Таблица теплопроводность теплоизоляционных материалов: Сравнительная таблица теплопроводности современных строительных материалов

Материал

Содержание

Сравнительная таблица теплопроводности современных строительных материалов

Таблица теплопроводности теплоизоляционных материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Наименование материала Коэффициент теплопроводности Вт/(м·°C)
В сухом состоянии При нормальной влажности При повышенной влажности
Войлок шерстяной 0,036-0,041 0,038-0,044 0,044-0,050
Каменная минеральная вата 25-50 кг/м3 0,036 0,042 0,,045
Каменная минеральная вата 40-60 кг/м3 0,035 0,041 0,044
Каменная минеральная вата 80-125 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 140-175 кг/м3 0,037 0,043 0,0456
Каменная минеральная вата 180 кг/м3 0,038 0,045 0,048
Стекловата 15 кг/м3 0,046 0,049 0,055
Стекловата 17 кг/м3 0,044 0,047 0,053
Стекловата 20 кг/м3 0,04 0,043 0,048
Стекловата 30 кг/м3 0,04 0,042 0,046
Стекловата 35 кг/м3 0,039 0,041 0,046
Стекловата 45 кг/м3 0,039 0,041 0,045
Стекловата 60 кг/м3 0,038 0,040 0,045
Стекловата 75 кг/м3 0,04 0,042 0,047
Стекловата 85 кг/м3 0,044 0,046 0,050
Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044 0,044-0,050
Экструдированный пенополистирол (ЭППС, XPS) 0,029 0,030 0,031
Пенобетон, газобетон на цементном растворе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементном растворе, 400 кг/м3 0,11 0,14 0,15
Пенобетон, газобетон на известковом растворе, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на известковом растворе, 400 кг/м3 0,13 0,22 0,28
Пеностекло, крошка, 100 — 150 кг/м3 0,043-0,06
Пеностекло, крошка, 151 — 200 кг/м3 0,06-0,063
Пеностекло, крошка, 201 — 250 кг/м3 0,066-0,073
Пеностекло, крошка, 251 — 400 кг/м3 0,085-0,1
Пеноблок 100 — 120 кг/м3 0,043-0,045
Пеноблок 121- 170 кг/м3 0,05-0,062
Пеноблок 171 — 220 кг/м3 0,057-0,063
Пеноблок 221 — 270 кг/м3 0,073
Эковата 0,037-0,042
Пенополиуретан (ППУ) 40 кг/м3 0,029 0,031 0,05
Пенополиуретан (ППУ) 60 кг/м3 0,035 0,036 0,041
Пенополиуретан (ППУ) 80 кг/м3 0,041 0,042 0,04
Пенополиэтилен сшитый 0,031-0,038
Вакуум
Воздух +27°C. 1 атм 0,026
Ксенон 0,0057
Аргон 0,0177
Аэрогель (Aspen aerogels) 0,014-0,021
Шлаковата 0,05
Вермикулит 0,064-0,074
Вспененный каучук 0,033
Пробка листы 220 кг/м3 0,035
Пробка листы 260 кг/м3 0,05
Базальтовые маты, холсты 0,03-0,04
Пакля 0,05
Перлит, 200 кг/м3 0,05
Перлит вспученный, 100 кг/м3 0,06
Плиты льняные изоляционные, 250 кг/м3 0,054
Полистиролбетон, 150-500 кг/м3 0,052-0,145
Пробка гранулированная, 45 кг/м3 0,038
Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096
Пробковое покрытие для пола, 540 кг/м3 0,078
Пробка техническая, 50 кг/м3 0,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП 23-02-2003, СП 50. 13330.2012, СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей

Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала

Что нужно знать о теплопроводности пенопласта

Способность материала к теплопередаче, проводить или задерживать тепловые потоки принято оценивать коэффициентом теплопроводности. Если посмотреть на его размерность – Вт/м∙С о , то становится понятным, что это величина удельная, то есть определенная для следующих условий:

  • Отсутствие влаги на поверхности плиты, то есть коэффициент теплопроводности пенопласта из справочника — это величина, определенная в идеально сухих условиях, которых в природе практически не существует, разве что в пустыне или в Антарктиде;
  • Значение коэффициента теплопроводности приведено к толщине пенопласта в 1 метр, что очень удобно для теории, но как-то не впечатляет для практических расчетов;
  • Результаты измерения теплопроводности и теплопередачи выполнены для нормальных условий при температуре 20 о С.

Согласно упрощенной методике, при расчетах термического сопротивления слоя пенопластового утеплителя нужно умножить толщину материала на коэффициент теплопроводности, затем умножить или разделить на несколько коэффициентов, используемых для того, чтобы учесть реальные условия работы теплоизоляции. Например, сильное обводнение материала, или наличие мостиков холода, или способ монтажа на стены здания.

Насколько теплопроводность пенопласта отличается от других материалов, можно увидеть в приведенной ниже сравнительной таблице.

На самом деле не все так просто. Для определения значения теплопроводности можно составить своими руками или использовать готовую программу для расчета параметров утепления. Для небольшого объекта обычно так и поступают. Частник или самозастройщик может вообще не интересоваться теплопроводностью стен, а уложить утепление из пенопластового материала с запасом в 50 мм, что будет вполне достаточно для самых суровых зим.

Большие строительные компании, выполняющие утепление стен на площади десятков тысяч квадратов, предпочитают поступать более прагматично. Выполненный расчет толщины утепления используется для составления сметы, а реальные значения теплопроводности получают на натурном объекте. Для этого наклеивают на участок стены несколько различных по толщине листов пенопласта и измеряют реальное термосопротивление утеплителя. В результате удается рассчитать оптимальную толщину пенопласта с точностью до нескольких миллиметров, вместо приблизительных 100 мм утеплителя можно уложить точное значение 80 мм и сэкономить немалую сумму средств.

Насколько выгодно использование пенопласта в сравнении с типовыми материалами, можно оценить из приведенной ниже диаграммы.

Как рассчитать толщину стен

Для того чтобы зимой в доме было тепло, а летом прохладно, необходимо чтобы ограждающие конструкции (стены, пол, потолок/кровля) должны иметь определенное тепловое сопротивление. Для каждого региона эта величина своя. Зависит она от средних температур и влажности в конкретной области.

Термическое сопротивление ограждающих конструкций для регионов России

Для того чтобы счета за отопление не были слишком большими, подбирать строительные материалы и их толщину надо так, чтобы их суммарное тепловое сопротивление было не меньше указанного в таблице.

Расчет толщины стены, толщины утеплителя, отделочных слоев

Для современного строительства характерна ситуация, когда стена имеет несколько слоев. Кроме несущей конструкции есть утепление, отделочные материалы. Каждый из слоев имеет свою толщину. Как определить толщину утеплителя? Расчет несложен. Исходят из формулы:

Формула расчета теплового сопротивления

R — термическое сопротивление;

p — толщина слоя в метрах;

k — коэффициент теплопроводности.

Предварительно надо определиться с материалами, которые вы будете использовать при строительстве. Причем, надо знать точно, какого вида будет материал стен, утепление, отделка и т.д. Ведь каждый из них вносит свою лепту в теплоизоляцию, и теплопроводность строительных материалов учитывается в расчете.

Сначала считается термическое сопротивление конструкционного материала (из которого будет строится стена, перекрытие и т.д.), затем «по остаточному» принципу подбирается толщина выбранного утеплителя. Можно еще принять в расчет теплоизоляционных характеристики отделочных материалов, но обычно они идут «плюсом» к основным. Так закладывается определенный запас «на всякий случай». Этот запас позволяет экономить на отоплении, что впоследствии положительно сказывается на бюджете.

Пример расчета толщины утеплителя

Разберем на примере. Собираемся строить стену из кирпича — в полтора кирпича, утеплять будем минеральной ватой. По таблице тепловое сопротивление стен для региона должно быть не меньше 3,5. Расчет для этой ситуации приведен ниже.

  1. Для начала просчитаем тепловое сопротивление стены из кирпича. Полтора кирпича это 38 см или 0,38 метра, коэффициент теплопроводности кладки из кирпича 0,56. Считаем по приведенной выше формуле: 0,38/0,56 = 0,68. Такое тепловое сопротивление имеет стена в 1,5 кирпича.
  2. Эту величину отнимаем от общего теплового сопротивления для региона: 3,5-0,68 = 2,82. Эту величину необходимо «добрать» теплоизоляцией и отделочными материалами.

    Рассчитывать придется все ограждающие конструкции

  3. Считаем толщину минеральной ваты. Ее коэффициент теплопроводности 0,045. Толщина слоя будет: 2,82*0,045 = 0,1269 м или 12,7 см. То есть, чтобы обеспечить требуемый уровень утепления, толщина слоя минеральной ваты должна быть не меньше 13 см.

Если бюджет ограничен, минеральной ваты можно взять 10 см, а недостающее покроется отделочными материалами. Они ведь будут изнутри и снаружи. Но, если хотите, чтобы счета за отопление были минимальными, лучше отделку пускать «плюсом» к расчетной величине. Это ваш запас на время самых низких температур, так как нормы теплового сопротивления для ограждающих конструкций считаются по средней температуре за несколько лет, а зимы бывают аномально холодными

Потому теплопроводность строительных материалов, используемых для отделки просто не принимают во внимание

Таблица теплопроводности материалов на Па-Пен

Материал Плотность,
кг/м3
Теплопроводность,
Вт/(м·град)
Теплоемкость,
Дж/(кг·град)
Пакля 150 0. 05 2300
Панели стеновые из гипса DIN 1863 600…900 0.29…0.41
Парафин 870…920 0.27
Паркет дубовый 1800 0.42 1100
Паркет штучный 1150 0.23 880
Паркет щитовой 700 0.17 880
Пемза 400…700 0.11…0.16
Пемзобетон 800…1600 0.19…0.52 840
Пенобетон 300…1250 0.12…0.35 840
Пеногипс 300…600 0.1…0.15
Пенозолобетон 800…1200 0.17…0.29
Пенопласт ПС-1 100 0.037
Пенопласт ПС-4 70 0.04
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78) 65…125 0.031…0.052 1260
Пенопласт резопен ФРП-1 65…110 0. 041…0.043
Пенополистирол (ГОСТ 15588-70) 40 0.038 1340
Пенополистирол (ТУ 6-05-11-78-78) 100…150 0.041…0.05 1340
Пенополистирол «Пеноплекс» 35…43 0.028…0.03 1600
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75) 40…80 0.029…0.041 1470
Пенополиуретановые листы 150 0.035…0.04
Пенополиэтилен 0.035…0.05
Пенополиуретановые панели 0.025
Пеносиликальцит 400…1200 0.122…0.32
Пеностекло легкое 100..200 0.045…0.07
Пеностекло или газо-стекло (ТУ 21-БССР-86-73) 200…400 0.07…0.11 840
Пенофол 44…74 0.037…0.039

Основные характеристики утеплителей

Предоставим для начала характеристики наиболее популярных теплоизоляционных материалов, на которые в первую очередь стоит обратить свое внимание при выборе. Сравнение утеплителей по теплопроводности следует производить только на основе назначения материалов и условий в помещении (влажность, наличие открытого огня и т.д.). Мы расположили далее в порядке значимости основные характеристики утеплителей

Мы расположили далее в порядке значимости основные характеристики утеплителей.

Сравнение строительных материалов

Теплопроводность. Чем ниже данный показатель, тем меньше требуется слой теплоизоляции, а значит, сократятся и расходы на утепление.

Влагопроницаемость. Меньшая проницаемость материала парами влаги снижает при эксплуатации негативное воздействие на утеплитель.

Пожаробезопасность. Теплоизоляция не должна гореть и выделять ядовитые газы, особенно при утеплении котельной или печной трубы.

Долговечность. Чем больше срок эксплуатации, тем дешевле он вам обойдется при эксплуатации, так как не потребует частой замены.

Экологичность. Материал должен быть безопасным для человека и окружающей природы.

Таблица теплопроводности материалов на Кл…

Материал Плотность,
кг/м3
Теплопроводность,
Вт/(м·град)
Теплоемкость,
Дж/(кг·град)
Кладка бутовая из камней средней плотности 2000 1.35 880
Кладка газосиликатная 630…820 0.26…0.34 880
Кладка из газосиликатных теплоизоляционных плит 540 0.24 880
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе 1600 0.47 880
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе 1800 0.56 880
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе 1700 0.52 880
Кладка из керамического пустотного кирпича на цементно-песчаном растворе 1000…1400 0. 35…0.47 880
Кладка из малоразмерного кирпича 1730 0.8 880
Кладка из пустотелых стеновых блоков 1220…1460 0.5…0.65 880
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе 1500 0.64 880
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе 1400 0.52 880
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе 1800 0.7 880
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе 1000…1200 0.29…0.35 880
Кладка из ячеистого кирпича 1300 0.5 880
Кладка из шлакового кирпича на цементно-песчаном растворе 1500 0.52 880
Кладка «Поротон» 800 0.31 900
Клен 620…750 0. 19
Кожа 800…1000 0.14…0.16
Композиты технические 0.3…2
Краска масляная (эмаль) 1030…2045 0.18…0.4 650…2000
Кремний 2000…2330 148 714
Кремнийорганический полимер КМ-9 1160 0.2 1150

Коэффициент теплопроводности строительных материалов – таблицы

Теплоизоляционные свойства материалов прекрасно демонстрируют сводные таблицы, в которых представлены нормативные показатели.

Таблица коэффициентов теплоотдачи материалов. Часть 1

Проводимость тепла материалов. Часть 2Таблица теплопроводности изоляционных материалов для бетонных полов

Но эти таблицы теплопроводности материалов и утеплителей учли далеко не все значения. Рассмотрим подробнее теплоотдачу основных строительных материалов.

Таблица теплопроводности кирпича

Как уже успели убедиться, кирпич – не самый «тёплый» стеновой материал. По теплоэффективности он отстаёт от дерева, пенобетона и керамзита. Но при грамотном утеплении из него получаются уютные и тёплые дома.

Сравнение теплопроводности строительных материалов по толщине (кирпич и пенобетон)

Но не все виды кирпича имеют одинаковый коэффициент теплопроводности (λ). Например, у клинкерного он самый большой – 0,4−0,9 Вт/(м·К). Поэтому строить из него что-то нецелесообразно. Чаще всего его применяют при дорожных работах и укладке пола в технических зданиях. Самый малый коэффициент подобной характеристики у так называемой теплокерамики – всего 0,11 Вт/(м·К). Но подобное изделие также отличается и большой хрупкостью, что максимально минимизирует область его применения.

Неплохое соответствие прочности и теплоэффективности у силикатных кирпичей. Но кладка из них также нуждается в дополнительном утеплении, и в зависимости от региона строительства, возможно, ещё и в утолщении стены. Ниже приведена сравнительная таблица значений проводимости тепла различными видами кирпичей.

Теплопроводность разных видов кирпичей

Таблица теплопроводности металлов

Теплопроводность металлов не менее важна в строительстве, например, при выборе радиаторов отопления. Также без подобных значений не обойтись при сварке ответственных конструкций, производстве полупроводников и различных изоляторов. Ниже приведены сравнительные таблицы проводимости тепла различных металлов.

Теплоэффективность разных видов металлов. Часть 1Теплоэффективность разных видов металлов. Часть 2Теплоэффективность разных видов металлов. Часть 3

Таблица теплопроводности дерева

Древесина в строительстве негласно относится к элитным материалам для возведения домов. И это не только из-за экологичности и высокой стоимости. Самые низкие коэффициенты теплопроводности у дерева. При этом подобные значения напрямую зависят от породы. Самый низкий коэффициент среди строительных пород имеет кедр (всего 0,095 Вт/(м∙С)) и пробка. Из последней строить дома очень дорого и проблемно. Но зато пробка для покрытия пола ценится из-за своей невысокой проводимости тепла и хороших звукоизоляционных качеств. Ниже представлены таблицы теплопроводности и прочности различных пород.

Проводимость тепла дереваПрочность разных пород древесины

Таблица проводимости тепла бетонов

Бетон в различных его вариациях является самым распространённым строительным материалом на сегодня, хотя и не является самым «тёплым». В строительстве различают конструкционные и теплоизоляционные бетоны. Из первых возводят фундаменты и ответственные узлы зданий с последующим утеплением, из вторых строят стены. В зависимости от региона к таковым либо применяется дополнительное утепление, либо нет.

Сравнительная таблица теплоизоляционных бетонов и теплопроводности различных стеновых материалов

Наиболее «тёплым» и прочным считает газобетон. Хотя это не совсем так. Если сравнивать структуру пеноблоков и газобетона, можно увидеть существенные различия. У первых поры замкнутые, когда же у газосиликатов большинство их открытые, как бы «рваные». Именно поэтому в ветреную погоду неутеплённый дом из газоблоков очень холодный. Эта же причина делает подобный лёгкий бетон более подверженным к воздействиям влаги.

Какой коэффициент теплопроводности у воздушной прослойки

В строительстве зачастую используют воздушные ветронепродуваемые прослойки, которые только увеличивают проводимость тепла всего здания. Также подобные продухи необходимы для вывода влаги наружу

Особое внимание проектированию подобных прослоек уделяется в пенобетонных зданиях различного назначения. У подобных прослоек также есть свой коэффициент теплопроводности в зависимости от их толщины

Таблица проводимости тепла воздушных прослоек

Если задумано индивидуальное строительство

При возведении дома важно учитывать технические характеристики всех составляющих (материала для стен, кладочного раствора, будущего утепления, гидроизоляционных и пароотводящих плёнок, финишной отделки). Для понимания, какие стены наилучшим образом будут сохранять тепло, нужно проанализировать коэффициент теплопроводности не только материала для стен, но и строительного раствора, что видно из таблицы ниже:. Для понимания, какие стены наилучшим образом будут сохранять тепло, нужно проанализировать коэффициент теплопроводности не только материала для стен, но и строительного раствора, что видно из таблицы ниже:

Для понимания, какие стены наилучшим образом будут сохранять тепло, нужно проанализировать коэффициент теплопроводности не только материала для стен, но и строительного раствора, что видно из таблицы ниже:

Номер п/п Материал для стен, строительный раствор Коэффициент теплопроводности по СНиП
1. Кирпич 0,35 – 0,87
2. Саманные блоки 0,1 – 0,44
3. Бетон 1,51 – 1,86
4. Пенобетон и газобетон на основе цемента 0,11 – 0,43
5. Пенобетон и газобетон на основе извести 0,13 – 0,55
6. Ячеистый бетон 0,08 – 0,26
7. Керамические блоки 0,14 – 0,18
8. Строительный раствор цементно-песчаный 0,58 – 0,93
9. Строительный раствор с добавлением извести 0,47 – 0,81

Важно. Из приведённых в таблице данных видно, что у каждого строительного материала довольно большой разброс в показателях коэффициента теплопроводности.

Это связано с несколькими причинами:

  • Плотность. Все утеплители выпускаются или укладываются (пеноизол, эковата) различной плотности. Чем ниже плотность (больше присутствует воздуха в теплоизоляционной структуре), тем ниже проводимость тепла. И, наоборот, у очень плотных утеплителей этот коэффициент выше.
  • Вещество, из которого производят (основа). Например, кирпич бывает силикатным, керамическим, глиняным. От этого зависит и коэффициент теплопроводности.
  • Количество пустот. Это касается кирпича (пустотелый и полнотелый) и теплоизоляции. Воздух – самый худший проводник тепла. Коэффициент его теплопроводимости – 0,026. Чем больше пустот, тем ниже этот показатель.

Строительный раствор хорошо проводит тепло, поэтому любые стены рекомендуется утеплять.

Теплопроводность пенопласта от 50 мм до 150 мм считаем теплоизоляцию

Пенополистирольные плиты, именуемые в просторечье пенопласт – это изоляционный материал, как правило, белого цвета. Изготавливают его из полистирола термального вспучивания. На вид пенопласт представлен в виде небольших влагостойких гранул, в процессе плавления при высокой температуре выплавляется в одно целое, плиту. Размеры частей гранул считаются от 5 до 15 мм. Выдающаяся теплопроводность пенопласта толщиной 150 мм, достигается за счет уникальной структуры – гранул.

У каждой гранулы есть огромное количество тонкостенных микро я

инструкция по выбору своими руками, особенности базальтовых материалов, коэффициенты других теплоизоляций, цена, видео, фото

При проведении строительных работ нередко приходится сравнивать свойства разных материалов. Это нужно для того, чтобы подобрать наиболее подходящий из них.

Ведь там, где хорош один из них, совсем не подойдет другой. Поэтому, осуществляя теплоизоляцию, нужно не просто утеплить объект. Важно выбрать утеплитель, подходящий именно для данного случая.

Такая диаграмма нагляднее таблицы

А для этого нужно знать характеристики и особенности разных видов теплоизоляции. Вот об этом мы и поговорим.

Что такое теплопроводность

Для обеспечения хорошей теплоизоляции важнейшим критерием является теплопроводность утеплителей. Так называется передача тепла внутри одного предмета.

То есть, если у одного предмета одна его часть теплее другой, то тепло будет переходить от теплой части к холодной. Тот же самый процесс происходит и в здании.

Таким образом, стены, крыша и даже пол могут отдавать тепло в окружающий мир. Для сохранения тепла в доме этот процесс нужно свести к минимуму. С этой целью используют изделия, имеющие небольшое значение данного параметра.

Таблица теплопроводности

Обработанную информацию об этом свойстве разных материалов можно представить в виде таблицы. К примеру, вот так:

Сводная таблица

Здесь присутствуют всего два параметра. Первый – это коэффициент теплопроводности утеплителей. Второй – толщина стены, которая потребуется для обеспечения оптимальной температуры внутри здания.

Взглянув на эту таблицу, становится очевидным следующий факт. Построить комфортное здание из однородных изделий, например, из полнотелых кирпичей, невозможно. Ведь для этого потребуется толщина стены не менее 2,38м.

Поэтому для обеспечения нужного уровня тепла в помещениях требуется теплоизоляция. И первым и важнейшим критерием ее отбора является вышеуказанный первый параметр. У современных изделий он не должен быть более 0.04 Вт/м°С.

Совет!
При покупке обратите свое внимание на следующую особенность.
Изготовители, указывая на своих изделиях теплопроводность утеплителя, часто используют не одну, а целых три величины: первая – для случаев, когда материал эксплуатируется в сухом помещении с температурой в 10ºС;второе значение – для случаев эксплуатации опять же, в сухом помещении, но с температурой в 25 ºС; третья величина – для эксплуатации изделия в разных условиях влажности.
Это может быть помещение с влажностью категории А или В.
Для ориентировочного расчета следует использовать первое значение.
Все остальные нужны для проведения точных расчетов. О том, как они осуществляются, можно узнать из СНиП II-3-79 «Строительная теплотехника».

Иные критерии выбора

При выборе подходящего изделия должна учитываться не только теплопроводность и цена товара.

Нужно обратить внимание и на иные критерии:

  • объемный вес утеплителя;
  • формостабильность данного материала;
  • паропроницаемость;
  • горючесть теплоизоляции;
  • звукоизоляционные свойства изделия.

Рассмотрим эти характеристики подробнее. Начнем по порядку.

Объемный вес утеплителя

Объемным весом называется масса 1 м² изделия. Причем в зависимости от плотности материала эта величина может быть различной – от 11 кг до 350 кг.

Такая теплоизоляция будет иметь значительный объемный вес

Вес теплоизоляции непременно нужно учитывать, особенно проводя утепление лоджии. Ведь конструкция, на которую крепится утеплитель, должна быть рассчитана на данный вес. В зависимости от массы будет отличаться и способ монтажа теплоизолирующих изделий.

К примеру, при утеплении крыши, легкие утеплители устанавливают в каркас из стропил и обрешетки. Тяжелые экземпляры монтируются поверх стропил, как того требует инструкция по установке.

Формостабильность

Этот параметр означает не что иное, как сминаемость используемого изделия. Иными словами, оно не должно изменять своих размеров в течение всего срока службы.

Любая деформация приведет к потере тепла

В противном случае, может произойти деформация утеплителя. А это уже приведет к ухудшению его теплоизоляционных свойств. Исследованиями доказано, что потери тепла при этом могут составлять до 40%.

Паропроницаемость

По данному критерию все утеплители можно условно подразделить на два вида:

  • «ваты» – теплоизоляционные материалы, состоящие из органических или минеральных волокон. Они являются паропроницаемыми, поскольку легко пропускают через себя влагу.
  • «пены» – теплоизоляционные изделия, изготовленные путем затвердевания особой пенообразной массы. Влагу они не пропускают.

В зависимости от конструктивных особенностей помещения, в нем могут быть использованы материалы первого или второго вида. Кроме того, паропроницаемые изделия нередко устанавливают своими руками вместе со специальной пароизоляционной пленкой.

Горючесть

Весьма и весьма желательно, чтобы используемая теплоизоляция была негорючей. Допускается вариант, когда она будет самозатухающей.

Но, к сожалению, в условиях реального пожара даже это не поможет. В эпицентре огня будет гореть даже то, что не загорается в обычных условиях.

Звукоизоляционные свойства

Мы уже упоминали про два вида изоляционных материалов: «ваты» и «пены». Первый из них является отличным звукоизолятором.

Второй же, напротив, не имеет таких свойств. Но это вполне можно исправить. Для этого при утеплении «пены» нужно установить вместе с «ватами».

Вывод

Таблица теплопроводности наглядно иллюстрирует теплоизоляционные свойства тех или иных материалов. Более наглядной может быть лишь диаграмма.

На фото – наглядная таблица

То же самое, но в виде диаграммы

Как видите, теплопроводность базальтового утеплителя и пенополистирола является наименьшей. Следовательно, они обладают наилучшими теплоизоляционными свойствами по сравнению с остальными материалами для утепления.

Определившись с данным критерием, нужно учесть и иные параметры. Это объемный вес, формостабильность, паропроницаемость, горючесть и звукоизоляционные свойства.

В представленном видео в этой статье вы найдете дополнительную информацию по данной теме.

Теплопроводность строительных материалов — основные понятия, табличные значения, расчеты

Ведущие тенденции современного строительства – это возведение домов с максимальной энергоэффективностью. То есть с возможностью создания и поддержания комфортных условий проживания при минимальных затратах энергоносителей. Понятно, что многим нашим строителям, ведущим возведение своих жилых владений самостоятельно, до таких показателей пока далековато, но стремиться к этому – необходимо всегда.

Теплопроводность строительных материалов

Прежде всего, это касается минимизации тепловых потерь через строительные конструкции. Достигается такое снижение эффективной термоизоляцией, выполненной на основании теплотехнических расчетов. Проектирование в идеале должны проводить специалисты, но часто обстоятельства понуждают владельцев жилья и такие вопросы брать в свои руки. Значит, необходимо иметь общие представления о базовых понятиях строительной теплотехники. Прежде всего – что такое теплопроводность строительных материалов, в чем она измеряется, как просчитывается.

Если разобраться с этими «азами», то будет проще всерьез, со знанием дела , а не по наитию, заниматься вопросами утепления своего жилья.

Что такое теплопроводность, какими единицами измерения она описывается?

Если не рассматривать каких-то теоретических условий, то в реальности все физические тела, жидкости или газы обладают способностью к передаче тепла. Иными словами, чтобы было понятнее, если какой-то объект начинают нагревать с одной из сторон, он становится проводником тепла, нагреваясь сам и передавая тепловую энергию дальше. Точно так же – и при охлаждении, только с «обратным знаком».

Даже на простом бытовом уровне всем понятно, что эта способность выражена у разных материалов в очень отличающейся степени. Например, одно дело мешать готовящееся на плите кипящее блюдо деревянной лопаткой, и совсем другое – металлической ложкой, которая практически моментально разогреется до такой температуры, что ее невозможно будет держать в руках. Этот пример наглядно показывает, что теплопроводность металла во много раз выше, чем у дерева.

«Практическое применение» огромной разницы в теплопроводности материалов – пробка, подсунутая под скобу металлической крышки кастрюли. Снять такую крышку с кипящей на плите посуды можно голыми пальцами, не опасаясь ожога.

И таких примеров – масса, буквально на каждом шагу. Например, прикоснитесь рукой к обычной деревянной двери в комнате, и к металлической ручке, прикрученной на ней. По ощущениям – ручка холоднее. Но такого не может быть – все предметы в помещении имеют примерно равную температуру. Просто металл ручки быстрее отвел на себя тепло тела, что и вызвало ощущения более холодной поверхности.

Коэффициент теплопроводности материала

Существует специальная единица, которая характеризует любой материал, как проводник тепла. Называется она коэффициентом теплопроводности, обозначается обычно греческой буквой λ, и измеряется в Вт/(м×℃). (Во многих встречающихся формулах вместо градусов Цельсия ℃ указаны градусы Кельвина, К, но сути это не меняет).

Этот коэффициент показывает способность материала передавать определенное количество тепла на определённое расстояние за единицу времени. Причем, это показатель характеризует именно материал, то есть без привязки к каким бы то ни было размерам.

Такие коэффициенты рассчитаны для практически любых строительных и иных материалов. Ниже в данной публикации приведены таблицы для различных групп – растворов, бетонов, кирпичной и каменной кладки, утеплителей, древесины, металлов и т.д. Даже беглого взгляда на них достаточно, чтобы убедиться, насколько эти коэффициенты могут отличаться.

Очень часто производители стройматериалов того или иного предназначения в череде паспортных характеристик указывают и коэффициент теплопроводности.

Материалы, которые отличаются высокой проводимостью тепла, например, металлы, как раз и находят часто применение в роли теплоотводов или теплообменников. Классический пример – радиаторы отопления, в которых чем лучше их стенки будут передавать нагрев от теплоносителя, тем эффективнее их работа.

А вот для большинства строительных материалов – ситуация обратная. То есть чем меньше коэффициент теплопроводности материала, из которого возведена условная стенка, тем меньше тепла будет терять здание с приходом холодов. Или, тем меньше можно будет сделать толщину стены при одинаковых показателях теплопроводности.

И на титульной картинке к статье, и на иллюстрации ниже показаны весьма наглядные схемы, как будет различаться толщина стены из разных материалов при равных способностях удержать тепло в доме. Комментарии, наверное, не нужны.

Одинаковая термоизоляционная способность – и совершенно разные толщины. Хороший пример по разнице в теплопроводности.

В справочной литературе часто указывается не одно значение коэффициента теплопроводности для какого-то материала, а целых три. (А иногда – и больше, так как этот коэффициент может меняться с изменением температуры). И это – правильно, так как на теплопроводные качества влияют и условия эксплуатации. И в первую очередь – влажность.

Это свойственно большинству материалов – при насыщении  влагой коэффициент теплопроводности увеличивается. И если ставится цель выполнить расчеты максимально точно, с привязкой к реальным условиям эксплуатации, то рекомендуется не пренебрегать этой разницей.

Итак, коэффициент может даваться расчетный, то есть для совершенно сухого материала и лабораторных условий. Но для реальных расчетов берут его или для режима эксплуатации А, или для режима Б.

Эти режимы складываются консолидировано из климатических особенностей региона и из особенностей эксплуатации конкретного здания (помещения).

Тип своей климатической зоны по уровню влажности можно определить по предлагаемой карте-схеме:

Климатические зоны территории России по уровню влажности: 1 –влажная; 2 – нормальная; 3 – сухая.

Особенности влажностного режима помещений определяются по следующей таблице:

Таблица определения влажностного режима помещений

Влажностной режим помещения Относительная влажность внутреннего воздуха при температуре:
до 12°С от 13 до 24°С 25°С и выше
Сухой до 60% до 50% до 40%
Нормальный от 61 до 75% от 51 до 60% от 41 до 50%
Влажный 76% и более от 61 до 75% от 51 до 60%
Мокрый 76% и более 61% и более

Кстати, о влажности!. .

А хорошо ли вы представляете себе, что такое относительная влажность воздуха. И какой она должна быть в помещениях для поддержания комфортного микроклимата? Если с этим ясности нет – добро пожаловать к специальной публикации нашего портала, посвященной приборам измерения относительной влажности.

Итак, имея данные карты-схемы и таблицы, можно по второй таблице определиться с выбором режима А или Б, от которого будет зависеть реальная величина коэффициента теплопроводности.

Таблица для выбора режима эксплуатации ограждающих конструкций

Влажностной режим помещения (по таблице) Зоны влажности (в соотвествии с картой-схемой)
3 — сухая 2 — нормальная 1 — влажная
Сухой А А Б
Нормальный А Б Б
Влажный или мокрый Б Б Б

Вот по этому режиму и выбирается из табличных данных наиболее близкий к реальности коэффициент теплопроводности.

Таблицы будут приведены ниже, под теоретической частью.

Сопротивление теплопередаче

Итак, коэффициент теплопроводности характеризует сам материал. Но с практической точки зрения, наверное, важнее иметь какую-то величину, которая будет описывать теплопроводные способности конкретной конструкции. То есть уже с учетом особенностей ее строения и размеров.

Такая единица измерения есть, и называется она сопротивлением теплопередаче. Ее можно считать обратной величиной коэффициенту теплопроводности, с одновременным учетом толщины материала.

Обозначается сопротивление теплопередаче (или, как его часто именуют, термическое сопротивление) латинской буквой R. Если «плясать» от коэффициента теплопроводности, то определяется оно по следующей формуле.

R = h/λ

где:

R — сопротивление теплопередаче однослойной однородной ограждающей конструкции, м²×℃/Вт;

h — толщина этого слоя, выраженная в метрах;

λ — коэффициент теплопроводности материала, из которого изготовлена эта ограждающая конструкция, Вт/(м×℃).

Очень часто в строительстве используются многослойные конструкции. В том числе одним из слоев нередко выступает утеплительный материал с очень низким коэффициентом теплопроводности – специально, чтобы максимально повысить значение термического сопротивления. Дело в том, что общее значение суммируется из сопротивлений всех слоев, составляющих ограждающую конструкцию. И к ним добавляется сопротивление приграничных слоев воздуха на внешней и внутренней поверхностях конструкции.

Формула сопротивления перегородки с n-слоев будет такой:

Rsum = R₁ + R₂ + …+Rn + Rai + Rao

где:

Rsum— суммарное термическое сопротивление ограждающей конструкции;

 R₁ … Rn— сопротивления слоев, от 1 до n;

Rai— сопротивление пристенного слоя воздуха внутри;

Rao— сопротивление пристенного слоя воздуха снаружи.

Для каждого из слоев сопротивление рассчитывается отдельно, исходя из коэффициента теплопроводности материала и толщины.

Есть специальная методика расчета и коэффициентов воздушных прослоек вдоль стены снаружи и внутри. Но для упрощенных расчётов их вполне можно взять равными суммарно 0,16 м²×℃/Вт – большой погрешности не будет.

Кстати, если в конструкции перегородки предусмотрена воздушная полость, не сообщающаяся с внешним воздухом, то она тоже дает весомую добавку к общему сопротивлению теплопередаче. Значения сопротивления теплопередаче воздушных изолированных прослоек показаны в таблице ниже:

Таблица термических сопротивлений замкнутых воздушных прослоек

Толщина воздушной прослойки, в метрах В и Г ▲ Г▼
tв > 0 ℃ tв > 0 ℃
0.01 0.13 0.15 0.14 0.15
0.02 0. 14 0.15 0.15 0.19
0.03 0.14 0.16 0.16 0.21
0.05 0.14 0.17 0.17 0.22
0.1 0.15 0.18 0.18 0.23
0.15 0.15 0.18 0.19 0.24
0,2-0,3 0.15 0.19 0.19 0.24
Примечания:
В и Г ▲ — воздушная прослойка вертикальная, или горизонтальная, с рапространением тепла снизу вверх
Г▼ — воздушная прослойка горизонтальная при распространении тепла сверху вниз
tв > 0 ℃ — положительная температура воздуха в прослойке
Если любая из поверхностей воздушной прослойки, или обе одновременно, оклеены алюминиесвой фольгой, то значение сопротивления теплопередаче принимают вдвое большим.

Таблицы коэффициентов теплопроводности различных групп строительных материалов

Таблица коэффициентов теплопроводности кирпичных кладок и каменных облицовок стен
Наименование материала ρ
Средняя плотность материала
кг/м³
λ₀
Коэффициент теплопроводности в идеальных условиях и в сухом состоянии
Вт/(м×℃)
λА
Коэффициент теплопроводности для условий эксплуатации А
Вт/(м×℃)
λБ
Коэффициент теплопроводности для условий эксплуатации Б
Вт/(м×℃)
Кирпичная кладка из сплошного кирпича на различных растворах
Стандартный керамический (глиняный) – на цементно-песчаном кладочном растворе 1800 0,56 0,70 0,81
Стандартный керамический на цементно-шлаковом растворе 1700 0,52 0,64 0,76
Стандартный керамический на цементно-перлитовом растворе 1600 0,47 0,58 0,70
Силикатный на цементно-песчаном кладочном растворе 1800 0,70 0,76 0,87
Трепельный термооизоляционный, на цементно-песчаном кладочном растворе 1200 0,35 0,47 0,52
— то же, но с плотностью 1000 0,29 0,41 0,47
Шлаковый, на цементно-песчаном кладочном растворе 1500 0,52 0,64 0,70
Кладка из пустотного кирпича
Кирпич керамический, с плотностью 1400 кг/м³, на цементно-песчаном кладочном растворе 1600 0,47 0,58 0,64
— то же, но с плотностью кирпича 1300 кг/м³ 1400 0,41 0,52 0,58
— то же, но с плотностью кирпича 1000 кг/м³ 1200 0,35 0,47 0,52
Кирпич силикатный, одиннадцатипустотный, на цементно-песчаном кладочном растворе 1500 0,64 0,70 0,81
— то же, четырнадцатипустотный 1400 0,52 0,64 0,76
Кладка или облицовка поверхностей натуральным камнем
Гранит или базальт 2800 3,49 3,49 3,49
Мрамор 2800 2,91 2,91 2,91
Туф 2000 0,76 0,93 1,05
— то же, но с плотностью 1800 0,56 0,70 0,81
— то же, но с плотностью 1600 0,41 0,52 0,64
— то же, но с плотностью 1400 0,33 0,43 0,52
— то же, но с плотностью 1200 0,27 0,35 0,41
— то же, но с плотностью 1000 0,21 0,24 0,29
Известняк 2000 0,93 1,16 1,28
— то же, но с плотностью 1800 0,70 0,93 1,05
— то же, но с плотностью 1600 0,58 0,73 0,81
— то же, но с плотностью 1400 0,49 0,56 0,58
Таблица коэффициентов теплопроводности бетонов различного типа
Наименование материала ρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Бетоны на плотном заполнителе
Железобетон 2500 1. 69 1.92 2.04
Бетон на натуральном гравии или щебне 2400 1.51 1.74 1.86
Бетоны на натуральных пористых заполнителях
Пемзобетон 1600 0.52 0.6 0.68
— то же, но с плотностью 1400 0.42 0.49 0.54
— то же, но с плотностью 1200 0.34 0.4 0.43
— то же, но с плотностью 1000 0.26 0.3 0.34
— то же, но с плотностью 800 0.19 0.22 0.26
Туфобетон 1800 0.64 0.87 0.99
— то же, но с плотностью 1600 0.52 0.7 0.81
— то же, но с плотностью 1400 0.41 0.52 0.58
— то же, но с плотностью 1200 0. 29 0.41 0.47
Бетон на вулканическом шлаке 1600 0.52 0.64 0.7
— то же, но с плотностью 1400 0.41 0.52 0.58
— то же, но с плотностью 1200 0.33 0.41 0.47
— то же, но с плотностью 1000 0.24 0.29 0.35
— то же, но с плотностью 800 20 0.23 0.29
Бетоны на искусственных пористых наполнителях
Керамзитобетон на кварцевом песке с поризацией 1200 0.41 0.52 0.58
— то же, но с плотностью 1000 0.33 0.41 0.47
— то же, но с плотностью 800 0.23 0.29 0.35
Керамзитобетон на керамзитовом песке или керамзитопенобетон 1800 66 0. 8 0.92
— то же, но с плотностью 1600 0.58 0.67 0.79
— то же, но с плотностью 1400 0.47 0.56 0.65
— то же, но с плотностью 1200 0.36 0.44 0.52
— то же, но с плотностью 1000 0.27 0.33 0.41
— то же, но с плотностью 800 0.21 0.24 0.31
— то же, но с плотностью 600 0.16 0.2 0.26
— то же, но с плотностью 500 0.14 0.17 0.23
Керамзитобетон на перлитовом песке 1000 0.28 0.35 0.41
— то же, но с плотностью 800 0.22 0.29 0.35
Перлитобетон 1200 0.29 0.44 0.5
— то же, но с плотностью 1000 0. 22 0.33 0.38
— то же, но с плотностью 800 0.16 0.27 0.33
— то же, но с плотностью 600 0.12 0.19 0.23
Шлакопемзобетон 1800 0.52 0.63 0.76
— то же, но с плотностью 1600 0.41 0.52 0.63
— то же, но с плотностью 1400 0.35 0.44 0.52
— то же, но с плотностью 1200 0.29 0.37 0.44
— то же, но с плотностью 1000 0.23 0.31 0.37
Шлакопемзопено и шлакопемзогазобетон 1600 0.47 0.63 0.7
— то же, но с плотностью 1400 0.35 0.52 0.58
— то же, но с плотностью 1200 0.29 0.41 0.47
— то же, но с плотностью 1000 0. 23 0.35 0.41
— то же, но с плотностью 800 0.17 0.29 0.35
Вермикулетобетон 800 0.21 0.23 0.26
— то же, но с плотностью 600 0.14 0.16 0.17
— то же, но с плотностью 400 0.09 0.11 0.13
— то же, но с плотностью 300 0.08 0.09 0.11
Ячеистые бетоны
Газобетон, пенобетон, газосиликат, пеносиликат 1000 0.29 0.41 0.47
— то же, но с плотностью 800 0.21 0.33 0.37
— то же, но с плотностью 600 0.14 0.22 0.26
— то же, но с плотностью 400 0.11 0.14 0.15
— то же, но с плотностью 300 0. 08 0.11 0.13
Газозолобетон, пенозолобетон 1200 0.29 0.52 0.58
— то же, но с плотностью 1000 0.23 0.44 0.59
— то же, но с плотностью 800 0.17 0.35 0.41
Таблица коэффициентов теплопроводности строительных растворов на цементной, известковой, гипсовой основе
Наименование материала ρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Обычный цементно-песчаный раствор 1800 0.58 0.76 0.93
Сложный раствор из цемента, песка, извести 1700 0.52 0. 7 0.87
Цементно-шлаковый раствор 1400 0.41 0.52 0.64
Цементно-перлитовый раствор 1000 0.21 0.26 0.3
— то же, но с плотностью 800 0.16 0.21 0.26
Известково-песчаный раствор 1600 0.47 0.7 0.81
— то же, но с плотностью 1200 0.35 0.47 0.58
Гипсово-перлитовый раствор 600 0.14 0.19 0.23
Гипсово-перлитовый поризованный раствор 500 0.12 0.15 0.19
— то же, но с плотностью 400 0.09 0.13 0.15
Гипсовые плиты литые конструкционные 1200 0.35 0.41 0.47
— то же, но с плотностью 1000 0.23 0.29 0.35
Листы гипсокартона (сухая штукатурка) 800 0. 15 0.19 0.21
Таблица коэффициентов теплопроводности дерева, изделий на основе древесины, а также других природных материалов
Наименование материала ρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Хвойная древесина (сосна иди ель) поперек волокон 500 0,09 0,14 0,18
— они же — вдоль волокон 500 0,18 0,29 0,35
Древесина плотных лиственных пород (дуб, бук, ясень) поперек волокон 700 0,1 0,18 0,23
— они же — вдоль волокон 700 0,23 0,35 0,41
Клееная фанера 600 0,12 0,15 0,18
Облицовочный картон 1000 0,18 0,21 0,23
Картон строительный многослойный 650 0,13 0,15 0,18
Плиты древесно-волокнистые (ДВП), древесно-стружечные (ДСП), ориентированно-стружечные (ОСП) 1000 0,15 0,23 0,29
— то же, но для плотности 800 0,13 0,19 0,23
— то же, но для плотности 600 0,11 0,13 0,16
— то же, но для плотности 400 0,08 0,11 0,13
— то же, но для плотности 200 0,06 0,07 0,08
Плиты фибролитовые, арболит на основе портландцемента 800 0,16 0,24 0,3
— то же, но для плотности 600 0,12 0,18 0,23
— то же, но для плотности 400 0,08 0,13 0,16
— то же, но для плотности 300 0,07 0,11 0,14
Плиты камышитовые 300 0,07 0,09 0,14
— то же, но для плотности 200 0,06 0,07 0,09
Плиты торфяные термоизоляционные 300 0,064 0,07 0,08
— то же, но для плотности 200 0,052 0,06 0,064
Пакля строительная 150 0,05 0,06 0,07
Таблица коэффициентов теплопроводности материалов, применяемых в термоизоляционных целях
Наименование материала ρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Минеральная вата, стекловата
Маты минеральной ваты прошивные или на синтетическом связующем 125 0. 056 0.064 0.07
— то же, но для плотности 75 0.052 0.06 0.064
— то же, но для плотности 50 0.048 0.052 0.06
Плиты минеральной ваты на синтетическом и битумном связующих — мягкие, полужесткие и жесткие 350 0.091 0.09 0.11
— то же, но для плотности 300 0.084 0.087 0.09
— то же, но для плотности 200 0.07 0.076 0.08
— то же, но для плотности 100 0.056 0.06 0.07
— то же, но для плотности 50 0.048 0.052 0.06
Плиты минеральной ваты на органофосфатном связующем — повышенной жесткости 200 0.064 0.07 0.076
Плиты из стеклянного штапельного волокна на синтетическом связующем 50 0. 056 0.06 0.064
Маты и полосы из стеклянного волокна прошивные 150 0.061 0.064 0.07
Синтетические утеплители
Пенополистирол 150 0.05 0.052 0.06
— то же, но для плотности 100 0.041 0.041 0.052
— то же, но для плотности 40 0.038 0.041 0.05
Пенопласт ПХВ-1 и ПВ-1 125 0.052 0.06 0.064
— то же, но для плотности 100 и менее 0.041 0.05 0.052
Пенополиуретан плитный 80 0.041 0.05 0.05
— то же, но для плотности 60 0.035 0.041 0.041
— то же, но для плотности 40 0.029 0.04 0.04
Пенополиуретан напылением 35 0. 027 0.033 0.035
Плиты из резольноформальдегидного пенопласта 100 0.047 0.052 0.076
— то же, но для плотности 75 0.043 0.05 0.07
— то же, но для плотности 50 0.041 0.05 0.064
— то же, но для плотности 40 0.038 0.041 0.06
Пенополиэтилен 30 0.03 0.032 0.035
Плиты из полиизоцианурата (PIR) 35 0.024 0.028 0.031
Перлитопласт-бетон 200 0.041 0.052 0.06
— то же, но для плотности 100 0.035 0.041 0.05
Перлитофосфогелевые изделия 300 0.076 0.08 0.12
— то же, но для плотности 200 0.064 0.07 0. 09
Каучук вспененный 85 0.035 0.04 0.045
Утеплители на натуральной основе
Эковата 60 0.041 0.054 0.062
— то же, но для плотности 45 0.038 0.05 0.055
— то же, но для плотности 35 0.035 0.042 0.045
Пробка техническая 50 0.037 0.043 0.048
Листы пробковые 220 0.035 0.041 0.045
Плиты льнокостричные термоизоляционные 250 0.054 0.062 0.071
Войлок строительный шерстяной 300 0.057 0.065 0.072
— то же, но для плотности 150 0.045 0.051 0.059
Древесные опилки 400 0.092 1. 05 1.12
— то же, но для плотности 200 0.071 0.078 0.085
Засыпки минеральные
Керамзит — гравий 800 0.18 0.21 0.23
— то же, но для плотности 600 0.14 0.17 0.2
— то же, но для плотности 400 0.12 0.13 0.14
— то же, но для плотности 300 0.108 0.12 0.13
— то же, но для плотности 200 0.099 0.11 0.12
Шунгизит — гравий 800 0.16 0.2 0.23
— то же, но для плотности 600 0.13 0.16 0.2
— то же, но для плотности 400 0.11 0.13 0.14
Щебень из доменного шлака, шлаковой пемзы и аглоперита 800 0.18 0.21 0.26
— то же, но для плотности 600 0.15 0.18 0.21
— то же, но для плотности 400 1.122 0.14 0.16
Щебень и песок из вспученного перлита 600 0.11 0.111 0.12
— то же, но для плотности 400 0.076 0.087 0.09
— то же, но для плотности 200 0.064 0.076 0.08
Вермикулит вспученный 200 0.076 0.09 0.11
— то же, но для плотности 100 0.064 0.076 0.08
Песок строительный сухой 1600 0.35 0.47 0.58
Пеностекло или газостекло
Пеностекло или газо-стекло 400 0.11 0.12 0.14
— то же, но для плотности 300 0.09 0.11 0.12
— то же, но для плотности 200 0.07 0.08 0.09
Таблица коэффициентов теплопроводности кровельных, гидроизоляционных, облицовочных, рулонных и наливных напольных покрытий
Наименование материала ρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Асбестоцементные
Листы асбестоцементные плоские («плоский шифер») 1800 0.35 0.47 0.52
— то же, но для плотности 1600 0.23 0.35 0.41
На битумной основе
Битумы нефтяные строительные и кровельные 1400 0.27 0.27 0.27
— то же, но для плотности 1200 0.22 0.22 0.22
— то же, но для плотности 1000 0.17 0.17 0.17
Асфальтобетон 2100 1.05 1.05 1.05
Изделия из вспученного перлита на битумном связующем 400 0.111 0.12 0.13
— то же, но для плотности 300 0.067 0.09 0.099
Рубероид, пергамин, толь, гибкая черепица 600 0.17 0.17 0.17
Линолеумы и наливные полимерные полы
Линолеум поливинилхлоридный многослойный 1800 0.38 0.38 0.38
— то же, но для плотности 1600 0.33 0.33 0.33
Линолеум поливинилхлоридный на тканевой подоснове 1800 0.35 0.35 0.35
— то же, но для плотности 1600 0.29 0.29 0.29
— то же, но для плотности 1400 0.23 0.23 0.23
Пол наливной полиуретановый 1500 0.32 0.32 0.32
Пол наливной эпоксидный 1450 0.029 0.029 0.029
Таблица коэффициентов теплопроводности металлов и стекла
Наименование материала ρ
кг/м³
λ₀
Вт/(м×℃)
λА
Вт/(м×℃)
λБ
Вт/(м×℃)
Сталь, в том числе — арматурная стержневая 7850 58 58 58
Чугун 7200 50 50 50
Алюминий 2600 221 221 221
Медь 8500 407 407 407
Бронза 7500÷9300 25÷105 25÷105 25÷105
Латунь 8100÷8800 70÷120 70÷120 70÷120
Стекло кварцевое оконное 2500 0.76 0.76 0.76

Сейчас для утепления различных строений используются, преимущественно, синтетические материалы. Они имеют отличные характеристики, а также в большинстве своем очень удобны в монтаже.

Исходя из значений в таблицах выше, из категории синтетических утеплителей одним из самых энергоэффективных является PIR-плита. При плотности всего 35 кг/м³ коэффициент теплопроводности у нее в среднем составляет 0,024 Вт/м*К. Но он может быть и меньше в зависимости от технологии производства PIR-плиты у того или иного производителя.

Сравнение теплопроводности PIR-плит и других материалов

Так, например, PIR-плиты LOGICPIR от российского производителя ТЕХНОНИКОЛЬ имеют показатель теплопроводности всего 0,022 Вт/м*К. Почему значение так снижается? Дело в том, что этот вид утеплителя с обеих сторон имеет фольгированный слой. Фольга, как известно, сама по себе способна отлично отражать тепловую энергию в обратную сторону, то есть в помещение. Благодаря этому свойству энергоэффективность материала растет, а теплопотери в доме снижаются. Таким образом PIR-утеплитель, имеющий такой слой с одной и другой стороны, гораздо лучше выполняет свои функции, чем, например, PIR-материал с бумажным технологическим покрытием.

В целом же LOGICPIR — обычная PIR-плита, которая представляет собой пористый материал с множеством микроячеек, наполненных воздухом. Она очень тонкая (толщина варьируется в пределах 2-5 см), легкая, не нагружает строительные конструкции, но при этом прочная и достаточно плотная, чтобы выдерживать некоторые физические воздействия. Инертна к химическим воздействиям, биологически устойчива и, кроме того, не склонна к возгораниям.

PIR-плита ТЕХНОНИКОЛЬ

Во время эксплуатации (а срок использования PIR-плит LOGICPIR составляет 50 лет) материал не теряет своих свойств. Его коэффициент теплопроводности не меняется даже при намокании: сам по себе утеплитель не впитывает воду. Дополнительную парозащиту обеспечивает и тот самый фольгированный слой — если при монтаже плит проклеить все стыки алюминиевым скотчем, то формируется непрерывный слой пароизоляции, не пропускающий влагу. Словом, это неплохой вариант синтетического утеплителя с одними из самых высоких характеристик.

Видео: Утепление каркасного дома PIR плитами

Для чего используются такие расчеты в практическом приложении?

Оценка эффективности имеющейся термоизоляции

А для чего бывает необходимо вычислять это сопротивление, какая от этого практическая польза?

Такими расчетами можно очень точно оценить степень термоизоляции своего жилья.

Дело в том, что для различных климатических регионов России специалистами рассчитаны так называемые нормативные показатели этого сопротивления теплопередаче, отдельно для стен, перекрытий и покрытий. То есть если сопротивление конструкции отвечает этой норме, то за утепление можно быть спокойным.

Значение этих нормированных сопротивлений для разных строительных конструкций можно найти, воспользовавшись предлагаемой картой схемой.

Карта-схема территории России для определения нормированных значений сопротивлений теплопередаче.

Если не дотягивает – надо принимать меры, усиливать термоизоляцию, чтобы минимизировать потери тепла. И, стало быть, решить обратную задачу. То есть с использованием той же формулы (сопротивление от коэффициента теплопроводности и толщины) найти ту толщину утепления, которая восполнит имеющийся «дефицит» до нормы.

Термоизоляционную конструкцию сразу следует делать с опорой на проведенные теплотехнические расчеты.

Ну а если термоизоляции пока нет, то тут и вовсе все просто. Тогда потребуется определить, какой слой выбранного утеплительного материала обеспечит выход на нормированное значение сопротивления теплопередаче.

Определение уровня тепловых потерь

Еще одна важная задача – это определение величины тепловых потерь через ограждающую конструкцию. Такие вычисления бывают необходимы когда, например, определяется требуемая мощность системы отопления. Как по помещениям — для правильной расстановки обогревательных приборов (радиаторов), так и общая — для выбора оптимальной модели котла.

Каждая конструкция характеризуется своим уровнем тепловых потерь, которые необходимо определять и для правильного планирования системы отопления, и для совершенствования системы термоизоляции.

Дело в том, что это сопротивление описывается еще одной формулой, уже от разницы температур и количества тепла, уходящего через ограждающую конструкцию площадью один квадратный метр.

R = Δt / q

Δt — разница температур по обе стороны конструкции, ℃.

q — удельное количество теряемого тепла, Вт.

То есть если известна площадь ограждающей конструкции и ее термическое сопротивление (определенное, например, через толщину и коэффициент теплопроводности), если известно, для каких условий производится расчет (например, нормальная температура в помещении и самые сильные морозы, присущие данной местности), то можно спрогнозировать и тепловые потери через эту конструкцию.

Q = S × Δt/R

Q — теплопотери через ограждающую конструкцию, Вт.

S — площадь этой конструкции, м².

Такие расчеты в помещении проводятся для всех ограждающих конструкций, контактирующих с холодом, и затем определяется суммарные потери, которые должны компенсироваться системой отопления. Или, если эти потери получаются слишком большими – это становится побудительным мотивом к усовершенствованию системы термоизоляции – что-то с ней не так.

Еще одна ремарка. Это мы говорили о конструкциях, состоящих из нескольких слоев разных строительных и утеплительных материалов. А как быть с окнами? Как для них просчитывается сопротивление теплопередаче?

Методика здесь – несколько иная, и самостоятельно заниматься такими расчетами вряд ли имеет смысл. Можно воспользоваться таблицей, в которой уже имеются готовые значения сопротивления для различных типов конструкций окон.

Таблица приведенных значений сопротивления теплопередаче для окон, остекленных балконных дверей, световых проемов (фонарей)

Материал и схема запонения проема Приведенное термическое Ro, м ² × °С/Вт
Д и ПВХ А
Двойное остекление в спаренных переплетах 0.4
Двойное остекление в раздельных переплетах 0.44 0,34*
Тройное остекление в раздельно-спаренных переплетах 0.55 0.46
Однокамерный стеклопакет:
— из обычного стекла 0.38 0.34
— из стекла с твердым селективным покрытием 0.51 0.43
— из стекла с мягким селективным покрытием 0.56 0.47
Двухкамерный стеклопакет:
— из обычного стекла (с межстекольным расстоянием 6 мм) 0.51 0.43
— из обычного стекла (с межстекольным расстоянием 12 мм) 0.54 0.45
— из стекла с твердым селективным покрытием 0.58 0.48
— из стекла с мягким селективным покрытием 0.68 0.52
— из стекла с твердым селективным покрытием и заполнением аргоном 0.65 0.53
Обычное стекло и однокамерный стеклопакет в раздельных переплетах:
— из обычного стекла 0.56
— из стекла с твердым селективным покрытием 0.65
— из стекла с мягким селективным покрытием 0.72
— из стекла с твердым селективным покрытием и заполнением аргоном 0.69
Обычное стекло и двухкамерный стеклопакет в раздельных переплетах:
— из обычного стекла 0.68
— из стекла с твердым селективным покрытием 0.74
— из стекла с мягким селективным покрытием 0.81
— из стекла с твердым селективным покрытием и заполнением аргоном 0.82
Два однокамерных стеклопакета в спаренных переплетах 0.7
Два однокамерных стеклопакета в раздельных переплетах 0.74
Четырехслойное остекление в двух спаренных переплетах 0.8
Блоки стеклянные пустотные (с шириной кладочных швов 6 мм) размером:
-200×200 ×100 мм 0,31 (без переплета)
-250×250 ×100 мм 0,33 (без переплета)
Примечания:
Д и ПВХ — переплеты из дерева или пластика (поливинилхлорида)
А — переплеты из алюмииия
* — перепеты из стали
все указанные значения даны для площади остекления 75% от площади светового проема

Понятно, что тепловые потери будут считаться,  исходя из площади остекления и разницы температур.

Надо заметить, что профессиональные теплотехнические расчеты учитывают еще и множество различных поправочных коэффициентов, в том числе на инсоляцию (воздействие солнечных лучей), светопоглощающие и отражающие свойства поверхностей, неоднородность конструкций и другие. Но для самостоятельной первичной оценки достаточно и того алгоритма, что приведен выше.

Для любителей же более обстоятельного подхода можно порекомендовать следующий видеосюжет:

Видео: Алгоритмы профессионального расчета сопротивления теплопередаче стен

Мы же завершим публикацию онлайн-калькулятором, который вполне позволяет на бытовом уровне решить ряд задач, о которых шла речь выше.

Калькулятор расчета термического сопротивления ограждающей конструкции

Перейти к расчётам

Теплопроводность материалов таблица, СНиП — Свой Дом


В современном мире важным аспектом частного дома является его энергоэффективность. То есть способность тратить минимальное количество энергии на поддержание комфортного климата в доме. Чтобы тратить меньше энергии, необходимо позаботится о сокращении ее потерь.

Теплопроводность материалов — это способность материала сохранять тепло в холодное время и удерживать прохладу летом.

Теплоёмкость — количество теплоты, поглощаемой (выделяемой) телом в процессе нагревания (остывания) на 1 кельвин.

Плотность — отношение массы тела к занимаемому этим телом объёму. 

Теплопроводность строительных материалов

Проектированием энергоэффективных домов должны заниматься специалисты, но в реальной жизни все может быть иначе. Случается так, что владельцы домов по ряду причин вынуждены самостоятельно подбирать материалы для строительства. Им также потребуется рассчитать теплотехнические параметры, на основании которых будут проводиться термоизоляция и утепление. Поэтому нужно иметь хотя бы минимальные представления о строительной теплотехнике и ее основных понятиях, таких как коэффициент теплопроводности, в каких единицах измеряется и как просчитывается. Знание этих «азов» поможет правильно утеплить свой дом и экономно его отапливать.

Что такое теплопроводность

Теплопроводность кирпичной стены: без утеплителя; с утеплителем снаружи; с утеплителем внутри дома;

Если говорить простыми словами, то теплопроводность – это передача тепла от более горячего тела к менее горячему. Если не углубляться в подробности, то все физические материалы и вещества могут передавать тепловую энергию.

Ежедневно, даже на самом примитивном бытовом уровне мы сталкиваемся с теплопроводностью, которая проявляется у каждого материала по-разному и в очень отличающейся степени. Для примера, если мешать кипящую воду металлической ложкой – можно очень скоро получить ожег, так как ложка нагреется почти моментально. Если же использовать деревянную лопатку, то нагреваться она будет очень медленно. Этот пример наглядно показывает разницу теплопроводности у металла и дерева – у металла она в разы выше.

Коэффициент теплопроводности

Для оценки теплопроводности любого материала используется коэффициент теплопроводности (λ), который измеряется в Вт/(м×℃) или Вт/(м×К). Этот коэффициент обозначает количество тепла, которое может провести любой материал, не зависимо от своего размера, за единицу времени на определённое расстояние. Если мы видим, что какой-то материал имеет большое значение коэффициента, то он очень хорошо проводит тепло и его можно использовать в роли обогревателей, радиаторов, конвекторов. К примеру, металлические радиаторы отопления в помещениях работают очень эффективно, отлично передавая нагрев от теплоносителя внутренним воздушным массам в помещении.

Если же говорить о материалах, используемых при строительстве стен, перегородок, крыши, то высокая теплопроводность – явление нежелательное. При высоком коэффициенте здание теряет слишком много тепла, для сохранения которого внутри помещения нужно будет сооружать довольно толстые конструкции. А это влечет за собой дополнительные финансовые затраты.

Коэффициент теплопроводности зависит от температуры. По этой причине в справочной литературе указывается несколько значений коэффициента, которые изменяются при увеличении температур. На проводимость тепла влияют и условия эксплуатации. В первую очередь речь идет о влажности, так как при увеличении процента влаги коэффициент теплопроводности также возрастает. Поэтому проводя такого рода расчеты нужно знать реальные климатические условия, в которых здание будет построено.

Сопротивление теплопередаче

Коэффициент теплопроводности – важная характеристика любого материала. Но эта величина не совсем точно описывает теплопроводные способности конструкции, так как не учитывает особенности ее строения. Поэтому более целесообразно просчитывать сопротивление теплопередачи, которое по своей сути является обратной величиной коэффициента теплопроводности. Но в отличие от последнего при расчете учитывается толщина материала и другие важные особенности конструкции.

При строительстве, как правило, используются многослойные конструкции. Одним из таких слоев является утеплительный материал, который максимально повышает значение термического сопротивления. Каждый слой такой конструкции имеет свое сопротивление и его нужно рассчитывать исходя из коэффициента теплопроводности и толщины материала. Суммировав сопротивления всех слоев, мы получим общее сопротивление всей конструкции.

Важно отметить, что воздушные прослойки, которые находятся в конструкции перегородки и не сообщаются с внешним воздухом, значительно увеличивают общее сопротивление теплопередаче.

Современные тенденции строительства предусматривают использования в качестве утеплителя синтетических материалов, которые обладают отличными характеристиками, удобны и просты в монтаже.

Коэффициенты теплопроводности плотности и теплоемкости рассчитаны почти для всех строительных материалов. Ниже приведена таблица с информацией о коэффициентах для всех материалов, которые могут использоваться при строительстве зданий. Даже просто взглянув на эти данные, становится понятно, насколько разная проводимость тепла у строительных материалов и насколько сильно могут отличаться значения коэффициентов. Для упрощения выбора материала покупателем, производители указывают значение коэффициента теплопроводности в паспорте на свой товар.


Материал Плотность, кг/м3 Теплопроводность, Вт/(м·град) Теплоемкость, Дж/(кг·град)
ABS (АБС пластик) 1030…1060 0.13…0.22 1300…2300
Аглопоритобетон и бетон на топливных (котельных) шлаках 1000…1800 0.29…0.7 840
Акрил (акриловое стекло, полиметилметакрилат, оргстекло) ГОСТ 17622—72 1100…1200 0.21
Альфоль 20…40 0.118…0.135
Алюминий (ГОСТ 22233-83) 2600 221 840
Асбест волокнистый 470 0.16 1050
Асбестоцемент 1500…1900 1.76 1500
Асбестоцементный лист 1600 0.4 1500
Асбозурит 400…650 0.14…0.19
Асбослюда 450…620 0.13…0.15
Асботекстолит Г ( ГОСТ 5-78) 1500…1700 1670
Асботермит 500 0.116…0.14
Асбошифер с высоким содержанием асбеста 1800 0.17…0.35
Асбошифер с 10-50% асбеста 1800 0.64…0.52
Асбоцемент войлочный 144 0.078
Асфальт 1100…2110 0.7 1700…2100
Асфальтобетон (ГОСТ 9128-84) 2100 1.05 1680
Асфальт в полах 0.8
Ацеталь (полиацеталь, полиформальдегид) POM 1400 0.22
Аэрогель (Aspen aerogels) 110…200 0.014…0.021 700
Базальт 2600…3000 3.5 850
Бакелит 1250 0.23
Бальза 110…140 0.043…0.052
Береза 510…770 0.15 1250
Бетон легкий с природной пемзой 500…1200 0.15…0.44
Бетон на гравии или щебне из природного камня 2400 1.51 840
Бетон на вулканическом шлаке 800…1600 0.2…0.52 840
Бетон на доменных гранулированных шлаках 1200…1800 0.35…0.58 840
Бетон на зольном гравии 1000…1400 0.24…0.47 840
Бетон на каменном щебне 2200…2500 0.9…1.5
Бетон на котельном шлаке 1400 0.56 880
Бетон на песке 1800…2500 0.7 710
Бетон на топливных шлаках 1000…1800 0.3…0.7 840
Бетон силикатный плотный 1800 0.81 880
Бетон сплошной 1.75
Бетон термоизоляционный 500 0.18
Битумоперлит 300…400 0.09…0.12 1130
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74) 1000…1400 0.17…0.27 1680
Блок газобетонный 400…800 0.15…0.3
Блок керамический поризованный 0.2
Бронза 7500…9300 22…105 400
Бумага 700…1150 0.14 1090…1500
Бут 1800…2000 0.73…0.98
Вата минеральная легкая 50 0.045 920
Вата минеральная тяжелая 100…150 0.055 920
Вата стеклянная 155…200 0.03 800
Вата хлопковая 30…100 0.042…0.049
Вата хлопчатобумажная 50…80 0.042 1700
Вата шлаковая 200 0.05 750
Вермикулит (в виде насыпных гранул) ГОСТ 12865-67 100…200 0.064…0.076 840
Вермикулит вспученный (ГОСТ 12865-67) — засыпка 100…200 0.064…0.074 840
Вермикулитобетон 300…800 0.08…0.21 840
Войлок шерстяной 150…330 0.045…0.052 1700
Газо- и пенобетон, газо- и пеносиликат(пеноблок) 300…1000 0.08…0.21 840
Газо- и пенозолобетон 800…1200 0.17…0.29 840
Гетинакс 1350 0.23 1400
Гипс формованный сухой 1100…1800 0.43 1050
Гипсокартон 500…900 0.12…0.2 950
Гипсоперлитовый раствор 0.14
Гипсошлак 1000…1300 0.26…0.36
Глина 1600…2900 0.7…0.9 750
Глина огнеупорная 1800 1.04 800
Глиногипс 800…1800 0.25…0.65
Глинозем 3100…3900 2.33 700…840
Гнейс (облицовка) 2800 3.5 880
Гравий (наполнитель) 1850 0.4…0.93 850
Гравий керамзитовый (ГОСТ 9759-83) — засыпка 200…800 0.1…0.18 840
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка 400…800 0.11…0.16 840
Гранит (облицовка) 2600…3000 3.5 880
Грунт 10% воды 1.75
Грунт 20% воды 1700 2.1
Грунт песчаный 1.16 900
Грунт сухой 1500 0.4 850
Грунт утрамбованный 1.05
Гудрон 950…1030 0.3
Доломит плотный сухой 2800 1.7
Дуб вдоль волокон (дерево) 700 0.23 2300
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83) 700 0.1 2300
Дюралюминий 2700…2800 120…170 920
Железо 7870 70…80 450
Железобетон 2500 1.7 840
Железобетон набивной 2400 1.55 840
Зола древесная 780 0.15 750
Золото 19320 318 129
Известняк (облицовка) 1400…2000 0.5…0.93 850…920
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80) 300…400 0.067…0.11 1680
Изделия вулканитовые 350…400 0.12
Изделия диатомитовые 500…600 0.17…0.2
Изделия ньювелитовые 160…370 0.11
Изделия пенобетонные 400…500 0.19…0.22
Изделия перлитофосфогелевые 200…300 0.064…0.076
Изделия совелитовые 230…450 0.12…0.14
Иней 0.47
Ипорка (вспененная смола) 15 0.038
Каменноугольная пыль 730 0.12
Камни многопустотные из легкого бетона 500…1200 0.29…0.6
Камни полнотелые из легкого бетона DIN 18152 500…2000 0.32…0.99
Камни полнотелые из природного туфа или вспученной глины 500…2000 0.29…0.99
Камень строительный 2200 1.4 920
Карболит черный 1100 0.23 1900
Картон асбестовый изолирующий 720…900 0.11…0.21
Картон гофрированный 700 0.06…0.07 1150
Картон облицовочный 1000 0.18 2300
Картон парафинированный 0.075
Картон плотный 600…900 0.1…0.23 1200
Картон пробковый 145 0.042
Картон строительный многослойный (ГОСТ 4408-75) 650 0.13 2390
Картон термоизоляционный (ГОСТ 20376-74) 500 0.04…0.06
Каучук вспененный 82 0.033
Каучук вулканизированный твердый серый 0.23
Каучук вулканизированный мягкий серый 920 0.184
Каучук натуральный 910 0.18 1400
Каучук твердый 0.16
Каучук фторированный 180 0.055…0.06
Кедр красный 500…570 0.095
Кембрик лакированный 0.16
Керамзит 800…1000 0.16…0.2 750
Керамзитовый горох 900…1500 0.17…0.32 750
Керамзитобетон на кварцевом песке с поризацией 800…1200 0.23…0.41 840
Керамзитобетон легкий 500…1200 0.18…0.46
Керамзитобетон на керамзитовом песке и керамзитопенобетон 500…1800 0.14…0.66 840
Керамзитобетон на перлитовом песке 800…1000 0.22…0.28 840
Керамика 1700…2300 1.5
Керамика теплая 0.12
Кирпич доменный (огнеупорный) 1000…2000 0.5…0.8
Кирпич диатомовый 500 0.8
Кирпич изоляционный 0.14
Кирпич карборундовый 1000…1300 11…18 700
Кирпич красный плотный 1700…2100 0.67 840…880
Кирпич красный пористый 1500 0.44
Кирпич клинкерный 1800…2000 0.8…1.6
Кирпич кремнеземный 0.15
Кирпич облицовочный 1800 0.93 880
Кирпич пустотелый 0.44
Кирпич силикатный 1000…2200 0.5…1.3 750…840
Кирпич силикатный с тех. пустотами 0.7
Кирпич силикатный щелевой 0.4
Кирпич сплошной 0.67
Кирпич строительный 800…1500 0.23…0.3 800
Кирпич трепельный 700…1300 0.27 710
Кирпич шлаковый 1100…1400 0.58
Кладка бутовая из камней средней плотности 2000 1.35 880
Кладка газосиликатная 630…820 0.26…0.34 880
Кладка из газосиликатных теплоизоляционных плит 540 0.24 880
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе 1600 0.47 880
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе 1800 0.56 880
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе 1700 0.52 880
Кладка из керамического пустотного кирпича на цементно-песчаном растворе 1000…1400 0.35…0.47 880
Кладка из малоразмерного кирпича 1730 0.8 880
Кладка из пустотелых стеновых блоков 1220…1460 0.5…0.65 880
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе 1500 0.64 880
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе 1400 0.52 880
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе 1800 0.7 880
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе 1000…1200 0.29…0.35 880
Кладка из ячеистого кирпича 1300 0.5 880
Кладка из шлакового кирпича на цементно-песчаном растворе 1500 0.52 880
Кладка «Поротон» 800 0.31 900
Клен (дерево) 620…750 0.19
Кожа 800…1000 0.14…0.16
Композиты технические 0.3…2
Краска масляная (эмаль) 1030…2045 0.18…0.4 650…2000
Кремний 2000…2330 148 714
Кремнийорганический полимер КМ-9 1160 0.2 1150
Латунь 8100…8850 70…120 400
Лед -60°С 924 2.91 1700
Лед -20°С 920 2.44 1950
Лед 0°С 917 2.21 2150
Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79) 1600…1800 0.33…0.38 1470
Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77) 1400…1800 0.23…0.35 1470
Липа, (15% влажности) 320…650 0.15
Лиственница (дерево) 670 0.13
Листы асбестоцементные плоские (ГОСТ 18124-75) 1600…1800 0.23…0.35 840
Листы вермикулитовые 0.1
Листы гипсовые обшивочные (сухая штукатурка) ГОСТ 6266 800 0.15 840
Листы пробковые легкие 220 0.035
Листы пробковые тяжелые 260 0.05
Магнезия в форме сегментов для изоляции труб 220…300 0.073…0.084
Мастика асфальтовая 2000 0.7
Маты, холсты базальтовые 25…80 0.03…0.04
Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75) 150 0.061 840
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем 50…125 0.048…0.056 840
(ГОСТ 9573-82)
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00) 100…150 0.038
Мел 1800…2800 0.8…2.2 800…880
Медь (ГОСТ 859-78) 8500 407 420
Миканит 2000…2200 0.21…0.41 250
Мипора 16…20 0.041 1420
Морозин 100…400 0.048…0.084
Мрамор (облицовка) 2800 2.9 880
Накипь котельная (богатая известью, при 100°С) 1000…2500 0.15…2.3
Накипь котельная (богатая силикатом, при 100°С) 300…1200 0.08…0.23
Настил палубный 630 0.21 1100
Найлон 0.53
Нейлон 1300 0.17…0.24 1600
Неопрен 0.21 1700
Опилки древесные 200…400 0.07…0.093
Пакля 150 0.05 2300
Панели стеновые из гипса DIN 1863 600…900 0.29…0.41
Парафин 870…920 0.27
Паркет дубовый 1800 0.42 1100
Паркет штучный 1150 0.23 880
Паркет щитовой 700 0.17 880
Пемза 400…700 0.11…0.16
Пемзобетон 800…1600 0.19…0.52 840
Пенобетон 300…1250 0.12…0.35 840
Пеногипс 300…600 0.1…0.15
Пенозолобетон 800…1200 0.17…0.29
Пенопласт ПС-1 100 0.037
Пенопласт ПС-4 70 0.04
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78) 65…125 0.031…0.052 1260
Пенопласт резопен ФРП-1 65…110 0.041…0.043
Пенополистирол (ГОСТ 15588-70) 40 0.038 1340
Пенополистирол (ТУ 6-05-11-78-78) 100…150 0.041…0.05 1340
Пенополистирол «Пеноплекс» 35…43 0.028…0.03 1600
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75) 40…80 0.029…0.041 1470
Пенополиуретановые листы 150 0.035…0.04
Пенополиэтилен 0.035…0.05
Пенополиуретановые панели (PIR) ПИР 0.025
Пеносиликальцит 400…1200 0.122…0.32
Пеностекло легкое 100..200 0.045…0.07
Пеностекло или газо-стекло (ТУ 21-БССР-86-73) 200…400 0.07…0.11 840
Пенофол 44…74 0.037…0.039
Пергамент 0.071
Пергамин (ГОСТ 2697-83) 600 0.17 1680
Перекрытие армокерамическое с бетонным заполнением без штукатурки 1100…1300 0.7 850
Перекрытие из железобетонных элементов со штукатуркой 1550 1.2 860
Перекрытие монолитное плоское железобетонное 2400 1.55 840
Перлит 200 0.05
Перлит вспученный 100 0.06
Перлитобетон 600…1200 0.12…0.29 840
Перлитопласт-бетон (ТУ 480-1-145-74) 100…200 0.035…0.041 1050
Перлитофосфогелевые изделия (ГОСТ 21500-76) 200…300 0.064…0.076 1050
Песок 0% влажности 1500 0.33 800
Песок 10% влажности 0.97
Песок 20% влажности 1.33
Песок для строительных работ (ГОСТ 8736-77) 1600 0.35 840
Песок речной мелкий 1500 0.3…0.35 700…840
Песок речной мелкий (влажный) 1650 1.13 2090
Песчаник обожженный 1900…2700 1.5
Пихта 450…550 0.1…0.26 2700
Плита бумажная прессованая 600 0.07
Плита пробковая 80…500 0.043…0.055 1850
Плитка облицовочная, кафельная 2000 1.05
Плитка термоизоляционная ПМТБ-2 0.04
Плиты алебастровые 0.47 750
Плиты из гипса ГОСТ 6428 1000…1200 0.23…0.35 840
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77) 200…1000 0.06…0.15 2300
Плиты из керзмзито-бетона 400…600 0.23
Плиты из полистирол-бетона ГОСТ Р 51263-99 200…300 0.082
Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75) 40…100 0.038…0.047 1680
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78) 50 0.056 840
Плиты из ячеистого бетона ГОСТ 5742-76 350…400 0.093…0.104
Плиты камышитовые 200…300 0.06…0.07 2300
Плиты кремнезистые 0.07
Плиты льнокостричные изоляционные 250 0.054 2300
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80 150…200 0.058
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-96 225 0.054
Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия) 170…230 0.042…0.044
Плиты минераловатные повышенной жесткости ГОСТ 22950-95 200 0.052 840
Плиты минераловатные повышенной жесткости на органофосфатном связующем 200 0.064 840
(ТУ 21-РСФСР-3-72-76)
Плиты минераловатные полужесткие на крахмальном связующем 125…200 0.056…0.07 840
Плиты минераловатные на синтетическом и битумном связующих 0.048…0.091
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом 50…350 0.048…0.091 840
и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66)
Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-87 80…100 0.045
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые 30…35 0.038
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00 32 0.029
Плиты перлито-битумные ГОСТ 16136-80 300 0.087
Плиты перлито-волокнистые 150 0.05
Плиты перлито-фосфогелевые ГОСТ 21500-76 250 0.076
Плиты перлито-1 Пластбетонные ТУ 480-1-145-74 150 0.044
Плиты перлитоцементные 0.08
Плиты строительный из пористого бетона 500…800 0.22…0.29
Плиты термобитумные теплоизоляционные 200…300 0.065…0.075
Плиты торфяные теплоизоляционные (ГОСТ 4861-74) 200…300 0.052…0.064 2300
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе 300…800 0.07…0.16 2300
Покрытие ковровое 630 0.2 1100
Покрытие синтетическое (ПВХ) 1500 0.23
Пол гипсовый бесшовный 750 0.22 800
Поливинилхлорид (ПВХ) 1400…1600 0.15…0.2
Поликарбонат (дифлон) 1200 0.16 1100
Полипропилен (ГОСТ 26996 – 86) 900…910 0.16…0.22 1930
Полистирол УПП1, ППС 1025 0.09…0.14 900
Полистиролбетон (ГОСТ 51263) 200…600 0.065…0.145 1060
Полистиролбетон модифицированный на 200…500 0.057…0.113 1060
активированном пластифицированном шлакопортландцементе
Полистиролбетон модифицированный на 200…500 0.052…0.105 1060
композиционном малоклинкерном вяжущем в стеновых блоках и плитах
Полистиролбетон модифицированный монолитный на портландцементе 250…300 0.075…0.085 1060
Полистиролбетон модифицированный на 200…500 0.062…0.121 1060
шлакопортландцементе в стеновых блоках и плитах
Полиуретан 1200 0.32
Полихлорвинил 1290…1650 0.15 1130…1200
Полиэтилен высокой плотности 955 0.35…0.48 1900…2300
Полиэтилен низкой плотности 920 0.25…0.34 1700
Поролон 34 0.04
Портландцемент (раствор) 0.47
Прессшпан 0.26…0.22
Пробка гранулированная 45 0.038 1800
Пробка минеральная на битумной основе 270…350 0.28
Пробка техническая 50 0.037 1800
Ракушечник 1000…1800 0.27…0.63
Раствор гипсовый затирочный 1200 0.5 900
Раствор гипсоперлитовый 600 0.14 840
Раствор гипсоперлитовый поризованный 400…500 0.09…0.12 840
Раствор известковый 1650 0.85 920
Раствор известково-песчаный 1400…1600 0.78 840
Раствор легкий LM21, LM36 700…1000 0.21…0.36
Раствор сложный (песок, известь, цемент) 1700 0.52 840
Раствор цементный, цементная стяжка 2000 1.4
Раствор цементно-песчаный 1800…2000 0.6…1.2 840
Раствор цементно-перлитовый 800…1000 0.16…0.21 840
Раствор цементно-шлаковый 1200…1400 0.35…0.41 840
Резина мягкая 0.13…0.16 1380
Резина твердая обыкновенная 900…1200 0.16…0.23 1350…1400
Резина пористая 160…580 0.05…0.17 2050
Рубероид (ГОСТ 10923-82) 600 0.17 1680
Руда железная 2.9
Сажа ламповая 170 0.07…0.12
Сера ромбическая 2085 0.28 762
Серебро 10500 429 235
Сланец глинистый вспученный 400 0.16
Сланец 2600…3300 0.7…4.8
Слюда вспученная 100 0.07
Слюда поперек слоев 2600…3200 0.46…0.58 880
Слюда вдоль слоев 2700…3200 3.4 880
Смола эпоксидная 1260…1390 0.13…0.2 1100
Снег свежевыпавший 120…200 0.1…0.15 2090
Снег лежалый при 0°С 400…560 0.5 2100
Сосна и ель вдоль волокон (дерево) 500 0.18 2300
Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72) 500 0.09 2300
Сосна смолистая 15% влажности (дерево) 600…750 0.15…0.23 2700
Сталь стержневая арматурная (ГОСТ 10884-81) 7850 58 482
Стекло оконное (ГОСТ 111-78) 2500 0.76 840
Стекловата 155…200 0.03 800
Стекловолокно 1700…2000 0.04 840
Стеклопластик 1800 0.23 800
Стеклотекстолит 1600…1900 0.3…0.37
Стружка деревянная прессованая 800 0.12…0.15 1080
Стяжка ангидритовая 2100 1.2
Стяжка из литого асфальта 2300 0.9
Текстолит 1300…1400 0.23…0.34 1470…1510
Термозит 300…500 0.085…0.13
Тефлон 2120 0.26
Ткань льняная 0.088
Толь (ГОСТ 10999-76) 600 0.17 1680
Тополь (дерево) 350…500 0.17
Торфоплиты 275…350 0.1…0.12 2100
Туф (облицовка) 1000…2000 0.21…0.76 750…880
Туфобетон 1200…1800 0.29…0.64 840
Уголь древесный кусковой (при 80°С) 190 0.074
Уголь каменный газовый 1420 3.6
Уголь каменный обыкновенный 1200…1350 0.24…0.27
Фарфор 2300…2500 0.25…1.6 750…950
Фанера клееная (ГОСТ 3916-69) 600 0.12…0.18 2300…2500
Фибра красная 1290 0.46
Фибролит (серый) 1100 0.22 1670
Целлофан 0.1
Целлулоид 1400 0.21
Цементные плиты 1.92
Черепица бетонная 2100 1.1
Черепица глиняная 1900 0.85
Черепица из ПВХ асбеста 2000 0.85
Чугун
Шевелин 140…190 0.056…0.07
Шелк 100 0.038…0.05
Шлак гранулированный 500 0.15 750
Шлак доменный гранулированный 600…800 0.13…0.17
Шлак котельный 1000 0.29 700…750
Шлакобетон 1120…1500 0.6…0.7 800
Шлакопемзобетон (термозитобетон) 1000…1800 0.23…0.52 840
Шлакопемзопено- и шлакопемзогазобетон 800…1600 0.17…0.47 840
Штукатурка гипсовая 800 0.3 840
Штукатурка известковая 1600 0.7 950
Штукатурка из синтетической смолы 1100 0.7
Штукатурка известковая с каменной пылью 1700 0.87 920
Штукатурка из полистирольного раствора 300 0.1 1200
Штукатурка перлитовая 350…800 0.13…0.9 1130
Штукатурка сухая 0.21
Штукатурка утепляющая 500 0.2
Штукатурка фасадная с полимерными добавками 1800 1 880
Штукатурка цементная 0.9
Штукатурка цементно-песчаная 1800 1.2
Шунгизитобетон 1000…1400 0.27…0.49 840
Щебень и песок из перлита вспученного (ГОСТ 10832-83) — засыпка 200…600 0.064…0.11 840
Щебень из доменного шлака (ГОСТ 5578-76), шлаковой пемзы (ГОСТ 9760-75) 400…800 0.12…0.18 840
и аглопорита (ГОСТ 11991-83) — засыпка
Эбонит 1200 0.16…0.17 1430
Эбонит вспученный 640 0.032
Эковата 35…60 0.032…0.041 2300
Энсонит (прессованный картон) 400…500 0.1…0.11
Эмаль (кремнийорганическая) 0.16…0.27

Таблица теплопроводности теплоемкости и плотности материалов

Необходимость расчетов

Для чего же необходимо проводить эти вычисления, есть ли от них хоть какая-то польза на практике? Разберемся подробнее.

Оценка эффективности термоизоляции

В разных климатических регионах России разный температурный режим, поэтому для каждого из них рассчитаны свои нормативные показатели сопротивления теплопередаче. Проводятся эти расчеты для всех элементов строения, контактирующих с внешней средой. Если сопротивление конструкции находится в пределах нормы, то за утепление можно не беспокоиться.

В случае, если термоизоляция конструкции не предусмотрена, то нужно сделать правильный выбор утеплительного материала с подходящими теплотехническими характеристиками.

Тепловые потери

Тепловые потери дома

Не менее важная задача – прогнозирование тепловых потерь, без которого невозможно правильно спланировать систему отопления и создать идеальную термоизоляцию. Такие вычисления могут понадобиться при выборе оптимальной модели котла, количества необходимых радиаторов и правильной их расстановки.

Для определения тепловых потерь через любую конструкцию нужно знать сопротивление, которое вычисляется с помощью разницы температур и количества теряемого тепла, уходящего с одного квадратного метра ограждающей конструкции. И так, если мы знаем площадь конструкции и ее термическое сопротивление, а также знаем для каких климатических условий производится расчет, то можем точно определить тепловые потери. Есть хороший калькулятор расчета теплопотерь дома ( он может даже посчитать сколько будет уходить денег на отопление, примерно конечно).

Такие расчеты в здании проводятся для всех ограждающих конструкций, взаимодействующих с холодными потоками воздуха, а затем суммируются для определения общей потери тепла. На основании полученной величины проектируется система отопления, которая должна полностью компенсировать эти потери. Если же потери тепла получаются слишком большими, они влекут за собой дополнительные финансовые затраты, а это не всем «по карману». При таком раскладе нужно задуматься об улучшении системы термоизоляции.

Отдельно нужно поговорить про окна, для них сопротивление теплопередаче определяются нормативными документами. Самостоятельно проводить расчеты не нужно. Существуют уже готовые таблицы, в которых внесены значения сопротивления для всех типов конструкций окон и балконных дверей.
Тепловые потери окон рассчитываются исходя из площади, а также разницы температур по разные стороны конструкции.

Расчеты, приведенные выше, подходят для новичков, которые делают первые шаги в проектировании энергоэффективных домов. Если же за дело берется профессионал, то его расчеты более сложные, так как дополнительно учитывается множество поправочных коэффициентов – на инсоляцию, светопоглощение, отражение солнечного света, неоднородность конструкций и другие.

Теплопроводность строительных материалов — Таблица!

ABS (АБС пластик) 1030…1060 0.13…0.22 1300…2300
Аглопоритобетон и бетон на топливных (котельных) шлаках 1000…1800 0.29…0.7 840
Акрил (акриловое стекло, полиметилметакрилат, оргстекло) ГОСТ 17622—72 1100…1200 0.21
Альфоль 20…40 0.118…0.135
Алюминий (ГОСТ 22233-83) 2600 221 897
Асбест волокнистый 470 0.16 1050
Асбестоцемент 1500…1900 1.76 1500
Асбестоцементный лист 1600 0.4 1500
Асбозурит 400…650 0.14…0.19
Асбослюда 450…620 0.13…0.15
Асботекстолит Г ( ГОСТ 5-78) 1500…1700 1670
Асботермит 500 0.116…0.14
Асбошифер с высоким содержанием асбеста 1800 0.17…0.35
Асбошифер с 10-50% асбеста 1800 0.64…0.52
Асбоцемент войлочный 144 0.078
Асфальт 1100…2110 0.7 1700…2100
Асфальтобетон (ГОСТ 9128-84) 2100 1.05 1680
Асфальт в полах 0.8
Ацеталь (полиацеталь, полиформальдегид) POM 1400 0.22
Аэрогель (Aspen aerogels) 110…200 0.014…0.021 700
Базальт 2600…3000 3.5 850
Бакелит 1250 0.23
Бальза 110…140 0.043…0.052
Береза 510…770 0.15 1250
Бетон легкий с природной пемзой 500…1200 0.15…0.44
Бетон на гравии или щебне из природного камня 2400 1.51 840
Бетон на вулканическом шлаке 800…1600 0.2…0.52 840
Бетон на доменных гранулированных шлаках 1200…1800 0.35…0.58 840
Бетон на зольном гравии 1000…1400 0.24…0.47 840
Бетон на каменном щебне 2200…2500 0.9…1.5
Бетон на котельном шлаке 1400 0.56 880
Бетон на песке 1800…2500 0.7 710
Бетон на топливных шлаках 1000…1800 0.3…0.7 840
Бетон силикатный плотный 1800 0.81 880
Бетон сплошной 1.75
Бетон термоизоляционный 500 0.18
Битумоперлит 300…400 0.09…0.12 1130
Битумы нефтяные строительные и кровельные (ГОСТ 6617-76, ГОСТ 9548-74) 1000…1400 0.17…0.27 1680
Блок газобетонный 400…800 0.15…0.3
Блок керамический поризованный 0.2
Бронза 7500…9300 22…105 400
Бумага 700…1150 0.14 1090…1500
Бут 1800…2000 0.73…0.98
Вата минеральная легкая 50 0.045 920
Вата минеральная тяжелая 100…150 0.055 920
Вата стеклянная 155…200 0.03 800
Вата хлопковая 30…100 0.042…0.049
Вата хлопчатобумажная 50…80 0.042 1700
Вата шлаковая 200 0.05 750
Вермикулит (в виде насыпных гранул) ГОСТ 12865-67 100…200 0.064…0.076 840
Вермикулит вспученный (ГОСТ 12865-67) — засыпка 100…200 0.064…0.074 840
Вермикулитобетон 300…800 0.08…0.21 840
Воздух сухой при 20°С 1.205 0.0259 1005
Войлок шерстяной 150…330 0.045…0.052 1700
Газо — и пенобетон, газо- и пеносиликат 280…1000 0.07…0.21 840
Газо- и пенозолобетон 800…1200 0.17…0.29 840
Гетинакс 1350 0.23 1400
Гипс формованный сухой 1100…1800 0.43 1050
Гипсокартон 500…900 0.12…0.2 950
Гипсоперлитовый раствор 0.14
Гипсошлак 1000…1300 0.26…0.36
Глина 1600…2900 0.7…0.9 750
Глина огнеупорная 1800 1.04 800
Глиногипс 800…1800 0.25…0.65
Глинозем 3100…3900 2.33 700…840
Гнейс (облицовка) 2800 3.5 880
Гравий (наполнитель) 1850 0.4…0.93 850
Гравий керамзитовый (ГОСТ 9759-83) — засыпка 200…800 0.1…0.18 840
Гравий шунгизитовый (ГОСТ 19345-83) — засыпка 400…800 0.11…0.16 840
Гранит (облицовка) 2600…3000 3.5 880
Грунт 10% воды 1.75
Грунт 20% воды 1700 2.1
Грунт песчаный 1.16 900
Грунт сухой 1500 0.4 850
Грунт утрамбованный 1.05
Гудрон 950…1030 0.3
Доломит плотный сухой 2800 1.7
Дуб вдоль волокон 700 0.23 2300
Дуб поперек волокон (ГОСТ 9462-71, ГОСТ 2695-83) 700 0.1 2300
Дюралюминий 2700…2800 120…170 920
Железо 7870 70…80 450
Железобетон 2500 1.7 840
Железобетон набивной 2400 1.55 840
Зола древесная 780 0.15 750
Золото 19320 318 129
Известняк (облицовка) 1400…2000 0.5…0.93 850…920
Изделия из вспученного перлита на битумном связующем (ГОСТ 16136-80) 300…400 0.067…0.11 1680
Изделия вулканитовые 350…400 0.12
Изделия диатомитовые 500…600 0.17…0.2
Изделия ньювелитовые 160…370 0.11
Изделия пенобетонные 400…500 0.19…0.22
Изделия перлитофосфогелевые 200…300 0.064…0.076
Изделия совелитовые 230…450 0.12…0.14
Иней 0.47
Ипорка (вспененная смола) 15 0.038
Каменноугольная пыль 730 0.12
Камень керамический поризованный Braer 14,3 НФ и 10,7 НФ 810…840 0.14…0.185
Камни многопустотные из легкого бетона 500…1200 0.29…0.6
Камни полнотелые из легкого бетона DIN 18152 500…2000 0.32…0.99
Камни полнотелые из природного туфа или вспученной глины 500…2000 0.29…0.99
Камень строительный 2200 1.4 920
Карболит черный 1100 0.23 1900
Картон асбестовый изолирующий 720…900 0.11…0.21
Картон гофрированный 700 0.06…0.07 1150
Картон облицовочный 1000 0.18 2300
Картон парафинированный 0.075
Картон плотный 600…900 0.1…0.23 1200
Картон пробковый 145 0.042
Картон строительный многослойный (ГОСТ 4408-75) 650 0.13 2390
Картон термоизоляционный (ГОСТ 20376-74) 500 0.04…0.06
Каучук вспененный 82 0.033
Каучук вулканизированный твердый серый 0.23
Каучук вулканизированный мягкий серый 920 0.184
Каучук натуральный 910 0.18 1400
Каучук твердый 0.16
Каучук фторированный 180 0.055…0.06
Кедр красный 500…570 0.095
Кембрик лакированный 0.16
Керамзит 800…1000 0.16…0.2 750
Керамзитовый горох 900…1500 0.17…0.32 750
Керамзитобетон на кварцевом песке с поризацией 800…1200 0.23…0.41 840
Керамзитобетон легкий 500…1200 0.18…0.46
Керамзитобетон на керамзитовом песке и керамзитопенобетон 500…1800 0.14…0.66 840
Керамзитобетон на перлитовом песке 800…1000 0.22…0.28 840
Керамика 1700…2300 1.5
Керамика теплая 0.12
Кирпич доменный (огнеупорный) 1000…2000 0.5…0.8
Кирпич диатомовый 500 0.8
Кирпич изоляционный 0.14
Кирпич карборундовый 1000…1300 11…18 700
Кирпич красный плотный 1700…2100 0.67 840…880
Кирпич красный пористый 1500 0.44
Кирпич клинкерный 1800…2000 0.8…1.6
Кирпич кремнеземный 0.15
Кирпич облицовочный 1800 0.93 880
Кирпич пустотелый 0.44
Кирпич силикатный 1000…2200 0.5…1.3 750…840
Кирпич силикатный с тех. пустотами 0.7
Кирпич силикатный щелевой 0.4
Кирпич сплошной 0.67
Кирпич строительный 800…1500 0.23…0.3 800
Кирпич трепельный 700…1300 0.27 710
Кирпич шлаковый 1100…1400 0.58
Кладка бутовая из камней средней плотности 2000 1.35 880
Кладка газосиликатная 630…820 0.26…0.34 880
Кладка из газосиликатных теплоизоляционных плит 540 0.24 880
Кладка из глиняного обыкновенного кирпича на цементно-перлитовом растворе 1600 0.47 880
Кладка из глиняного обыкновенного кирпича (ГОСТ 530-80) на цементно-песчаном растворе 1800 0.56 880
Кладка из глиняного обыкновенного кирпича на цементно-шлаковом растворе 1700 0.52 880
Кладка из керамического пустотного кирпича на цементно-песчаном растворе 1000…1400 0.35…0.47 880
Кладка из малоразмерного кирпича 1730 0.8 880
Кладка из пустотелых стеновых блоков 1220…1460 0.5…0.65 880
Кладка из силикатного 11-ти пустотного кирпича на цементно-песчаном растворе 1500 0.64 880
Кладка из силикатного 14-ти пустотного кирпича на цементно-песчаном растворе 1400 0.52 880
Кладка из силикатного кирпича (ГОСТ 379-79) на цементно-песчаном растворе 1800 0.7 880
Кладка из трепельного кирпича (ГОСТ 648-73) на цементно-песчаном растворе 1000…1200 0.29…0.35 880
Кладка из ячеистого кирпича 1300 0.5 880
Кладка из шлакового кирпича на цементно-песчаном растворе 1500 0.52 880
Кладка «Поротон» 800 0.31 900
Клен 620…750 0.19
Кожа 800…1000 0.14…0.16
Композиты технические 0.3…2
Краска масляная (эмаль) 1030…2045 0.18…0.4 650…2000
Кремний 2000…2330 148 714
Кремнийорганический полимер КМ-9 1160 0.2 1150
Латунь 8100…8850 70…120 400
Лед -60°С 924 2.91 1700
Лед -20°С 920 2.44 1950
Лед 0°С 917 2.21 2150
Линолеум поливинилхлоридный многослойный (ГОСТ 14632-79) 1600…1800 0.33…0.38 1470
Линолеум поливинилхлоридный на тканевой подоснове (ГОСТ 7251-77) 1400…1800 0.23…0.35 1470
Липа, (15% влажности) 320…650 0.15
Лиственница 670 0.13
Листы асбестоцементные плоские (ГОСТ 18124-75) 1600…1800 0.23…0.35 840
Листы вермикулитовые 0.1
Листы гипсовые обшивочные (сухая штукатурка) ГОСТ 6266 800 0.15 840
Листы пробковые легкие 220 0.035
Листы пробковые тяжелые 260 0.05
Магнезия в форме сегментов для изоляции труб 220…300 0.073…0.084
Мастика асфальтовая 2000 0.7
Маты, холсты базальтовые 25…80 0.03…0.04
Маты и полосы из стеклянного волокна прошивные (ТУ 21-23-72-75) 150 0.061 840
Маты минераловатные прошивные (ГОСТ 21880-76) и на синтетическом связующем (ГОСТ 9573-82) 50…125 0.048…0.056 840
МБОР-5, МБОР-5Ф, МБОР-С-5, МБОР-С2-5, МБОР-Б-5 (ТУ 5769-003-48588528-00) 100…150 0.038
Мел 1800…2800 0.8…2.2 800…880
Медь (ГОСТ 859-78) 8500 407 420
Миканит 2000…2200 0.21…0.41 250
Мипора 16…20 0.041 1420
Морозин 100…400 0.048…0.084
Мрамор (облицовка) 2800 2.9 880
Накипь котельная (богатая известью, при 100°С) 1000…2500 0.15…2.3
Накипь котельная (богатая силикатом, при 100°С) 300…1200 0.08…0.23
Настил палубный 630 0.21 1100
Найлон 0.53
Нейлон 1300 0.17…0.24 1600
Неопрен 0.21 1700
Опилки древесные 200…400 0.07…0.093
Пакля 150 0.05 2300
Панели стеновые из гипса DIN 1863 600…900 0.29…0.41
Парафин 870…920 0.27
Паркет дубовый 1800 0.42 1100
Паркет штучный 1150 0.23 880
Паркет щитовой 700 0.17 880
Пемза 400…700 0.11…0.16
Пемзобетон 800…1600 0.19…0.52 840
Пенобетон 300…1250 0.12…0.35 840
Пеногипс 300…600 0.1…0.15
Пенозолобетон 800…1200 0.17…0.29
Пенопласт ПС-1 100 0.037
Пенопласт ПС-4 70 0.04
Пенопласт ПХВ-1 (ТУ 6-05-1179-75) и ПВ-1 (ТУ 6-05-1158-78) 65…125 0.031…0.052 1260
Пенопласт резопен ФРП-1 65…110 0.041…0.043
Пенополистирол (ГОСТ 15588-70) 40 0.038 1340
Пенополистирол (ТУ 6-05-11-78-78) 100…150 0.041…0.05 1340
Пенополистирол Пеноплэкс 22…47 0.03…0.036 1600
Пенополиуретан (ТУ В-56-70, ТУ 67-98-75, ТУ 67-87-75) 40…80 0.029…0.041 1470
Пенополиуретановые листы 150 0.035…0.04
Пенополиэтилен 0.035…0.05
Пенополиуретановые панели 0.025
Пеносиликальцит 400…1200 0.122…0.32
Пеностекло легкое 100..200 0.045…0.07
Пеностекло или газо-стекло (ТУ 21-БССР-86-73) 200…400 0.07…0.11 840
Пенофол 44…74 0.037…0.039
Пергамент 0.071
Пергамин (ГОСТ 2697-83) 600 0.17 1680
Перекрытие армокерамическое с бетонным заполнением без штукатурки 1100…1300 0.7 850
Перекрытие из железобетонных элементов со штукатуркой 1550 1.2 860
Перекрытие монолитное плоское железобетонное 2400 1.55 840
Перлит 200 0.05
Перлит вспученный 100 0.06
Перлитобетон 600…1200 0.12…0.29 840
Перлитопласт-бетон (ТУ 480-1-145-74) 100…200 0.035…0.041 1050
Перлитофосфогелевые изделия (ГОСТ 21500-76) 200…300 0.064…0.076 1050
Песок 0% влажности 1500 0.33 800
Песок 10% влажности 0.97
Песок 20% влажности 1.33
Песок для строительных работ (ГОСТ 8736-77) 1600 0.35 840
Песок речной мелкий 1500 0.3…0.35 700…840
Песок речной мелкий (влажный) 1650 1.13 2090
Песчаник обожженный 1900…2700 1.5
Пихта 450…550 0.1…0.26 2700
Плита бумажная прессованая 600 0.07
Плита пробковая 80…500 0.043…0.055 1850
Плита огнеупорная теплоизоляционная Avantex марки Board 200…500 0.04
Плитка облицовочная, кафельная 2000 1.05
Плитка термоизоляционная ПМТБ-2 0.04
Плиты алебастровые 0.47 750
Плиты из гипса ГОСТ 6428 1000…1200 0.23…0.35 840
Плиты древесно-волокнистые и древесно-стружечные (ГОСТ 4598-74, ГОСТ 10632-77) 200…1000 0.06…0.15 2300
Плиты из керзмзито-бетона 400…600 0.23
Плиты из полистирол-бетона ГОСТ Р 51263-99 200…300 0.082
Плиты из резольноформальдегидного пенопласта (ГОСТ 20916-75) 40…100 0.038…0.047 1680
Плиты из стеклянного штапельного волокна на синтетическом связующем (ГОСТ 10499-78) 50 0.056 840
Плиты из ячеистого бетона ГОСТ 5742-76 350…400 0.093…0.104
Плиты камышитовые 200…300 0.06…0.07 2300
Плиты кремнезистые 0.07
Плиты льнокостричные изоляционные 250 0.054 2300
Плиты минераловатные на битумной связке марки 200 ГОСТ 10140-80 150…200 0.058
Плиты минераловатные на синтетическом связующем марки 200 ГОСТ 9573-96 225 0.054
Плиты минераловатные на синтетической связке фирмы «Партек» (Финляндия) 170…230 0.042…0.044
Плиты минераловатные повышенной жесткости ГОСТ 22950-95 200 0.052 840
Плиты минераловатные повышенной жесткости на органофосфатном связующем
(ТУ 21-РСФСР-3-72-76)
200 0.064 840
Плиты минераловатные полужесткие на крахмальном связующем 125…200 0.056…0.07 840
Плиты минераловатные на синтетическом и битумном связующих 0.048…0.091
Плиты мягкие, полужесткие и жесткие минераловатные на синтетическом и битумном связующих (ГОСТ 9573-82, ГОСТ 10140-80, ГОСТ 12394-66) 50…350 0.048…0.091 840
Плиты пенопластовые на основе резольных фенолформальдегидных смол ГОСТ 20916-87 80…100 0.045
Плиты пенополистирольные ГОСТ 15588-86 безпрессовые 30…35 0.038
Плиты пенополистирольные (экструзионные) ТУ 2244-001-47547616-00 32 0.029
Плиты перлито-битумные ГОСТ 16136-80 300 0.087
Плиты перлито-волокнистые 150 0.05
Плиты перлито-фосфогелевые ГОСТ 21500-76 250 0.076
Плиты перлито-1 Пластбетонные ТУ 480-1-145-74 150 0.044
Плиты перлитоцементные 0.08
Плиты строительный из пористого бетона 500…800 0.22…0.29
Плиты термобитумные теплоизоляционные 200…300 0.065…0.075
Плиты торфяные теплоизоляционные (ГОСТ 4861-74) 200…300 0.052…0.064 2300
Плиты фибролитовые (ГОСТ 8928-81) и арболит (ГОСТ 19222-84) на портландцементе 300…800 0.07…0.16 2300
Покрытие ковровое 630 0.2 1100
Покрытие синтетическое (ПВХ) 1500 0.23
Пол гипсовый бесшовный 750 0.22 800
Поливинилхлорид (ПВХ) 1400…1600 0.15…0.2
Поликарбонат (дифлон) 1200 0.16 1100
Полипропилен (ГОСТ 26996– 86) 900…910 0.16…0.22 1930
Полистирол УПП1, ППС 1025 0.09…0.14 900
Полистиролбетон (ГОСТ 51263) 150…600 0.052…0.145 1060
Полистиролбетон модифицированный на активированном пластифицированном шлакопортландцементе 200…500 0.057…0.113 1060
Полистиролбетон модифицированный на композиционном малоклинкерном вяжущем в стеновых блоках и плитах 200…500 0.052…0.105 1060
Полистиролбетон модифицированный монолитный на портландцементе 250…300 0.075…0.085 1060
Полистиролбетон модифицированный на шлакопортландцементе в стеновых блоках и плитах 200…500 0.062…0.121 1060
Полиуретан 1200 0.32
Полихлорвинил 1290…1650 0.15 1130…1200
Полиэтилен высокой плотности 955 0.35…0.48 1900…2300
Полиэтилен низкой плотности 920 0.25…0.34 1700
Поролон 34 0.04
Портландцемент (раствор) 0.47
Прессшпан 0.26…0.22
Пробка гранулированная техническая 45 0.038 1800
Пробка минеральная на битумной основе 270…350 0.073…0.096
Пробковое покрытие для полов 540 0.078
Ракушечник 1000…1800 0.27…0.63 835
Раствор гипсовый затирочный 1200 0.5 900
Раствор гипсоперлитовый 600 0.14 840
Раствор гипсоперлитовый поризованный 400…500 0.09…0.12 840
Раствор известковый 1650 0.85 920
Раствор известково-песчаный 1400…1600 0.78 840
Раствор легкий LM21, LM36 700…1000 0.21…0.36
Раствор сложный (песок, известь, цемент) 1700 0.52 840
Раствор цементный, цементная стяжка 2000 1.4
Раствор цементно-песчаный 1800…2000 0.6…1.2 840
Раствор цементно-перлитовый 800…1000 0.16…0.21 840
Раствор цементно-шлаковый 1200…1400 0.35…0.41 840
Резина мягкая 0.13…0.16 1380
Резина твердая обыкновенная 900…1200 0.16…0.23 1350…1400
Резина пористая 160…580 0.05…0.17 2050
Рубероид (ГОСТ 10923-82) 600 0.17 1680
Руда железная 2.9
Сажа ламповая 170 0.07…0.12
Сера ромбическая 2085 0.28 762
Серебро 10500 429 235
Сланец глинистый вспученный 400 0.16
Сланец 2600…3300 0.7…4.8
Слюда вспученная 100 0.07
Слюда поперек слоев 2600…3200 0.46…0.58 880
Слюда вдоль слоев 2700…3200 3.4 880
Смола эпоксидная 1260…1390 0.13…0.2 1100
Снег свежевыпавший 120…200 0.1…0.15 2090
Снег лежалый при 0°С 400…560 0.5 2100
Сосна и ель вдоль волокон 500 0.18 2300
Сосна и ель поперек волокон (ГОСТ 8486-66, ГОСТ 9463-72) 500 0.09 2300
Сосна смолистая 15% влажности 600…750 0.15…0.23 2700
Сталь стержневая арматурная (ГОСТ 10884-81) 7850 58 482
Стекло оконное (ГОСТ 111-78) 2500 0.76 840
Стекловата 155…200 0.03 800
Стекловолокно 1700…2000 0.04 840
Стеклопластик 1800 0.23 800
Стеклотекстолит 1600…1900 0.3…0.37
Стружка деревянная прессованая 800 0.12…0.15 1080
Стяжка ангидритовая 2100 1.2
Стяжка из литого асфальта 2300 0.9
Текстолит 1300…1400 0.23…0.34 1470…1510
Термозит 300…500 0.085…0.13
Тефлон 2120 0.26
Ткань льняная 0.088
Толь (ГОСТ 10999-76) 600 0.17 1680
Тополь 350…500 0.17
Торфоплиты 275…350 0.1…0.12 2100
Туф (облицовка) 1000…2000 0.21…0.76 750…880
Туфобетон 1200…1800 0.29…0.64 840
Уголь древесный кусковой (при 80°С) 190 0.074
Уголь каменный газовый 1420 3.6
Уголь каменный обыкновенный 1200…1350 0.24…0.27
Фарфор 2300…2500 0.25…1.6 750…950
Фанера клееная (ГОСТ 3916-69) 600 0.12…0.18 2300…2500
Фибра красная 1290 0.46
Фибролит (серый) 1100 0.22 1670
Целлофан 0.1
Целлулоид 1400 0.21
Цементные плиты 1.92
Черепица бетонная 2100 1.1
Черепица глиняная 1900 0.85
Черепица из ПВХ асбеста 2000 0.85
Чугун 7220 40…60 500
Шевелин 140…190 0.056…0.07
Шелк 100 0.038…0.05
Шлак гранулированный 500 0.15 750
Шлак доменный гранулированный 600…800 0.13…0.17
Шлак котельный 1000 0.29 700…750
Шлакобетон 1120…1500 0.6…0.7 800
Шлакопемзобетон (термозитобетон) 1000…1800 0.23…0.52 840
Шлакопемзопено- и шлакопемзогазобетон 800…1600 0.17…0.47 840
Штукатурка гипсовая 800 0.3 840
Штукатурка известковая 1600 0.7 950
Штукатурка из синтетической смолы 1100 0.7
Штукатурка известковая с каменной пылью 1700 0.87 920
Штукатурка из полистирольного раствора 300 0.1 1200
Штукатурка перлитовая 350…800 0.13…0.9 1130
Штукатурка сухая 0.21
Штукатурка утепляющая 500 0.2
Штукатурка фасадная с полимерными добавками 1800 1 880
Штукатурка цементная 0.9
Штукатурка цементно-песчаная 1800 1.2
Шунгизитобетон 1000…1400 0.27…0.49 840
Щебень и песок из перлита вспученного (ГОСТ 10832-83) — засыпка 200…600 0.064…0.11 840
Щебень из доменного шлака (ГОСТ 5578-76), шлаковой пемзы (ГОСТ 9760-75) и аглопорита (ГОСТ 11991-83) — засыпка 400…800 0.12…0.18 840
Эбонит 1200 0.16…0.17 1430
Эбонит вспученный 640 0.032
Эковата 35…60 0.032…0.041 2300
Энсонит (прессованный картон) 400…500 0.1…0.11
Эмаль (кремнийорганическая) 0.16…0.27

Теплопроводность утеплителей таблица — сравнение утеплителей по теплопроводности

Мы живем далеко не в самой жаркой стране на Земле, а значит, свои жилища вынуждены обогревать, по крайней мере, большую часть года. Этим и объясняется такой высокий спрос на разные утеплители.

Из всех материалов, использующихся для утепления жилых и прочих объектов, особо популярными являются сейчас пенополиуретан, пенополистирол и минеральная вата. Поговорим о двух последних из них.

Минеральная вата

Минеральной ватой называется материал, основой которого является базальтовое волокно.

Применяться минеральная вата может не везде, так как имеет нижний температурный предел. К примеру, этот утеплитель не может быть использован в холодильной камере.

Под воздействием низких температур минеральная вата становится хрупкой и деформируется, что недопустимо для утеплителя. Здесь, как показывает сравнение утеплителей по теплопроводности, преимущество на стороне пенополистирола, у которого нет нижнего температурного предела.

Что касается верхней температурной границы, тут все зависит от механических нагрузок во время воздействия высокой температуры и длительности этого воздействия. Если вам интересна теплопроводность утеплителей, таблица, которая есть на нашем сайте, поможет в получении информации об этом. В частности там приведен коэффициент теплопроводности минеральной ваты.

Минеральная вата пропускает пар и влагу. Это заметно снижает ее теплоизолирующие свойства. Также скопление влаги способствует развитию плесени и грибка, в утеплителе начинают селиться грызуны, заводятся гнилостные бактерии и пр.

Еще утеплитель из минеральной ваты гигроскопичен, из-за чего необходимо возводить вентилируемые стены и кровлю. Это в ряде случаев приводит к большому расходу денежных средств.

Утеплитель из минеральной ваты тяжелее своего аналога из пенополистирола в 1,5-3 раза. Отсюда более высокая стоимость его транспортировки. Также минус в том, что такой утеплитель может быть использован лишь тогда, когда фундамент сооружения, которое утепляется с его помощью, достаточно прочен. Разумеется, труднее производить погрузочно-разгрузочные и строительно-монтажные работы с использованием утеплителя большой массы.

Пенополистирол

По сравнению с вышеописанным утеплителем, утеплитель из пенополистирола имеет лучшие характеристики. Теплоизоляционные свойства этого материала высоки, в результате чего, применение его становится экономически выгодным.

Утеплитель из пенополистирола помимо хороших теплоизоляционных свойств, хорошо поглощает шум, противостоит бактериям и грибкам. Также этот материал устойчив к воздействию растворов спиртов, кислот и щелочей. Коэффициент теплопроводности пенополистирола и прочие его характеристики можно узнать, изучив «теплопроводность утеплителей таблица» на нашем ресурсе.

Одно из главных достоинств пенополистирола заключается в его способности выдерживать достаточно большую механическую нагрузку при минимальном значении плотности.

Нужно выделить преимущество пенополистирола перед минеральной ватой. Так как он имеет небольшую среднюю плотность, то не изменяет практически нагрузку на фундамент и несущие конструкции.

Сравнение утеплителей по теплопроводности показывает, что в зависимости от плотности коэффициент теплопроводности минеральной ваты – 0,048-0,07; коэффициент теплопроводности пенополистирола – 0,038-0,05.

Другие свойства описываемых утеплителей

Утеплители из минеральной ваты не могут воспламеняться. Огнестойкость этих материалов определяется не только тем, каковы свойства материала, но и тем, в каких условиях они используются.

На степень огнестойкости большое влияние оказывает то, с какими материалами комбинируются утеплители. Также играет роль способ расположения защитных и покровных слоев.

Что касается пенополистирола, он относится к самозатухающим материалам. Поэтому стены, отделанные им, воспламеняются не так быстро. А если это все-таки происходит, пламя по их поверхности распространяется также медленнее, чем в случае с другими утеплителями.

Когда горит утеплитель из пенополистирола, тепла выделяется примерно 1000 МДж/м3, что в 7-8 раз меньше, чем при горении сухого дерева. Время самостоятельного горения пенополистирола – не больше секунды.

Минеральная вата относится к негорючим веществам. Поэтому воспламеняемость поверхностей, облицованных ей, равно как и распространяемость пламени по ним, минимальна. Так как основа этого утеплителя – базальт – является натуральным камнем, минеральная вата способна выдерживать температуру – до 1000 °C, а распространению огня способна противостоять – до трех часов.

Wikizero — Теплопроводность

Из Википедии в свободной энциклопедии

Теплопроводность материала является мерой его способности проводить тепло. Обычно его обозначают как k {\ displaystyle k}, λ {\ displaystyle \ lambda} или κ {\ displaystyle \ kappa}.

Теплопередача в материалах с низкой теплопроводностью происходит медленнее, чем в материалах с высокой теплопроводностью.Например, металлы обычно обладают высокой теплопроводностью и очень эффективно проводят тепло, в то время как противоположное верно для изоляционных материалов, таких как пенополистирол. Соответственно, материалы с высокой теплопроводностью широко используются в теплоотводах, а материалы с низкой теплопроводностью используются в качестве теплоизоляции. Величина, обратная теплопроводности, называется удельным тепловым сопротивлением.

Определяющее уравнение для теплопроводности: q = −k∇T {\ displaystyle \ mathbf {q} = -k \ nabla T}, где q {\ displaystyle \ mathbf {q}} — тепловой поток, k {\ displaystyle k} — теплопроводность, а ∇T {\ displaystyle \ nabla T} — градиент температуры.Это известно как закон Фурье для теплопроводности. Хотя обычно выражается как скаляр, наиболее общая форма теплопроводности — это тензор второго ранга. Однако тензорное описание становится необходимым только для материалов, которые являются анизотропными.

Определение [править]

Простое определение [править]

Теплопроводность может быть определена в терминах теплового потока q {\ displaystyle q} через разницу температур.

Рассмотрим твердый материал, расположенный между двумя средами с разными температурами.Пусть T1 {\ displaystyle T_ {1}} будет температурой в x = 0 {\ displaystyle x = 0}, а T2 {\ displaystyle T_ {2}} будет температурой в x = L {\ displaystyle x = L}, а предположим, что T2> T1 {\ displaystyle T_ {2}> T_ {1}}. Возможная реализация этого сценария — строительство в холодный зимний день: твердым материалом в данном случае будет стена здания, отделяющая холодную внешнюю среду от теплой внутренней среды.

Согласно второму закону термодинамики, тепло будет течь из горячей среды в холодную, пытаясь уравновесить разницу температур.Это количественно выражается с помощью теплового потока q {\ displaystyle q}, который дает скорость на единицу площади, с которой тепло течет в заданном направлении (в данном случае в направлении x). Во многих материалах команда q {\ displaystyle q}

fix Therm / Conductivity — LAMMPS documentation

Описание

Используйте алгоритм Мюллера-Плате, описанный в этой статье, для обмена кинетической энергией между двумя частицами.
в разных областях окна моделирования каждые N шагов. Этот
вызывает температурный градиент в системе.Как описано ниже, это
позволяет рассчитать теплопроводность материала. Этот
алгоритм иногда называют обратным неравновесным МД (обратным
NEMD) подход к вычислению теплопроводности. Это потому, что
обычный подход NEMD заключается в наложении температурного градиента на систему
и измерить отклик как результирующий тепловой поток. в
Метод Мюллера-Плате, тепловой поток накладывается, а температура
градиент — это реакция системы.

Подробнее см. Команду compute heat / flux
о том, как вычислить теплопроводность другим способом, с помощью
Формализм Грина-Кубо.

Блок моделирования разделен на Nbin слоев в edim
направление, где слой 1 находится в нижней части этого измерения и
слой Nbin находится на верхнем конце. Каждые N шагов выполняется Nswap пар
атомы выбираются следующим образом. Только атомы в фиксированной группе
которые считаются. Выбираются самые горячие атомы Nswap в слое 1.
Точно так же самые холодные атомы Nswap в «среднем» слое (см. Ниже)
выбраны. Два набора атомов Nswap объединены в пары, и их
скорости обмениваются.Это эффективно меняет их кинетические
энергии, если их массы одинаковы. Если массы
разные, обмен скоростями относительно движения центра масс
2 атомов выполняется, чтобы сохранить кинетическую энергию. Через некоторое время,
это вызывает температурный градиент в системе, который может быть
измеряется с помощью таких команд, как следующие, которые записывают
температурный профиль (при z = edim) в файл tmp.profile:

 вычислить ке все ке / атом
переменная температура атома c_ke / 1.5
вычислить слои все фрагменты / ячейка атомов / 1d z ниже 0,05 единиц уменьшено
исправить 3 все ave / chunk 10 100 1000 слоев v_temp файл tmp.profile
 

Обратите внимание, что по умолчанию Nswap = 1, хотя это может быть изменено
необязательно swap ключевое слово. Устанавливая этот параметр соответствующим образом, в
в сочетании со скоростью обмена N позволяет регулировать тепловой поток
в широком диапазоне значений, а кинетическая энергия для обмена
крупными кусками или более плавно.

«Средний» уровень для смены скорости определяется как Nbin /2 +
1 слой.Таким образом, если Nbin = 20, два уровня обмена — 1 и 11.
Это должно привести к симметричному профилю температуры, поскольку два
слои разделены одинаковым расстоянием в обоих направлениях в
периодический смысл. Вот почему Nbin ограничено быть четным
число.

Как описано ниже, полная кинетическая энергия, передаваемая этими
свопы вычисляются исправлением и могут быть выведены. Разделив это
количество по времени и площадь поперечного сечения симулятора
дает тепловой поток.Отношение теплового потока к наклону
профиль температуры пропорционален теплопроводности
жидкость в соответствующих единицах. См. Подробности в статье Muller-Plathe.

Примечание

Если ваша система периодическая в направлении теплового потока,
тогда поток идет в 2 направлениях. Это означает эффективное тепло
поток в одном направлении уменьшается в 2 раза. Вы увидите это
в уравнениях теплопроводности (каппа) в системе Muller-Plathe
бумага.LAMMPS просто подсчитывает кинетическую энергию, которая не
учитывать, является ли ваша система периодической; вы должны использовать
подходящее значение, чтобы получить каппу для вашей системы.

Примечание

Если после уравновешивания наблюдаемый градиент температуры
не линейно, то вы, вероятно, слишком часто меняете энергию и
не в режиме линейного отклика. В этом случае вы не можете
точно определить теплопроводность и попытаться увеличить
Любой параметр.

Перезапуск, fix_modify, вывод, запуск / остановка, минимизация информации

Информация об этом исправлении не записывается в двоичные файлы перезапуска.Ни один из вариантов fix_modify
относятся к этому исправлению.

Это исправление вычисляет глобальный скаляр, к которому могут обращаться различные
команды вывода. Скаляр — это кумулятивный
кинетическая энергия, передаваемая между дном и серединой
окно моделирования (в направлении edim ) сохраняется как скаляр
количество этим исправлением. Это количество обнуляется при определении исправления.
и затем накапливается каждые N шагов. Единицы
количество — энергия; подробности см. в команде units.Скалярное значение, вычисленное этим исправлением, является «интенсивным».

Ни один параметр этого исправления не может использоваться с ключевыми словами start / stop of
команда запуска. Это исправление не запускается во время минимизации энергии.

Ограничения

Это исправление является частью пакета MISC. Он доступен, только если LAMMPS
был построен с этим пакетом. См. Страницу документации пакета сборки для получения дополнительной информации.

Свопы сохраняют как импульс, так и кинетическую энергию, даже если массы
замененные атомы не равны.Таким образом, вам не нужно
термостатировать систему. Если вы все же используете термостат, вы можете
примените его только к размерам без замены (кроме vdim ).

LAMMPS не проверяет, но вы не должны использовать это исправление для замены
кинетическая энергия атомов, которые находятся в связанных молекулах, например через
исправить встряхнуть или зафиксировать жестко. Это
потому что применение ограничений изменит количество
переданный импульс. Однако у вас должна быть возможность использовать гибкий
молекулы. См. Статью Чжана для обсуждения и результатов.
этой идеи.

При моделировании с большими и массивными частицами или молекулами.
в фоновом растворителе вы можете захотеть обмениваться только кинетической энергией
между частицами растворителя.

По умолчанию

По умолчанию опция swap = 1.


(Muller-Plathe) Muller-Plathe, J Chem Phys, 106, 6082 (1997).

(Zhang) Zhang, Lussetti, de Souza, Muller-Plathe, J Phys Chem B,
109, 15060-15067 (2005).

% PDF-1.7
%
217 0 объект
>
endobj

xref
217 89
0000000016 00000 н.
0000002635 00000 н.
0000002856 00000 н.
0000002914 00000 н.
0000002950 00000 н.
0000003521 00000 н.
0000003556 00000 н.
0000003695 00000 н.
0000003834 00000 н.
0000004286 00000 н.
0000004418 00000 н.
0000005000 00000 н.
0000005604 00000 п.
0000005641 00000 п.
0000005668 00000 н.
0000005782 00000 н.
0000005894 00000 н.
0000006143 00000 п.
0000006605 00000 н.
0000006874 00000 н.
0000007466 00000 н.
0000009020 00000 н.
0000009109 00000 п.
0000009551 00000 п.
0000010188 00000 п.
0000010337 00000 п.
0000010749 00000 п.
0000011261 00000 п.
0000011650 00000 п.
0000012323 00000 п.
0000012917 00000 п.
0000013032 00000 п.
0000014372 00000 п.
0000015283 00000 п.
0000016308 00000 п.
0000016620 00000 п.
0000016647 00000 п.
0000016780 00000 п.
0000017768 00000 п.
0000018037 00000 п.
0000018372 00000 п.
0000018674 00000 п.
0000019713 00000 п.
0000020692 00000 п.
0000021507 00000 п.
0000026724 00000 п.
0000026900 00000 п.
0000027162 00000 п.
0000036049 00000 п.
0000036296 00000 п.
0000054068 00000 п.
0000080529 00000 п.
0000084502 00000 п.
0000084588 00000 п.
0000084658 00000 п.
0000084728 00000 п.
0000084826 00000 п.
0000115188 00000 п.
0000147966 00000 н.
0000148411 00000 н.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *