Датчики индуктивные: Разновидности, применение и принципы работы датчиков – СамЭлектрик.ру

Разное

назначение и принцип работы, устройство индуктивного датчика

Что представляет собой индуктивный датчик?


Этот датчик по своим особенностям работы относится к бесконтактному оборудованию, то есть, ему не требуется наличие физического контакта с объектом, чтобы определить его местоположение в пространстве. Индуктивный датчик обычно применяется в тех случаях, когда необходимо провести работу с металлическими объектами и предметами.


На другие материалы, соответственно, этот прибор не реагирует и пропускает их мимо своего поля деятельности. Основное направление использования этих устройств — всевозможные автоматизированные линии и системы. У них может присутствовать как замкнутый, так и разомкнутый контакт. Принцип действия у подобных устройств осуществляется за счет присутствия специальной катушки, которая создает магнитное поле, позволяющее взаимодействовать с металлами. У такой работы есть свои особенности и принципы, которые играют важную роль.


Как действует датчик?


Индуктивный датчик за счет своего внутреннего устройства имеет определенный принцип действия. В нем используется специальный генератор, который выдает определенную амплитуду колебаний. Когда в поле действия агрегата попадает объект, состоящий из металлического или ферромагнитного материала, то колебания начинают меняться, что и сигнализирует о наличии предмета. Из-за этого датчики работают только с подобными материалами и бесполезны в других случаях.

  1. При начале работы на конечный выключатель подается питание, что способствует образованию магнитного поля. Именно оно влияет на вихревые токи, которые, в свою очередь, меняют амплитуду колебаний у работающего генератора.
  2. Результат всех этих преобразований — получение выходного сигнала, который может варьироваться, в зависимости от расстояния между работающим датчиком и исследуемым предметом. Затем при помощи специального устройства аналоговый сигнал преображается в логический.
  3. Индуктивный датчик также нужен, чтобы распознавать положение металлических предметов. Это может играть важную роль на производстве. Если по линии следуют изделия, на которых металлические детали должны быть расположены в определенном порядке, то датчики проконтролируют правильность этого расположения. В случае обнаружения ошибки устройство подаст сигнал на конвейер, и программа предпримет дальнейшие действия для устранения проблемы.


Конструкция устройства


Индуктивный датчик положения имеет своеобразное устройство и состоит из нескольких важных узлов, которые обеспечивают полноценную работу этого агрегата.

  1. Важной деталью является генератор, именно он создает электромагнитное поле, которое помогает анализировать металлические предметы и определять их положение. Без этого поля работа была бы невозможной.
  2. Также в работе используется такой специальный элемент, как триггер Шмидта – в его задачу входит преобразование сигнала, чтобы датчики могли взаимодействовать с другими элементами в системе и передавать информацию дальше.
  3. Может использоваться усилитель – он нужен, чтобы получаемый сигнал достиг необходимого уровня для дальнейшей передачи.
  4. В работе датчика применяются индикаторы на светодиодах, они помогают контролировать работу устройства, сигнализируя о том, что оно включилось, а также лампочки могут загораться при выполнении различных настроек системы.
  5. Такое приспособление как компаунд защищает датчик от попадания внутрь воды и всяческих мелких частиц. Поскольку посторонние субстанции могут негативно сказаться на работе прибора и даже привести к его поломке, качественная защита является важным моментом.
  6. Корпус — в нем помещаются все перечисленные внутренние элементы, которые собираются в единое целое. Сам корпус монтируется в нужном месте при помощи специальных креплений, позволяющих расположить его так, как это требуется для правильной и эффективной работы на линии. Кроме того, оболочка защищает детали от механических воздействий и повреждений, которые могут быть получены таким путем. Для этого корпуса датчиков изготавливают из латуни, либо полиамида — они являются достаточно надежными материалами.  


Что следует знать о работе датчика?


Индуктивный датчик положения — это устройство со своей спецификой, поэтому в описании его работы и принципа действия часто используются специализированные определения:

  1. Активная зона означает область, где степень воздействия магнитного поля проявляется в наибольшей степени. Она находится перед чувствительной поверхностью самого датчика, там уровень концентрации является самым высоким. Как правило, по размеру эта зона равна диаметру самого устройства.
  2. Номинальное расстояние переключения. Такой параметр считается теоретическим, поскольку он не учитывает производственных особенностей, режим температуры, уровень напряжения и прочие факторы.
  3. Рабочий зазор. Так обозначается тот диапазон параметров, который гарантирует эффективную и нормальную работу прибора без возникновения каких-либо проблем с его функционированием на производстве.
  4. Поправочный коэффициент. Этот момент связан с тем, из какого материала сделан металлический объект, обследуемый датчиком, поскольку в зависимости от этого может быть скорректировано значение рабочего зазора.


Принцип работы индуктивного датчика





В отличие от популярных в прошлом электромеханических выключателей индуктивные датчики относятся к оборудованию с бесконтактным принципом работы, т. е. для срабатывания датчику не требуется физический контакт с объектом. Это означает отсутствие механического износа, что оказывает существенное влияние на время жизни компонентов и исключает необходимость их обслуживания. В силу принципа действия индуктивные датчики используются в случаях, когда требуется определять металлический, либо изготовленный из магнитных/ферромагнитных материалов объект или предмет. Неметаллические объекты датчиком игнорируются.


В общем случае индуктивный датчик состоит из нескольких основных компонентов:




— металлический (чаще всего латунный или стальной), либо пластиковый корпус, в котором помещаются все компоненты датчика;


— катушка колебательного контура, находящаяся непосредственно за пластиковой или металлической т. н. чувствительной поверхностью датчика;


— генератор, создающий электромагнитное поле;


— триггер Шмитта, преобразующий аналоговый сигнал в логический дискретный;


— усилитель, обеспечивающий достаточный уровень выходного сигнала для дальнейшей его передачи;


— один или несколько светодиодных индикаторов – чаще всего для индикации срабатывания, но в отдельных случаях также указывающий на наличие питания датчика и статус конфигурирования;


— компаунд, которым заливается всё внутреннее пространство датчика для защиты электронных компонентов от попадания влаги и мелких частиц;


— кабель, клеммная коробка, либо разъём для подключения датчика.


Принцип действия индуктивного датчика основывается на изменении индуктивности катушки и сердечника – потому датчик и называется индуктивным. Он сводится к нескольких основным этапам:


— на датчик подаётся питание


— генератор вырабатывает магнитное поле в области катушки


— при попадании в область действия датчика металлического, магнитного или ферромагнитного объекта в нём наводятся вихревые токи, изменяющие амплитуду колебаний генератора


— изменение амплитуды обеспечивает выходной аналоговый сигнал


— триггер Шмитта преобразует аналоговый сигнал в логический дискретный


— усилитель повышает уровень сигнала до необходимого значения


Как и любое другое электронное устройство, индуктивный датчик обладает рядом основных и второстепенных параметров. Первые являются основными при подборе датчика для решения конкретной задачи, в то время как вторые позволяют установить пригодность датчика для использования в специфических условиях.

Индуктивные датчики бесконтактные | Каталог


Индуктивные датчики положения представляют собой бесконтактные концевые выключатели, срабатывающие на объекты из различных металлов и получившие широчайшее распространение в современном автоматизированном производстве, станках с ЧПУ. Если говорить о преимуществах, которыми обладают бесконтактные индуктивные датчики приближения по сравнению с классическими механическими выключателями, то среди них стоит отметить: компактные габариты и огромный выбор типоразмеров, бесконтактный принцип функционирования, высокую точность и скорость срабатывания, отсутствие в конструкции движущихся деталей и отсутствие необходимости в обслуживании. При этом, на индуктивные бесконтактные датчики и их работу не оказывают влияние самые тяжелые условия эксплуатации, например, такие как: загрязнения, высокие или низкие температуры, запыленность, вибрации, воздействие жидкостей и т.п. Подбор индуктивных датчиков положения необходимо делать исходя из требуемых параметров, наиболее важные из которых: тип корпуса (цилиндрический М5, М8, М12, М18, М30 и различные прямоугольные), расстояние срабатывания, тип выходного сигнала (PNP. NPN, NO/NC) и напряжение питания AC или DC. В нашем каталоге собраны индуктивные сенсоры от ведущих мировых производителей: Balluff, Datalogic, EGE-Elektronik, IFM Electronic, Leuze Electronic, Pepperl+Fuchs, Omron, Turck. Вы можете выбрать и купить бесконтактный индуктивный датчик положения подходящий именно под Вашу задачу по таким параметрам как: тип корпуса, расстояние срабатывания, способ монтажа, выходной сигнал, напряжение питания, длина корпуса, материал корпуса и способ  подключения — разъем или встроенный кабель. Для специальных задач доступны индуктивные датчики приближения определенного исполнения: высокая или низкая температура эксплуатации, работа в условиях воздействия агрессивных жидкостей, воздействия сварочных брызг, для установки в гидроцилиндры, для применения на подвижной технике и т.д. Довольно частая задача для бесконтактных выключателей — детектирование крайних положений задвижек, электромагнитных клапанов и т.п. Для работы с клапанами используются специальные актуаторы (инициаторы, мишени) из металла, которые работают в паре со сдвоенными индуктивными датчиками положения.

Применение высококачественных индуктивных бесконтактных датчиков, которые имеют несколько более высокую стоимость, чем недорогие азиатские аналоги, позволяет в дальнейшем значительно сэкономить на дорогостоящем простое оборудования. Сенсоры известных производителей, таких как Balluff, IFM Electronic, Pepperl+Fuchs, Turck и других — обладают значительно более долгим сроком службы, они герметичны, устойчивы к вибрациям и перепадам температур, выдерживают условия эксплуатации на производстве. Стандартные индуктивные датчики PNP или NPN в цилиндрических резьбовых корпусах М5, М8, М12, М18 и М30 мы поддерживаем в наличии на собственном складе, что позволяет в короткие сроки подобрать и купить аналог взамен вышедшему из строя таких производителей как SICK, Carlo Gavazzi, Kippribor, Autonics, ТЕКО, МЕГА-К, Сенсор и любых других.

Эволюция индуктивных датчиков — статья

Датчик БВК 260

История схемотехники индуктивных датчиков, которые сейчас применяются во всех отраслях промышленности, началась с оригинальной генераторной схемы (рис. 1), выполненной всего на пяти транзисторах.

Она была предложена в то время, когда в техническом мире преобладали дискретные корпусные электронные компоненты, и ее появление изменило дальнейший ход истории, заложив фундамент для производства индуктивных бесконтактных выключателей.

Главное звено здесь — LC-генератор на транзисторной сборке VT1 с двухобмоточной катушкой, помещенной в магнитопровод. Когда объект находится вне чувствительной зоны катушек, в генераторе есть колебания; объект попал внутрь чувствительной зоны — колебания прекратились.

Индуктивные датчики оказались очень доступным, простым, надёжным и дешёвым элементом систем управления приводами, станков, автоматических линий, систем измерения физических величин. Их производством занялись многие фирмы, которые в дальнейшем увеличили тиражи индуктивных датчиков приближения до миллионов единиц.

По мнению журнала «Control Engineering Europe», общий рынок датчиков (индуктивных, оптических, ёмкостных, ультразвуковых, магнитных) в 2002 г. оценивался в 2,7 млрд. евро и его рост составлял 5 % в год.

В Московском Энергетическом институте (1988 г.) был разработан иной индуктивный датчик приближения, работающий на резонансном принципе, т. е. индуктивный датчик малых перемещений (рис. 2). Резонансный принцип действия для чувствительных элементов фотодатчиков был предложен ещё раньше и хорошо показал себя в измерительном электронном оборудовании для Московской Олимпиады (1980 г.).

Чувствительным элементом датчика является катушка L1 с сердечником, которая вместе с конденсатором С1 составляет параллельный колебательный контур, запитываемый от RC-генератора несущей частоты. На выходе этого индуктивного датчика вырабатывается бинарный сигнал высокого уровня при сближении с мишенью и низкого уровня – при удалении от нее.

Вариации первоначальной схемы привели к увеличению ассортимента датчиков до тысяч типоразмеров. Основные изменения связаны с необходимостью применения датчиков в специальных нестандартных условиях: повышенное давление, большая разница температур, химически агрессивная рабочая среда, взрывоопасные зоны, а также в местах, где под угрозой безопасность человека.

Отлаженная технология производства датчиков позволяет гарантировать их безотказную эксплуатацию в течение 5ти лет. А в реальности срок службы индуктивных выключателей может достигать до 20 лет. Так датчики, установленные в 80х годах XX века, до сих пор задействованы в составе оборудования на некоторых предприятиях.

Современные индуктивные датчики приближения отличаются от первоначальных экземпляров разнообразной схемотехникой, в том числе широким использованием интегральных схем, технологиями поверхностного монтажа компонентов, а также конструктивным исполнением. Теперь конструкция датчиков имеет не только щелевой вид, но и торцевой (уголковый). Щелевые датчики часто выходили из строя из-за разбалтывания флажка. С появлением торцевых бесконтактных выключателей с аналогичными характеристиками этот недостаток исчез в виду отсутствия самого флажка.

Торцевые датчики ТЕКО

Торцевые (уголковые) индуктивные датчики производства «ТЕКО» серий ISB M и ISB L разработаны для замены технически устаревших щелевых датчиков (таблица соответствий). При этом они соответствуют типоразмеру и посадочным местам датчиков типа БВК, а значит, сложностей в переходе на новый вид сенсоров не возникает.Чувствительная зона нещелевых датчиков больше, что увеличивает точность показаний, а замена флажка на пластинку в качестве элемента воздействия исключает возможность поломки рожка.

Некоторые производители предлагают достойную замену старым щелевым (путевым) датчикам типа БВК, тем самым, которые служили более 10ти лет и хорошо себя зарекомендовали. Но приобретая щелевые датчики нового поколения, заказчик часто сталкивается с несоответствием типоразмеров и посадочных мест.

В настоящее время компания «ТЕКО» производит щелевые индуктивные датчики приближения нового поколения с улучшенными электрическими характеристиками и возможностью менять типоразмеры и посадочные места для крепления. Эти датчики полностью совместимы с теми, что производились ранее и подлежат замене теперь.


При подготовке статьи использована литература:
Габов А.П., Рыжов С.Н. Так что же это за “хитрость” – индуктивный датчик приближения?
// Приборы и системы. Управление, контроль, диагностика. – Москва, 2005.- №12.- с.36-39.

Сравнение индуктивных и ёмкостных датчиков положения


Автор: Mark Howard, Zettlex UK Ltd

Ссылка на оригинал: technical articles/inductive vs. capacitive_rev4.0


Перевод на русский язык подготовлен компанией АВИ Солюшнс.

Введение



Некоторые индуктивные и ёмкостные датчики выглядят очень похоже и неудивительно что инженеры-разработчики бывают сбиты с толку их сходством. И те и другие являются бесконтактными датчиками положения и построены на основе печатных плат. Тем не менее, физические принципы, лежащие в основе каждого типа датчиков, достаточно различны. В конечном итоге на практике это означает, что эти  типы датчиков подходят для различных приложений.  Эта статья объясняет физические принципы каждой технологии и сравнивает соответственно сильные и слабые стороны каждого подхода.

Принцип работы – Ёмкостные датчики



Когда исследователя Эвальда Юргена фон Клейста ударило электрическим током от лабораторного прибора в 1745 году, он внезапно понял, что есть возможность сохранять электрический заряд в больших количествах. Возможно, ненамеренно он построил первый в мире конденсатор. Конденсатор действует как накопитель электрической энергии и, как правило, состоит из двух проводящих пластин, разделённых непроводящим материалом (диэлектриком). В качестве диэлектрика обычно выступает воздух, пластик или керамика. Простая математическая модель конденсатора приведена на рис. 1.





 Рис. 1 Простая модель конденсатора (С)


Диэлектрическая проницаемость ε включает в себя две составляющие — εr и ε0, где εr – это относительная магнитная проницаемость (иногда называемая диэлектрической постоянной) материала между пластинами и ε0 – электрическая постоянная (ε0 ≈ 8.854×10−12 Ф/м). 


Многие датчики работают по ёмкостному принципу, в особенности тактильные датчики таких устройств, как планшеты и мобильные телефоны. Эти ёмкостные датчики определяют отсутствие или присутствие пальца человека и работают как альтернатива кнопочному переключателю. Присутствие пальца человека – или скорее воды в нём – приводит к изменению относительной диэлектрической проницаемости вызывающей в свою очередь изменение ёмкости. 



Другой тип ёмкостного датчика – это ёмкостной датчик перемещения, который работает путём измерения изменений ёмкости происходящих из-за изменения размеров конденсатора. Как можно видеть из математической формулы на рис. 1, ёмкость как при изменении расстояния между пластинами (d) так и при изменении площади перекрытия пластин (A). Перемещение может измеряться в осевом направлении (изменение d) или в плоскости пластин. Пластины конденсатора можно с успехом изготавливать с использованием печатных плат. 



Другой тип ёмкостного датчика – это ёмкостной датчик перемещения. Принцип его работы основан на измерении величины емкости, которая изменяется при изменении размеров конденсатора. Как можно видеть из математической формулы на рис. 1, ёмкость прямо пропорциональна как расстоянию между пластинами (d), так и площади перекрытия пластин (A). Перемещение может измеряться в осевом направлении (изменение d) или в плоскости пластин. Пластины конденсатора можно с успехом изготавливать с использованием печатных плат.



Для того чтобы хранить сколько-нибудь значительный заряд, расстояние между пластинами d должно быть существенно меньше площади пластин. Величина d обычно гораздо меньше 1 мм. По этой причине такая технология хорошо подходит для измерения нагрузки и тензометрических датчиков, поскольку может давать сравнительно большие изменения сигнала при маленьком измеряемом расстоянии. Похожим образом, ёмкостные линейные или вращающиеся датчики могут быть сконструированы таким образом, что перемещение вызывает изменение площади перекрытия пластин A. Например, один комплект пластин расположен на подвижной части датчика, а другой комплект расположен на статичной части. Как только два этих комплекта смещаются относительно друг друга, площадь А изменяется. 



К сожалению, кроме изменения размеров конденсатора, ёмкость также чувствительна и к другим факторам. Если пластины конденсатора окружены воздухом то диэлектрическая проницаемость будет изменяться из-за влияния температуры и влажности, поскольку диэлектрическая постоянная воды отличается от воздуха. Близко расположенный объект, который изменяет проницаемость окружающего пространства, тоже будет вызывать изменения ёмкости. В случае тактильного датчика, вода в пальцах вызывает местное изменение проницаемости и, соответственно, срабатывание датчика. Вот почему работа нереагирующего тактильного датчика может быть улучшена, если намочить конец пальца. 



За исключением случаев, когда окружающая среда датчика может быть герметично замкнута или жёстко контролируема, ёмкостные датчики не подходят для применения в жёстких условиях окружающей среды, где есть возможность проникновения посторонних веществ или больших изменений температуры. Неудивительно, что ёмкостные датчики мало подходят для применения в условиях, где высока вероятность образования конденсата при снижении температуры. 


При неизменном физическом устройстве датчика, расстояние между пластинами датчика должно поддерживаться малым относительно размеров пластин конденсатора и выдерживаться в достаточно узком допуске. Это может накладывать очень высокие требования по механической точности установки датчика в конечное изделие и может быть непрактично и неэкономично, поскольку различие тепловых расширений, вибраций или механических допусков конечного изделия могут привести к изменению расстояния между пластинами и, таким образом, к искажению измерений.



Более того ёмкостный эффект основан на хранении электрического заряда на пластинах конденсатора. Если конечное изделие, куда устанавливается датчик, может создавать электростатическое поле в процессе своего перемещения – от трения, скольжения или вращения деталей – это может искажать показания датчика. В экстремальных случаях датчик не будет работать совсем или, что хуже, электростатические возмущения будут приводить к правдоподобным, но неверным показаниям датчика. В некоторых случаях обязательно  заземление компонентов конечного изделия для рассеивания заряда с пластин датчика. Часто это является необходимым в ёмкостных датчиках угла, поскольку вращение вала создаёт статический заряд из-за относительного перемещения подшипников, шестерён, шкивов и прочее. 

Принцип работы – Индуктивные датчики



В 1831 Майкл Фарадей открыл, что протекание переменного тока по одному проводнику индуцирует протекание тока в противоположном направлении во втором проводнике. С тех пор магнитная индукция стала широко использоваться как физический принцип построения датчиков для измерения положения и скорости – резольверы (СКВТ), сельсины и дифференциальный трансформатор для измерения линейных перемещений. Основы теории можно объяснить, рассматривая две катушки: передающую катушку (Tx), по которой протекает переменный ток, и приёмную катушку (Rx), в которой индуцируется ток.




Рисунок 2. Закон индукции Фарадея


Величина напряжения на приёмной обмотке пропорциональна относительным площадям, геометрии и смещению двух катушек. Однако, как и с ёмкостной технологией, на поведение катушек могут влиять и другие факторы. Одним из таких факторов является температура, но её влияние может быть нивелировано путём использования нескольких приёмных катушек и вычислении положения по отношению полученных сигналов (как в дифференциальном трансформаторе). Соответственно, даже в случае изменений температуры, её влияние на результат компенсируется, поскольку отношение сигналов является неизменным для любого положения. 



В отличие от ёмкостных способов измерения, индуктивная технология гораздо менее подвержена влиянию посторонних частиц, таких как вода или грязь. Поскольку катушки могут находиться на относительно большом расстоянии друг от друга, точность установки составляет гораздо меньше проблем, и основные компоненты индуктивного датчика могут быть установлены с относительно свободными допусками. Это не только помогает снизить стоимость датчика и конечного изделия, но также позволяет использовать компоненты с защитным покрытием или заливкой, что позволяет датчикам противостоять таким внешним воздействующим факторам, как длительное погружение, сильные удары, вибрация или наличие взрывоопасной газовой или пылевой среды. 



Индуктивные датчики обеспечивают надёжный, стабильный и устойчивый к внешним воздействиям подход к измерению положения и, таким образом, является предпочтительным выбором в приложениях, где жёсткие условия окружающей среды являются нормой, например, в военной технике, авиакосмической промышленности, промышленных установках и системах для нефтегазового сектора. 



Несмотря на надёжность и устойчивость к внешним воздействиям, традиционные индуктивные датчики имеют ряд отрицательных сторон, которые препятствуют их более широкому распространению. В их конструкции есть проводники, намотанные на катушки, которые должны быть намотаны достаточно точно, чтобы обеспечить необходимую точность измерений положения. Для того, чтобы обеспечить наличие достаточно сильного электрического сигнала, необходимы обмотки с большим количеством витков. Такая конструкция с намотанной катушкой делает традиционный индуктивный датчик громоздким, тяжёлым и дорогим.



Инженеры, рассматривающие возможность применения индуктивных датчиков положения, часто задают вопрос о сложностях, связанных с электромагнитными шумами. В данном случае такая озабоченность является неуместной, если принять во внимание, что эти датчики, как резольверы, успешно используются много лет в жёсткой электромагнитной установке в корпусах электродвигателей для коммутации и управления скоростью. Что касается температурной стабильности, то устойчивость к жёстким условиям  может быть достигнута при использовании дифференциального подхода, так, что электромагнитная энергия, поступающая в различные части системы, эффективно компенсирует друг друга. Вот почему индуктивные датчики, такие как резольверы и дифференциальные линейные трансформаторы, являются предпочтительным выбором в ответственных применениях, например, в гражданской авиации в течение многих лет.

Другой подход к индуктивным датчикам


Другой подход к индуктивным датчикам использует тот же физический принцип, но в нём применяются плоские конструкции на основе печатных плат вместо намотанных катушек. Именно этот подход и применяется Zettlex. Это означает, что обмотки могут быть изготовлены путём травления меди или при помощи нанесения на самые различные материалы подложки: полиэстерную плёнку, бумагу, эпоксидный слоистый пластик и даже на керамику. Такие печатные конструкции можно изготовить более точно, чем намотанные катушки. Вследствие чего достигается более высокая точность измерения при меньших затратах, размерах и массе, сохраняя в то же время все положительные свойства индуктивной технологии. 



 


Рисунок 3. Пример грязного, но полностью работоспособного индуктивного датчика с плоской печатной обмоткой. 


Датчики серии IncOders компании Zettlex – это бесконтактные устройства для прецизионного измерения угла. Датчик IncOder состоит из двух частей: статор и ротор, каждая из которых имеет форму плоского кольца. Большое центральное отверстие позволяет легко пропускать валы, оптические волокна, трубы и кабели, размещать токосъёмники. Индуктивные угловые энкодеры серии IncOder не требуют точной механической установки, скорее можно сказать, что ротор и статор должны быть просто привинчены в конечное изделие. Угловые энкодеры Zettlex не восприимчивы к посторонним веществам, что делает их идеально подходящими к жёстким условиям окружающей среды, где ёмкостные устройства работают ненадёжно. 

Заключение



Преимущества каждого из трёх подходов сведены вместе в таблице ниже. Можно сделать вывод, что из трёх приведённых подходов, нетрадиционный индуктивный подход, использующий печатные обмотки, обеспечивает наибольшее количество преимуществ.














 


Ёмкостные


(Традиционные катушки)


 Индуктивные
(Печатные катушки)


Высокое разрешение





Высокая повторяемость








Высокая точность 









Устойчивость к грязи, воде или конденсату

 





Устойчивость к электростатике

 






Устойчивость к электромагнитным помехам










Низкий температурный дрейф

 

 





Простота установки

 


?






Компактный



 



Лёгкий



 



Экономичный


?



 






Рисунок 4. Таблица сравнительных преимуществ каждой технологии

Индуктивные датчики и емкостные датчики

Индуктивные датчики приближения — серия XS

Наши индуктивные датчики приближения (ранее известные как OsiSense XS) предназначены исключительно для обнаружения металлических предметов размером до 60 мм. В основном они состоят из генератора, обмотки которого составляют чувствительную поверхность. Перед этими обмотками создается переменное магнитное поле.

Когда металлический объект помещается в магнитное поле, создаваемое датчиком, возникающие в результате токи образуют дополнительную нагрузку, и колебания прекращаются.Это приводит к срабатыванию выходного драйвера и, в зависимости от типа датчика, вырабатывается выходной сигнал нормально разомкнутого (NO) или нормально замкнутого (NC).

Наши индуктивные датчики бывают в версиях для скрытой и не скрытой установки (экранированный / неэкранированный), версиях с коротким и длинным корпусом, версиях PNP и NPN для совместимости со всеми ПЛК и контроллерами по всему миру. 2-проводные версии постоянного, переменного или переменного / постоянного тока также доступны для установки в вашем приложении в качестве концевого выключателя.

Емкостные датчики приближения — серия XT

Наши емкостные датчики (ранее известные как OsiSense XT) предназначены для бесконтактного измерения любых материалов толщиной до 20 мм, независимо от материала или проводимости (металлы, минералы, дерево, пластик, стекло, картон, кожа, керамика, жидкости и т. Д.) .

Емкостные датчики приближения обнаруживают обнаруживаемые цели благодаря способности этой цели быть электрически заряженной. Емкостные датчики подают напряжение на область и обнаруживают объекты, измеряя изменения в электрическом свойстве, называемом емкостью, то есть способностью чего-либо удерживать электрический заряд. Поскольку даже непроводники могут удерживать заряды, это означает, что с помощью этого типа датчика можно обнаружить практически любой объект.

Детали предложения

Индуктивные датчики общего назначения
Один из самых полных каталогов на рынке с:

  • Стандартные цилиндрические формы: короткие и длинные корпуса M8, M12, M18, M30
  • Стандартные кубические, прямоугольные и плоские формы
  • Соответствует международным стандартам, CE, UL, CSA, CCC; RCM, TÜV
  • С высшим международным качеством IP69K
  • Со всеми электрическими стандартами, включая источник питания переменного / постоянного тока
  • Доступен в стандартной и увеличенной моделях

Прикладные индуктивные и емкостные датчики

  • Кубическая и прямоугольная 40×40 SIL2 с сертификатами TÜV для более безопасных применений
  • Контроль вращения, фактор 1, дискриминация черных / цветных металлов и т. Д.
  • Датчики в пластиковом корпусе для двойной изоляции и соответствия химической среде
  • Миниатюрный цилиндрический формат Обычный 4 и 6,5 мм или M5 для сборки и т. Д.
  • Полностью нержавеющая сталь и пластик для пищевых продуктов и напитков
  • Кубический цилиндрический корпус из нержавеющей стали для автомобилей, включая сварочные работы

Основные приложения

  • Железная дорога
  • Мобильное оборудование
  • Лифты и эскалаторы
  • Подъемник
  • Погрузочно-разгрузочные работы / Транспортировка / Логистика
  • Обработка материалов / Станки
  • Упаковка
  • Еда и напитки
  • Робототехника

Вы не можете связаться с ним, но все равно нужно его обнаружить? Обратитесь к мировым экспертам, работающим в области детектирования более 90 лет!

Просто просто!

.

Индуктивные датчики и емкостные датчики

Индуктивные датчики приближения — серия XS

Наши индуктивные датчики приближения (ранее известные как OsiSense XS) предназначены исключительно для обнаружения металлических предметов размером до 60 мм. В основном они состоят из генератора, обмотки которого составляют чувствительную поверхность. Перед этими обмотками создается переменное магнитное поле.

Когда металлический объект помещается в магнитное поле, создаваемое датчиком, возникающие в результате токи образуют дополнительную нагрузку, и колебания прекращаются.Это приводит к срабатыванию выходного драйвера и, в зависимости от типа датчика, вырабатывается выходной сигнал нормально разомкнутого (NO) или нормально замкнутого (NC).

Наши индуктивные датчики бывают в версиях для скрытой и не скрытой установки (экранированный / неэкранированный), версиях с коротким и длинным корпусом, версиях PNP и NPN для совместимости со всеми ПЛК и контроллерами по всему миру. 2-проводные версии постоянного, переменного или переменного / постоянного тока также доступны для установки в вашем приложении в качестве концевого выключателя.

Емкостные датчики приближения — серия XT

Наши емкостные датчики (ранее известные как OsiSense XT) предназначены для бесконтактного измерения любых материалов толщиной до 20 мм, независимо от материала или проводимости (металлы, минералы, дерево, пластик, стекло, картон, кожа, керамика, жидкости и т. Д.) .

Емкостные датчики приближения обнаруживают обнаруживаемые цели благодаря способности этой цели быть электрически заряженной. Емкостные датчики подают напряжение на область и обнаруживают объекты, измеряя изменения в электрическом свойстве, называемом емкостью, то есть способностью чего-либо удерживать электрический заряд. Поскольку даже непроводники могут удерживать заряды, это означает, что с помощью этого типа датчика можно обнаружить практически любой объект.

Детали предложения

Индуктивные датчики общего назначения
Один из самых полных каталогов на рынке с:

  • Стандартные цилиндрические формы: короткие и длинные корпуса M8, M12, M18, M30
  • Стандартные кубические, прямоугольные и плоские формы
  • Соответствует международным стандартам, CE, UL, CSA, CCC; RCM, TÜV
  • С высшим международным качеством IP69K
  • Со всеми электрическими стандартами, включая источник питания переменного / постоянного тока
  • Доступен в стандартной и увеличенной моделях

Прикладные индуктивные и емкостные датчики

  • Кубическая и прямоугольная 40×40 SIL2 с сертификатами TÜV для более безопасных применений
  • Контроль вращения, фактор 1, дискриминация черных / цветных металлов и т. Д.
  • Датчики в пластиковом корпусе для двойной изоляции и соответствия химической среде
  • Миниатюрный цилиндрический формат Обычный 4 и 6,5 мм или M5 для сборки и т. Д.
  • Полностью нержавеющая сталь и пластик для пищевых продуктов и напитков
  • Кубический цилиндрический корпус из нержавеющей стали для автомобилей, включая сварочные работы

Основные приложения

  • Железная дорога
  • Мобильное оборудование
  • Лифты и эскалаторы
  • Подъемник
  • Погрузочно-разгрузочные работы / Транспортировка / Логистика
  • Обработка материалов / Станки
  • Упаковка
  • Еда и напитки
  • Робототехника

Вы не можете связаться с ним, но все равно нужно его обнаружить? Обратитесь к мировым экспертам, работающим в области детектирования более 90 лет!

Просто просто!

.

0 0 vote
Article Rating
Подписаться
Уведомление о
guest
0 Комментарий
Inline Feedbacks
View all comments