9 вольт на 12 вольт: Обзор и небольшая доработка DC/DC-преобразователей 5/9 В и 5/12 В в корпусе USB-разъёма

Разное

Содержание

Ардуино питание от 5, 9, 12 вольт, можно ли подключить или надо использовать преобразователь 📹

 Ардуино один из популярнейших микроконтроллеров на сегодняшний день. Описывать все плюсы этой сборки мы не будем, ведь если вы зашли сюда, то явно не просто так, а видимо поняли, что без него вам не обойтись. Мы догадываемся и о том, что вас мучает совсем другой вопрос… Можно ли питать Ардуино напряжением 12 вольт? Ведь когда мы работаем с компьютером от USB, то Ардуино питается от того же компьютера — 5 вольтами. Здесь все хорошо, все согласовано и нет никаких проблем! Но как только Ардуино «отправляется на службу», ее питание по проводу от компьютера прерывается словно пуповина у новорожденного, а кормиться должны все:) Здесь и приходиться что-то мудрить. Так вот, как можно запитать Ардуино?

 

 Большинство плат требует наличие питания в диапазоне от 4.5 до 9 вольт через разъем внешнего питания и 4.5-5 вольт через USB. Однако в инструкции написано 7-12 вольт, то есть будем считать, что оптимальным вариант это 9 вольт.

 На самом деле из 9 вольт на плате получается 5 и 3,3 вольта. Для каждой цепочки питания на 5 и на 3.3 в на плате установлен свой стабилизатор напряжения. Вот как скажем на фото это lm1117 стабилизатор для 5 вольт, а далее на 3,3 вольта. Нас будет интересовать именно стабилизатор на 5 вольт, так как именно на нем будет гаситься напряжение, а значит рассеиваться мощность при подаче завышенного напряжения. Давайте прикинем что и как.

Сколько жрет Ардуинка

 Не трудно прикинуть что в среднем это выходы по 20-40 мА пусть штуки 3-4 и собственное энергопотребление и потери, порядка 50-70 мА. То есть 40*3+70=190 мА, ну так и есть! Однако если начнете вешать активные датчики, то есть то что еще надо и питать, то здесь еще плюсом 20-30 мА на каждый датчик. Обычно силы тока в 200-300 мA хватает, на этом и остановимся.

Ардуино при питании меньше 5 вольт

При меньшем напряжении работа будет нестабильной, порядка 3,4-4 вольт, а при последующем понижении не будет работать вовсе.

Ардуино питание от 5 вольт

 Этот вариант питание от компьютера. Реализовать такое питание можно также от зарядного устройства телефона или купив преобразователь на Али. В этом случае напряжение будет номинально и lm1117 не придется стараться над тем, чтобы понизить напряжение, а значит рассеивать будет нечего, разве что собственные потери. Однако это вариант подходит лишь для того чтобы «заливать» Ардуино. Если же уже все сделано и программа залита, то напряжение 5 вольт маловато. В этом случае при значительных нагрузках на выходы, возможны провалы в работе.

Ардуино питание от 9 вольт

 Можно ли запитать Ардуину от батарейки «Крона» или блока пальчиковых батареек? Можно! На холостом ходу или с минимальной нагрузкой она проработает у Вас не один месяц. А вот уже с небольшим увеличением нагрузки время автономной работы быстро сойдет на нет. Если как мы рассматривали выше повесить на батарейку что-то посложнее, вроде датчиков любящих покушать и светодиодов индикации в особом изобилии, то батарейки может хватить совсем не надолго. Говорить предметно в этом случае можно только лишь относительно каждого конкретного случая.
 Что же касается блока питания, то его необходимо подключать к разъему внешнего питания. То есть lm1117 надо будет погасить 4 вольт. Давайте прикинем какую мощность надо будет рассеять lm1117. Пусть ток потребления 250 мА.

 P=U*I=4*0.25=1 Вт.

 Вроде не так уж и много, да к тому же и спецификация 9 вольт для питания вполне допускает. Это напряжение учитывает все потери в элементах и стабилизаторе, а значит является одним из наиболее предпочтительных. Я бы сказал , что напряжение 79 вольт идеальный вариант для Ардуино.

Ардуино питание от 12 вольт

 Здесь опять же два варианта где взять 12 вольт, это либо БП, либо аккумулятор. Да, да Ардуино довольно активно используется в автомобилях, а там 12-14 вольт — везде! Именно на автомобилистов и будем ориентироваться. Итак 14 вольт, сколько же надо погасить lm1117. Несложно посчитать 14-5=9 вольт. Считаем сколько надо рассеять.

P=U*I=9*0.25= 2.25 Вт. Здесь рассеиваемая мощность подлетела аж в 2,5 раза, все в общем-то пропорционально напряжению. Здесь вопрос уже о том, выдержит ли lm1117 или нет. Если заглянуть в даташит это малышки, то там выходной ток 0,8 А, но на напряжении 1,2 в, то есть она выдает мощность 1,2*0,8=0,96 Вт. Конечно, мощность возможная рассеиваемая и возможная выходная это все же разные вещи, но как-то все же эти величины должны сопоставляться…  Кроме того, напряжение с которыми работает lm1117 до 13,8 вольт. Что может спасти, так это реализованная защита от перегрева и КЗ в микросхеме. По крайней мере в корпусе SOT-223 как у нас, подключать к 14 вольтам lm1117 не стоит. Все это на ваш страх и риск, а если уж сильно хочется, то с током не более чем на 1-2 светодиода, то есть 70-80 мА.

Как же подключить все-таки к 12 вольтам, получив 7-9 вольт и запитав Ардуино? Лучше всего использовать преобразователь или микросхему стабилизатор напряжения с более развитым корпусом скажем применяем микросхему lm7809 или КРЕН9, что одно и тоже. Корпус ТО-220, да еще лучше посадить на радиатор 5-10 кв. см из алюминия. Ток в этом случае до 2 А. Такой микросхемы с радиатором должно хватить! Далее приведена схема подключения для 7805, но 7809 подключается один в один!

Само собой ставим эту сборку до разъема питания. В итоге рассеиваемая мощность на падение напряжения в 2.,25 Вт будет рассеиваться частично на lm7809 и часть в самой Ардуино lm1117.

Как получить нестандартное напряжение | Практическая электроника

Как получить нестандартное напряжение, которое не укладывается в диапазон стандартного?

Стандартное напряжение – это  такое напряжение, которое очень часто используется в ваших электронных безделушках. Это напряжение в 1,5 Вольта, 3 Вольта, 5 Вольт, 9 Вольт, 12 Вольт, 24 Вольт и тд. Например, в ваш допотопный МР3 плеер вмещалась одна батарейка в 1,5 Вольта. На пульте дистанционного управления ТВ используются уже две батарейки по 1,5 Вольта, включенные последовательно, значит уже 3 Вольта. В USB разъеме самые крайние контакты  с потенциалом в 5 Вольт. Наверное, у всех в детстве была Денди?  Чтобы питать Денди нужно было подавать на нее напряжение в 9 Вольт. Ну 12 Вольт используется практически во всех автомобилях. 24 Вольта используется уже в основном в промышленности. Также для этого, условно говоря, стандартного ряда “заточены” различные потребители этого напряжения: лампочки, проигрыватели, усилители  и тд.

Но, увы, наш мир не идеален. Иногда просто  ну очень надо получить напряжение не из стандартного ряда. Например, 9,6 Вольт. Ну ни так ни сяк… Да, здесь нас выручает Блок питания.  Но опять же, если использовать готовый блок питания, то наряду с электронной безделушкой придется таскать и его.  Как же решить этот вопрос? Итак, я Вам приведу три варианта:

Регулятор напряжения на LM317T

Сделать в схеме электронной безделушки регулятор напряжения вот по такой схеме (более подробно здесь )

Интегральный стабилизатор и стабилитрон

На Трехвыводных стабилизаторах напряжения построить стабильный источник нестандартного напряжения. Схемы в студию!

Что мы в результате видим? Видим стабилизатор напряжения и стабилитрон, подключенный к среднему выводу стабилизатора. ХХ – это две последние цифры, написанные на стабилизаторе. Там могут быть цифры 05, 09, 12 , 15, 18, 24. Может уже есть даже больше 24. Не знаю, врать не буду. Эти две последние цифры говорят нам о напряжении, которое будет выдавать стабилизатор по классической схеме включения:

Здесь стабилизатор 7805 выдает нам по такой схеме 5 Вольт на выходе. 7812 будет выдавать 12 Вольт, 7815 – 15 Вольт. Более подробно про стабилизаторы можно прочитать здесь.

U стабилитрона – это напряжение стабилизации на стабилитроне. Если мы возьмем стабилитрон с напряжением стабилизации 3 Вольта и стабилизатор напряжение 7805, то на выходе получим 8 Вольт.  8 Вольт – уже нестандартный ряд напряжения ;-).  Получается, что подобрав нужный стабилизатор и нужный стабилитрон, можно с легкостью получить очень стабильное напряжение из нестандартного ряда напряжений ;-).

Давайте все это рассмотрим на примере. Так как я просто замеряю напряжение на выводах стабилизатора, поэтому конденсаторы не использую. Если бы я питал нагрузку, тогда бы использовал и конденсаторы. Подопытным кроликом у нас является стабилизатор 7805. Подаем на вход этого стабилизатора 9 Вольт от балды:

Следовательно, на выходе будет 5 Вольт, все таки как-никак стабилизатор 7805.

Теперь берем стабилитрон на Uстабилизации =2,4 Вольта и вставляем его по этой схеме, можно и без конденсаторов, все-таки делаем просто замеры напряжения.

Опа-на, 7,3 Вольта! 5+2,4 Вольта. Работает!  Так как у меня стабилитроны не высокоточные (прецизионные), то и напряжение стабилитрона может чуточку различаться от паспортного (напряжение, заявленное производителем). Ну, я думаю, это не беда. 0,1 Вольт для нас погоды не сделают. Как я уже сказал, таким образом можно подобрать любое значение из ряда вон.

Интегральный стабилизатор и диод

Есть  также другой подобный способ, но здесь используются диоды. Может быть Вам известно, что падение напряжение на прямом переходе кремниевого диода составляет 0,6-0,7 Вольт, а германиевого диода – 0,3-0,4 Вольта?  Именно этим свойством диода и воспользуемся ;-).

Итак, схему  в студию!

Собираем по схеме данную конструкцию. Нестабилизированное входное постоянное напряжение также и осталось 9 Вольт. Стабилизатор 7805.

Итак, что на выходе?

Почти 5.7 Вольт ;-), что и требовалось доказать.

Если два диода соединять последовательно, то на каждом из них будет падать напряжение, следовательно, оно будет суммироваться:

На каждом кремниевом диоде падает по 0,7 Вольт, значит, 0,7+0,7=1,4 Вольта. Также и с германиевыми. Можно соединить и три, и четыре диода, тогда нужно суммировать напряжения на каждом. На практике более трех диодов не используют. Диоды можно ставить даже малой мощности, так как в этом случае ток через них все равно будет мал.

Вот такими простыми способами можно получить нестандартное напряжение.

ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ 1,5 — 9 ВОЛЬТ

   Для питания цифрового мультиметра от 1 батарейки АА вместо «кроны» 9 В собрал недавно этот преобразователь. Хотя от него можно запитать что угодно, не обязательно тестеры. В отличии от специализированных DC-DC инверторов, тут всего пару транзисторов и катушка. Монтаж навесной, прямо на разъеме от батареи. В случае чего можно будет легко отсоединить и вернуть «крону».

Схема преобразователя на 9 В

   Самый энергоемкий режим в мультиметре — прозвонка. Если напряжение питания сильно падает при замыкании щупов, то нужно увеличить диаметр провода L2 (остановился на 0,3 мм ПЭВ-2). Диаметр провода L1 не критичен, я использовал 0,18 мм и только из соображений «живучести», так как более тонкие можно нечаянно оторвать. В итоге собрал эту схему с кольцом D=12 d=7 h=5 мм на VT1 2SC3420 — без нагрузки качает 100 В, он оказался лучше всех (R1 = 130 Ом). Также удачно испытаны КТ315А (слабоват, R1 = 1 кОм), КТ863 (качает хорошо).

Отладка схемы

   Отсоединяем ZD1, вместо R1 ставим подстроечное сопротивление 4,7кОм; в качестве нагрузки- R= 1кОм. Добиваемся максимального напряжения на нагрузке, изменяя сопротивление R1. Без нагрузки эта схема легко выдает 100 вольт и более, так что при отладке ставьте C2 на напряжение не менее 200V и не забывайте его разряжать. 

Важное дополнение. Кольцо здесь применять необязательно! Берем готовый дроссель на 330 мГн и выше, поверх его обмотки мотаем любым проводом 20-25 витков L1, фиксируем термоусадкой. И ВСЕ! Качает даже лучше, чем кольцо.

   Проверено мной с VT1 2SC3420 и IRL3705 (R1 = 130 Ом, VD1 — HER108). Полевой транзистор IRL3705 отлично работает, но ему нужно напряжение питания хотя бы 1 В и между затвором и массой резистор несколько килоом и стабилитрон на 6-10 В. Если не работает, то меняем местами концы одной из обмоток. При экспериментах преобразователь действительно работал начиная даже от 0,8 В!

   Далее сделал еще один экземпляр — тоже успешно. Что касается КПД схемы, подсчитаем: измеренный ток потребления 53 мА, напряжения на входе 0.763V и выходе 6.2V и Rout = 980 Ом.

   На входе Pin=Iin*Uin=0.053A*0.763V=0.04043W 

   На выходе Pout=Uout*Uout/Rout =6.2V*6.2V/980=0.039224W (Ватт). 

   КПД = Pout/Pin= 0,969 или 96.9% — прекрасный результат!

   Пусть даже 90% будет — тоже не слабо. Откровенно говоря, эта схемка с кольцом давно известна, я лишь добавил обратную связь по Uout на полевом транзисторе и догадался домотать и использовать готовый дроссель, ибо на кольцах мотать неудобно, да и лень, пусть даже и 20 витков. И габариты у кольца побольше. Автор статьи — Evgeny:)

   Форум по ИП

   Обсудить статью ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ 1,5 — 9 ВОЛЬТ

Расчет резистора для светодиода | AUDIO-CXEM.RU