Биологическая коррозия бетона: Биологическая коррозия бетона

Разное

Содержание

Биологическая коррозия бетона

В ряду негативных воздействий на бетоны биологическая коррозия не привлекает должного внимания строителей и эксплуатационщиков. Тем не менее бетон это материал, который достаточно сильно подвержен воздействию разнообразных биоразрушителей, которые действуют подобно обычным химическим веществам, разрушая структуру бетона как изнутри, так и снаружи. Поражение бетонных поверхностей грибком и плесенью явление довольно распространенное и достаточно опасное. Ведь появление микроорганизмов способно не только сильно разрушить бетон и лишить его эксплуатационных свойств, но и стать причиной возникновения у человека заболеваний дыхательных путей, аллергических реакций, астмы и других проблем со здоровьем.


Понятием биологическая коррозия (биокоррозия) сегодня обозначают процессы повреждения бетона, вызванные продуктами жизнедеятельности живых организмов, поселяющихся на поверхности строительных конструкций, таких как бактерии, грибы, мхи, лишайники. Биокоррозию можно рассматривать, как самостоятельный вид разрушения, но чаще всего процессы биологической коррозии протекают параллельно с другими видами деструкции бетона — почвенной, морской и атмосферной коррозией.


Биокоррозия подразделяется на бактериальную и микологическую. Иногда разрушение может быть вызвано присутствием в коррозионной среде дрожжей или других микроорганизмов. Все микроорганизмы делятся на аэробные и анаэробные. Аэробные существуют и размножаются только при наличии кислорода. Анаэробным же для нормальной жизнедеятельности кислород не требуется. Среди аэробных микроорганизмов наиболее опасными являются серобактерии и железобактерии (обитают в почве). В природных средах аэробные и анаэробные микроорганизмы существуют совместно.


Чаще всего протекает бактериальная биокоррозия. Она же является и наиболее разрушительной. Бактерии очень быстро размножаются и легко приспосабливаются к всевозможным условиям окружающей среды. Для бактериальной биокоррозии наиболее благоприятны рН среды от 1 до 10 и температура от 6 до 40 °С при наличии в соеде различных органических и неорганических веществ, содержащих кислород, углерод, водород, железо, азот, калий, серу и т.д. В этом случае бетонные конструкции разрушаются вследствие химических реакций между цементным камнем и продуктами жизнедеятельности микроорганизмов. Признано, что наиболее агрессивными по отношению к бетону являются тионовые бактерии. Эти бактерии окисляют минералы цементного клинкера до серной кислоты, которая взаимодействует с гидроокисью кальция и образует двуводный гипс, который в свою очередь вызывает интенсивное разрушение бетона от поверхности внутрь. Несомненно также, что биологическая коррозия бетона более интенсивно развивается в условиях воздействия техногенных сред. Высокая влажность, наличие на в производственном процессе жиров, аммиака и растворов солей — все это создает благоприятные условия для интенсивного развития микроорганизмов-биодеструкторов. Например, исследование микрофлоры бетона, кирпича, штукатурки на ряде мясокомбинатов показало, что во всех пробах этих строительных материалов присутствовали микроорганизмы, способные вызывать коррозию. Особенно интенсивно подвержены разрушению бетонные конструкции на предприятиях химической, пищевой и медицинской промышленности, а также канализационные коллекторы и сооружения для очистки сточных вод. Специфика этих производств и эксплуатации бетонных конструкций также заключается в наличии богатой питательной среды для микроорганизмов. Процесс деградации цементных материалов при этом усиливается микробиологической коррозией, особенно в условиях повышенной влажности, температуры и затрудненного воздухообмена.


При эксплуатации бетонных конструкций в неагрессивной среде при обычных атмосферных условиях на биостойкость бетона существенное отрицательное влияние оказывают такие техногенные загрязнения окружающей среды как пыль, аэрозоли и выхлопные газы автомобилей, которые приводят к ускорению коррозионных процессов вызванных жизнедеятельностью микроорганизмов-биодеструкторов. Особенно активно процесс биоповреждения бетонных конструкций проходит в водной среде. Морские гидротехнические сооружения из бетона даже в северных широтах подвергаются сильному воздействию со стороны водорослей.


Еще одним видом биокоррозии являются повреждения бетона обусловленные жизнедеятельностью грибов. К настоящему времени насчитывается более 250 тысяч различных видов грибов. К этой группе относятся как одноклеточные, так и многоклеточные микроорганизмы. Высокая деструкционная активность грибов обусловлена их способностью приспосабливаться к различным по своей природе материалам. Споры, с которых начинается развитие мицелия, прорастают при определенной температуре и влажности, набухая и поглощая влагу из окружающей среды, затем оболочка клетки разрывается и появляется одна или несколько ростовых трубок, являющихся началом нового мицелия. Сначала развитие грибов идет за счет запасенных веществ самой споры, а в дальнейшем за счет поглощения питательных веществ из воды и воздуха. Кроме плесневых грибов коррозию бетонных конструкций вызывают также и дереворазрушающие грибы, которые создают условия для образования водорастворимых солей, таких как ацетат и формиат кальция, что в конечном итоге снижает механическую прочность бетона. Основным условием способствующим развитию грибов на бетонной конструкции и в этом случае служит вода, наличие которой является решающим фактором роста и предельного накопления их биомассы.


Интенсивное развитие коррозии бетона и железобетона наблюдается в условиях техногенных сред на предприятиях агропромышленного комплекса — мясокомбинатах, молокозаводах, хлебозаводах, винзаводах, птицефабриках и животноводческих фермах. Высокая влажность воздуха и наличие различных веществ (белков, жиров, углеводов и продуктов их гидролиза), мочевины, аммиака, углекислого газа и растворов солей создают благоприятные условия для интенсивного развития активных в коррозионном отношении микроорганизмов. При этом совмещаются процессы химической коррозии в результате воздействия агрессивных веществ, содержащихся в контактирующей со строительным материалом среде (мочевина, кровь, молоко, жиры), с биологической коррозией вследствие выделения микроорганизмами-биодеструкторами аминокислот и ферментов.




Основные причины биокоррозии бетонов




В настоящее время рассматривается достаточно много причин биокоррозии бетона, основными из которых можно считать следующие:




— высокие показатели влажности воздуха;


— протечки канализационных либо водопроводных сетей;


— подъем капиллярной влаги от фундамента к стенам;


— потери тепла через углы помещения, промерзание стен;


— недостаточная вентиляция помещений;


— течи в кровле.




Защита от биологической коррозии




Для борьбы с микроорганизмами современные производители предлагают массу разнообразных средств, выбирать которые необходимо в соответствии с конкретной проблемой и особенностями эксплуатации бетонных конструкций. Считается, что предотвратить возникновение биокоррозии легче, чем потом бороться с ее последствиями. Поэтому на рынке сегодня можно найти антигрибковые добавки к бетонным смесям, которые домешивают на этапе приготовления смеси. Это повышает стойкость (иммунитет) бетонных поверхностей по отношению к плесени и другим микроорганизмам-биодеструкторам. Поскольку биологическая коррозия развивается в условиях повышенной влажности, эффективным средством профилактики может быть также изоляция поверхности бетонов при помощи специальных материалов, таких ка пропитки, краски, защитные штукатурки, а также облицовка плиткой и защита оклеечными покрытиями. Для предотвращения возникновения биологической коррозии эксплуатируемых конструкций могут применяться фунгициды (защита от грибов) и бактерициды (защита от бактерий). Биоциды, используемые в качестве добавок для защиты от биокоррозии, должны быть не только эффективными, но и безопасными при применении, а также не оказывать отрицательного влияния на окружающую среду. Использование специальных химических соединений, токсичных для микроорганизмов сегодня признано одним из наиболее перспективных способов защиты бетонов от биологического загрязнения. По характеру своего действия эти вещества подразделяются на биоциды (вещества уничтожающие микробов), биостатики (вещества тормозящие рост микроорганизмов) и репелленты (вещества вызывающие отпугивающий эффект). В связи с тем, что микрофлора, поражающая материалы и изделия, очень разнообразна и нередко включает организмы, принадлежащие к разным группам, наиболее целесообразно применять биоциды широкого спектра действия. В частности введение в бетон добавок, полученных после переработки гальванического шлама позволяет снижать степень обрастания образцов грибками в три раза, как в случае с зелеными, так и с сине-зелеными водорослями. Среди биоцидных веществ интерес вызывают фотокатализаторы, так как они способны обеспечить длительную биозащиту без использования достаточно опасных дезинфицирующих средств. Такую защиту целесообразно использовать в медицинских учреждениях и на предприятиях, производящих продукты питания. Одним из новых и перспективных способов защиты бетона от биокоррозии является применение так называемых золь-гелей. Эти покрытия содержат наночастицы оксида кремния, которые со временем превращаются в гидросиликат кальция и, заполняя поры бетона, снижают вероятность проникновения в них микроорганизмов.






Фото 1. Грибковое поражение поверхности бетона






Материал подготовил инженер-эксперт Несветайло В.М.


Биологическая коррозия бетона — защита бетона от биоповреждений, плесени

Вопросы защиты строительных конструкций, зданий и сооружений от агрессивных химических и биологических воздействий окружающей среды должны обязательно учитываться при проектировании, строительстве и реконструкции зданий.

Биологическая коррозия

Биологическая коррозия — это процессы повреждения бетона, вызванные продуктами жизнедеятельности живых организмов (бактерии, грибы, мхи, лишайники и микроорганизмы), поселяющихся на поверхности строительных конструкций.

Микроорганизмы-биодеструкторы способны уничтожить буквально любые строительные материалы и конструкции. Биоповреждения минеральных строительных материалов сводятся к нарушению сцепления составляющих компонентов этих материалов в результате воздействия органических кислот микробного происхождения. Бетонные конструкции разрушаются вследствие химических реакций между цементным камнем и продуктами жизнедеятельности микроорганизмов.

С точки зрения условий развития процессов биологической коррозии, связанных с жизнедеятельностью микроорганизмов, следует различать два основных случая биокоррозии.

В первом случае биоорганизмы находятся в непосредственном контакте с наружной или внутренней (для пористых материалов) поверхностью строительной конструкции. В процессе метаболизма они взаимодействуют с материалом, в результате чего снижается прочность или ухудшаются другие эксплуатационные качества материала (происходит повреждение материала и сокращение сроков его службы).

Во втором случае биоорганизмы являются продуцентами веществ, агрессивных по отношению к строительному материалу, но непосредственно со строительной конструкцией не связаны. Коррозионные процессы могут развиваться на расстоянии от места обитания биоорганизмов, вырабатывающих агрессивные вещества. Например, тионовые бактерии, поселяющиеся на поверхности карбонатного слоя бетона, разрушают цементный камень, изменяя рН прилегающей воды за счет образуемой ими кислоты.

Биологическая коррозия бетона и железобетона интенсивно развивается в условиях техногенных сред. Высокая влажность, наличие органических веществ, жиров, аммиака, растворов солей – все это создает благоприятные условия для интенсивного развития микроорганизмов-биодеструкторов. Например, исследование микрофлоры бетона, кирпича, штукатурки на ряде мясокомбинатов показало, что во всех пробах строительных материалов присутствуют микроорганизмы, способные вызывать коррозию.

Защита от биологической коррозии

Предотвратить возникновение биокоррозии гораздо легче, чем потом бороться с ее последствиями. Поскольку биологическая коррозия развивается в условиях повышенной влажности, эффективным средством профилактики может быть надежная гидроизоляция строительных материалов с помощью специальных материалов (пропиток, красок, защитных штукатурок, облицовки плитами и оклеечными покрытиями).

На практике уже давно реализована идея добавления в лакокрасочные материалы специальных биоцидных и ингибирующих добавок. Для предотвращения возникновения биологической коррозии при обработке строительных материалов используются фунгициды (защита от грибов) и бактерициды (защита от бактерий). Биоциды, используемые в качестве добавок для защиты от биокоррозии, должны быть не только эффективными, но и безопасными при применении, а также не оказывать вредного влияния на окружающую среду.

Для защиты строительных материалов от биокоррозии и биоповреждений Компания КрасКо предлагает защитные лакокрасочные материалы со специальными фунгицидными добавками, подавляющими рост и жизнедеятельность микроорганизмов-биодеструкторов.

Защита от биокоррозии — пропитка Аквасол

Гидрофобизатор бетона Аквасол — это гидрофобизирующая пропитка для придания водоотталкивающих свойств различным минеральным изделиям. Представляет собой раствор смеси силанов и силоксанов в органических растворителях с функциональными добавками.  

Пропитка Аквасол предназначена для применения в качестве пропиточного состава для любых минеральных материалов — бетона, цемента, раствора, пенобетона, фиброцемента, кирпича, шифера, кровельной черепицы, фасадной плитки, штукатурки.

Обработанные пропиткой минеральные основания приобретают высокие гидрофобные свойства, резко повышается водонепроницаемость и снижается водопоглощение защищаемого материала. Благодаря отличным гидрофобизирующим свойствам пропитку применяют в условиях повышенной влажности и в местах, где присутствует необходимость обеспечения специальных санитарно-гигиенических требований.

Защита от биокоррозии — краска Фасад-Люкс

Фасадная краска Фасад-Люкс представляет собой водную дисперсию на основе акриловых смол со специальными полимерными добавками.

Акриловая краска предназначена для защитной окраски бетонных, кирпичных, асбоцементных, оштукатуренных и любых других минеральных оснований. Краска применяется для окраски фасадов, цоколей, фундаментов, стен в гаражах, подвалах, на лестницах, балконах.

Защитная краска Фасад-Люкс образует атмосферостойкое, прочное и долговечное покрытие. Акриловая краска предотвращает разрушение бетона, создает полимерную пленку, которая обеспечивает надежную защиту минеральной поверхности.

Краска Фасад-Люкс рекомендуется для защиты бетона от коррозии. Высокоэффективные фунгицидные добавки осуществляют дополнительную защиту поверхностей от грибка и микроорганизмов (защита от биоповреждений и биокоррозии).

Защита бетона от биоповреждений

Нанесение на бетонную поверхность биозащитных лакокрасочных материалов позволит защитить от биокоррозии и значительно увеличить срок службы строительных конструкций.

Выбор системы защиты бетона от биоповреждений определяется условиями эксплуатации строительных конструкций и видом защищаемого материала.

Компания КрасКо предлагает Вам все необходимые материалы для защиты бетона от биокоррозии и биоповреждений.

Подробную информацию о лакокрасочных покрытиях для антикоррозионной защиты бетона и других минеральных поверхностей Вы всегда сможете узнать на страницах нашего сайта krasko. ru.

Почему появляется коррозия бетона и как с ней справиться?

Оглавление:

  • Виды коррозии бетона
  • Что представляет собой коррозия бетона?
  • Коррозионные процессы в железобетоне
  • Как может производится защита от коррозии бетона и железобетона?
  • Виды защиты бетона от коррозии


При изготовлении по всем правилам коррозия бетона изделиям из него не страшна, и служить они будут очень долго. Бетон должен иметь сопротивляемость к коррозионному воздействию на цементный камень.


Коррозия бетона это процесс разрушения целостности материала, возникающих из-за воздействия внешних агрессоров.


В настоящее время именно бетон остается одним из самых востребованных материалов в строительной сфере. Свойствами этот материал обладает по большей части положительными и стоек к атмосферным воздействиям.

Виды коррозии бетона


Физические и химические воздействия окружающего пространства на бетон таковы, что происходит его разрушение, называемое коррозией. В связи цемента с водой происходит много процессов, возникает агрессивная среда, и для защиты бетона от коррозии требуется изучение тонкостей этого явления. Видов коррозии выделяется специалистами 3, но чаще всего разрушение происходит под действием нескольких видов сразу:


Виды разрушения бетона.

  1. Биологическая коррозия бетона, подразумевающая образование имеющих большой объем соединений в бетонном камне. Это происходит под влиянием различных веществ, в бетон проникающих. Соединения, приобретающие внутри больший объем, вызывают внутренние напряжения и как следствие трещины в бетоне. Сульфатная коррозия имеет наибольшее значение в исследовании вопросов разрушения бетона.
  2. Физико-химические формы коррозии бетона, при которых составляющие бетонного камня растворяются в воде. При этом происходит нередко растворение и вымывание гидроксида кальция, ранее имевшегося или образовавшегося. Размытие железобетона водой происходит с разными скоростями. Гидросооружения имеют плотный массив, в котором коррозия идет медленно, результат ее виден лишь спустя десятилетия. А в градирнях, которые имеют тонкие оболочки, гидроксид кальция вымывается значительно быстрее, отчего ремонт требуется уже спустя несколько лет. Если вода фильтруется через бетон, разложение ускоряется многократно, бетон делается высокопористым, прочность его уменьшается более чем наполовину. Этот процесс называют также выщелачиванием извести или белой смертью, из-за внешних признаков такого разрушения. Когда материал начинает подвергаться разъеданию агрессивной средой, его покрывает белый налет.
  3. Химическая коррозия, происходящая как результат взаимодействия бетонного камня и веществ из окружающей среды нередко образуются легкорастворимые соли, которые потом вымываются. Вместе с вымываемыми водой веществами в бетонных массах нередко осаждаются не имеющие вяжущей способности аморфные массы. Бетон под действием этих сил с течением времени превращается в рыхлую пористую массу, которая разрушается очень легко.


Коррозию можно назвать отдельной отраслью науки, которая изучает все процессы, называемые коррозионными, средства их предотвращения и устойчивость бетонных сооружений к различным природным процессам. Такое словосочетание, как коррозия бетона, звучит непривычно, но подвергается коррозии не только бетон, но и кирпич, асбоцемент и газобетон, пенобетон вместе с силикатными блоками.

Вернуться к оглавлению

Что представляет собой коррозия бетона?


Схема коррозии бетона.


Начинается этот процесс с того, что бетон затвердевает, превращаясь при этом в цементный камень, стойкость которого значительно ниже, чем наполнителей камня. Состав цементного камня включает в себя образовавшиеся в процессе затвердевания соединения. В нем много капиллярных ходов как открытых, так и закрытых, они бывают заполнены либо водой, либо воздухом. Очень неоднородна структура затвердевшего бетона.


В отношении затвердевшего бетона и железобетона агрессивна вода речная, морская, сточные и дренажные воды вместе с имеющимися в составе воздуха кислыми газами. В черте городов и особенно в районах промышленных предприятий грунтовые воды содержат очень много различных примесей, которые способствуют коррозии затвердевшего железобетона. Если в окрестностях присутствуют химические заводы, то грунтовые стоки будут загрязняться кислотами как органическими, так и минеральными, нитратами и хлоридами, солями аммония, меди, цинка, железа и никеля, сульфатами, щелочами. В окрестностях металлообрабатывающих заводов грунт будет насыщаться продуктами травильных процессов и сульфатами железа.


Зависимость скорости разрушения бетона от времени воздействия неблагоприятных факторов.


Больше, чем грунтовые воды, насыщаются вызывающими разрушение цементного камня веществами стоки фабрик и заводов. Если неочищенная вода спускается в реки, то и вода в реках становится агрессивной по отношению к бетонным сооружениям. Коррозия бетона очень часто поражает гидротехнические сооружения. Воздух вблизи и на самих предприятиях тоже часто содержит загрязнения, такие как окислы азота, сернистый газ, хлористый водород. Здоровью людей концентрация этих газов в пределах допущенных норм вреда не приносит, но тем не менее ее достаточно, чтобы бетонные сооружения начали разрушаться.


Коррозия бетона очень разнообразна, так как существует более сотни веществ и их соединений, которые при соприкосновении с бетонным камнем вызывают его разрушения. Существуют микроорганизмы, называемые биодеструкторами, которые разрушают все виды сооружений. Разрушающие материалы микроорганизмы могут находиться с ними в непосредственном контакте или поселяться внутри пористых структур. Худшее время для бетонных сооружений процессы метаболизма микроорганизмов, так как все качества материала и срок его службы значительно при этом сокращаются. Наносить вред бетону даже на расстоянии способны биоорганизмы, являющиеся продуцентами агрессивных по отношению к бетону веществ.


В любой жидкой и газообразной среде для коррозии бетона и железобетона не требуется дополнительных факторов. Если в газообразной среде высокая влажность, этот фактор ускоряет коррозионные процессы.

Вернуться к оглавлению

Коррозионные процессы в железобетоне


Железобетон наиболее сильно подвержен коррозии, так как содержит в себе металлический каркас.


Хотя процессы, протекающие в этих материалах, очень схожи, разрушение железобетона является значительно более сложным процессом. Заключается сложность в содержании металлического каркаса, для которого электрохимическая коррозия является врагом. Считается, что железобетон очень прочен и долговечен. Это связано с образованием обладающего защитными свойствами пассивного слоя при взаимодействии поверхности арматуры и щелочной природы бетона. Но при этом если бетон долгое время подвергается воздействию атмосферных осадков, содержащих соли и углекислый газ, происходит карбонизация, и среда в результате становится кислой. В результате понижается прочность, и здание начинает разрушаться быстрее.


Чтобы коррозия этого вида была приостановлена, требуется введение в бетон специальных ингибиторов, действующих именно на коррозию металла. Такие вещества могут создать пленку на поверхности арматуры внутри бетона, что повышает общую прочность. Эта пленка не позволяет взаимодействовать металлу и бетону, таким образом, реакция электрохимической коррозии не происходит. Эти составы добавляют непосредственно в сырой раствор перед изготовлением бетонных плит или наносят на готовые изделия. Проникнуть в бетон состав может на 50 мм.


Процесс коррозионного разрушения сложен и опасен для построек из железобетона. Если отнестись к нему недостаточно серьезно и не пытаться предотвратить и остановить его действие, любое сооружение будет разрушено значительно быстрее. Используются для защиты железобетона и проекторные аноды. С их помощью создается электрический контакт между каркасом из арматуры и болванкой металла, по свойствам более активного. При электрохимической коррозии происходит разложение за счет ЭДС металла с отрицательными значениями. Пока не растворится металл, более реакционноспособный, железобетонный каркас будет вне опасности.

Вернуться к оглавлению

Как может производится защита от коррозии бетона и железобетона?


Методы защиты бетона от коррозии.


Широко применяемый в строительстве бетон имеет несколько разработок, которые применяются для борьбы и уменьшения разрушительных процессов. Это как защита материала от воздействий внешней среды, так и введение разного рода добавок, имеющих разные функции. Некоторые из них препятствуют появлению в бетоне трещин, его разрушению и вымыванию. Нередко применяется для сооружений бетон с высокой плотностью, капиллярная структура внутри которого отсутствует.


Разрушение бетона может быть остановлено введением гидравлических добавок. Они, чтобы воспрепятствовать вымыванию, связывают гидроксид кальция в соединение, которое менее подвержено растворению, гидросиликат кальция. Защита бетона от коррозии может заключаться в применении белитового цемента, так как этот материал гидроксида кальция выделяет минимум, содержит меньше трехкальциевого силиката. Если разрушающая жидкость имеет малые количества и испаряется с поверхности бетона сама, гидроксид кальция не будет вымываться из бетона. Он уплотнит его структуру и прекратит фильтрацию, что называется самозалечиванием бетона.


Если цементный камень повреждается водами, которые содержат соли сернокислые или хлористые, то это происходит вследствие образования продуктов, которые затем с легкостью вымываются из бетона. Случается, что теряются связующие свойства бетона. С этим нужно бороться аналогичным образом, понижая содержание гидроксида кальция в бетоне. К примеру, в 100 раз менее подвержен растворению в воде хлористый кальций, если сравнивать его с гидроксидом кальция.


Капитальный ремонт, гидроизоляция и защита бетонных конструкций от коррозии.


Коррозия бетона сульфатного типа характеризуется образованиями в порах бетона, которые в ходе роста разрывают его. Это называется цементными бациллами. Поэтому цемент, содержание трехкальциевого алюмината в котором недостаточно, дополнительно должен иметь стойкость к сульфатам. Бетонные сооружения не должны покрываться грибками и бактериями, водорослями речными и морскими, лишайниками, мхами, растениями, так как все это имеет разрушительное воздействие на них.


Защита бетона от вод с различными добавками может быть произведена различными путями. Это могут быть улучшения, технологические изменения, включающие в себя этапы приготовления бетона. Цемент для приготовления должен содержать активные минеральные добавки определенного типа и соответственный минеральный состав. Могут помочь и такие решения, где для защиты бетона от коррозии применяется дренаж, водоотводы и гидроизоляция.

Вернуться к оглавлению

Виды защиты бетона от коррозии


Наиболее простым способом защиты бетонных конструкций от коррозии является покраска.


Хорошим сопротивлением коррозии бетона является как можно большее уплотнение его при укладке и особое приготовление смесей. Для этого потребуется приготовить смеси с минимумом водоцементного отношения. Водостойкость можно повысить, применяя разного рода добавки, такие как доменный шлак гранулированный, опока, диатомит, трепела.


Таким образом защита бетона может быть разделена условно на 2 типа. Первичной защитой считается добавление разного рода веществ еще при создании, а вторичной нанесение защитных покрытий на готовые бетонные конструкции. Эта защита включает в себя уплотняющие пропитки и лакокрасочные покрытия. Очень популярно нанесение красок на бетонные стены. Если в составе красок присутствует поливинилхлоридная смола, то через некоторое время после застывания краска представляет собой хорошую защитную пленку. Этот вид технологий успешно применяется к жилым постройкам и частным домам, к общественным зданиям. Декоративные изделия и плиты фасада могут быть защищены таким же образом.


Чтобы сделать защиту еще более надежной, применяются биоцидные препараты, которые уменьшают биологическое воздействие на бетон, и листовые защитные материалы.


Такие препараты проникают в структуру бетона очень глубоко, защищая его и внутри, а не только снаружи. Проникновение вглубь способствует значительному уменьшению водопроницаемости. Обычно внутри бетона препараты создают кристаллическую структуру, которая не пропускает влагу внутрь. Таким образом, влажность бетона остается на уровне, при котором процесс коррозии не начинается.

Что такое коррозия бетона, её виды и как избежать коррозии бетонных конструкций

Данное понятие определяет процесс разрушения структуры бетона под воздействием факторов внешней среды. Хотя при соблюдении всех правил изготовления и укладки бетона у последнего должна быть сопротивляемость к внешнему воздействию, в действительности всё не так идеально. Физические и химические воздействия окружающей среды могут нанести непоправимый вред, как нарушая свойства материала, так и его состав.

Виды коррозии бетона

Выделяют три вида коррозии бетона:

  • Биологическая коррозия
  • Физико-химическая коррозия
  • Химическая коррозия

Первый вид коррозии обусловлен проникновением в состав веществ, вызывающих за счёт собственного расширения внутреннее напряжение и разрушение материала изнутри.

Второй тип коррозии определяется чаще как размытие. За счёт постоянного контакта с водой из состава бетона нередко растворяется и вымывается гидроксид кальция. Часто мы наблюдаем такую коррозию у бетонных гидроконструкций – плотин, дамб, бетонных резервуаров.

Третий тип обусловлен взаимодействием бетонного камня и окружающей среды. При этом возникают легкорастворимые соли, которые потом вымываются водой. Нередко вымываемые водой вещества в бетонных массах заменяются аморфными составами, не имеющих вяжущих свойств.

Вследствие этого с течением времени бетон теряет свою прочность и превращается в рыхлую смесь.

Вышеуказанная классификация также дублируется но с другим названием видов коррозии, хотя принцип разделения на группы прежний:

  • Коррозия выщелачивания (биологическая)
  • Кислотная коррозия (химическая)
  • Солевая коррозия (физико-химическая)

Методы предотвращения коррозии

Существует ряд способов защиты бетона от коррозии. Эксплуатационно- профилактические мероприятия проводятся начиная с этапа проектирования стройки. Во-первых, это нейтрализация агрессивных сред, воздействующих на состав (герметизация, вентиляция, осушка воздуха).

Грамотные конструкционные решения также могут избавить бетон от ряда коррозионных процессов (недопущение контакта с поверхностями разной температуры, во избежание образования конденсата, избежание углублений для скопления воды на поверхности, обеспечение отвода жидкости).

В целом же, защиту от коррозии бетона разделяют на первичную и вторичную. Первая заключается в изменении состава бетона и вводе специальных добавок (очень эффективный способ). К эти добавкам модно отнести пластификатры, стабилизирующие модификаторы и ряд других химических добавок. Зная среду эксплуатации бетонной конструкции предугадывают состав смеси и добавляют элементы, препятствующие коррозионному процессу. Вторичная защита определяется как нанесение на уже застывший цементный камень защитных смесей, плёнок, акриловых покрытий, лакокрасочных материалов. Наиболее эффективным методом защиты является комбинирование первичной и вторичной защиты.

Причины разрушения бетона

Бетонные и железобетонные конструкции в процессе эксплуатации постоянно подвергаются разрушению. Причины бывают разные: химическое и физическое воздействие окружающей среды, высокие эксплуатационные нагрузки, низкое качество используемого бетона, неточности при проектировании, ошибки при укладке бетонной смеси и т.д.

В целом, причины разрушения бетона можно разделить на 4 больших группы:

1. ХИМИЧЕСКИЕ
Являются следствием взаимодействия Компонентов бетонной смеси между собой или с окружающей средой

  • Карбонизация
  • Выщелачивание
  • Агрессивное воздействие сульфатов
  • Агрессивное воздействие хлоридов
  • Взаимодействие щелочей цемента с заполнителем

2. ФИЗИЧЕСКИЕ
Являются следствием воздействия температуры или условий твердения бетона.

  • Циклы замораживание/оттаивание
  • Воздействие высоких температур
  • Усадка и растрескивание

3. МЕХАНИЧЕСКИЕ
Являются следствием внешнего воздействия

  • Истирание
  • Ударное воздействие
  • Эрозия или кавитация.

4. ДЕФЕКТЫ ПРИ НОВОМ СТРОИТЕЛЬСТВЕ
Связаны с ошибками в процессе производства работ

  • Приготовление бетонной смеси
  • Устройство арматурного каркаса
  • Укладка и уход за поверхностью и т.д

Далее мы подробно разберем причины разрушения бетона, приведем типовые примеры и решения.

 


 

ХИМИЧЕСКИЕ ПРИЧИНЫ РАЗРУШЕНИЯ БЕТОНА
 

Карбонизация

 

Процесс карбонизации бетона возникает вследствие проникновения углекислого газа (СО2) в тело бетонной конструкции с образованием карбоната кальция (CaCO3), который в свою очередь снижает защитные свойства бетона.

Защитные свойства бетона измеряются с помощью показателя кислотности pH. pH здорового бетона превышает 13 единиц.

В этих условиях на стержнях арматуры возникает пассивирующая защитная пленка оксида железа (FeO), изолирующая их от негативного воздействия извне, препятствуя образованию коррозии. В результате процесса карбонизации pH бетона снижается.

Когда уровень pH бетона становится ниже 11 единиц, пассивирующая защитная пленка вокруг арматуры нейтрализуется и стальная арматура становится подверженной воздействию кислорода и влаги.

В дальнейшем коррозия арматуры начинает прогрессировать, и бетон, окружающий арматуру, отслаивается, что в свою очередь открывает новые пути доступа для разрушающего воздействия кислорода и влаги

Следствием карбонизации является прогрессирующее разрушение бетонной конструкции, сопровождающееся процессами коррозии арматурных стержней.

Чтобы убедиться в том, что разрушение бетона вызвано образованием карбонатов, применяется методика, основанная на изменении цвета бетонного образца после специальной обработки. Бетонный образец обрабатывается 1% раствором фенолфталеина в этиловом спирте (стандарт UNI EN 13295:2005). Поверхность здорового бетона, обработанная таким образом, краснеет. Поверхность карбонизированного бетона после обработки цвет не меняет.
 

Выщелачивание

Бетон также подвержен такому явлению как выщелачивание. Выщелачивание представляет собой процесс размывания цементного камня под воздействием воды.

Процесс усиливается, если вода отличается слабокислой реакцией (pH<7). Это может быть вызвано содержащейся в ней агрессивной углекислотой, которой особенно много в сточных промышленных водах, или серной кислотой органического происхождения, образующейся в системе водоотведения канализационных вод.

Такие методы, как химический, термический анализ, методики, основанные на дифракции рентгеновских лучей, не могут быть применимы при анализе выщелачивания бетона. Вещество, которое получается в процессе разрушения подобного типа, представляет собой отлично растворимый в воде бикарбонат кальция. Вымываясь с поверхности, он не оставляет следов для подробного анализа. Еще одной причиной, по которой вышеперечисленные тесты непригодны, является тот факт, что на первой фазе образования бикарбоната возникает карбонат кальция, который присутствует в большинстве видов бетона, поэтому установить, входит ли он в состав этих материалов, или образовался из-за агрессивного воздействия двуокиси углерода, не представляется возможным.

Единственным методом выявления выщелачивания бетона является пристальный визуальный осмотр поверхности. На поверхности бетона, подверженного выщелачиванию, будут видны обширные зоны заполнителя, не связанные цементным камнем.

Агрессивное воздействие сульфатов

Наиболее распространенными растворимыми сульфатами, встречающимися в грунте, воде и промышленных стоках, являются соли кальция и натрия.

Можно также упомянуть и сульфаты магния, но они менее распространены, хотя и наиболее разрушительны.

Сульфаты присутствуют в воде и грунте, кроме того, их можно встретить непосредственно в заполнителе, где они являются загрязняющими примесями. Сульфаты, находящиеся в грунте или воде, контактируют с сооружением, их ионы проникают вместе с влагой в цементный камень бетона (основной механизм переноса), реагируют с гидроокисью кальция, в результате чего образуется гипс.

Впоследствии он реагирует с гидроалюминатами кальция, из-за чего формируется вторичный эттрингит, который приводит к увеличению объема, расслоению, набуханию, растрескиванию и разрушению.

Чтобы убедиться в том, что разрушение бетона вызвано воздействием сульфатов, необходим химический анализ, позволяющий установить уровень их присутствия. В обычном бетоне содержание сульфатов кальция не превышает 0,4-0,6 %.

Агрессивное воздействие хлоридов

Воздействие хлоридов наблюдается в условиях контакта со средой, отличающейся высоким их содержанием, например, с морской водой или антиобледенительными солями, а также в случаях, когда при изготовлении бетона используются загрязненные сырьевые материалы.

Если хлор проник в бетон и достиг арматурных стержней, он снимает с них пассивирующую защитную пленку оксидов железа.

Коррозия появляется в результате проникновения внутрь конструкции хлоридов, снимающих защитную пассивирующую пленку с арматуры, в сочетании с воздействием влаги, содержащей кислород.

Например, в случае, если сооружение полностью погружено в морскую воду, содержание хлора будет выше. Однако поры бетона будут полностью насыщены водой, препятствующей проникновению кислорода. Коррозия арматуры в данном случае может либо вообще не протекать, либо наблюдаться в малой степени.

Однако если рассмотреть другое сооружение, погруженное в морскую воду, с участком, находящимся на открытом воздухе и подверженном морским брызгам, то участком, который в наибольшей степени подвержен разрушению, будет являться зона оседания брызг. Соли, используемые зимой на дорогах в качестве антиобледенительных реагентов, проникают во время таяния и дождей в бетонную конструкцию, вызывая коррозию и разрушение. Как только этот процесс начинается, где бы сооружение ни находилось, коррозия будет продолжаться с увеличенной скоростью, поскольку образуются легкодоступные пути для проникновения агрессивных веществ.

Концентрация хлоридов, требуемая для поддержания коррозии арматурных стержней, прямо пропорциональна рН бетона. Чем выше щелочность, тем больше концентрация хлоридов, которая требуется для начала процесса коррозии. Этим данный процесс разрушения бетона похож на процессы, возникающие вследствие карбонизации.

Взаимодействие щелочей цемента с заполнителем

В результате взаимодействия щелочей цемента с заполнителем могут происходить существенные разрушения бетонных сооружений. Некоторые типы заполнителей, например, содержащие реакционноспособный кремнезем, взаимодействуют с двумя щелочами, которые находятся в цементе, солями калия и натрия или солями этих металлов, которые поступают извне в форме хлорида натрия (противообледенительные реагенты, морская вода).

Взаимодействие щелочей цемента с заполнителями бетона представляет собой медленно протекающий гетерогенный процесс, поскольку он связан с составом заполнителей, содержащих аморфный кремнезем. В результате реакции в подобных условиях образуются силикаты натрия и гидратированный калий, отличающиеся чрезвычайной объемистостью. Реакции взаимодействия щелочей цемента с заполнителями бетона проявляются в защитном слое бетона. При этом на поверхности появляются микро- и макротрещины, или даже начинается подрыв небольших участков бетона над областями, где в заполнителях имеется реакционноспособный кремнезем (явление вспучивания). Этот феномен, в частности, наблюдается на полах промышленных зданий.

 


 

ФИЗИЧЕСКИЕ ПРИЧИНЫ РАЗРУШЕНИЯ БЕТОНА
 

Циклы замораживание/оттаивание

Негативное воздействие льда проявляется только тогда, когда вода в жидкой фазе проникает внутрь бетона. Это вовсе не означает, что бетон должен быть абсолютно сухим, просто уровень влажности не должен превышать определенную величину, называемую «критическим насыщением». Речь идет о том, что количество воды в порах должно быть меньше этой величины. Расширившись при превращении в лед, она должна оставаться в пределах полостей и не создавать напряжения. Однако если вода заполняет или почти заполняет весь объем пор, а затем замерзает, лед начнет ломать бетон, создавая внутреннее давление.

Чтобы ограничить негативные последствия влияния низких температур, необходимо принять меры к сокращению капиллярной микропористости и стимулировать макропористость (чтобы размеры полостей были 100-300 мкм). Для этого при приготовлении бетона используют воздухововлекающие добавки, которые поддерживают соотношение между водой и цементом на низком уровне, используют морозостойкие заполнители.

Воздействие высоких температур

Влияние на бетон высоких температур носит деструктивный характер. Арматурные стержни выдерживают температуры до 500°С, а бетон — до 650°С. Роль бетона, окружающего арматурные стержни, в этом случае носит фундаментальный характер — он замедляет распространение тепла. Чем толще бетон, тем дольше протекает разогрев до температуры 500°С, при которой арматурные стержни теряют прочность.

Огонь способен привести ко многим видам повреждения бетона, причем в очень серьезных масштабах.

  • Даже если арматурные стержни защищены бетоном, они, разогреваясь, увеличиваются в объеме, создают в бетоне очаги напряжения, что может привести к частичному его разрушению.
  • Арматурные стержни, нагреваясь, расширяются значительно быстрее бетона, при этом теряется сцепление арматуры с бетоном.
  • Даже если температура, при которой теряется несущая способность, не достигнута, бетон может утратить свои эксплуатационные качества при внезапном охлаждении, что обычно наблюдается при пожаротушении. В этой ситуации оксид, образовывающийся при нагреве, трансформируется в известь, которая разрушает бетон.
  • На поверхности, обращенной к огню, наблюдается растрескивание, вызванное быстрым расширением. Некоторые заполнители разрываются и могут отделиться от окружающего бетона. При этом происходит то же явление, что и при быстрой конденсации водяного пара, сопровождающейся небольшими взрывами.
  • Если воздействие огня носит длительный характер, арматурные стержни достигают температуры, при которой теряют прочность на растяжение, в результате разрушается все сооружение.

 

Усадка и растрескивание

В этом разделе обсуждается два типа усадки — пластическая и гигрометрическая. Пластическая усадка наблюдается, когда бетон находится в пластичной фазе и выделяет часть влаги, содержащейся внутри него, в окружающее пространство, что приводит к сжатию. Растрескивание в этом случае зависит от условий в среде, окружающей уложенный бетон.

При укладке бетона в опалубку по очевидным причинам испарение не наблюдается. Если же бетон непосредственно контактирует с окружающей средой, происходит испарение, вызванное сравнительно высокой температурой и очень низкой влажностью снаружи либо сильным ветром. При пластической усадке свежего бетона на его поверхности могут возникать микротрещины. Гигрометрическая усадка вызвана выделением влаги в окружающую среду с низким уровнем относительной влажности в течение всего срока эксплуатации сооружения.

Чтобы избежать проблем, создаваемых пластической усадкой, следует принять меры для остановки слишком быстрого испарения имеющейся воды. Это можно реализовать несколькими способами:

  1. Укрыть уложенный бетон водонепроницаемым материалом, который препятствует испарению.
  2. Орошать всю поверхность бетона водой в течение первых нескольких дней после укладки.
  3. На свежий бетон нанести материал, создающий защитную пленку, которая препятствует испарению.

Поскольку по большей части гигрометрическая усадка протекает в течение первых шести месяцев после укладки, поддерживать влажность все это время не представляется возможным. В связи с этим прибегают к таким мерам, как снижение водоцементного отношения и увеличение соотношения между инертными материалами и цементом.

 


 

МЕХАНИЧЕСКИЕ ПРИЧИНЫ РАЗРУШЕНИЯ БЕТОНА
 

Истирание

Истирание наблюдается, когда материал подвергается повторяющимся ударам более твердых частиц. Это вызвано трением между порошком из более твердых пород о поверхность материала. Отсюда следует, что истирание напрямую зависит от характеристик материалов, из которых состоит бетон. Таким образом, стойкость к истиранию можно повысить за счет уменьшения пропорции между водой и цементом или путем нанесения на поверхность бетона смеси цемента с твердыми добавками и заполнителями.

К числу сооружений, которые в наибольшей степени подвержены этому явлению, относятся полы промышленных объектов, чье состояние постоянно ухудшается вследствие непрерывного движения транспортных средств.

Ударное воздействие

Другой формой разрушения механической природы являются ударные воздействия. В этом случае приходится учитывать множество факторов, поскольку бетон является хрупким материалом, который в результате достаточно интенсивных ударов разрушается, а прочность его снижается. Ущерб, наносимый в результате ударов, визуально проявляется не сразу.

В некоторых случаях должно пройти множество циклов подобного воздействия, например, в стыках бетонного покрытия при движении механических транспортных средств. В этой ситуации единственный способ избежать разрушения — изготовить как можно более прочный бетон.

Чтобы повысить ударостойкость, можно прибегнуть к армированию стальными волокнами, что способствует более равномерному распределению энергии ударного воздействия по всей конструкции.

Эрозия

Эрозия — это частный случай износа, вызываемый ветром, водой или льдом, который сопровождается уносом материала с поверхности. Характер процесса определяется скоростью движения, концентрацией твердых частиц пыли и качеством бетона. В этом случае единственным средством защиты являются специальные меры при изготовлении бетона. Следует воспользоваться теми же рекомендациями, что и при истирании.

Кавитация

Кавитация наблюдается там, где присутствует поток воды (при скорости свыше 12 м/с). Быстрое движение воды и неровная поверхность канала, по которому она протекает, способствуют возникновению турбулентного течения и образованию зон пониженного давления, где формируются вихри, вызывающие эрозию стенок. Воздушные пузырьки, которые образуются в потоке воды ниже по ходу течения, попадая в зоны повышенного давления, лопаются, оказывая сильное ударное воздействие, приводящее к эрозии. При очень большой скорости течения воды масштабы кавитации могут быть довольно серьезными. Кавитации можно избежать, создавая гладкие поверхности без каких-либо препятствий для течения воды.

СП 28.13330.2017 «Защита строительных конструкций от коррозии. Актуализированная редакция СНиП 2.03.11-85» (с Изменениями N 1, 2)

СП 28.13330.2017

ОКС 91.080.40

Дата введения 2017-08-28

Предисловие

Сведения о своде правил

1 ИСПОЛНИТЕЛИ — АО «Научно-исследовательский центр «Строительство» (АО «НИЦ «Строительство»), ЗАО «Центральный научно-исследовательский и проектный институт строительных металлоконструкций им.Н.П.Мельникова» (ЗАО «ЦНИИПСК им.Н.П.Мельникова»), ГОУ Санкт-Петербургский государственный политехнический университет (СПб ГПУ)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 «Строительство»

3 ПОДГОТОВЛЕН к утверждению Департаментом градостроительной деятельности и архитектуры Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России)

4 УТВЕРЖДЕН приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России) от 27 февраля 2017 г. N 127/пр и введен в действие с 28 августа 2017 г.

5 ЗАРЕГИСТРИРОВАН Федеральным агентством по техническому регулированию и метрологии (Росстандарт). Пересмотр 28.13330.2012* «СНиП 2.03.11-85 Защита строительных конструкций от коррозии»
________________
* Вероятно, ошибка оригинала. Следует читать: СП 28.13330.2012. — Примечание изготовителя базы данных.

В случае пересмотра (замены) или отмены настоящего свода правил соответствующее уведомление будет опубликовано в установленном порядке. Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте разработчика (Минстрой России) в сети Интернет

ВНЕСЕНЫ: Изменение N 1, утвержденное и введенное в действие приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации от 21 сентября 2018 г. N 608/пр c 22.03.2019; Изменение N 2, утвержденное и введенное в действие приказом Министерства строительства и жилищно-коммунального хозяйства Российской Федерации (Минстрой России) от 22 ноября 2019 г. N 723/пр c 23.05.2020

Изменения N 1, 2 внесены изготовителем базы данных по тексту М.: Стандартинформ, 2018 год

Введение

В настоящем своде правил приведены требования, соответствующие целям Федерального закона от 30 декабря 2009 г. N 384-ФЗ «Технический регламент о безопасности зданий и сооружений» с учетом части 1 статьи 46 Федерального закона от 27 декабря 2002 г. N 184-ФЗ «О техническом регулировании».

Пересмотр СП 28.13330.2012 выполнен авторским коллективом: д-р техн. наук В.Ф.Степанова, д-р техн. наук Н.К.Розенталь, канд. техн. наук Г.В.Чехний, д-р материаловедения В.Р.Фаликман, инж. Г.В.Любарская и С.Е.Соколова, канд. техн. наук В.И.Савин, канд. техн. наук И.Н.Тихонов, канд. техн. наук В.З.Мешков (НИИЖБ им.А.А.Гвоздева), канд. техн. наук О.И.Пономарёв, д-р техн. наук Ю.В.Кривцов, канд. техн. наук А.Д.Ломакин, канд. техн. наук В.В.Пивоваров, канд. техн. наук И.Р.Ладыгина (ЦНИИСК им.В.А.Кучеренко), канд. хим. наук Г.В.Оносов, канд. техн. наук Н.И.Сотсков (ЗАО «ЦНИИПСК им.Н.П.Мельникова»), инж. С.А.Старцев (ГОУ СПб ГПУ).

Изменение N 2 к настоящему своду правил выполнено «ЗАО «ЦНИИПСК им.Мельникова» (канд. хим. наук Г.В.Оносов, Н.П.Иевлева).

(Измененная редакция, Изм. N 2).

1 Область применения

Настоящий свод правил распространяется на проектирование защиты от коррозии строительных конструкций (бетонных, железобетонных, стальных, алюминиевых, деревянных, каменных и хризотилцементных), как вновь возводимых, так и реконструируемых зданий и сооружений.

Настоящий свод правил устанавливает технические требования к защите от коррозии строительных конструкций зданий и сооружений при воздействии агрессивных сред с температурой от минус 70°С до плюс 50°С.

Настоящий свод правил не распространяется на проектирование защиты строительных конструкций от коррозии, вызываемой радиоактивными веществами, а также на проектирование конструкций из специальных бетонов (полимербетонов, кислото-, жаростойких бетонов и т.п.).

2 Нормативные ссылки

В настоящем своде правил приведены ссылки на следующие нормативные документы:

ГОСТ 9.032-74 Единая система защиты от коррозии и старения. Покрытия лакокрасочные. Группы. Технические требования и обозначения

ГОСТ 9.039-74 Единая система защиты от коррозии и старения. Коррозионная агрессивность атмосферы

ГОСТ 9.303-84 Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Общие требования к выбору

ГОСТ 9.304-87 Единая система защиты от коррозии и старения. Покрытия газотермические. Общие требования и методы контроля

ГОСТ 9.307-89 Единая система защиты от коррозии и старения. Покрытия цинковые горячие. Общие требования и методы контроля

ГОСТ 9.401-2018 Единая система защиты от коррозии и старения. Покрытия лакокрасочные. Общие требования и методы ускоренных испытаний на стойкость к воздействию климатических факторов

ГОСТ 9.402-2004 Единая система защиты от коррозии и старения. Покрытия лакокрасочные. Подготовка металлических поверхностей к окрашиванию

ГОСТ 9.602-2016 Единая система защиты от коррозии и старения. Сооружения подземные. Общие требования к защите от коррозии

ГОСТ 9.903-81 Единая система защиты от коррозии и старения. Стали и сплавы высокопрочные. Методы ускоренных испытаний на коррозионное растрескивание

ГОСТ 21.513-83 Система проектной документации для строительства. Антикоррозионная защита конструкций зданий и сооружений. Рабочие чертежи

ГОСТ 380-2005 Сталь углеродистая обыкновенного качества. Марки

ГОСТ 1050-2013 Металлопродукция из нелегированных конструкционных качественных и специальных сталей. Общие технические условия

ГОСТ 1510-84 Нефть и нефтепродукты. Маркировка, упаковка, транспортирование и хранение

ГОСТ 3640-94 Цинк. Технические условия

ГОСТ 4784-2019 Алюминий и сплавы алюминиевые деформируемые. Марки

ГОСТ 5632-2014 Легированные нержавеющие стали и сплавы коррозионно-стойкие, жаростойкие и жаропрочные. Марки

ГОСТ 6713-91 Прокат низколегированный конструкционный для мостостроения. Технические условия

ГОСТ 7372-79 Проволока стальная канатная. Технические условия

ГОСТ 10702-2016 Прокат сортовой из конструкционной нелегированной и легированной стали для холодной объемной штамповки. Общие технические условия

ГОСТ 11069-2001 Алюминий первичный. Марки

ГОСТ 14918-80 Сталь тонколистовая оцинкованная с непрерывных линий. Технические условия

ГОСТ 14959-2016 Металлопродукция из рессорно-пружинной нелегированной и легированной стали. Технические условия

ГОСТ 19281-2014 Прокат повышенной прочности. Общие технические условия

ГОСТ 26294-84 Соединения сварные. Методы испытаний на коррозионное растрескивание

ГОСТ 27751-2014 Надежность строительных конструкций и оснований. Основные положения

ГОСТ 27772-2015 Прокат для строительных стальных конструкций. Общие технические условия

ГОСТ 31149-2014 Материалы лакокрасочные. Определение адгезии методом решетчатого надреза

ГОСТ 31937-2011 Здания и сооружения. Правила обследования и мониторинга технического состояния

ГОСТ 32299-2013 Материалы лакокрасочные. Определение адгезии методом отрыва

ГОСТ 32484.1-2013 (EN 14399-1:2005) Болтокомплекты высокопрочные для предварительного натяжения конструкционные. Общие требования

ГОСТ 32702.2-2014 Материалы лакокрасочные. Определение адгезии методом Х-образного надреза

ГОСТ 34180-2017 Прокат стальной тонколистовой холоднокатаный и холоднокатаный горячеоцинкованный с полимерным покрытием с непрерывных линий. Технические условия

ГОСТ ISO 898-1-2011 Механические свойства крепежных изделий из углеродистых и легированных сталей. Часть 1. Болты, винты и шпильки установленных классов прочности с крупным и мелким шагом резьбы

ГОСТ ISO 3506-1-2014 Механические свойства крепежных изделий из коррозионно-стойкой нержавеющей стали. Часть 1. Болты, винты и шпильки

ГОСТ ISO 10684-2015 Изделия крепежные. Покрытия, нанесенные методом горячего цинкования

ГОСТ Р 9.316-2006 Единая система защиты от коррозии и старения. Покрытия термодиффузионные цинковые. Общие требования и методы контроля

ГОСТ Р 52246-2016 Прокат листовой горячеоцинкованный. Технические условия

ГОСТ Р 55374-2012 Прокат из стали конструкционной легированной для мостостроения. Общие технические условия

ГОСТ Р 57411-2017 Единая система защиты от коррозии и старения. Защита от коррозии изделий из чугуна и стали методом диффузионной обработки цинком. Общие требования к технологическому процессу

ГОСТ Р 57419-2017 Единая система защиты от коррозии и старения. Защита от коррозии металлоизделий из сталей повышенной и высокой прочности методом диффузионной обработки цинком. Общие требования к технологическому процессу

ГОСТ Р 58154-2018 Материалы подконструкций навесных вентилируемых фасадных систем. Общие технические требования

ГОСТ Р ИСО 10683-2013 Изделия крепежные. Неэлектролитические цинк-ламельные покрытия

СП 2.13130.2012 Системы противопожарной защиты. Обеспечение огнестойкости объектов защиты (с изменением N 1)

СП 15.13330.2012 «СНиП II-22-81* Каменные и армокаменные конструкции» (с изменениями N 1, N 2, N 3)

СП 16.13330.2017 «СНиП II-23-81 Стальные конструкции» (с изменением N 1)

СП 31.13330.2012 «СНиП 2.04.02-84* Водоснабжение. Наружные сети и сооружения» (с изменениями N 1, N 2, N 3, N 4)

СП 34.1330.2012** «СНиП 2.05.02-85* Автомобильные дороги» (с изменением N 1)
________________
** Вероятно, ошибка оригинала. Следует читать: СП 34.13330.2012. — Примечание изготовителя базы данных.

СП 35.13330.2011 «СНиП 2.05.03-84* Мосты и трубы» (с изменениями N 1, N 2)

СП 41.13330.2012 «СНиП 2.06.08-87 Бетонные и железобетонные конструкции гидротехнических сооружений» (с изменением N 1)

СП 50.13330.2012 «СНиП 23-02-2003 Тепловая защита зданий» (с изменением N 1)

СП 58.13330.2012 «СНиП 33-01-2003 Гидротехнические сооружения. Основные положения» (с изменением N 1)

СП 63.13330.2018 «СНиП 52-01-2003 Бетонные и железобетонные конструкции. Основные положения»

СП 64.13330.2017 «СНиП II-25-80 Деревянные конструкции» (с изменениями N 1, N 2)

СП 121.13330.2019 «СНиП 32-03-96 Аэродромы»

СП 131.13330.2018 «СНиП 23-01-99* Строительная климатология»

СП 260.1325800 Конструкции стальные тонкостенные из холодногнутых оцинкованных профилей и гофрированных листов. Правила проектирования

Примечание — При пользовании настоящим сводом правил целесообразно проверить действие ссылочных документов в информационной системе общего пользования — на официальном сайте федерального органа исполнительной власти в сфере стандартизации в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный документ, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого документа с учетом всех внесенных в данную версию изменений. Если заменен ссылочный документ, на который дана датированная ссылка, то рекомендуется использовать версию этого документа с указанным выше годом утверждения (принятия). Если после утверждения настоящего свода правил в ссылочный документ, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный документ отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку. Сведения о действии сводов правил целесообразно проверить в Федеральном информационном фонде стандартов.

(Измененная редакция, Изм. N 2).

3 Термины и определения

В настоящем своде правил применены следующие термины с соответствующими определениями:

3.1 антисептирование поверхности древесины: Химическая защита древесины, предусматривающая нанесение защитного средства на поверхность объекта защиты, не рассчитанная на его проникание вглубь объекта защиты.

3.2 биодеструктор: Организм, повреждающий материал.

3.3 биологические агенты разрушения древесины: Бактерии, грибы, насекомые, моллюски и ракообразные, повреждающие и разрушающие древесину.

3.4 биоповреждение: Изменение физических и химических свойств материалов вследствие воздействия живых организмов в процессе их жизнедеятельности.

3.5 биоценоз: Совокупность животных, растений, грибов и микроорганизмов, совместно населяющих участок суши или водоема.

3.6 биоцид: Химическое вещество, предназначенное для подавления жизнедеятельности биологических агентов.

3.7 вторичная защита: Защита строительной конструкции от коррозии, реализуемая после изготовления (возведения) конструкции за счет применения мер, которые ограничивают или исключают воздействие на нее агрессивной среды; выполняется при недостаточности первичной защиты.

3.8 гидроизоляционные проникающие смеси: Сухие смеси, предназначенные для защиты конструкций от коррозии и фильтрации воды в результате глубокого проникания химических компонентов под действием осмотического давления и диффузии в структуру бетона с заполнением капилляров, пор и микротрещин бетонной или железобетонной конструкции образующимися кристаллогидратами.

3.9 зона переменного уровня воды (среды): Зона от наинизшего горизонта воды (льда для замерзающих акваторий) до наивысшего горизонта воды и выше на 1 м или на высоту всплеска волн.

3.10 консервирование древесины: Химическая защита древесины, предусматривающая обработку защитным средством и рассчитанная на его проникание вглубь объекта защиты.

3.11 конструкционная огнезащита: Способ огнезащиты, основанный на создании на нагреваемой поверхности конструкции теплоизоляционного слоя материала огнезащиты.

Примечание — К конструкционной огнезащите относятся огнезащитные напыляемые составы, обмазки, облицовки огнестойкими плитными, листовыми и другими материалами, в том числе на каркасе, с воздушными прослойками, а также комбинации

Комплексные решения для бетона | GCP Applied Technologies

Перейти к главной навигации

менюЗакрыть

  • Продукты и решения

    • Воздушные барьеры и оклады

      • Обзор
      • ПЕРМ-А-БАРЬЕР®
      • PERM-A-BARRIER® NPS
      • PERM-A-BARRIER® VPL 50
    • Мостовой настил

      • Обзор
      • BRIDGEMASTER®
      • ELIMINATOR®
    • Производство цемента

      • Обзор
      • Функциональные добавки GCP
      • OPTEVA® Улучшители качества
      • Шлифовальные добавки TAVERO®
    • Противопожарная защита

      • Обзор
      • МОНОКОТЕ®
    • Полы

      • Обзор
      • DUCTILCRETE®
      • ECLIPSE®
      • КОВАРА®
      • KOVARA® AB 300
      • ORCON®
      • STRUX®
    • Hardscapes & Masonry

      • Обзор
      • Блок-добавка DRY-BLOCK®
      • DRY-BLOCK® Добавка для строительных растворов
      • OPTEC®
      • QUANTEC®
    • Управление бетоном в пути

      • Обзор
      • VERIFI® Управление бетоном в пути
    • Дорожная охрана

      • Обзор
      • SAFETRACK ™
    • Инъекционные материалы

      • Обзор
      • DE NEEF®
    • Сборный бетон

      • Обзор
      • ADVA® Cast
      • AIRTRAC ™
      • PIERI®
      • TOP-CAST®
    • Готовый бетон

      • Обзор
      • ADVA®
      • CLARENA®
      • CONCERA®
      • DCI®
      • ECLIPSE®
      • МИРА®
      • SINTA®
      • STRUX®
      • ВЕРИФИ®
      • V-MAR®
      • ZYLA®
    • Кровельное покрытие

      • Обзор
      • GRACE ICE & WATER SHIELD®
      • TRI-FLEX®
    • Торкрет

      • Обзор
      • TYTRO®
    • Гидроизоляция

      • Обзор
      • ADCOR®
      • БИТУТЕН®
      • BRIDGEMASTER®
      • ELIMINATOR®
      • FLORPRUFE®
      • HYDRODUCT®
      • PREPRUFE®
      • PREPRUFE® PLUS
      • PREPRUFE® 800PA
      • SILCOR® серии 900
      • Гидрошпонки
  • Документы

    • Воздушные барьеры и оклады

      • Все документы
      • Таблицы данных о продуктах
      • Паспорта безопасности
      • Технические письма
      • Технические характеристики руководства
      • Детальные чертежи
      • Брошюра о продукте
    • Производство цемента

      • Все документы
      • Таблицы данных о продуктах
      • Паспорта безопасности
      • Технические бюллетени
    • Противопожарная защита

      • Все документы
      • Таблицы данных о продуктах
      • Паспорта безопасности
      • Сертификаты продукции UL
      • Графики доходности / информация о приложении
      • LEED
      • Утверждения
      • UL конструкции
      • Спецификация руководства
    • Полы

      • Все документы
      • Таблицы данных о продуктах
      • Паспорта безопасности
      • Технические письма
      • Технические бюллетени
      • Гарантия
    • Hardscapes & Masonry

      • Все документы
      • Данные продукта Sh

CET Коррозия — формы коррозии


В описанных здесь формах коррозии используется терминология, используемая в NASA-KSC.Существуют и другие не менее действенные методы классификации коррозии, но общепринятой терминологии нет. Имейте в виду, что данная ситуация может привести к нескольким формам коррозии одного и того же куска материала.


Равномерная коррозия

Это также называется общей коррозией.Поверхностный эффект, вызываемый большинством прямых химических воздействий (например, кислотой), представляет собой равномерное травление металла. На полированной поверхности этот тип коррозии сначала проявляется как общее потускнение поверхности, и, если позволить ей продолжаться, поверхность становится шероховатой и, возможно, матовой. Изменение цвета или общее потускнение металла, вызванное его воздействием повышенных температур, не следует рассматривать как однородную коррозию травлением. Использование химически стойких защитных покрытий или более стойких материалов решит эти проблемы.

Хотя это наиболее распространенная форма коррозии, она, как правило, не имеет большого инженерного значения, поскольку конструкции обычно становятся неприглядными и требуют технического обслуживания задолго до того, как на них возникнут структурные повреждения. Объекты, показанные на рисунке ниже, показывают, как эта коррозия может развиваться, если не будут приняты меры контроля.

Вернуться наверх


Гальваническая коррозия

Гальваническая коррозия — это электрохимическое действие двух разнородных металлов в присутствии электролита и пути, проводящего электроны.Это происходит при контакте разнородных металлов.

Это можно определить по образованию коррозии на стыке между разнородными металлами. Например, когда алюминиевые или магниевые сплавы контактируют со сталью (углеродистой сталью или нержавеющей сталью), может возникнуть гальваническая коррозия, которая ускорит коррозию алюминия или магния. Это можно увидеть на фотографии выше, где алюминиевая лопасть вертолета подверглась коррозии в месте контакта со стальным противовесом.

Гальваническая серия в морской воде

Благородный
(наименее активный)

Платина
Золото
Графит
Серебро
18-8-3 Нержавеющая сталь, тип 316 (пассивный)
18-8 Нержавеющая сталь, тип 304 (пассивный)
Титан
Нержавеющая сталь с 13-процентным хромом, тип 410 (пассивный)
Сплав 7НИ-33Cu
Сплав 75NI-16Cr-7Fe (пассивный)
Никель (пассивный)
Серебряный припой
M-бронза
G-бронза
70-30 Купроникель
Кремниевая бронза
Медь
Красный латунь
Алюминиевая бронза
Латунь Admiralty
Желтая латунь
76NI-16Cr-7Fe сплав (активный)
Никель (активный)
Морская латунь
Марганцевая бронза
Металл Muntz
Олово
Свинец
18-8-3 Нержавеющая сталь, тип 316 ( активный)
18-8 Нержавеющая сталь, тип 304 (активный)
Нержавеющая сталь с 13-процентным содержанием хрома, тип 410 (активный)
Чугун
Мягкая сталь
Алюминий 2024
Кадмий
Альклад
Алюминий 6053
Оцинкованная сталь
Цинк
Магниевые сплавы
Магний
A узловой
(наиболее активный)

Естественные различия в потенциалах металлов вызывают гальванические различия, такие как гальванический ряд в морской воде.Если между любыми двумя из этих материалов возникает электрический контакт в присутствии электролита, между ними должен протекать ток. Чем дальше друг от друга находятся металлы в гальванической серии, тем больше будет эффект или скорость гальванической коррозии. Металлы или сплавы на верхнем конце благородны, а на нижнем — активны. Более активным металлом является анод или тот, который подвержен коррозии.
Контроль гальванической коррозии достигается за счет использования более близких друг к другу металлов в гальванической серии или путем электрической изоляции металлов друг от друга.Катодная защита также может использоваться для контроля эффектов гальванической коррозии.

Акваланг выше подвергся гальванической коррозии, когда латунный клапан и стальной резервуар смачивались конденсатом. Фланцы с гальванической изоляцией, подобные показанным справа, используются для предотвращения гальванической коррозии. Между фланцами вставляются изоляционные прокладки, обычно полимерные, а изолирующие втулки и шайбы изолируют болтовые соединения

Акваланг выше подвергся гальванической коррозии, когда латунный клапан и стальной резервуар смачивались конденсатом.Фланцы с гальванической изоляцией, подобные показанным справа, используются для предотвращения гальванической коррозии. Между фланцами вставляются изоляционные прокладки, обычно полимерные, а изолирующие втулки и шайбы изолируют болтовые соединения.

KSC проводит исследования эффектов гальванической коррозии. На фото ниже показана коррозия, вызванная винтом из нержавеющей стали, вызывающим гальваническую коррозию алюминия. На снимке показана коррозия, возникшая в результате всего лишь шести месяцев пребывания на испытательном полигоне в атмосфере.

Вернуться наверх


Коррозия ячейки концентрации

Коррозия ячейки концентрации возникает, когда два или более участков металлической поверхности контактируют с разными концентрациями одного и того же раствора. Существует три основных типа коррозии концентрационных ячеек:

  1. Ячейки для концентрации ионов металлов
  2. ячеек концентрации кислорода и
  3. активно-пассивных ячеек.

Ячейки для концентрирования ионов металлов

В присутствии воды высокая концентрация ионов металлов будет существовать под прилегающими поверхностями, а низкая концентрация ионов металлов будет существовать рядом с щелью, созданной прилегающими поверхностями. Между двумя точками будет существовать электрический потенциал. Область металла, контактирующая с ионами металла с низкой концентрацией, будет катодной и будет защищена, а область металла, контактирующая с ионами металла с высокой концентрацией, будет анодной и корродированной.Это условие может быть устранено путем герметизации стыковых поверхностей таким образом, чтобы исключить попадание влаги. Правильное нанесение защитного покрытия с неорганическими цинковыми грунтовками также эффективно снижает коррозию поверхности.

Ячейки для концентрации кислорода

Водный раствор, контактирующий с поверхностью металла, обычно содержит растворенный кислород. Кислородный элемент может развиться в любой точке, где кислород в воздухе не может равномерно диффундировать в раствор, тем самым создавая разницу в концентрации кислорода между двумя точками.Обычно ячейки для измерения концентрации кислорода находятся под металлическими или неметаллическими отложениями (грязью) на металлической поверхности и под прилегающими поверхностями, такими как заклепочные соединения внахлест. Кислородные ячейки также могут образовываться под прокладками, деревом, резиной, пластиковой лентой и другими материалами, контактирующими с металлической поверхностью. Коррозия произойдет в области с низкой концентрацией кислорода (анод). Серьезность коррозии из-за этих условий может быть сведена к минимуму за счет герметизации, поддержания чистоты поверхностей и отказа от использования материала, позволяющего впитывать влагу между прилегающими поверхностями.

Активно-пассивные элементы

Металлы, для защиты от коррозии которых используется плотно прилегающая пассивная пленка (обычно оксид); например, аустенитная коррозионно-стойкая сталь может подвергаться коррозии под действием активно-пассивных элементов. Коррозионное действие обычно начинается с ячейки концентрации кислорода; например, отложения солей на поверхности металла в присутствии воды, содержащей кислород, могут создавать кислородный элемент. Если пассивная пленка разорвана под солевым отложением, активный металл под пленкой подвергнется коррозии.Электрический потенциал будет развиваться между большой площадью катода (пассивная пленка) и небольшой площадью анода (активный металл). Это приведет к быстрой питтинговой коррозии активного металла. Этого типа коррозии можно избежать за счет частой очистки и нанесения защитных покрытий.

Вернуться наверх


Питтинговая коррозия

Пассивные металлы, такие как нержавеющая сталь, устойчивы к коррозионным средам и могут хорошо работать в течение длительных периодов времени.Однако, если коррозия все же возникает, она случайным образом образуется в ямах. Язвенная коррозия наиболее вероятна в присутствии хлорид-ионов в сочетании с такими деполяризаторами, как кислород или окисляющие соли. Методы, которые можно использовать для контроля точечной коррозии, включают поддержание чистоты поверхностей, нанесение защитного покрытия и использование ингибиторов или катодной защиты при работе в условиях погружения. Добавки молибдена в нержавеющую сталь (например, в нержавеющую сталь 316) предназначены для уменьшения точечной коррозии.

(любезно предоставлено www.eci-ndt.com)

Пузырьки или бугорки ржавчины на чугуне выше указывают на то, что происходит точечная коррозия. Исследователи обнаружили, что среда внутри пузырей ржавчины почти всегда содержит больше хлоридов и ниже по pH (более кислая), чем общая внешняя среда. Это приводит к сосредоточенной атаке внутри боксов.

Подобные изменения в окружающей среде происходят внутри щелей, трещин, вызванных коррозией под напряжением, и трещин коррозионной усталости. Все эти формы коррозии иногда включают в термин «коррозия окклюзионных ячеек».«

Точечная коррозия может привести к неожиданному и катастрофическому отказу системы. Раскол в трубке вверху слева возник в результате точечной коррозии нержавеющей стали. Типичная яма на этой трубке показана вверху справа.

Иногда точечная коррозия может быть совсем небольшой на поверхности и очень большой под поверхностью. На рисунке внизу слева показан этот эффект, который характерен для нержавеющей стали и других металлов с защитной пленкой. Точечная коррозия, показанная внизу справа (белая стрелка), привела к коррозионному разрушению под напряжением, показанному черными стрелками.

Полное обсуждение этой коррозии содержится в Steven J. McDanels, «Анализ отказов трубопроводов пусковой площадки Космического центра Кеннеди», Microstructural Science, Vol. 25, 1998, ASM International, Materials Park, OH, стр. 125–129.

Вернуться наверх


Щелевая коррозия

Щелевая или контактная коррозия — это коррозия, возникающая в области контакта металлов с металлами или металлов с неметаллами.Это может произойти на шайбах, под ракушками, на песчинках, под нанесенными защитными пленками и в карманах, образованных резьбовыми соединениями. Независимо от того, не содержат ли нержавеющие стали зародышей ямок, они всегда подвержены такому виду коррозии, потому что зародыши не нужны.

Чистота, правильное использование герметиков и защитных покрытий — эффективные средства решения этой проблемы. Сорта нержавеющей стали, содержащие молибден (например, 316 и 316L), обладают повышенной стойкостью к щелевой коррозии.

Показанная выше щелевая коррозия произошла при использовании аэрокосмического сплава (титан — 6, алюминий — 4 ванадий) вместо более стойкого к коррозии сорта титана. В титан добавляют специальные легирующие добавки, чтобы сделать сплавы стойкими к щелевой коррозии даже при повышенных температурах.

Винты и крепежные детали — частые источники проблем щелевой коррозии. Показанные ниже винты из нержавеющей стали корродировали во влажной атмосфере корпуса прогулочного катера.

(любезно предоставлено marinesurvey.com)

Вернуться наверх


Нитевидная коррозия

Этот тип коррозии возникает под окрашенными или гальваническими поверхностями, когда влага проникает в покрытие. Наиболее подвержены этой проблеме лаки и «быстросохнущие» краски. Их использования следует избегать, если отсутствие побочного эффекта не было доказано практическим опытом.Если требуется покрытие, оно должно обладать низкими характеристиками пропускания водяного пара и отличной адгезией. Покрытия с высоким содержанием цинка также следует рассматривать для покрытия углеродистой стали из-за их качества катодной защиты.

(любезно предоставлено www.cp.umist.ac.uk)

Нитевидная коррозия обычно начинается с небольших, иногда микроскопических, дефектов покрытия.

На рисунке слева показана нитевидная коррозия, вызывающая просачивание сварного резервуара.На рисунке справа показаны «червеобразные» туннели нитевидной коррозии, образующиеся под покрытием на испытательной площадке в атмосфере.

Нитевидная коррозия сводится к минимуму за счет тщательной подготовки поверхности перед нанесением покрытия, использования покрытий, устойчивых к этой форме коррозии (см. Выше), и тщательного осмотра покрытий, чтобы минимизировать прослойки или отверстия в покрытии. .

Вернуться наверх


Межкристаллитная коррозия

Межкристаллитная коррозия — это поражение границ зерен металла или сплава или вблизи них.Сильно увеличенное поперечное сечение большинства промышленных сплавов покажет его зернистую структуру. Эта структура состоит из множества отдельных зерен, и каждое из этих крошечных зерен имеет четко определенную границу, которая химически отличается от металла в центре зерна. Термическая обработка нержавеющих сталей и алюминиевых сплавов обостряет эту проблему.

На рисунке выше показана нержавеющая сталь, которая корродировала в зоне термического влияния на небольшом расстоянии от сварного шва.Это типично для межкристаллитной коррозии аустенитных нержавеющих сталей. Эту коррозию можно устранить, используя стабилизированные нержавеющие стали (321 или 347) или низкоуглеродистые марки нержавеющей стали (304L или 3I6L).

Термически обрабатываемые алюминиевые сплавы (сплавы серий 2000, 6000 и 7000) также могут иметь эту проблему. См. Раздел ниже, посвященный отслаивающейся коррозии.

Вернуться наверх


Коррозия, отслаивающаяся

Отслоение — это форма межкристаллитной коррозии.Это проявляется в поднятии поверхностных зерен металла вверх за счет силы расширения продуктов коррозии, возникающих на границах зерен чуть ниже поверхности. Это видимое свидетельство межкристаллитной коррозии и чаще всего наблюдается на экструдированных профилях, где толщина зерна меньше, чем в прокатных формах. Эта форма коррозии характерна для алюминия и может возникать на углеродистой стали.

Защита от коррозии — SteelConstruction.info

Экономически эффективная защита от коррозии стальных конструкций не должна представлять особых трудностей для обычных приложений и сред, если факторы, влияющие на долговечность, будут учтены с самого начала.

Есть много стальных конструкций, которые успешно эксплуатируются в течение многих лет даже в неблагоприятных условиях. Первая крупная железная конструкция, мост в Coalbrookdale UK, просуществовала более 200 лет, в то время как железнодорожный мост Forth более 100 лет является легендарным.
Сегодня доступны современные прочные защитные покрытия, которые при правильном использовании позволяют увеличить интервалы технического обслуживания и повысить производительность.

Ключ к успеху заключается в распознавании коррозионной активности окружающей среды, которой будет подвергаться конструкция, и в определении четких и подходящих характеристик покрытия.Если сталь находится в сухой отапливаемой внутренней среде, риск коррозии незначителен и защитное покрытие не требуется. И наоборот, стальная конструкция, подверженная воздействию агрессивной окружающей среды, должна быть защищена с помощью высокоэффективной обработки и, возможно, ее необходимо проектировать с учетом технического обслуживания, если требуется увеличенный срок службы.

Оптимальная защитная обработка, сочетающая в себе надлежащую подготовку поверхности, подходящие материалы покрытия, необходимую долговечность и минимальную стоимость, достижима с использованием современных технологий обработки поверхности.

[вверх] Коррозия конструкционной стали

Основная статья: Коррозия конструкционной стали

 

Схематическое изображение механизма коррозии стали

Коррозия конструкционной стали — это электрохимический процесс, требующий одновременного присутствия влаги и кислорода. В отсутствие того и другого коррозия не происходит. По сути, железо в стали окисляется с образованием ржавчины, которая занимает примерно в 6 раз больше объема исходного материала, израсходованного в процессе.Здесь показан общий процесс коррозии.

Помимо общей коррозии, могут возникать различные типы локальной коррозии; биметаллическая коррозия, точечная коррозия и щелевая коррозия. Однако для стальных конструкций это, как правило, несущественно.

Скорость, с которой прогрессирует процесс коррозии, зависит от ряда факторов, относящихся к «микроклимату», непосредственно окружающему конструкцию, в основном от времени увлажнения и уровня загрязнения атмосферы.Из-за различий в атмосферных условиях данные о скорости коррозии не могут быть обобщены. Тем не менее, среды можно широко классифицировать, и соответствующие измеренные скорости коррозии стали служат полезным показателем вероятных скоростей коррозии. Дополнительную информацию можно найти в BS EN ISO 12944-2 [1] и BS EN ISO 9223 [2] .

Категории атмосферной коррозии и примеры типичных сред (BS EN ISO 12944-2 [1] )
Категория коррозионной активности Низкоуглеродистая сталь Потеря толщины (мкм) a Примеры типичных сред (только для информации)
Внешний Интерьер
C1
очень низкий
≤ 1.3 Отапливаемые здания с чистой атмосферой, например офисы, магазины, школы, гостиницы
C2
низкий
> 1,3 до 25 Атмосфера с низким уровнем загрязнения: преимущественно сельская местность Неотапливаемые здания, в которых может образовываться конденсат, например депо, спортивные залы
C3
средний
> 25 до 50 Городская и промышленная атмосфера, умеренное загрязнение диоксидом серы; прибрежная зона с низкой соленостью Производственные помещения с повышенной влажностью и некоторым загрязнением воздуха, e.грамм. предприятия пищевой промышленности, прачечные, пивоварни, молочные заводы
C4
высокий
> 50 на 80 Промышленные зоны и прибрежные районы с умеренной соленостью Химические заводы, бассейны, прибрежные суда и верфи
C5
очень высокий
> 80 до 200 Промышленные зоны с повышенной влажностью и агрессивной атмосферой и прибрежные районы с высокой соленостью Здания или территории с почти постоянной конденсацией и высоким уровнем загрязнения
CX
крайний
> 200 до 700 Морские районы с высокой соленостью и промышленные районы с экстремальной влажностью и агрессивной атмосферой, субтропической и тропической атмосферой Промышленные зоны с повышенной влажностью и агрессивной атмосферой

Примечания:

  • 1 мкм (1 микрон) = 0.001 мм
  • a Значения потери толщины указаны после первого года воздействия. Убытки могут уменьшиться в последующие годы.
  • Значения потерь, используемые для категорий коррозионной активности, идентичны приведенным в BS EN ISO 9223 [2] .

[вверх] Влияние конструкции на коррозию

Основная статья: Влияние конструкции на коррозию

Дизайн и детализация конструкции могут повлиять на долговечность любого нанесенного на нее защитного покрытия.Конструкции, спроектированные с большим количеством мелких конструктивных элементов и креплений, защитить сложнее, чем конструкции с большими плоскими поверхностями. Ключевые вопросы, которые следует учитывать, включают:

Общие рекомендации по предотвращению коррозии за счет тщательной проработки деталей конструкции можно найти в BS EN ISO 12944-3 [3] , а некоторые типичные правила, которые можно и нельзя делать для зданий со стальным каркасом, показаны ниже.

 

Примеры отделки зданий

[вверх] Подготовка поверхности

Основная статья: Подготовка поверхности

 

Стальная балка, выходящая из автоматической струйной очистки

Подготовка поверхности — это важнейший первый этап обработки стальной подложки перед нанесением любого покрытия, который обычно считается наиболее важным фактором, влияющим на общий успех системы защиты от коррозии.

На характеристики покрытия в значительной степени влияет его способность должным образом прилипать к материалу основы. Начальное состояние поверхности стали может варьироваться в зависимости от количества остаточной прокатной окалины и степени начальной ржавчины. Однако в целом это неудовлетворительная основа для нанесения современных высокоэффективных защитных покрытий. Существует ряд методов подготовки и степени чистоты, но, безусловно, наиболее важным и важным методом, используемым для тщательной очистки покрытых окалиной и ржавчиной поверхностей, является абразивоструйная очистка.Стандартные степени чистоты для абразивно-струйной очистки в соответствии с ISO 8501-1 [4] :

  • Sa 1 — Легкая струйная очистка
  • Sa 2 — Тщательная струйная очистка
  • Sa 2½ — Очень тщательная струйная очистка
  • Sa 3 — Струйная очистка до визуально чистой стали

Ручная струйная очистка
(видео любезно предоставлено Corrodere / MPI)

В процессе подготовки поверхности не только очищается сталь, но и достигается подходящий профиль и амплитуда поверхности для получения защитного покрытия.Для высокоструктурированных лакокрасочных покрытий и термически напыленных металлических покрытий требуется грубый угловой профиль поверхности, чтобы обеспечить механический ключ. Это достигается за счет использования абразивных материалов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *