да, при измерении больших сопротивлений, эти приборы выдают сотни и даже тысячи Вольт. Но, если на таком приборе и есть измерительный диапазон, позволяющий измерять единицы Ом, то никаких сотен Вольт там и близко не будет. В общем, ничего хорошего из таких измерений не получится. Фактически будет измерена некая величина, включающая в себя сопротивление проводов и сопротивление растеканию заземляющего устройства и измерительных электродов. Ну если сопротивлением проводов, соединяющих прибор с электродами, еще как-то можно пренебречь, то сопротивление электроды-земля обычно намного выше сопротивления заземлитель-земля, что делает погрешность много большей самой измеряемой величины.

Кстати, даже в самой википедии есть большие косяки, связанные с недопониманием процесса растекания токов в земле и понятием сопротивления заземления. Ниже я и об этом напишу, но сначала немного о том, как это сделать правильно. Во-первых, не надо ничего изобретать, а использовать специально разработанные для этого приборы и методики. Грамотно и толково это расписано здесь и выглядит примерно так:


Есть вполне легитимный способ измерить сопротивление растеканию и без специального прибора. Для этого нам понадобится понижающий трансформатор 220/12 или 220/6 мощностью 250 Вт или в

Электрическая безопасность дачи и частного дома (часть 2)

Итак, мы пришли к выводу, что электроэнергия, позволяющая нам пользоваться многими благами цивилизации, одновременно представляет большую опасность для жизни человека и поэтому требует внимательного отношения, четкого соблюдения разработанных правил обращения с ней.

Риски поражения электрическим током, которым подвергались жильцы, эксплуатирующие старую электропроводку при схеме TN-C в современных условиях, значительно возросли благодаря массовому внедрению мощных потребителей энергии. Простые защиты, используемые для нее, стали работать неэффективно.

Как устроена схема TN-C здания

Система прокладки электропроводки по TN-C основана на использовании четырех жил проводов для трехфазной цепи (3 фазы и общий ноль) и двухпроводной — у однофазной. Вариант подключения потребителей гаражей и дач по четырехпроводной воздушной линии показан на фотографии.

Рабочий ноль у этой схемы подключается непосредственно к контуру заземления питающей трансформаторной подстанции. В других местах заземления не создаются.

Они исключены проектом, не учитывающим аварийные перетоки через дополнительные контуры. Поэтому при возникновении необходимости их установки требуется согласование с энергоснабжающей организацией на корректировку и перерасчет аварийных режимов, способных возникнуть в новой ситуации.

Предыдущий материал, изложенный в первой части этой темы, посвящен электрической безопасности дачи и частного дома. Он подробно анализирует возможные риски, нацеливает на вывод: необходимо коренным образом изменять ситуацию, принимать один из способов технического решения вопроса, работающего в автоматическом режиме.

Для дачи и частного дома лучше подходят две схемы подключения:

  1. TN-C-S;
  2. ТТ.

Как работает схема TN-C-S

Принцип обеспечения электрической безопасности этой системы основан на монтаже, установке, подключении, замерах и обслуживании энергоснабжающей организацией дополнительного контура заземления к вводному щиту дома.

В нем осуществляется разделение PEN проводника на два составляющих РЕ и N, которые уже дальше разводятся по квартирным щиткам и потребителям отдельными жилами.

Этот способ практически основан на привлечении посторонних специалистов организации, на балансе которой находится здание и электроустановка. Своими руками здесь ничего не сделаешь, а выполненная работа стоит немалых денег.

Поэтому систему TN-C-S применяют чаще всего в многоэтажных зданиях, электрооборудование которых обслуживают электрики ЖКХ и подобных организаций.

Как работает схема ТТ

В ней используется индивидуальный контур заземления для отдельно стоящего здания. Его вполне можно собрать своими руками по одной из распространенных схем.

До начала работ их необходимо согласовать, а по окончании — выполнить электрические замеры электротехнической лабораторией. Привлечение же посторонних специалистов обойдется дешевле, чем в предыдущем случае.

Принцип подключения электропроводки и устройств защитного отключения к контуру созданного заземления по системе TT здания показан на схеме.

Между двумя контурами заземления: трансформаторной подстанции и жилого здания в этой схеме создается хорошая электрическая связь за счет высокой проводимости земли.

Это свойство используется с целью создания разных маршрутов для прохождения токов нагрузки и утечки потенциалов фаз через возможные нарушения изоляции электрической проводки.

Как учитываются токи утечек в системе ТТ

В качестве защит домашней проводки чаще всего используются:

  • автоматический выключатель, устраняющий перегрузки и короткие замыкания;
  • УЗО, ликвидирующие токи утечек;
  • ограничители и реле максимального напряжения, предохраняющие развитие аварий от проникновения в сеть посторонних повышенных потенциалов и разрядов молний.

Автоматический выключатель настраивается по своим параметрам на срабатывание пропускаемых через него токов больших, чем номинальная величина нагрузки. Он не может защитить от небольших значений тока утечки, проходящих через него.

Дифференциальный орган УЗО постоянно сравнивает вектора токов, циркулирующие через фазу и рабочий ноль в двухпроводной схеме и трехфазной сети, с высокой точностью выявляет их геометрическое отклонение.

Оно способно возникнуть при незначительном пробое изоляции, вызывающем малый ток утечки. У неисправных проводов и кабелей существует большая вероятность того, что потенциал фазы начнет стекать по строительным элементам на землю. Когда же неисправность возникает внутри изолированного корпуса электроприбора, то он может на нем и остаться.

Поэтому металлические корпуса всех электрических потребителей внутри здания соединяют с подходящим РЕ проводником, который напрямую подключен к контуру заземления созданной схемы ТТ. По этой цепочке проникший через нарушенную изоляцию проводки потенциал фазы станет стекать на землю и образует замкнутую цепь утечки через контуры заземления здания и трансформаторной подстанции.

Путь тока утечки выделен на картинке для наглядности жирными красными линиями и проходит через автомат и фазный провод УЗО совместно с нагрузкой. В рабочем нуле ток утечки отсутствует. Поэтому он вносит дисбаланс в орган сравнения, за счет которого автоматика УЗО снимает питание с неисправных потребителей.

Чтобы это положение выполнялось, защитный и рабочий ноли в здании не должны объединяться никакими электрическими связями. Они всегда прокладываются изолированными проводами.

В противном случае ток утечки изменит свое направление и УЗО будет работать неправильно.

Защита дома от перенапряжения в системе ТТ

Для предохранения попадания разряде молнии в здание необходимо использовать систему молниезащиты, когда высокая энергия природных явлений улавливается молниеприемником и отводится на потенциал земли через контур заземления. Последний должен выдерживать чрезвычайно большие нагрузки.

Когда высоковольтный разряд попадает в питающую дом воздушную линию электропередачи, то работают ее защиты-разрядники. Однако, часть энергии коротким импульсом вполне может проникнуть по фазному проводу в домашнюю электропроводку, выжечь подключенное оборудование.

Кроме того, на ВЛ вполне возможен обрыв электрического провода рабочего нуля, когда в трехфазной системе происходит смещение нейтрали, а фазное напряжение 220 вольт способно возрасти до линейного 380.

Защита оборудования здания в таких ситуациях возлагается на ограничители перенапряжения ОПН или УЗИП (импульсного типа) и реле максимального напряжения.

Как могут возникнуть неисправности в системе ТТ

Нарушения алгоритмов правильной работы схемы здания возникают при:

  1. неправильном монтаже электрического оборудования;
  2. выходе из строя защитных устройств;
  3. естественном снижении проводимости контура заземления.

Разберем подробнее два последних.

Поломки УЗО

Чтобы своевременно выявить отказ защиты на корпусе УЗО имеется кнопка «Тест», которую необходимо периодически нажимать. При этом внутрь дифференциального органа подается контрольный ток, приводящий к отключению питания с подключенной схемы. Выполнять эту операцию необходимом хотя бы раз в месяц.

Технически частично предотвратить ситуацию может резервирование УЗО по степеням селективности, когда на вводе в здание монтируется противопожарное, а для потребителей — рабочее устройство защитного отключения.

В этом плане конструкция противопожарного УЗО выполняет частичную функцию резервирования токов утечек, но, в пределах своей уставки.

Поддержание исправности контура заземления

Металл, постоянно соприкасающийся с почвой, подвергается коррозии, которая снижает его электрическую проводимость. Увеличивающееся сопротивление контура заземления нарушает баланс проходящих токов, занижает их. В результате токи утечек могут снижаться до такой величины, когда они станут меньше уставки УЗО. Это приведет к отказу срабатывания защиты.

Исключить подобные отказы УЗО помогают своевременные замеры сопротивления контура заземления здания электротехническими лабораториями и поддержания его величины за счет монтажа дополнительных электродов в нормированных пределах, показанных на картинке.

После устройства системы домашней электропроводки по схеме ТТ или TN-C-S останется собрать основную и дополнительную системы уравнивания потенциалов (ОСУП и ДСУП) в доме для корректной работы УЗО по создаваемым токам утечки. Но, этот материал вы прочитаете в другой специальной статье.

А сейчас рекомендую к просмотру видео ролик о системах заземления владельца Stubborn.

Теперь подошло время задать возникшие вопросы по схемам протекания тока в различных системах заземления и работе УЗО по токам утечки через комментарии и поделиться статьей с друзьями в соц сетях.

Полезные товары

Система заземления TT: схема, область применения, недостатки

Общепринятым способом обеспечения безопасности при работе с электрооборудованием, является заземление. В ПУЭ, в перечне мер по защите людей от воздействия электрического тока, защитное заземление стоит на первом месте (пункт 1.7.51, Глава 1.7). Эта мера предусматривает соединение открытых токопроводящих частей электроустановки с заземляющим устройством. В зависимости от конструктивных особенностей электрических установок и сетей, заземляющий контур может быть организован несколькими способами. Система, в соответствии с которой осуществляется заземление, определяется на стадии проектирования или предписывается техническими условиями, которые выдает электросетевая организация. Предметом рассмотрения данной статьи служит система заземления ТТ, принцип работы и область применения которой будет подробно изложен далее.

Общее описание и принцип действия

Применение системы ТТ распространяется на электрические сети, нейтраль которых глухо заземлена. Суть этого способа заключается в том, что токопроводящие части электрооборудования соединяются с заземляющим устройством, находящимся на стороне потребителя. Электрическая связь между этим устройством и тем заземлителем, к которому подключена нейтраль трансформатора на подстанции, отсутствует.

На рисунке схематически изображена система ТТ, по которой произведено заземление здания:

Область применения

Рассмотрим, в каких случаях применяется данный тип заземления. Следует заметить, что система ТТ является в некотором роде неординарной мерой. ТN система — это система, нейтраль источника питания которой глухо заземлена, а открытые проводящие части электроустановки присоединены к глухозаземленной нейтрали источника посредством нулевых защитных проводников. (ПУЭ п.1.7.3). Согласно этому же пункту ПУЭ системой ТТ называется система с глухозаземленной нейтралью источника питания, но при этом в отличии от системы ТN открытые проводящие части электроустановки заземляются заземляющим устройством, электрически независимым от глухозаземленной нейтрали источника. Система ТN имеет несколько разновидностей, общей конструктивной чертой которых является объединение цепей заземления нейтрали трансформатора и электроустановок потребителя. Защита, выполняемая по такому принципу, наиболее легко выполнима с точки зрения потребителя, осуществляющего подключение к электрической сети. Эта система не требует сооружения заземляющего устройства на объекте потребителя.

Применение заземления ТТ предписывается только в тех случаях, когда система TN не обеспечивает необходимого уровня безопасности. Обычно это имеет место при неудовлетворительном техническом состоянии питающей воздушной линии, особенно сооруженной по временной схеме. В таких условиях, как правило, высока вероятность повреждения заземляющего проводника, то есть, потеря электрической связи между заземляющим устройством на подстанции с заземляющими цепями потребителя. Эта ситуация чревата тем, что при пробое изоляции, напряжение прикосновения к корпусам электрооборудования может оказаться равным рабочему напряжению сети. По этой причине, основной сферой применения схемы ТТ служат объекты, электроснабжение которых носит временный характер. Например, строительные площадки, вагончики и т.п.

Довольно часто встречаются случаи, когда заземление ТТ применяется в частном доме или на даче. Реализация такой схемы достаточно трудоемка, особенно для частного владельца. Вопросы, как сделать заземлитель и установить УЗО, смогут решить, пожалуй, только специалисты. Построить на своем участке заземляющее устройство, отвечающее требованиям правил, под силу не каждому владельцу. К сказанному можно также добавить, что применение системы следует согласовать с организацией, осуществляющей электроснабжение.

В соответствии с п.1.7.59 ПУЭ, эксплуатация электрооборудования, заземление которого выполнено по системе ТТ, запрещена без использования УЗО. На рисунке 2 проиллюстрирована схема подключения УЗО.

Устройство защитного отключения (УЗО), это система защиты, осуществляющая отключение установки при возникновении тока утечки, обусловленного повреждением изоляции. Этот аппарат реагирует на разность токов, протекающих по фазному и нулевому проводам, поэтому называется автоматическим выключателем дифференциального тока. При повреждении изоляции электроустановки, образуется шунтирующая цепь через корпус оборудования на землю. В результате образуется ток утечки на заземление.

Требования к устройству заземления

Самой важной характеристикой заземляющего устройства является его сопротивление. Требование к этому параметру, если заземление выполнено по системе ТТ, можно выразить следующим образом (ПУЭ п.1.7.59):

R ≤ 50B/Iср.узо

При этом, в случае применения нескольких устройств защитного отключения, учитывается дифференциальный ток срабатывания того устройства, где он имеет максимальное значение.

Кроме этого требования, должна быть выполнена основная система уравнения потенциалов (п.1.7.60 ПУЭ). Суть мероприятия заключается в соединении между собой следующих конструкций:

  • Заземляющее устройство, выполненное на объекте.
  • Металлические трубопроводы отопления, водоснабжения (холодного и горячего), канализации, газоснабжения.
  • Металлические конструкции, относящиеся к каркасу здания.
  • Металлические детали вентиляционных систем, а также систем кондиционирования.
  • Заземляющее устройство, входящее в состав молниезащиты частного дома.

Достоинства и недостатки

Перечислим плюсы и минусы, которые несет с собой заземление ТТ. К безусловному плюсу следует отнести определенную независимость от возможных повреждений линии питания в плане безопасности. Наличие местного заземляющего устройства, расположенного в непосредственной близости от объектов заземления делает крайне маловероятным обрыв связи с ним.

С другой стороны, сооружение полноценного заземляющего устройства, которое имеет необходимые характеристики, дело достаточно хлопотное, требующее производства земляных работ. Сюда же нужно добавить необходимость использования УЗО, что усложняет схему и требует дополнительных финансовых затрат.

Напоследок рекомендуем просмотреть полезные видео по теме:

Теперь вы знаете, в каких случаях применяется система заземления ТТ и что она собой представляет в целом. Надеемся, эта статья была для вас полезной и интересной!

Рекомендуем также прочитать:

Трансформатор своими руками: инструкция + фото

Повышающие или понижающие трансформаторы на сегодняшний день используются для преобразования напряжения. Их устройство представляет собою машину, которая имеет высокое КПД и применяется во многих областях техники. Многие часто задаются вопросом, как сделать трансформатор своими руками. Для того чтобы самостоятельно собрать это устройство могут потребоваться определенные знания. Также следует знать весь технологический процесс.

Как сделать трансформатор своими руками?

Если вам необходимо самостоятельно соорудить этот аппарат, тогда следует ответить на вопросы:

Для чего необходимо устройство: для повышения или понижения тока?

Какое напряжение будет через него проходить?

На какой частоте будет работать ваш аппарат?

Какую мощность он должен иметь после изготовления?

После того как вы ответите на эти вопросы можно приступать к покупке необходимых материалов. Все материалы для того чтобы сделать трансформатор своими руками можно найти в магазине. В магазине вам необходимо приобрести ленточную изоляцию, сердечник (при необходимости снять его можно из старого телевизора), провода, которые имеют эмалевую изоляцию. Ленточная изоляция трансформатора должна иметь высокое качество.

Трансформатор своими руками также необходимо наматывать. Для его намотки вам потребуется соорудить простой станок. Для его изготовления вам может потребоваться доска шириною 10 см и длиною 40 см. На нее нужно прикрепить с помощью шурупов два бруска 50 на 50 мм. Расстояние между ними обязательно должно составлять не меньше 30 см. Потом просверлите небольшие отверстия с диаметром в 8 мм. В эти отверстия необходимо будет вставить пруты, на которые будет надета катушка трансформатора.

С одной стороны, вам необходимо нарезать небольшую резьбу. После того как вы закрутите шайбу у вас будет готова его ручка. Размер намоточного станка может быть любым. В первую очередь все зависит от размеров сердечника. Если сердечник имеет форму кольца, тогда его намотку следует выполнять вручную.

Трансформатор своими руками может иметь разное количество витков. Необходимое количество витков вы рассчитаете исходя из его мощности. Например, если вам необходимо устройство от 12 до 220 В, тогда мощность аппарата будет составлять от 90 до 150 Вт. Магнитопровод должен иметь О – образную форму. Взять его можно из старого телевизора. Сечение необходимо определить с помощью формулы.

На следующем этапе вам потребуется определить количество витков на 1 В, которое в данном случае равно 50 Гц, деленное на 10. Первичная и вторичная обмотка рассчитывается с помощью формулы:

W1= 12 Х 5 = 60 и W2= 220 Х 5=1100.

Определить в них токи можно с помощью:

I1 = 150:12=12,5 А и I2=150:220=0,7 А.

Вот так рассчитываются все параметры будущего трансформатора. Инструкция трансформатора содержит в себе эти формулы для расчета.

Процесс изготовления каркаса катушек

Каркас делают из картона. Его внутренняя часть должна быть немного больше чем стержень сердечника. Если вы используете О – образный сердечник, тогда необходимо будет две катушки. Если сердечник будет Ш – образным тогда нужна одна катушка.

Если вы используете круглый сердечник, тогда его предварительно необходимо обмотать изоляцией. После этого можно приступать к намотке провода. После того как первичная обмотка будет завершена ее необходимо закрыть 3 слоями изоляции. Потом вам необходимо начать накручивать вторичный ее слой. Концы обмоток следует вывести наружу. При использовании магнитопровода каркас необходимо делать так:

  1. Необходимо выкроить гильзы с отворотами.
  2. Вырезать щечки из картона.
  3. Тело катушки необходимо свернуть в небольшую коробку.
  4. Вам следует надеть на гильзы щечки.

Изготовление обмоток для повышающего трансформатора

Катушку необходимо надеть на деревянный брусок. Предварительно в нем следует просверлить отверстие для намоточного прутка. Подключение трансформатора тока считается наиболее ответственным шагом. Эту деталь следует вставить в станок и приступить к изготовлению обмотки:

  1. На катушку следует намотать два слоя лакоткани.
  2. Конец провода нужно закрепить на щечке и начать вращать ручку станка.
  3. Витки нужно плотно укладывать.
  4. После первичной обмотки провод нужно обрезать и закрепить на щечке рядом с первым.
  5. На выводы нужно закрепить изоляционную трубку.

Сборка повышающего трансформатора

Если вы желаете сделать трансформатор своими руками, тогда мы вам поможем. Чтобы собрать повышающий трансформатор необходимо разобрать сердечник. Если вы используете отдельные пластины, тогда следует определить толщину пакета и необходимо рассчитать О – образные и Ш – образные листы. Если при включении устройства будет слышен шум или дребезг, тогда следует плотнее закрепить крепеж. После этого нужно провести испытание трансформатора. Для этого нужно включить его в сеть и на первичной стороне должно появиться напряжение в 12 В.

Важно знать! После включения устройства его необходимо оставить включенным на несколько часов. Трансформатор не должен перегреваться.

Инструменты и материалы для изготовления устройства

Для его изготовления вам потребуются следующие инструменты:

  • Сердечник (можно взять из старого телевизора).
  • Лакоткань.
  • Толстый картон.
  • Доски и деревянные бруски.
  • Стальной прут.
  • Клей и пила.

Сделать этот трансформатор несложно. Трансформатор для галогенных ламп тоже можно сделать с помощью этих инструментов. Помните, что не нужно отступать от технологии намотки. Если все правила будут соблюдены, тогда оно проработает много лет. Этих инструментов и материалов хватит для того, чтобы изготовить трансформатор своими руками.

К вашему вниманию: как сделать тороидальный трансформатор своими руками?

 

Подключение счетчика через трансформаторы тока (фото, видео, схема)

Электросчётчик – устройство, позволяющее осуществлять контроль и учёт потребляемой электрической энергии. Подключение счетчика через трансформаторы тока может осуществляться по нескольким схемам. Актуальным на сегодняшний день считается трёхфазный счётчик Меркурий 230. Монтаж счётчика для учёта использованной электроэнергии проводится путём подключения его через схему электроснабжения. Различают по конфигурации однофазные и трёхфазные счётчики, которые можно подключить прямым и непрямым способом.

Монтаж однофазного прибора

Подключение однофазного электросчётчика производится в область разрыва линии питания. Не должно быть подключения потребителей энергии к линии питания до монтажа счётчика. Установка автоматического выключателя будет основательной в целях защиты подводящей линии. Также он понадобится в процессе замены прибора. Благодаря установке выключателя не потребуется обесточивание всей подводящей линии.

Также целесообразным будет установка автоматического выключателя после монтажа электросчётчика через трансформаторы тока, для защиты отходящей линии при возникновении поломок цепи пользователя электроэнергии.

На каждом однофазном устройстве, зачастую с задней стороны, имеется схема подключения. Прибор с одной фазой подключается при помощи четырёх зажимов, посредством которых присоединение провод с устройством. Фазный и нулевой провода соединяют с зажимами по такой схеме:

  • клемма №1 к фазному проводу (L),
  • клемма №2 к отходящему фазному проводу,
  • клемма №3 к нулевому проводу питающей линии (N),
  • клемма №4 к отходящему нулевому проводу.

Данная схема подключения однофазного счётчика предназначена для установки в частном доме, квартире высотного дома, а также средней площади торгового павильона.

Установка трёхфазного устройства

Контроль и учёт электрической энергии в четырёх-проводных сетях требует применения как измерителя трёхфазного электросчётчика, подключение которого возможно прямым путём и через трансформаторы тока. Устройство для измерения электроэнергии, подключаемое по схеме с использованием трансформаторов тока называется трансформаторным счётчиком.

Применение трансформаторов тока необходимо при полукосвенном включении счётчика к электрической сети и установленной мощности за пределами 60 кВт. Эти дополнительные устройства отличаются использованием электрического провода вместо первичной обмотки. Основываясь на законы индукции, протекание тока по проводнику при вторичной обмотке происходит электрический заряд, величину которого контролирует и учитывает прибор.

Расчёт объёма использованной электрической энергии осуществляется путём умножения показаний измерительного прибора на коэффициент трансформации. В качестве источников информации при подключении устройств контроля и учёта электричества путём выступают трансформаторы тока.

Подключение через трансформаторы тока

Самой актуальной на сегодняшний день считается схема подключения десятипроводная, преимуществом которой является изоляция силовых цепей.

Трансформаторы тока обеспечивают эту самую изоляцию силовых цепей. Для применения в бытовых или промышленных условиях измерительного устройства изоляция или по-другому гальваническая развязка является важным фактором, обеспечивающим безопасность. К минусам такого способа следует отнести достаточно большое количество проводов.

Схема подключения производится в чёткой последовательности:

  1. клемма №1 – вход фазного привода (А).
  2. клемма №2 – вход измерительной обмотки фазного привода (А).
  3. клемма №3 – выход фазного привода (А).
  4. клемма №4 – вход фазного привода (В).
  5. клемма №5 – вход измерительной обмотки фазного привода (В).
  6. клемма №6 – выход фазного привода (В).
  7. клемма №7 – вход фазного привода (С).
  8. клемма №8 – вход измерительной обмотки фазного привода (С).
  9. клемма №9 – выход фазного привода (С).
  10. клемма №10 – вход нулевого привода (N).
  11. клемма №11 – выход нулевого привода (N).

В процессе установки измерительного устройства электроэнергии, трансформаторы подключают к разрыву цепи посредством специальных зажимов, называемых Л1 и Л2.

Подключение трехфазного счетчика

Одной из упрощённых версий подключения трёхфазного счётчика через трансформаторы тока считается сведение их в конфигурацию по внешним характеристикам похожую на звезду. Такой способ облегчает установку счётчика, поскольку задействуется значительно меньше проводов. Это обусловлено сложной конфигурацией внутренней схемы устройства.

Более устаревшей, но всё же в действительности встречаемой является семипроводная схема подключения счётчика с трёмя фазами через трансформаторы тока.

Минусом семипроводного способа считается отсутствие изоляции измерительных цепей, что является крайне небезопасным фактором при использовании и обслуживании прибора.

Устройство нового поколения

Именно таковым считается трёхфазный электросчётчик Меркурий 230, применяемый для фиксирования активной и реактивной электрической энергии в сетях с напряжением 380 В. Меркурий 230 характеризуется двумя телеметрическими выходами, защитой от взлома и классом точности варьирующейся в пределах 0,5-1 S. Напряжение резервного питания у Меркурия 230 составляет порядка 6-9 В. Имеются в наличии интерфейсы для обмена данными. Счётчик Меркурий 230 оснащён электронной пломбой и автоматической диагностикой, определяющей ошибки и неисправности.

Подключение электросчётчика Меркурия 230 возможно как прямым, так и трансформаторным способом. Благодаря таким возможностям устройство применимо практически при любых условиях эксплуатации.

Типы трансформаторов

— разные типы трансформаторов

Существуют различные типы трансформаторов , которые используются в электроэнергетической системе для различных целей, таких как производство, распределение и передача и использование электроэнергии.

Существуют различные типы трансформаторов: повышающий и понижающий трансформатор, силовой трансформатор, распределительный трансформатор, измерительный трансформатор, содержащий трансформатор тока и напряжения, однофазный и трехфазный трансформатор, автотрансформатор и т. Д.

В комплекте:

Различные типы трансформаторов

Различные типы трансформаторов, показанные на рисунке выше, подробно описаны ниже.

Повышающий и понижающий трансформатор

Этот тип трансформатора классифицируется на основе количества витков в первичной и вторичной обмотках и наведенной ЭДС.

Повышающий трансформатор преобразует низковольтный сильноточный переменный ток в высоковольтную и слаботочную систему переменного тока. В этом типе трансформатора количество витков во вторичной обмотке больше, чем количество витков в первичной обмотке.Если (В 2 > В 1 ) напряжение на выходе повышается и называется повышающим трансформатором

.

Понижающий трансформатор преобразует высокое первичное напряжение, связанное с низким током, в низкое напряжение с высоким током. В трансформаторе этого типа количество витков в первичной обмотке больше, чем количество витков во вторичной обмотке. Если (В 2 1 ) уровень напряжения на выходе понижается и известен как понижающий трансформатор

.

Силовой трансформатор

Силовые трансформаторы используются в передающих сетях высокого напряжения.Номиналы силового трансформатора следующие: 400 кВ, 200 кВ, 110 кВ, 66 кВ, 33 кВ. В основном они рассчитаны на мощность более 200 МВА. В основном устанавливается на генерирующих станциях и передающих подстанциях. Они рассчитаны на максимальную эффективность 100%. Они больше по размеру, чем распределительный трансформатор.

При очень высоком напряжении мощность не может быть передана напрямую потребителю, поэтому мощность понижается до желаемого уровня с помощью понижающего силового трансформатора.Трансформатор загружен не полностью, поэтому потери в сердечнике происходят в течение всего дня, но потери в меди зависят от цикла нагрузки распределительной сети.

Если силовой трансформатор подключен к сети передачи, колебания нагрузки будут очень меньшими, поскольку они не подключены напрямую со стороны потребителя, но при подключении к распределительной сети будут колебания нагрузки.

Трансформатор нагружен на передающей станции в течение 24 часов, таким образом, потери в сердечнике и меди будут происходить в течение всего дня.Силовой трансформатор рентабелен, когда мощность генерируется при низком уровне напряжения. Если уровень напряжения повышается, то ток силового трансформатора уменьшается, что приводит к потерям I 2 R, а также увеличивается регулировка напряжения.

Распределительный трансформатор

Этот тип трансформатора имеет более низкие номиналы, такие как 11 кВ, 6,6 кВ, 3,3 кВ, 440 В и 230 В. Они имеют номинальные характеристики менее 200 МВА и используются в распределительной сети для преобразования напряжения в энергосистеме путем понижения напряжения. уровень, на котором электрическая энергия распределяется и используется на стороне потребителя.

Первичная обмотка распределительного трансформатора намотана эмалированным медным или алюминиевым проводом. Толстая лента из алюминия и меди используется для изготовления вторичной обмотки трансформатора, которая представляет собой обмотку высокого тока и низкого напряжения. Бумага, пропитанная смолой, и масло используются для изоляции.

Масло в трансформаторе используется для

  • Охлаждение
  • Изоляция обмоток
  • Защита от влаги

Различные типы распределительных трансформаторов подразделяются на следующие категории и показаны на рисунке ниже

  • Место установки
  • Тип изоляции
  • Характер поставки

Распределительный трансформатор менее 33 кВ используется в промышленности, а 440, 220 В — в быту.Он меньше по размеру, прост в установке, имеет низкие магнитные потери и не всегда полностью загружен.

Так как он не работает при постоянной нагрузке в течение 24 часов, так как днем ​​его нагрузка находится на пике, а в ночное время он загружен очень слабо, поэтому эффективность зависит от цикла нагрузки и рассчитывается как эффективность на весь день. Распределительные трансформаторы рассчитаны на максимальный КПД от 60 до 70%

Использование распределительного трансформатора

  • Применяется в насосных станциях с уровнем напряжения ниже 33 кВ
  • Электроснабжение ВЛ железных дорог электрифицированных АС
  • В городских районах многие дома питаются от однофазного распределительного трансформатора, а в сельской местности может быть возможно, что одному дому потребуется один трансформатор в зависимости от нагрузки.
  • Множественные распределительные трансформаторы используются в промышленных и коммерческих помещениях.
  • Используется в ветряных электростанциях, где электроэнергия вырабатывается ветряными мельницами. Там он используется как коллектор для подключения подстанций, удаленных от ветроэнергетической системы.

Измерительный трансформатор

Трансформатор тока

    • Трансформатор тока используется для измерения, а также для защиты. Когда ток в цепи является высоким для подачи непосредственно на измерительный прибор, трансформатор тока используется для преобразования большого тока в желаемое значение тока, необходимого в цепи.
    Первичная обмотка трансформатора тока подключена последовательно к основному источнику питания и различным измерительным приборам, таким как амперметр, вольтметр, ваттметр или катушка защитного реле. У них есть точный коэффициент тока и фазовое соотношение, что позволяет измерить точность измерения на вторичной стороне. Термин соотношение имеет большое значение в компьютерной томографии.
    Например, если его соотношение составляет 2000: 5, это означает, что трансформатор тока имеет выходную мощность 5 ампер, когда входной ток составляет 2000 ампер на первичной стороне.Точность трансформатора тока зависит от многих факторов, таких как нагрузка, нагрузка, температура, изменение фазы, номинальные характеристики, насыщение и т. Д.
    В трансформаторе тока полный первичный ток представляет собой векторную сумму тока возбуждения и тока, равную реверс вторичного тока, умноженный на коэффициент трансформации.

Где,
I p — первичный ток
I с — вторичный или обратный ток
I 0 — ток возбуждения
K T — передаточное число

Трансформатор потенциала

Трансформатор напряжения также называют трансформатором напряжения.Первичная обмотка подключена к высоковольтной линии, напряжение которой должно быть измерено, а все измерительные приборы и счетчики подключены к вторичной обмотке трансформатора.

Основная функция трансформатора потенциала — понизить уровень напряжения до безопасного предела или значения. Первичная обмотка трансформатора напряжения заземлена в качестве точки безопасности.

Например, отношение напряжения первичной обмотки к вторичной задается как 500: 120, это означает, что выходное напряжение составляет 120 В, когда 500 В подается на первичную обмотку.Различные типы трансформаторов напряжения показаны ниже на рисунке

.

  • Электромагнитный (трансформатор проволочный)
  • Конденсатор (конденсаторный трансформатор напряжения CVT использует конденсаторный делитель напряжения)
  • Оптический (работает над электрическими свойствами оптических материалов)

Ошибка напряжения в процентах определяется уравнением, приведенным ниже

Однофазный трансформатор

Однофазный трансформатор — это статическое устройство, работающее по принципу закона взаимной индукции Фарадея.При постоянном уровне частоты и изменении уровня напряжения трансформатор передает мощность переменного тока из одной цепи в другую. В трансформаторе есть два типа обмоток. Обмотка, на которую подается питание переменного тока, называется первичной обмоткой, а во вторичной обмотке подключена нагрузка.

Трехфазный трансформатор

Если взять три однофазных трансформатора и соединить их вместе со всеми тремя первичными обмотками, соединенными друг с другом как одна, а все три вторичные обмотки связаны друг с другом, образуя одну вторичную обмотку, то говорят, что трансформатор ведет себя как трехфазный трансформатор, то есть группа из трех однофазных трансформаторов, соединенных вместе, которые действуют как трехфазный трансформатор.

Трехфазный источник питания в основном используется для производства, передачи и распределения электроэнергии в промышленных целях. Менее затратно собрать три однофазных трансформатора для образования трехфазного трансформатора, чем купить один одиночный трехфазный трансформатор. Подключение трехфазного трансформатора может быть выполнено по схеме звезда (звезда) и треугольник (сетка).

Соединение первичной и вторичной обмоток может выполняться различными комбинациями, показанными ниже

Первичная обмотка Вторичная обмотка
Звездочка (звезда) Звездочка
Дельта (сетка) Дельта
Звезда Дельта
Дельта Звезда

Комбинация первичной обмотки и вторичной обмотки выполняется по схеме звезда-звезда, треугольник-треугольник, звезда-треугольник и треугольник.

Понимание того, как работают трансформаторы

Как работают трансформаторы

Там

Есть много размеров, форм и конфигураций трансформаторов от крошечных до гигантских, подобных тем

используется в передаче энергии. Некоторые поставляются с заглушенными проводами, другие — с винтами или

лопаточные клеммы, некоторые из которых предназначены для монтажа в печатные платы, другие для привинчивания или прикручивания

вниз.

Трансформаторы состоят из многослойного железного сердечника.

с одной или несколькими обмотками провода. Их называют трансформаторами, потому что они трансформируют

напряжение и ток с одного уровня на другой. Переменный ток, протекающий через

одна катушка проволоки, первичная, индуцирует напряжение в одной или нескольких других катушках проволоки,

вторичные катушки. Это изменение напряжения переменного тока, которое вызывает напряжение в

другие катушки через изменяющееся магнитное поле.Напряжение постоянного тока, например от аккумулятора или постоянного тока

блок питания не будет работать в трансформаторе. Только переменный ток заставляет трансформатор работать.

Магнитное поле течет через железный сердечник. Чем быстрее изменяется напряжение, тем

выше частота.

Чем ниже частота, тем больше железа требуется в

ядро для эффективной передачи мощности. В США частота сети 60

Герц при номинальном напряжении 110 вольт.Другие страны используют 50 Гц, 220 вольт.

Трансформаторы, рассчитанные на 50 Гц, должны быть немного тяжелее, чем трансформаторы, рассчитанные на 60 Гц, потому что

у них должно быть больше железа в ядре. Напряжение в сети может немного отличаться и обычно работает

от 110 до 120 вольт или от 220 до 240 вольт в зависимости от страны или мощности

соединения. В дом в США поступает 220 вольт, но он разделен на две части.

110 В путем заземления центрального ответвителя (см. Раздел конфигурации ниже)

Отношение входного напряжения к выходному напряжению равно

к отношению витков провода вокруг сердечника на стороне входа к стороне выхода.А

катушка с проводом на входной стороне называется первичной, а на выходной стороне называется

вторичный. Может быть несколько первичных и вторичных катушек. Коэффициент текущей ликвидности

противоположно соотношению напряжений. Когда выходное напряжение ниже входного

Напряжение, выходной ток будет выше входного. Если есть 10

раз больше количества витков провода на первичной обмотке, чем на вторичной, и вы включаете 120 вольт

первичный, вы получите 12 вольт на вторичном.Если вытащить 2 ампера из

вторичный, вы будете использовать только 0,2 ампера или 200 миллиампер на первичном.

Трансформаторы могут быть построены так, чтобы у них было одинаковое количество

обмоток на первичной и вторичной обмотках или разное количество обмоток на каждой. Если они

одинаковы, входное и выходное напряжение одинаковы, и трансформатор используется только для

изоляция, поэтому нет прямого электрического соединения (они подключаются только через

общее магнитное поле).Если на первичной стороне больше обмоток, чем на

вторичная сторона, то это понижающий трансформатор. Если на корпусе больше обмоток

Вторая сторона, то это повышающий трансформатор.

Трансформатор можно использовать в обратном направлении и

работают нормально. Например, если у вас есть повышающий трансформатор для преобразования 120

вольт до 240 вольт, так же можно использовать его для понижающего трансформатора, поставив 240 вольт

во вторичную сторону, и вы получите 120 вольт на первичной стороне.Фактически,

вторичное становится первичным и наоборот.

Номинальная мощность трансформатора

Напряжение измеряется в вольтах, ток измеряется в

амперы, а единицей измерения мощности являются ватты. Ватты равны вольтам, умноженным на

усилители. В трансформаторе небольшая потеря мощности из-за комбинации

сопротивление и реактивность. Реактивное сопротивление аналогично сопротивлению, за исключением того, что это

сопротивление переменному току или, более технически, сопротивление изменению при изменении

текущий из-за изменения созданного поля.Это тепло ограничивает количество

ток или мощность, с которыми может справиться трансформатор. Чем выше ток, тем больше тепла

произведено. Когда провода становятся слишком горячими, изоляция разрушается и замыкается.

соседние провода, что вызывает больше тепла, что в конечном итоге приводит к плавлению проводов и разрушению

трансформатор.

Базовый трансформатор не имеет дополнительных компонентов, поэтому

ничего, что могло бы защитить его от перегрузки. Если вы подключили два выходных провода

непосредственно вместе, это приведет к короткому замыканию и вызовет слишком большой ток в

течет как в первичной, так и в вторичной обмотке, и вы сожжете трансформатор.в

таким же образом, если вы используете трансформатор для питания резака для пенопласта с горячей проволокой, и вы используете

провод со слишком низким сопротивлением для резака для пенопласта, вы сожжете трансформатор, если

у вас нет его защищенного предохранителем или автоматическим выключателем надлежащего номинала. Ты должен убедиться

что сопротивление провода, другими словами, калибр или диаметр и длина соответствуют

ограничьте величину тока до номинала трансформатора.

Чем выше ток, тем больше должны быть провода.

которые несут этот ток.Чем больше провода, тем меньше сопротивление и

меньше тепла. Мощность, которая преобразуется в тепло и теряется, может быть рассчитана как P = I 2 R.

Это означает, что если вы удвоите ток, мощность, теряемая на тепло, возрастет в четыре раза.

Если трансформатор понижающий, то на выходе будет больше тока.

и поэтому провод во вторичной обмотке будет тяжелее первичной. В

обратное верно для повышающего трансформатора.

Трансформатор может иметь номинал в амперах, вольт-амперах (ВА) или

Ватт (Вт). Для небольших трансформаторов ВА и Ватты одинаковы для всех практических

целей. В больших промышленных трансформаторах задействованы факторы мощности, и они могут

будь другим. Если трансформатор рассчитан в амперах, обычно указывается X ампер при X вольт.

и рассчитан на выходе или вторичной стороне. Трансформатор на 120 В с выходным напряжением 24 В, рассчитанный на

2 ампера означает, что вы можете безопасно вытащить только 2 ампера из вторичной обмотки.Вы можете

найдите номинальную мощность трансформатора, умножив номинальный ток на выходную мощность

напряжение так 2 X 24 = 48 Вт.

Если трансформатор рассчитан на ВА или ватты, вы можете

рассчитать максимально допустимый выходной ток, разделив ВА или ватт на выходную мощность.

вольтаж. Таким образом, если трансформатор рассчитан на 48 ВА с выходным напряжением 24 В, допустимое значение

выходной ток 48/24 = 2 ампера.

Конфигурации трансформатора

А

Трансформатор на 120 вольт с двумя входами и двумя выходами очень прост.Вы подключаетесь

два провода на первичной стороне, на стороне 120 В, к розетке и выходному напряжению

находится на двух проводах, идущих от вторичной стороны.

Когда трансформатор показан в электронной схеме,

это показано в виде диаграммы, как показано здесь. Параллельные линии представляют ламинированный

железный сердечник, изогнутые линии представляют первичную и вторичную обмотки, круги

представляют собой окончания, клеммы или короткие провода.

Центральный кран

Обычная конфигурация — это центральный ответвитель или трансформатор тока. В

вторичная сторона имеет три вывода. Средний провод на выходной стороне присоединен к

вторичная обмотка, обычно посередине. Если коэффициент намотки 5: 1, то при

Вход 120 В, вы получаете выход 24 В на двух внешних проводах, но если вы подключите

внешний провод и центральный провод, вы получите 12 вольт, потому что вы используете только половину

вторичная обмотка, обеспечивающая соотношение 10: 1.Если трансформатор номинальный

при 2 амперах вы все равно можете использовать только 2 ампера, независимо от того, используете ли вы 12 вольт или 24 вольт.

Часто центральный отвод заземляется, поэтому у вас есть два источника 12 В, которые можно использовать для

после прохождения через преобразователь (выпрямитель и фильтр) сделать + и — 12В постоянного тока.

Двойной выход

В

конфигурация двойного выхода аналогична центральному отводу, за исключением того, что вместо подключения

провод к центру катушки, катушка разделена на две отдельные катушки с проводами

с клеммами или проводами, выходящими с обоих концов обеих катушек, поэтому четыре провода выходят из

вторичная сторона вместо трех.

Если трансформатор представляет собой вход 110 В с двумя

выходы, вы можете соединить две вторичные катушки последовательно, чтобы получить выход 24 В, или вы можете

подключите их параллельно, чтобы получить 12 В. Будьте осторожны, чтобы правильно подключить

концы двух вторичных обмоток как в последовательном, так и в параллельном соединении. Если

вы поменяете местами соединения, вы получите 0 вольт, потому что два напряжения отменят

друг друга.

Если трансформатор рассчитан на 48 ВА, то вы можете использовать

до 2 ампер для подключения 24 В, которое не отличается от центрального ответвителя или

конфигурация с одним выходом 24 В. Однако при параллельном подключении получается 12 вольт.

но удвоить доступный выходной ток, чтобы получить на выходе 4 ампера. Вы получаете

полный выход 48 ВА, тогда как с выходом 12 В для центрального отвода вы можете получить только половину номинального

выход или 24ВА.Это преимущество ножниц для резки пенопласта с горячей проволокой, поскольку они имеют более широкую

диапазон диаметров и длин проводов в зависимости от того, подключаете ли вы выходы параллельно

или сериал. Последовательные и параллельные соединения показаны ниже.

Двойной вход

В

трансформатор с двумя входами часто используется, чтобы трансформатор мог использоваться в обоих

страны с сетевым напряжением 120 В и сетевым напряжением 240 В.Первичный разделен на

две отдельные обмотки с выводами на каждом конце обеих обмоток, поэтому имеется четыре провода или

клеммы на первичной стороне.

Чтобы использовать его с входом 110 В, два основных

обмотки подключены параллельно, как показано на левой схеме ниже. Необходимо соблюдать осторожность

соедините правильные концы вместе. Если они поменяны местами, поля отменяют друг друга.

out, потому что поля, генерируемые каждым разделом первичного элемента, противоположны.

Обычно клеммы обозначаются цифрами или буквами, а схема представлена ​​на

трансформатора или в прилагаемой таблице данных, показывающей, как должны быть выполнены соединения для

110В и 220В.

Если трансформатор должен быть подключен к сети 220В,

затем две катушки подключаются последовательно, и снова необходимо соблюдать осторожность, чтобы подключить

правильные окончания вместе. Параллельные соединения для 110 В и последовательные соединения

для 220В показано ниже.

Двойной вход и выход

И, конечно же, у вас может быть как двойной вход, так и

двойной выход, поэтому у вас есть четыре провода на входе и четыре провода на выходе, что дает еще большую гибкость

к использованию трансформатора.

Некоторые специализированные трансформаторы могут иметь несколько

вторичные отводы или несколько вторичных обмоток для обеспечения разных напряжений, и они не должны

быть четными числами.Трансформатор может иметь выходное напряжение 3 В, 5 В, 12 В и 24 В для

пример.

Автотрансформаторы (Variac)

Автотрансформатор часто называют Variac.

что на самом деле является торговой маркой одной компании для их автотрансформатора. Оно имеет

постоянное выходное напряжение от нуля до немного выше входного значения. Работает аналогично

к потенциометру или реостату, за исключением того, что изменение напряжения происходит из-за изменения поля

а не сопротивление.Другое отличие состоит в том, что потенциометр или реостат очень

неэффективен, потому что он преобразует ток, протекающий через него, в тепло (Ватты = Амперы X

Вольт). Как и во всех трансформаторах, сопротивление низкое, поэтому количество выделяемого тепла

намного меньше и намного эффективнее при преобразовании напряжения

Автотрансформатор имеет только одну обмотку, которая обслуживает

как первичная, так и вторичная обмотка.Потому что обмотка одна,

между входом и выходом нет гальванической развязки, но если изоляция не

требуется, то он обеспечивает альтернативу многобмоточным трансформаторам в некоторых

ситуации.

Входные провода этого трансформатора подключены к одному

конец обмотки, а другой немного дальше от другого конца. Вторичная

подключил ту же точку, что и входная сторона, которая находится на конце.Другой вторичный

подключение осуществляется с помощью стеклоочистителя, который перемещается по верхней части обмотки, где изоляция была

снимается, чтобы стеклоочиститель мог контактировать с обмотками в любой точке на одной поверхности.

Стеклоочиститель соединен с ручкой в ​​верхней части автотрансформатора, чтобы человек мог повернуть

ручку, чтобы получить желаемое напряжение. Поскольку один первичный провод подключен на пути от

конец обмотки, стеклоочиститель может пройти за эту точку и, таким образом, обеспечить более высокое напряжение

чем вход, обычно выход 110 В может доходить до 130 В на вторичной стороне.

Поскольку автотрансформатор имеет только одну обмотку,

существует только один размер провода, поэтому максимальный входной ток также является максимальным выходным

текущий. Если автотрансформатор на 110 В рассчитан на 10 ампер, то максимальная мощность

ток 10 ампер вне зависимости от напряжения. Если он указан в ваттах или ВА, то

Ампер рассчитывается путем деления Ватт или ВА на номинальное входное напряжение.

Автотрансформатор — это хорошая альтернатива ступени

понижающий трансформатор, когда диапазон желаемых напряжений находится на верхнем конце или во всем диапазоне

напряжение необходимо, но становится дороже, если диапазон находится на нижнем уровне, потому что вы

имеют много неиспользуемых обмоток. Понижающий трансформатор более экономичен.

Для резки пены горячей проволокой автотрансформатор

дороже, чем понижающие трансформаторы в большинстве приложений.Если напряжение

требуется более 24 вольт, тогда можно рассмотреть возможность использования автотрансформатора.

Фазы и соединение нескольких обмоток

Для простоты я не упомянул фазу, но

при соединении двух и более обмоток очень важна фаза. AC

ток представляет собой синусоидальную волну, а напряжение изменяется с положительного на отрицательное и обратно в

синусоидальный ритм много раз в секунду.Как часто меняется напряжение называется

частота и раньше называлась циклами в секунду, но теперь называется Герц (сокращенно Гц).

Бытовой ток в США и некоторых других странах составляет 60 Гц, в других странах — 50 Гц.

Когда мы говорим о двух волновых формах, таких как две обмотки, соотношение между

две синусоидальные волны — это фаза. Если синусоидальные волны совпадают, они находятся в фазе, если

положительный пик одной волны совпадает с отрицательным пиком другой волны, две волны

180 не совпадают по фазе.Фаза между одним концом катушки и другим также 180

не в фазе. Когда один конец находится на положительном пике, другой конец будет на положительном пике.

противоположный пик. Так как должна быть разница в напряжении между двумя точками для

тока, два конца обмотки должны иметь противоположное напряжение в любой момент времени.

Разность фаз между двумя обмотками зависит от

направление обмоток и то, как они соединены, так что на электрических схемах точка на

один конец обмотки указывает начало этой обмотки.Для простоты,

В этой статье я оставил точки на схемах. Однако при соединении двух

катушки вместе, очень важно правильно их соединить.

Для последовательного подключения необходимо подключить конец

одна обмотка к началу другой обмотки (обмотки для нескольких катушек всегда намотаны

в том же направлении). Если подключить начало одной обмотки к концу

другая обмотка в последовательном соединении, поля будут отменены, и вы получите ноль

выход.Это не повредит трансформатор, но вы не получите выходного напряжения.

Когда

соединяя две обмотки параллельно, необходимо соединить начало одной обмотки с пуском

другой обмотки и два конца обмоток вместе. Параллельно

подключение, подключение проводов в обратном направлении сожжет ваш трансформатор , если нет

должным образом защищен (соответствующий номинальный ток) предохранителем или автоматическим выключателем.Быть очень

осторожно при соединении двух катушек вместе.

Дополнительная литература

Это был всего лишь обзор

непрофессионал. Хотя физически трансформатор представляет собой довольно простое устройство, состоящее из нескольких частей,

как это работает на самом деле довольно сложно. Я рекомендую отличное качество Рода Эллиота.

статей, если вы хотите их лучше понять:


Трансформаторы — Основы (Раздел 1),
(Раздел 2),
(Раздел 3)

У него также есть много других статей по электронике.

включая блоки питания.

Вопросы и ответы на интервью TOP 250+ Transformer 11 ноября 2020 — Вопросы на интервью Transformer

  • Вопрос 1. Что такое трансформатор?

    Ответ:

    Трансформатор — это статическое устройство, которое может передавать мощность от одной цепи к другой с той же частотой.

  • Вопрос 2.Как работает трансформатор?

    Ответ:

    Трансформатор состоит из двух катушек. Если одна катушка подключена к источнику переменного напряжения, она будет создавать переменный магнитный поток в сердечнике. Большая часть потока связана со второй катушкой, поэтому взаимно индуцированная ЭДС будет создаваться во второй катушке в соответствии с законом электромагнитной индукции Фарадея.

  • Вопросы для собеседования в области электроники и связи

  • Вопрос 3.Можно ли применять постоянный ток к трансформаторам?

    Ответ:

    Нет

    1. Трансформатор работает по закону электромагнитной индукции Фарадея, при котором ток в катушке должен измениться. Если применяется постоянный ток, ток не изменится, и трансформатор не будет работать.
    2. Практически сопротивление обмотки очень маленькое. Для постоянного тока индуктивное сопротивление равно нулю, а частота равна нулю. Следовательно, сопротивление низкое. Таким образом, обмотка потребляет больше тока, что может повредить обмотку.
  • Вопрос 4. Какие бывают типы трансформаторов?

    Ответ:

    На основе поставки

    1. Трансформатор однофазный
    2. Трехфазный трансформатор

    На основе обмотки

    1. Автотрансформатор (однообмоточный)
    2. Трансформатор двухобмоточный
    3. Трансформатор трехобмоточный
    4. Шестиобмоточный трансформатор

    На основании конструкции

    1. Тип сердечника трансформатора
    2. Трансформатор корпусного типа

    На основании службы

    1. Распределительный трансформатор
    2. Трансформатор силовой

    На основе измерения

    1. Трансформатор тока
    2. трансформатор напряжения

    На базе охлаждения

    1. Трансформатор сухого типа
    2. Трансформатор масляного типа

    На основе функции

    1. Повышающий трансформатор
    2. Понижающий трансформатор
    3. Разделительный трансформатор
  • Учебник по силовой электронике

  • Вопрос 5.Что такое однофазный и трехфазный трансформатор?

    Ответ:

    Трансформатор, который работает от одной фазы, называется однофазным трансформатором.
    Трансформатор, который работает от трех фаз, называется трехфазным трансформатором.

  • Вопросы для собеседования по электротехнике

  • Вопрос 6.Что такое автотрансформатор?

    Ответ:

    В этих трансформаторах только одна обмотка используется как первичная и вторичная. Кроме того, первичная и вторичная обмотки связаны между собой.

  • Вопрос 7. Что такое двухобмоточный трансформатор?

    Ответ:

    Используются две отдельные обмотки, одна как первичная, а другая как вторичная.Обе обмотки связаны магнитным полем.

  • Импровизированное говорение
    Вопросы для интервью по силовой электронике

  • Вопрос 8.Что такое трехобмоточный трансформатор?

    Ответ:

    Используются три обмотки, каждая из которых работает как первичная и вторичная. Кроме того, первичная и вторичная обмотки соединены токопроводящим соединением. Это трехфазный автотрансформатор.

  • Вопрос 9. Что такое шестиобмоточный трансформатор?

    Ответ:

    Используются три обмотки в первичной обмотке и три обмотки во вторичной. Это трехфазные трансформаторы.Они подключаются по схеме звезда-звезда, треугольник-треугольник, звезда-треугольник или треугольник.

  • Электроника Вопросы на собеседовании

  • Вопрос 10.Каковы преимущества трансформаторов с оболочкой по сравнению с трансформаторами с сердечником?

    Ответ:

    В трансформаторах кожухового типа катушки хорошо поддерживаются со всех сторон, поэтому они могут выдерживать более высокие механические нагрузки, возникающие в условиях короткого замыкания. Также реактивное сопротивление утечки будет меньше в трансформаторах кожухового типа.

  • Вопрос 11.Где тип сердечника и конструкция оболочки подходят для трансформатора?

    Ответ:

    Трансформаторы с сердечником популярны в высоковольтных приложениях, таких как распределительные трансформаторы, силовые трансформаторы и, очевидно, автотрансформаторы. Трансформаторы типа Shell популярны в низковольтных устройствах, таких как трансформаторы, используемые в электронных схемах, силовых электронных преобразователях и т. Д.

  • Вопросы для интервью с двигателем постоянного тока

  • Вопрос 12.Что такое силовой трансформатор?

    Ответ:

    Силовой трансформатор используется для передачи при большой нагрузке, высоком напряжении более 33 кВ и 100% КПД. Он имеет большие размеры по сравнению с распределительным трансформатором, который используется в генерирующих станциях и передающих подстанциях. Обычно он рассчитан на мощность выше 200 МВА.

  • Вопросы для собеседования в области электроники и связи

  • Вопрос 13.Что такое распределительный трансформатор?

    Ответ:

    Распределительный трансформатор используется для распределения электроэнергии при низком напряжении менее 33 кВ в промышленных целях и 440-220 В в бытовых. Он работает с низким КПД (60-70%), имеет небольшие размеры, прост в установке, имеет низкие магнитные потери и не всегда полностью загружен.

  • Вопрос 14.Почему КПД распределительного трансформатора составляет от 60 до 70%, а не 100%?

    Ответ:

    Распределительный трансформатор рассчитан на максимальный КПД при нагрузке от 60% до 70%, так как обычно он не всегда работает при полной нагрузке. Его нагрузка зависит от спроса на распределение. В то время как силовой трансформатор рассчитан на максимальный КПД при 100% нагрузке, так как он всегда работает при 100% нагрузке, находясь рядом с генерирующей станцией.

  • Вопрос 15.Каковы основные особенности распределительного трансформатора?

    Ответ:

    1. Распределительный трансформатор будет иметь низкие потери в стали и более высокое значение потерь в меди
    2. Мощность трансформаторов до 500 кВА
    3. Трансформаторы будут иметь баки с гладкими стенками, охлаждающие трубки или радиаторы.
    4. Реактивное сопротивление утечки и регулирование будут низкими.
  • Вопросы для интервью с асинхронными двигателями

  • Вопрос 16.Что такое трансформатор тока?

    Ответ:

    Это защитные устройства, используемые для измерения очень высоких значений тока в энергосистеме. Трансформатор тока (C.T.) — это тип «измерительного трансформатора», который предназначен для создания переменного тока во вторичной обмотке, пропорционального току, измеряемому в его первичной обмотке.

  • Вопрос 17.Что такое потенциальный трансформатор?

    Ответ:

    Это защитные устройства, используемые для измерения очень высокого напряжения в энергосистеме.

  • Вопросы для собеседования по электроэнергетической системе

  • Вопрос 18.Что такое трансформатор сухого типа?

    Ответ:

    В трансформаторах данного типа в качестве хладагента используется воздух. Тепло отводится к стенкам бака и отводится в окружающий воздух.

  • Вопросы для собеседования по электротехнике

  • Вопрос 19.Что такое трансформатор масляного типа?

    Ответ:

    В трансформаторах этого типа масло используется в качестве охлаждающей жидкости. Вся сборка, включая сердечник и обмотки, находится в масле. Вырабатываемое тепло передается стенкам бака через масло. Наконец, тепло передается окружающему воздуху от стенки резервуара за счет излучения.

  • Вопрос 20.Что такое повышающие трансформаторы?

    Ответ:

    Они повышают напряжение с более низкого значения до более высокого.

  • Вопросы для интервью по распределительному устройству

  • Вопрос 21.Что такое понижающие трансформаторы?

    Ответ:

    Они повышают напряжение с более высокого значения до более низкого значения.

  • Вопрос 22.Что такое изолирующие трансформаторы?

    Ответ:

    В трансформаторе этого типа первичная и вторичная обмотки одинаковы. Когда требуется изолировать первичную и вторичную цепи, используются трансформаторы этого типа. Он защищает цепи, подключенные на вторичной стороне, когда на первичной стороне возникает серьезная неисправность.

  • Вопрос 23.Почему используются ступенчатые сердечники?

    Ответ:

    • Для эффективного уменьшения пространства.
    • Для уменьшения длины среднего витка обмоток.
    • Для уменьшения потерь I² R.
  • Вопросы для собеседования с автоматическим выключателем

  • Вопрос 24.Что такое секция ярма трансформаторов?

    Ответ:

    Участки сердечника, соединяющие конечности, называются ярмом. Ярмо используется, чтобы обеспечить закрытый путь для потока.

  • Вопросы для интервью по силовой электронике

  • Вопрос 25.Для чего нужно ламинировать сердечник трансформатора?

    Ответ:

    Для минимизации потерь на вихревые токи.

  • Вопрос 26.Объясните материал, используемый для изготовления сердечника?

    Ответ:

    Сердечник изготовлен из листовой стали, собранной для обеспечения непрерывного магнитного пути с минимальным воздушным зазором. Используемая сталь имеет высокое содержание кремния, иногда подвергается термообработке для обеспечения высокой проницаемости и низких потерь на гистерезис при обычных рабочих плотностях потока. Потери на вихревые токи сводятся к минимуму за счет ламинирования сердечника, при этом слои используются друг от друга путем легкого нанесения лака для сердечника или оксидного слоя на поверхности.Толщина ламинирования варьируется от 0,35 мм для частоты 50 Гц и 0,5 мм для частоты 25 Гц.

  • Вопросы для собеседования в сфере электроэнергетики

  • Вопрос 27.Почему поперечное сечение железа меньше общей площади поперечного сечения сердечника?

    Ответ:

    Это потому, что сердцевина ламинирована и на каждой пластине используется изоляция.

  • Электроника Вопросы на собеседовании

  • Вопрос 28.Что такое коэффициент стека?

    Ответ:

    Отношение полного поперечного сечения железа к общему поперечному сечению сердечника называется коэффициентом суммирования.

  • Вопрос 29.Каковы свойства идеального трансформатора?

    Ответ:

    1. Не должно быть потерь
    2. Обмотка должна иметь нулевое сопротивление
    3. Поток утечки должен быть нулевым
    4. Проницаемость сердечника должна быть настолько высокой, чтобы для установления потока в нем требовался незначительный ток.
  • Вопрос 30.Каковы функции тока холостого хода в трансформаторе?

    Ответ:

    Ток холостого хода создает магнитный поток и обеспечивает потери в стали и в меди без нагрузки.

  • Вопрос 31.Каковы условия стабилизации нулевого напряжения?

    Ответ:

    Отрицательный знак означает нулевое регулирование напряжения. Это происходит, когда нагрузка является емкостной, а коэффициент мощности является опережающим.

  • Вопрос 32.Каковы условия для регулирования максимального напряжения?

    Ответ:

    Это происходит, когда нагрузка является индуктивной, а коэффициент мощности отстает.

  • Вопрос 33.Какие факторы влияют на регулирование напряжения?

    Ответ:

    • Ток нагрузки
    • Эквивалентное сопротивление
    • Эквивалентное реактивное сопротивление
    • коэффициент мощности
  • Вопросы для интервью с двигателем постоянного тока

  • Вопрос 34.Что такое потери на вихревые токи в трансформаторе?

    Ответ:

    В трансформаторе мы подаем переменный ток в первичной обмотке, этот переменный ток создает переменный поток намагничивания в сердечнике, и поскольку этот поток соединяется с вторичной обмоткой, во вторичной обмотке будет индуцированное напряжение, в результате чего ток будет течь через нагрузка, связанная с этим. Некоторые из переменных потоков трансформатора; может также соединяться с другими токопроводящими частями, такими как стальной сердечник или железный корпус трансформатора и т. д.Поскольку переменные магнитные связи с этими частями трансформатора, будут локально индуцированные ЭДС. Из-за этих ЭДС могут возникать токи, которые будут локально циркулировать в этих частях трансформатора. Этот циркулирующий ток не влияет на выход трансформатора и рассеивается в виде тепла. Этот тип потерь энергии называется потерями на вихревые токи трансформатора.

  • Вопрос 35.Как минимизировать потери на вихревые токи?

    Ответ:

    За счет меньшей толщины пластин
    За счет меньшего значения плотности магнитного потока

  • Вопрос 36.Что такое потеря гистерезиса в трансформаторе?

    Ответ:

    Магнитодвижущая сила или mmf, приложенная к сердечнику трансформатора, является переменной. Для каждого цикла, связанного с изменением домена, будет выполняться дополнительная работа. По этой причине будет потребление электроэнергии, известное как гистерезисные потери трансформатора.

  • Вопросы для интервью с асинхронными двигателями

  • Вопрос 37.Как минимизировать потерю гистерезиса?

    Ответ:

    Используя хороший магнитный материал.
    При использовании меньшего значения плотности магнитного потока.

  • Вопрос 38.Почему потери в железе считаются постоянными потерями в трансформаторе?

    Ответ:

    Потери в стали зависят от частоты питания и плотности потока в сердечнике. Для всех нормальных операций частота реверсирования потока, которая совпадает с частотой источника питания, является постоянной, а значение плотности потока более или менее остается постоянным. Следовательно, потери в стали остаются постоянными при любых условиях нагрузки. т.е. от холостого хода до полной нагрузки.

  • Вопрос 39.Почему трансформаторы в ква оцениваются?

    Ответ:

    Потери в меди трансформатора зависят от тока, а потери в стали — от напряжения. Следовательно, общие потери зависят от вольт-ампер, а не от коэффициента мощности. Поэтому мощность трансформаторов указывается в кВА, а не в кВт.

  • Вопрос 40.Каковы условия максимальной эффективности трансформатора?

    Ответ:

    Когда потери в железе равны потерям в меди.

  • Вопросы для собеседования по электроэнергетической системе

  • Вопрос 41.Определите КПД трансформатора на весь день?

    Ответ:

    Он рассчитывается на основе энергии, потребляемой в течение определенного периода, обычно 24 часа в сутки. Эффективность в течение всего дня = мощность в кВтч / ввод в кВтч в течение 24 часов.

  • Вопрос 42.Какие испытания необходимы для определения КПД, регулирования напряжения и повышения температуры обмотки и изоляции трансформатора?

    Ответ:

    • Испытание прямой нагрузкой
    • Проверка обрыва цепи
    • Тест на короткое замыкание
    • Тест Сампнера или спина к спине
  • Вопросы для интервью по распределительному устройству

  • Вопрос 43.Что определяется тестом на обрыв цепи?

    Ответ:

    Утрата железа.

  • Вопрос 44.Почему тест Oc обычно выполняется на стороне LV трансформатора?

    Ответ:

    Сторона высокого напряжения обычно остается открытой, потому что ток в обмотке высокого напряжения меньше, чем в обмотке низкого напряжения. Сторона низкого напряжения имеет более высокий ток, поэтому можно измерить максимальный ток без нагрузки .

  • Вопрос 45.Почему Sc Test обычно проводится на высоковольтной стороне трансформатора?

    Ответ:

    Номинальный ток меньше на стороне ВН. Это также позволит использовать амперметр и ваттметр меньшего диапазона тока.

  • Вопрос 46.Почему испытание на обрыв цепи трансформатора проводится при номинальном напряжении?

    Ответ:

    Разрыв цепи в трансформаторе происходит при номинальном напряжении, поскольку потери в сердечнике зависят от напряжения. Этот тест на обрыв цепи показывает только потери в сердечнике или в железе трансформатора.

  • Вопрос 47.Что определяется тестом на короткое замыкание?

    Ответ:

    Потеря меди.

  • Вопрос 48.Что определяется тестом Сампнера?

    Ответ:

    КПД, а также повышение температуры обмотки.

  • Вопрос 49.Зачем нужна параллельная работа трансформатора?

    Ответ:

    • Отсутствие одиночного большого трансформатора для соответствия нагрузке
    • Повышенная потребляемая мощность
    • Для повышения надежности
    • Если используется много трансформаторов меньшего размера, один может использоваться как запасной
    • Транспортная проблема для большого трансформатора.
  • Вопрос 50.Какие условия для параллельной работы трансформатора?

    Ответ:

    • Равнополярность
    • Равное передаточное число
    • процентное сопротивление должно быть таким же
    • Равное соотношение X / R
    • Равный рейтинг в кВА
    • Равная последовательность фаз.
  • Вопрос 51.Что произойдет, если трансформатор, подключенный параллельно, будет иметь противоположную полярность?

    Ответ:

    Подключение трансформаторов с неправильной полярностью может привести к возникновению циркулирующих токов или короткому замыканию.

  • Вопрос 52.Что произойдет, если трансформатор, подключенный параллельно, будет иметь разное соотношение напряжений?

    Ответ:

    Два параллельных трансформатора должны иметь одинаковые номинальные значения первичного и вторичного напряжения. Любая ошибка в соотношении напряжений приведет к протеканию сильных циркулирующих токов между трансформаторами. Этот циркулирующий ток приведет к соответствующему дисбалансу первичных токов и приведет к перегрузке одного трансформатора. Этот циркулирующий ток приведет к увеличению потерь в меди.

  • Вопрос 53.Что произойдет, если трансформатор, подключенный параллельно, будет иметь разное процентное сопротивление или отношение X / r?

    Ответ:

    Разница в отношении значения реактивного сопротивления к значению сопротивления на единицу импеданса приводит к разному фазовому углу токов, переносимых двумя параллельно включенными трансформаторами; один трансформатор будет работать с более высоким коэффициентом мощности, а другой — с более низким коэффициентом мощности, чем у комбинированного выхода.Следовательно, реальная мощность не будет пропорционально распределяться между трансформаторами.

  • Вопрос 54.Что произойдет, если трансформатор при параллельном включении будет иметь другую последовательность фаз?

    Ответ:

    Если последовательность фаз неправильная, в каждом цикле каждая пара фаз будет закорочена.

  • Вопрос 55.Каковы типичные применения автотрансформатора?

    Ответ:

    1. В качестве усилителя для компенсации падения напряжения для лучшего регулирования
    2. Как пускатели асинхронных двигателей.
    3. В локомотиве
    4. Как трансформатор печи
  • Вопрос 56.Перечислите достоинства автотрансформатора?

    Ответ:

    • Требуется меньше проводящего материала
    • низкая стоимость
    • малый
    • высокий рейтинг ВА
    • высокая эффективность
    • Лучшее регулирование напряжения
    • небольшой ток холостого хода
  • Вопрос 57.Что такое фактор пространства окна?

    Ответ:

    Это отношение площади меди в окне к общей площади окна.

  • Вопрос 58.Что такое Трансформатор Банк?

    Ответ:

    Блок трансформаторов состоит из трех независимых однофазных трансформаторов, первичная и вторичная обмотки которых соединены звездой или треугольником.

  • Вопрос 59.Каковы преимущества трехфазного трансформатора перед трехфазным трансформатором?

    Ответ:

    1. Непрерывность поставок
    2. Минус Стоимость установки
    3. Легкость транспортировки
    4. Функция ожидания
    5. Несбалансированная подача нагрузки
  • Вопрос 60.Каковы преимущества трехфазного трансформатора перед трехфазным трансформатором?

    Ответ:

    1. Экономия на железе
    2. Малый размер
    3. Без трансформаторного масла
    4. Экономичный
    5. Повышенная эффективность
  • Вопрос 61.Почему силикагель используется в сапуне?

    Ответ:

    Силикагель используется для поглощения влаги при всасывании воздуха из атмосферы в трансформатор.

  • Вопрос 62.Какова функция трансформаторного масла в трансформаторе?

    Ответ:

    Трансформаторное масло обеспечивает:

    1. хорошая изоляция и
    2. охлаждение.

    В настоящее время вместо натурального минерального масла используются синтетические масла, известные как АСКРЕЛС (торговое наименование). Они негорючие, под действием электрической дуги не разлагаются с образованием легковоспламеняющихся газов. Масла PYROCOLOR обладают высокой диэлектрической прочностью.

  • Вопрос 63.Почему трансформаторное масло используется в качестве охлаждающей жидкости?

    Ответ:

    Когда трансформаторное масло используется в качестве хладагента, тепловыделение за счет конвекции в 10 раз больше, чем за счет конвекции за счет воздуха. Следовательно, трансформаторное масло используется как охлаждающая среда.

  • Вопрос 64.Что такое консерватор?

    Ответ:

    Маслорасширитель — это небольшой цилиндрический барабан, установленный прямо над основным баком трансформатора. Он используется для расширения и сжатия масла без контакта с окружающей атмосферой. Когда расширитель установлен в трансформаторе, бак полностью заполнен маслом, а расширитель наполовину заполнен маслом.

  • Вопрос 65.Что такое реле Бухгольца?

    Ответ:

    Защищает трансформатор от внутренних повреждений, таких как замыкание на землю, короткое замыкание обмотки, короткое замыкание между фазами, прокалывание проходного изолятора и т. Д.

  • Вопрос 66.Где находится реле Бухгольца?

    Ответ:

    Расположен между баком трансформатора и расширителем.

  • Вопрос 67.Почему в трансформаторах низковольтная обмотка расположена рядом с сердечником?

    Ответ:

    Обмотка и сердечник сделаны из металла, поэтому между ними должна быть размещена изоляция, толщина которой зависит от номинального напряжения обмотки. Чтобы снизить требования к изоляции, обмотку низкого напряжения размещают рядом с сердечником.

  • Вопрос 68.Перечислите некоторые методы охлаждения трансформаторов?

    Ответ:

    Воздух естественный, Воздушный поток, Масло Натуральное, Масло естественное воздушное принудительное, Масло природное водное принудительное, Масло принудительное, Масло принудительное воздушное естественное, Масло принудительное воздушное естественное, Масло принудительное водяное принудительное.

  • Вопрос 69.Какие факторы следует учитывать при выборе метода охлаждения?

    Ответ:

    Выбор метода охлаждения зависит от номинальной мощности трансформатора в кВА, размера, области применения и условий площадки, на которой он будет установлен.

  • Вопрос 70.Как тепло рассеивается в трансформаторе?

    Ответ:

    Тепловыделение трансформатора происходит за счет конвекции, теплопроводности и излучения.

  • Вопрос 71.Зачем нужны охлаждающие трубки?

    Ответ:

    Охлаждающие трубки предназначены для увеличения площади рассеивания тепла бака.

  • Вопрос 72.Как уменьшить реактивное сопротивление утечки трансформатора?

    Ответ:

    В трансформаторах реактивное сопротивление утечки уменьшается за счет чередования обмоток высокого и низкого напряжения.

  • Вопрос 73.Как улучшить теплоотдачу за счет охлаждающих трубок?

    Ответ:

    Охлаждающие трубки улучшат циркуляцию масла. Циркуляция масла обеспечивается за счет эффективных напоров, создаваемых столбиками масла в трубках. Улучшение охлаждения объясняется тем, что удельное тепловыделение за счет конвекции на 35% больше, чем без трубок.

  • Вопрос 74.Что гудит трансформатор?

    Ответ:

    Гудение — это звук, который возникает из-за вибрации сердечников в трансформаторе. Колебания возникают из-за изменения полярности переменного тока или напряжения и ослабления ламинирования сердечника. И то, и другое можно свести к минимуму, затянув сердечник трансформатора.

  • Вопрос 75.Могут ли трансформаторы 60 Гц работать при 50 Гц?

    Ответ:

    Трансформаторы мощностью менее 1 кВА могут использоваться в сети 50 Гц. Трансформаторы мощностью 1 кВА и более, рассчитанные на частоту 60 Гц, не должны использоваться в сети 50 Гц из-за более высоких потерь и, как следствие, повышения температуры. Для этой услуги требуются специальные конструкции. Однако любой трансформатор на 50 Гц будет работать в сети с частотой 60 Гц.

  • Вопрос 76.Перечислите четыре применения трансформатора?

    Ответ:

    • Может повышать или понижать напряжение или ток в цепи переменного тока.
    • Он может действовать как устройство передачи импеданса, увеличивая или уменьшая значение конденсатора, катушки индуктивности или сопротивления в цепи переменного тока.
    • Может электрически изолировать две цепи.
    • Может использоваться для предотвращения передачи постоянного тока из одной цепи в другую.
  • Вопрос 77.Почему гудят трансформаторы?

    Ответ:

    Шум трансформатора возникает из-за явления, которое заставляет кусок магнитной листовой стали расширяться при намагничивании. Когда намагниченность снимается, она возвращается в исходное состояние. Это явление с научной точки зрения называется магнитострикцией. Трансформатор магнитно возбуждается переменным напряжением и током, так что он удлиняется и сжимается дважды в течение полного цикла намагничивания.

    Намагниченность любой точки на листе варьируется, поэтому растяжение и сжатие неоднородны. Сердечник трансформатора изготовлен из множества листов специальной стали, чтобы уменьшить потери и смягчить возникающий тепловой эффект. Расширения и сжатия происходят неравномерно по всему листу. Эти удлинения пропорциональны и поэтому обычно не видны невооруженным глазом. Однако их достаточно, чтобы вызвать вибрацию и, как следствие, шум. Подача напряжения на трансформатор создает магнитный поток или магнитные силовые линии в сердечнике.Степень магнитного потока определяет величину магнитострикции и, следовательно, уровень шума.

  • Вопрос 78.Почему бы не уменьшить шум в ядре за счет уменьшения количества потока?

    Ответ:

    Напряжение трансформатора фиксируется системными требованиями. Отношение этих напряжений к количеству витков в обмотке определяет величину намагничивания. Это соотношение напряжения к числу витков определяется в основном из соображений экономической надежности. Поэтому величина магнитного потока при нормальном напряжении фиксирована. Это также фиксирует уровень шума и вибрации.

  • .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *