Диммер для диодных ламп: что это, регулировка яркости, как выбрать

Разное

Содержание

что это, регулировка яркости, как выбрать

На протяжении длительного времени светодиодные лампы для диммера не подходили, т.к. такое сочетание приводило к появлению множества проблем, в т. ч. мерцания, нестабильной работы, шума, возможности включения только в режиме максимальной мощности и т.д. Однако сейчас разработаны специальные диммеры, которые хорошо сочетаются с большинством видов светодиодных ламп.

Что такое диммер и зачем он нужен

Другое название диммера – светорегулятор. Данное приспособление предназначено для регулирования яркости света. Подобные устройства появились немного позже, чем лампы накаливания. Принцип работы диммера для светодиодных ламп крайне прост: он ограничивают подачу тока на лампу, что снижает интенсивность ее свечения.

Некоторые недавно появившиеся светорегуляторы являются сложными электронным устройствами, способными не только менять яркость освещения, но и выполнять некоторые другие функции. Некоторые модели имеют сенсорный экран и пульт управления, что облегчает процесс регуляции интенсивности освещения в помещении.

Области применения

Это устройство используется для создания необходимой атмосферы в помещении за счет изменения яркости освещения. Такие аппараты часто имеют таймер, позволяющий регулировать время включения и отключения света.

Кроме того, часто диммеры используются при установке управляемой гибкой системы освещения. Данное приспособление применяется, когда требуется регуляция яркости освещения, но при этом не должно выделяться большое количество тепла.


Установка диммера требуется при обустройстве системы освещения, которая будет менять цвет свечения или создавать другие световые эффекты. Нередко диммеры устанавливаются в помещениях кафе, ночных клубов, пабов и в других помещениях общественного пользования.

Какие бывают

Все диммеры могут условно быть разделены на 2 большие категории. К первой относятся устройства, которые могут функционировать в цепях переменного напряжения, т.е. 220 В. Ко второй категории относятся диммеры, применяющиеся в цепях постоянного напряжения. Можно подключить диммер к светодиодным лампам 12 В.

Полезное видео по теме:

В чем различия диммеров

Существует немало параметров, на которые следует обратить внимание при выборе приспособления. Некоторые устройства подходят для большинства разновидностей лампочек, в то время как другие используются только в сочетании с диммироидными.

Приобретая выключатели с регулятором яркости, нужно обратить внимание на тип монтажа. Они могут быть для наружной и внутренней установки, а также на DIN-рейках. Кроме того, такие приспособления различаются в зависимости от способа управления и исполнения. Светорегуляторы подразделяются и по способу регулирования.

Читайте также: Как правильно установить диммер реостата: пошаговая инструкция.

По типу монтажа

Наружное крепление диммера является наиболее простым. Такие выключатели представляют собой небольшую коробочку, в которой присутствуют все элементы регулятора. Для установки такого типа светорегуляторов нет необходимости высверливать в стене нишу. Коробка может крепиться непосредственно на стену.

Наружные светорегуляторы наиболее часто используется при обустройстве системы освещения в промышленных помещениях, где красота дизайна не является приоритетом. Кроме того, такие устройства используются при оформлении интерьера в урбанистическом и других стилях, когда наружная проводка подчеркивает замысел дизайнера.

Внутренние диммеры бывают 2 типов. К первому относятся устройства, представляющие собой коробку, установка которой требует высверливания ниши. После монтажа верхняя часть коробки не выступает над поверхностью стены. Ко второму типу относятся приспособления, предназначенные для подключения точечных светильников, в которых присутствуют светодиодные лампочки. Такие устройства отличаются небольшими размерами и крепятся при монтаже проводки. Данные портативные диммеры имеют дистанционное управление.

Модульный светорегулятор для светодиодных ламп устанавливается на DIN-рейках. Устанавливается данный диммер в распределительных щитках, но может применяться и для регулировки освещения и создания световых эффектов. Такие устройства используются при создании системы «Умный дом». Установка светорегулятора выполняется в монтажную коробку. Диммер управляется пультом дистанционного управления, т.к. он не выходит на поверхность.

По исполнению

В зависимости от типа исполнения регуляторы яркости света могут быть:

  • поворотно-нажимными;
  • поворотными;
  • кнопочными;
  • сенсорными.

К самым простым вариантам относится поворотный тип диммера. Он отличается простым функционалом. Регуляция яркости осуществляется за счет круглой поворотной шашки или ручки. Ее вращение происходит по и против часовой стрелки.

Поворотно-нажимной тип почти не отличается от поворотного. При одном нажатии свет загорается с той яркостью, которая была выставлена в последний раз. Поворотный рычаг или шашка используется для регулировки яркости.

Читайте также: Основные причины моргания светодиодной лампы (LED).

Кнопочный тип внешне похож на стандартный выключатель. На регуляторе присутствуют 1 или 2 кнопки. Нажимая на них, можно быстро установить необходимую яркость. Такая конструкция является простой и надежной, но выглядит современной.

Сенсорные диммеры являются наиболее технологичными. Их дизайн может быть самым разным. Сенсор может быть ровным, представлен кружком и т.д. Приборы могут быть использованы при оформлении большинства вариантов интерьеров. Выглядят такие диммеры красиво, но при поломке нередко требуется менять прибор.

По способу регулировки

Диммеры переменного тока подразделяются по принципу регулирования работы. Диммер с отсечкой по переднему фронту – самый дешевый и распространенный. Схема его проста: внутри на нагрузку происходит подача только полуволны, в то время как ее начало срезается. На лампочку подается нагрузка с заданной амплитудой, а затем наблюдается ее затухание, когда синусоида проходит через ноль.

Второй вариант – диммер с отсечкой по заднему фронту. В этом случае регуляция яркости происходит не с «нуля», а в заданном диапазоне. Кроме того, в отдельный класс выделяются светильники с уже установленными регуляторами. Они регулируются за счет кнопок или пульта.

Несовместимость диммера

Нередко случается так, что выбранный вид ламп не является совместимым со светорегулятором. В большинстве случаев это вызвано разницей принципов регулирования по заднему или переднему фронту. Некоторые лампы не предназначены для подключения к светорегулятору.

Кроме того, нередко несовместимость светорегулятора с лампой может проявляться отсутствием зажигания лампы при перемещении рычага регулятора до минимального значения. Только при повороте рычага до некоторого уровня лампа загорается. Некоторые лампы начинают трещать при попытке регулировать их яркость диммером. Это также указывает на несовместимость диммера и лампы.

Экономят ли диммеры электроэнергию

Часто регуляторы яркости освещения люди используют, стараясь сэкономить средства при оплате электроэнергии. Однако данное утверждение не соответствует действительности. Снижение яркости ламп на 80% позволяет достигнуть всего 10–20% экономии.

Какой срок службы

Большинство разновидностей диммеров отличается надежной конструкцией. Их срок службы достигает 10–15 лет. Кроме того, использование светорегуляторов позволяет существенно увеличить срок службы светодиодных ламп.

ТОП лучших вариантов

На рынке представлено немало разновидностей светорегуляторов, предназначенных для подключения светодиодных лент и ламп.

Хорошо зарекомендовала себя продукция компании Arlight. Высоким качеством отличается модель VT-S74-30A. Этот аппарат подходит для светодиодных светильников и лент на 12 В и 24 В. Этот диммер наиболее часто используется в производственных помещениях. Регулируется он ручкой с плавным ходом. На корпусе присутствует простая графическая маркировка. Зажимы диммера изготовлены из особого сплава, способного выдерживать нагрузку до 30 А. На корпусе прибора присутствуют 3 монтажных отверстия, что облегчает процесс установки светорегулятора на плоской поверхности.

Также качественным устройством от компании Arlight является модель 023375 LN-RF6B-Sens Black, которая подходит даже для многоцветных лент с RGB. Это устройство помогает управлять степенью насыщенности оттенков. Диммер имеет 10 различных режимов. Особое строение обеспечивает плавное переключение без мерцания. Прибор заключен в металлический корпус, защищающий его от перегрева и механического повреждения. Аппарат может выдерживать нагрузку до 576 Вт.

Немало положительных отзывов получила модель ULC-R22-DIM от компании Uniel. Этот прибор оснащен дистанционным управлением. Кроме того, в нем реализована функция памяти, которая позволяет сохранять все ранее установленные настройки устройства, даже если произошло внезапное отключение электроэнергии. Детали прибора изготовлены из особых сплавов, поэтому он может проработать не менее 50 тыс. часов. Сенсорное кольцо имеет диапазон регулировки яркости от 0 до 100%. Этот аппарат подходит для светодиодных ламп как на 12 В, так и на 24 В.

Высоким качеством отличается модель 021098 SP-2839DIM от компании Arlihgt. Этот прибор оснащен дистанционным управлением. В комплекте с диммером идет пульт, которым можно настраивать уровни яркости. К этому устройству подключаются сразу несколько лент. Он подходит для ламп 12 В и 24 В.

Много положительных отзывов получили светорегуляторы Legrand. Особенно часто используются приборы, относящиеся к модельным рядам:

  1. Elika.
  2. Valena Life.
  3. Valena.


Данные приборы отличаются наличием поворотно-нажимного типа управления. Они могут монтироваться в стену или накладываться на нее.

Кроме того, высоким качеством отличается продукция компании Shneider Electric.

К хорошо зарекомендовавшим себя приборам относятся:

  1. Sedna.
  2. Odace.
  3. Unica Quadro.


Эти модели оснащены поворотно-нажимным механизмом. Они поддерживают возможность управления с 2 точек.

Пошаговая инструкция подключения

Большинство разновидностей диммеров подключается к системе по такому же принципу, как выключатель.

  1. Сначала необходимо отключить подачу электричества в квартиру на электрическом щитке.
  2. Затем нужно удостовериться, что электрический ток отсутствует, используя специальную отвертку-индикатор.
  3. Следующим шагом является снятие коробки установленного ранее выключателя. Следует выкрутить шурупы, которые обеспечивают крепление декоративной рамки выключателя, а затем устранить ее.
  4. После этого необходимо выкрутить винты, которые фиксируют провода, и сам механизм выключателя. Если размер светорегулятора позволяет, его можно установить в ту же монтажную коробку. После этого выполняется откручивание электропроводов и отсоединение их от переключателя. Таким образом, в монтажной коробке остается 2 свободных провода.
  5. Необходимо провести разбор светорегулятора. Сначала снимается регулирующий рычаг. Нужно открутить гайку, располагающуюся под рычагом, и все декоративные элементы. Фазный кабель подключается к клемме диммера. Второй кабель подсоединяется к клемме регулятора.
  6. После этого можно приступать к монтажу светорегулятора в коробку. Для этого сначала нужно подогнуть провода и ввести регулятор в подрозетник. После этого следует закрутить распорочные винты и приложить декоративную рамку. В последнюю очередь необходимо зафиксировать рамку винтами и установить регулирующее кольцо.

Читайте также: Описание и правила выбора УФ лампы для очистки воды.

После завершения монтажа нужно включить электричество на щитке и проверить функциональность прибора.

Рекомендуем посмотреть видео по теме:

В заключение

Если требуется регулировка яркости свечения светодиодных ламп, нужно устанавливать диммеры, которые были специально разработаны для этой задачи. Использование несовместимых регуляторов яркости и ламп может привести к нарушению работы осветительных приборов.

Тест десяти диммеров с LED-лампами: ammo1 — LiveJournal

?

LiveJournal

  • Main
  • Ratings
  • Interesting
  • iOS & Android
  • Disable ads

Login

  • Login
  • CREATE BLOG

    Join

  • English

    (en)

    • English (en)
    • Русский (ru)
    • Українська (uk)
    • Français (fr)
    • Português (pt)
    • español (es)
    • Deutsch (de)
    • Italiano (it)
    • Беларуская (be)

классификация изделий, схемы подключения с дистанционным управлением и изготовление своими руками

Диодные источники освещения нашли широкое применение не только в быту, но и в других сферах. Чтобы обеспечить больший комфорт при управлении осветительными элементами, может использоваться диммер для светодиодных ламп.

Содержание

Открытьполное содержание

[ Скрыть]

Что такое диммер?

Диммер представляет собой светорегулятор. Это устройство относится к категории многофункциональных приборов, с его помощью потребитель может менять мощность лампочек в диодных светильниках. В старых светорегуляторах процедура управления освещением осуществлялась механическим методом, тогда они использовались исключительно для изменения параметра яркости. Но современные устройства оборудуются специальными платами, что позволило расширить их функционал.

Диммеры для светодиодов на 220 В позволяют:

  • изменять интенсивность величины освещения;
  • выполнять плавную активацию и отключение источников освещения;
  • деактивировать свет в помещении в автоматическом режиме;
  • выполнять управление осветительными приборами посредством удаленного, электронного либо акустического метода.

В зависимости от вида, регуляторы напряжения можно подключать отдельно либо группами. Устройства могут применяться для управления одним либо несколькими источниками освещения.

Канал Радиолюбитель TV подробно рассказал о том, что представляют собой диммеры.

Принцип работы диммера для светодиодных ламп

Механизмы для регулировки мощности функционируют по типу реостата. Изменение величины напряжения либо параметра тока производится в результате смены сопротивления. Простые по конструкции вариаторные устройства оборудуются поворотным регулятором, а также двумя контактными элементами. Они используются для регулировки параметра интенсивности лампочек накаливания и галогенных источников освещения.

Когда эти устройства появились в продаже, в качестве диммеров применялись реостаты.

На смену им пришли полупроводниковые регуляторы, в частности:

  • симистр;
  • динистор.

Устройства, оборудованные симисторами, функционируют по принципу применения системы широтно-импульсной модуляции. Данные системы нашли применение в оборудовании для изменения интенсивности осветительного потока диодных ламп. Это возможно благодаря смене ширины сигнала и параметра напряжения. Управление опцией выполняется посредством ШИМ-генератора.

Что касается функций устройств на 12в или 220в, то они определяются конструктивными особенностями регуляторов. Простые механизмы, которые можно сделать своими руками, могут использоваться только для изменения величины интенсивности света. Более современные модели, оснащенные схемами, характеризуются расширенным функционалом.

Ростислав Михайлов подробно рассказал о принципе действия регуляторов мощности для диодных элементов освещения.

Они используются для:

  1. Тонкой настройки осветительных приборов.
  2. Автоматического отключения целых групп осветительных устройств в указанное потребителем время, что позволяет сэкономить электричество.
  3. Увеличения ресурса эксплуатации источников освещения.
  4. Обеспечения безопасности помещения. Это достигается благодаря созданию эффекта присутствия хозяев. Речь идет о функции, когда активация и отключение осветительных устройств происходит в конкретное время, настроенное потребителем. При необходимости можно отрегулировать параметр яркости лампочек.
  5. Удаленного управления группами осветительных приборов. Для этого может применяться пульт, хлопки, голосовые команды либо специальные приложения для телефонов.

Достоинства и недостатки диммеров

Преимущества устройств для регулировки напряжения:

  1. Обеспечение помещения комфортным освещением независимо от времени суток.
  2. Возможность экономии электроэнергии благодаря снижению энергетических затрат.
  3. Увеличение ресурса службы источников освещения.
  4. Диммеры можно оптимально вписать в любой интерьер.
  5. Простота установки. Выполнить монтаж самостоятельно сможет даже неопытный пользователь, если следовать инструкциям.
  6. При необходимости диммер можно синхронизировать с работой систем Умных домов.
  7. Диммеры позволят потребителю правильно зонировать помещение.
  8. Смена параметра освещенности позволит создать уникальный визуальный эффект.

Минусы, характерные для этих устройств:

  1. Недешевая стоимость, в частности, для моделей, которые обладают функцией программирования и дистанционного управления.
  2. Диммеры нельзя использовать с люминесцентными или галогенными источниками освещения. Это связано с тем, что лампы обладают системой компенсации.
  3. Если регулятор будет подобран неверно, это может привести к появлению неисправностей. Возможно разрушение осветительного устройства.
  4. Более бюджетные варианты во время работы могут способствовать образованию электромагнитных помех. Это может привести к тому, что электронные и радиоприборы в доме будут работать некорректно.
  5. Диммеры достаточно чувствительны по отношению к повышенным температурам. Это может привести к перегреву регулятора и его порче.
  6. Если уровень минимальной нагрузки будет снижен, то источники освещения могут издавать посторонние шумы. Сам регулятор впоследствии выйдет из строя.
  7. При организации ночного режима коэффициент полезного действия диммера будет низким.
  8. Чтобы повысить параметр максимальной нагрузки, в схему придется добавить устройство для усиления мощности.

Канал LedoSmotr представил обзор популярного диммера и рассказал о недостатках таких устройств.

Классификация регуляторов для светодиодных ламп

При выборе устройств надо учитывать, что они отличаются между собой по принципу действия и по методу установки.

По месту и способу монтажа

По методу установки устройства делятся на:

  1. Модульные. Этот тип регуляторов устанавливается на специальную DIN рейку, монтаж выполняется на распределительном устройстве. Основной особенностью приспособления является возможность его замены или ремонта в любое время. Но для этого при монтаже надо выполнить укладку отдельной электролинии. Регуляторы модульного типа оптимально подходят для реализации системы Умного дома.
  2. Выносные регуляторы. Основная особенность устройств заключается в небольших размерах и наличии трех сенсорных элементов для управления. Длина регулятора составляет около 2-3 см. Благодаря наличию опции дистанционного управления установка диммера возможна рядом с осветительными приборами или внутри их. Если устройство будет установлено в люстре, потребителю не придется штробить стены или потолок. Оптимальный вариант для потребителей, которые хотят усовершенствовать систему освещения, но уже сделали ремонт в квартире.
  3. Настенные. Монтаж таких устройств выполняется так же, как установка переключателей либо розеток. Установку регулятора рекомендуется производить во время ремонта, когда на поверхность стены еще не нанесено финишное покрытие. Монтаж подразумевает штробление стен.

По принципу управления

По типу управление регуляторы разделяются на несколько видов:

  • механические;
  • сенсорные;
  • с дистанционным типом управления.
Механика

Простой вид диммеров на 220 вольт относится к классу механических.

Корпус регулятора оборудуется специальной округлой ручкой, вращение которой позволяет изменить интенсивность освещения. С помощью ручки выполняется управление переменным резисторным элементом, соответственно, активация и деактивация освещения. Механические регуляторы могут быть кнопочными. Они оборудуются клавишей для отключения источника освещения.

Сенсорные

Устройства, работающие от сенсора, характеризуются более современным и солидным дизайном.

Для регулировки параметра освещения диодов на 200вт потребителю надо прикоснуться к сенсорной поверхности. Стоимость таких устройств значительно выше, чем механических.

Дистанционные

Дистанционные регуляторы оборудуются пультом, который позволяет произвести настройку параметра интенсивности освещения световых приборов.

Процедура управления может выполняться:

  • по WiFi;
  • по радиоканалу;
  • посредством инфракрасного порта.

Дальность действия по радиоканалу у современных моделей высокая, управление освещением можно выполнять даже с улицы. Если использовать диммер с инфракрасным портом, то для регулировки освещения пульт надо подносить непосредственно к устройству. В продаже можно найти модели, которые управляются от хлопков либо голосовых команд.

Alex Batalov показал на примере как управлять диммером с помощью пульта дистанционного управления.

Что такое ШИМ?

ШИМ — широко-полюсная модуляция. Она используется для настройки параметра свечения диодных источников света. Принцип действия генераторного устройства ШИМ состоит в выработке высокочастотного тока, рабочий параметр составляет в районе 200 Гц. Эта величина необходима для функционирования диодной ленты или лампочек.

Процесс регулировки параметра яркости освещения выполняется в результате изменения величин:

  • напряжения;
  • ширины плюсового сигнала;
  • времени плюсового сигнала.

На выходе генераторного устройства появляется электрический импульс, однако, параметр тока, а также его частота, остаются неизменными.

Совместимость светодиодных ламп с диммерами

Универсальных регуляторов нет, для каждого типа источников освещения выбирается определенный вид диммера.

Диодные источники освещения могут быть регулируемыми и нерегулируемыми. Изготовители источников света могут производить продукты, которые функционируют с конкретным типом диммеров. Для определения совместимости можно воспользоваться таблицами, которые имеются у продавцов.

Выбирать регуляторы необходимо с учетом технических параметров лампочек:

  1. Если источник света нерегулируемый, то установка лампы с диммером не допускается. Итогом может стать некачественная работа и поломка самого регулятора. Такие ситуации не распространяются на гарантийное обслуживание.
  2. Регулируемые источники света работают могут работать со стандартными диммерами, функционирующими по типу отсечки фазы. Надо учитывать, что на уровень затемнения света будет влиять число диодных элементов, установленных на коммутаторе. Большая часть диммеров для правильной работы нуждаются в минимальном уровне нагрузки, составляющим в районе 20-45 Вт. Чтобы добиться такого уровня мощности, потребуется одна лампочка накаливания. Но для установки в сеть мощностью 220 вольт потребуется 2-3 диодные лампы.
  3. Если будет применяться один диодный источник света, то рекомендуется отдать предпочтение диммеру низкого напряжения. Такое устройство используется для изменения параметра низковольтного LED света, обладающего магнитным трансформаторным устройством.

Популярные диммеры для ламп на 220В

При выборе регуляторных устройств рекомендуется отдать предпочтение проверенным брендам.

Роман Ростовчанин рассказал о популярных производителях регуляторов освещения для светодиодов.

Makel

В линейке турецкого изготовителя диммеров имеется несколько разновидностей устройств:

  • сенсорного типа;
  • механического типа.

Также можно приобрести регуляторы Макел, имеющие функцию удаленного управления, которая осуществляется с помощью инфракрасного порта. В продаже регуляторы представлены в разных цветовых вариациях, устройства могут иметь различный уровень мощности.

Комфорт в использовании достигается благодаря простоте устройства, а также возможностью плавной регулировки освещения. Все товары Макел сертифицированы и соответствуют стандартам электробезопасности и качества.

Schneider Electric

Шнайдер Электрик — проверенный французский бренд, занимающийся выпуском электротехнических устройств. Диммеры этого производителя представлены на рынке в нескольких линейках. Регуляторы напряжения Schneider Electric характеризуются элегантностью дизайна и изготовляются в разных цветовых вариациях. Производитель при выпуске использует высококачественные комплектующие, что обеспечивает увеличенный ресурс службы механизмов.

Диммеры Шнайдер Электрик обладают специальной защитой от:

  • скачков напряжения;
  • перегрева;
  • а также коротких замыканий.

Такие регуляторы просты в плане установки и использования, отзывы потребителей показывают, что они одни из самых надежных. Линейка Шнайдер Электрик включает в себя как бюджетные регуляторы, так и эксклюзивные варианты. Продукты этого бренда обладают стандартами качества и отвечают международным требованиям.

Legrand

Регуляторы Legrand Valena выпускаются во Франции.

Продукты бренда характеризуются:

  • повышенным качеством;
  • простотой установки;
  • а также надежностью.

Диммеры Легранд обладают оригинальным дизайном и работают практически без сбоев. Продукты этого производителя соответствуют международным требованиям. При производстве регуляторов напряжения применяются последние технологии, в продажу устройства поступают в трех цветовых вариациях.

Стоимость продуктов Легранд значительно выше, чем устройств российского или китайского производства. Но их функциональность и качество также на высоком уровне.

Иван Пилипчук продемонстрировал работу регуляторов освещения для диодных лампочек Легранд.

АВВ

Продукты производителя АВВ зарекомендовали себя с положительной стороны благодаря высокому качеству работы и повышенному ресурсу эксплуатации. В продаже можно найти регуляторы разных типов как с дистанционным управлением, так и механические.

Производитель выпускает диммеры в разных цветовых решениях. Продукты АВВ можно разделить между собой на регуляторы премиум класса, а также бюджетные варианты. Последние будут более дешевыми, но и их функционал будет ниже.

Параметры выбора

При покупке регулятора необходимо учитывать параметры:

  1. Общая нагрузка на устройство. Сервисная книжка к диммеру включает в себя информацию о параметре нагрузочной мощности регулятора. Это значение должно быть на 30% больше, чем общая величина мощности всех осветительных устройств, которые будут регулироваться. Не следует сильно превышать запас мощности, иначе диммер выйдет из строя.
  2. Параметр напряжения для источника света. Есть диодные осветительные устройства, которые функционируют от бытовой сети номиналом 220 вольт, а есть светодиоды, которым требуется 12 вольт напряжения. В зависимости от лампочки выбирается конкретный тип регулятора.
  3. Совместимость с лампой. В сервисном руководстве к регулятору отмечается, с каким типом ламп он должен использоваться. Диммеры для лампочек накаливания не подойдут для применения с диодными источниками света.

Как подключить диммер своими руками?

Выполнить подключение диммера для светодиодных ламп можно самостоятельно. Для этого надо обладать минимальными знаниями в области электрики и иметь отвертку.

Инструкция подключения диммера для светодиодных ламп

Процедура подключения устройства на примере регулятора Legrand:

  1. Первым этапом будет отключение электричества в бытовой сети. Используя индикатор, необходимо определить фазовую электролинию. Разберите регулятор напряжения с помощью отвертки и освободите подрозетник.
  2. На корпусе устройства располагается три контактных разъема. Первый — это фаза, второй — нагрузка, а третий предназначен для подсоединения дополнительных переключателей. В комплектацию диммера входит схема, с ее помощью будет выполняться подключение.
  3. Отверткой с крестовым наконечником ослабьте зажимные болты и установите контакты электроцепи в разъемы. При подключении используйте распиновку. В нашем примере белый контакт провода — это фаза, а синий предназначен для подсоединения нагрузки. После установки проводов болты зажимаются, это требуется для обеспечения качественного контакта. Но пережимать винты не рекомендуется, чтобы не повредить контакт.
  4. Затем диммер устанавливается в подрозетник, его надо надежно закрепить в самой коробке посредством двух винтов.
  5. Следующим этапом будет монтаж защитной пластиковой рамки и кнопки. Клавиша монтируется с учетом нюансов, указанных в сервисной документации. Обычно широкая кнопка предназначена для активации и отключения освещения, а узкая нужна для регулировки параметра яркости света.
  6. На завершающем этапе выполняется диагностика работы регуляторного устройства, перед этим надо включить электричество в сети.

Регулировка освещения в нескольких помещениях проходным регулятором

Проходные регуляторы освещения обычно применяются в частных домовладениях или многокомнатных квартирах. Для решения этой задачи, чтобы обеспечить регулировку света, могут применяться проходные переключатели.

Для возможности настройки яркости из разных мест проходное устройство надо установить в одной точке, а в другой монтируется поворотный диммер. Такая схема — одна из простых в плане реализации.

В одной точке помещения будет выполняться включение света или его выключение, а в другой будет производиться настройка параметра интенсивности.

Но в продаже можно найти современные модели устройств, с помощью которых выполняется проходное диммирование освещения. Речь идет о сенсорных регуляторах. Такие устройства обладают электронной начинкой, что позволяет синхронизировать работу одновременно нескольких устройств. Для управления процедурой регулировки посредством диммеров устройства надо предварительно подключить к так называемым спутникам. В зависимости от вида устройства их количество может составить от 5 до 10 штук.

Как изготовить диммер самостоятельно?

Чтобы сделать самодельный диммер, потребуется схема.

Что понадобится?

Чтобы собрать устройство, потребуются следующие компоненты:

  • две резисторных элемента, один из них должен быть переменным, а другой постоянным;
  • неполярное конденсаторное устройство;
  • симистор;
  • медный проводник;
  • динистор;
  • паяльник с расходными материалами;
  • текстолитовая плита, будет использоваться для установки платы.

Схема

Общая схема сборки диммера

Пошаговая инструкция

Руководство по сборке диммера:

  1. Все электронные элементы устанавливаются на плате. Посредством использования проводников выполняется их соединение в соответствии со схемой, представленной выше. Для подключения используется пайка.
  2. На текстолитовой плите необходимо разметить отверстия, которые будут использоваться для выводов.
  3. В намеченных местах выполняется сверление. Принцип действия схемы состоит в том, что на неполярное конденсаторное устройство будет поступать переменный ток резисторного элемента. Конденсаторный компонент будет заряжаться и подавать напряжение на источник света.
  4. Когда сборка завершена, выполняется тестирование диммера. Для этого потребуется ламповый патрон с источником света. Сам регулятор подключается к патрону, для соединения применяются электроцепи. Затем собранный механизм подключается к бытовой сети. Поскольку электросеть характеризуется наличием повышенного напряжения, то все соединительные места рекомендуется надежно заизолировать. Не допускается прикосновение руками к оголенным частям на плате, где расположены проводниковые элементы. Если сборка выполнена верно, то диммер будет рабочим.

Видео «Пример изменения яркости недиммируемых ламп»

Игорь Николаев показал в ролике, как можно изменить параметр яркости обычных диодных лампочек с помощью диммера.

Диммер для светодиодных ламп 220в: как выбрать и подключить

Современный диммер для светодиодных ламп имеет сложную электрическую схему, работа которой заключается в регулировке светового потока. Вдобавок он служит защитой от перенапряжения, исполняет роль распределителя нагрузки и экономит электрический ресурс, продлевая срок службы ламп.

Знакомимся с устройством и работой диммера

Регуляторы для светодиодных ламп напряжением 220 В схожи по функциональности и строению с моделями для других источников света. Вообще – это выключатель с регулировочным колесом или кнопками. На корпусе имеются подключения к цепи для подсоединения проводов. Функциональность регулятора заключается в отсекании амплитуды напряжения. Поворачивая колесо или нажимая кнопки, изменяется яркость свечения лампы, а значит, и всего освещения. Диммеры для светодиодных ламп имеют свои особенности:

  • диммером нельзя регулировать яркость каждого цикла включения освещения. Лучше это делать периодически. Если требуется меньшая яркость света при каждом включении, в осветительных приборах надо установить лампы меньшей мощности;
  • для работы диммера с LED лампами обязательно нужен дроссель. Это связано с тем, что такие модели рассчитаны на меньшую мощность;
  • LED лампы имеют в 10 раз меньшую мощность от обычных источников света, что требует применения для них маломощных диммеров;
  • и, наконец, основное их отличие заключается в регулировке. Яркость LED ламп регулируется не понижением или повышением силы тока, а за счет изменения его импульсов в электросети.

Именно эти особенности указывают, почему нельзя ставить диммер LED ламп с другими типами ламп. Выключатель и лампы должны иметь совместимость.

Различие по управлению

Существуют разные виды диммеров для светодиодных ламп, которые различаются своим управлением:

  • механическое управление производится кнопкой или колесом. Механизм может быть поворотный, нажимной или поворотно-нажимной. При поворачивании колеса или нажиме кнопки изменяется яркость освещения;
  • электронное управление имеет выключатель, у которого стоит сенсорный или инфракрасный датчик;
  • акустическая регулировка происходит за счет наличия датчика, реагирующего на громкие звуки, например, голос человека. Недостатком такого управления является незапланированное изменение яркости освещения от звука случайно упавших предметов;
  • дистанционная регулировка выполняется через пульт управления. Таким диммером удобно регулировать или включать освещение, не вставая с места.

Из всех рассмотренных моделей самым надежным можно считать поворотный выключатель. Его механизм отличается простотой и приемлемой ценой. При выполнении монтажа проще всего найти комплектующие. Одним из основных и популярных производителей диммеров считается фирма Легранд.

Различие по типу установки

Современные модели LED диммеров имеют большой ассортимент, которые различаются типом установки:

  • модульные модели крепят на DIN-рейку и располагают в распределительном щите. Управление ими производят через выносные регуляторы. Кроме изменения яркости свечения ламп, выключатель имеет дополнительные функции;
  • моноблочные модели достаточно распространены. Их можно установить вместо обычного выключателя, но они должны иметь ШИМ функцию;
  • по типу установки регуляторы бывают для скрытой и наружной электропроводки.

Что такое ШИМ?

Расшифровка ШИМ означает широтно-полюсная модуляция. Она применяется для регулировки свечения светодиодных ламп. Принцип работы ШИМ генератора заключается в вырабатывании высокочастотного тока около 200 Гц, который требуется для работы LED лампы. Изменение яркости свечения происходит от смены напряжения, ширины и времени положительного импульса. На выходе ШИМ генератора образуется электрический сигнал, при этом частота и величина тока не изменяются.

Совместимость LED ламп

Чтобы узнать, какой надо приобрести диммер, необходимо определить его совместимость с источником света. Так как LED лампы бывают регулируемые и нерегулируемые, не любой диммер можно ставить в цепь. Некоторые производители выпускают LED лампы, работающие с определенным регулятором. Определить их совместимость можно по таблицам, находящимся у продавцов этого вида товара. Перед установкой диммера надо изучить технические характеристики источников света:

  1. Нерегулируемые лампы нельзя ставить совместно с диммером. Это приведет к их плохой работе, а при выходе из строя, продавец или производитель откажет в гарантийном обслуживании.
  2. Регулируемые лампы часто функционируют со стандартными регуляторами, которые работают по принципу отсечки фазы. Но здесь надо знать, что на качество затемнения освещения влияет количество светодиодов на коммутаторе. Большинству регуляторов для оптимальной работы требуется минимальная нагрузка в пределах 20–45 Вт. Если для достижения такой мощности достаточно 1 лампы накаливания, то светодиодных с напряжением 220 В придется подключить 2 или 3 штуки.
  3. Если для освещения требуется использовать только 1 LED лампу, лучше воспользоваться регулятором низкого напряжения. Он предназначен для регулировки низковольтного LED освещения, которое имеет магнитный трансформатор.

При покупке LED лампы надо обращать внимание на упаковку. Производители на ней указывают, можно ли использовать регулятор. Это может быть надпись или круглый значок.

Расчет максимального количества ламп

При выборе регулятора для установки своими руками на домашнее освещение необходимо учитывать его мощность. Рассчитать максимальное количество LED ламп на 220 В по принципу расчета обычных источников света не получится. Проще всего можно за консультацией обратиться к специалисту или, если для освещения комнаты используется 1 лампа 220 В, взять ее с собой в магазин и испытать на работоспособность методом подключения к регулятору.

Но если принято решение самостоятельного расчета, давайте рассмотрим различия между обычными и светодиодными источниками света 220 В:

  • количество обычных источников света можно рассчитать делением максимальной мощности регулятора на мощность одной лампы;
  • чтобы рассчитать максимальное количество LED источников света 220 В, необходимо максимальную мощность регулятора разделить на 10. Получившийся результат разделить на мощность светодиодной лампы.

Самостоятельная установка регулятора

Процесс подключения регулятора своими руками довольно прост:

  1. Отключите на электросчетчике подачу электроэнергии.
  2. В месте установки надо подрезать электропроводку и зачистить концы проводов.
  3. Подать электричество в сеть и тестером или пробником найти фазовый провод. После этого электроэнергию опять надо отключить.
  4. На регуляторе фазовый провод подсоедините к разъему с буквой L, а другой провод вставьте в разъем с буквой N. После этого зажмите провода зажимами и проверьте прочность соединения.
  5. После того как вся схема собрана, ровно выставьте диммер, отрегулировав его регулировочными болтами.
  6. Сверху закрепите декоративный кожух и, подав напряжение, испытайте работоспособность системы.

На данном этапе, если все приборы освещения работают нормально, установку регулятора своими руками можно считать оконченной.

Самодельный регулятор

Схема самодельного диммера довольно проста. Если в доме имеется паяльник и радиодетали ее можно спаять своими руками, конечно, желательно обладать хотя бы минимальными навыками радиодела.

Для изготовления регулятора своими руками понадобиться медный провод, симистор, два конденсатора, динистор, переменный и постоянный резисторы, а также паяльник с припоем. Радиодетали установите на текстолитовой плате, и спаяйте их между собой проводом как указано на схеме.

Принцип работы самодельной схемы заключается в подаче тока с переменного резистора на неполярный конденсатор. В свою очередь, он заряжается и отдает энергию лампе. Если схема собрана правильно и все детали работоспособны, регулятор должен заработать.

Установив самостоятельно диммер на LED освещение 220 В, хозяин сделает шаг к созданию высокотехнологичного жилья.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

Лучшая цена на диодный диммер — Выгодные предложения на диодный диммер от мировых продавцов диодных диммеров

Отличные новости !!! Вы попали в нужное место для диодного диммера. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку этот верхний диодный диммер в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что купили свой диодный диммер на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в диодном диммере и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов.Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести diode dimmer по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

Отзывы на диммеры

для светодиодных ламп 30а — Интернет-магазины и отзывы на диммеры для светодиодных ламп 30а на AliExpress

Отличные новости !!! Вы попали в нужное место для диммеров для светодиодных ламп 30а.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку эти верхние диммеры для светодиодных ламп 30a в кратчайшие сроки станут одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели диммеры для светодиодных ламп 30a на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в диммерах для светодиодных ламп 30a и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести dimmers for led lamp 30a по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните самый лучший шоппинг прямо здесь.

диммеров света

диммеров света

Elliott Sound Products Диммеры освещения

© 2008, Род Эллиотт (ESP)
Обновлено ноябрь 2017 г.

верхний


Лампы и индекс энергии

Основной указатель


Содержание


Введение

С самого начала я должен подчеркнуть, что в этой статье описаны диммеры (или «диммерные переключатели» в США), используемые в жилых помещениях.Сценические диммеры большой мощности не рассматриваются, и я также не предлагаю подробно обсуждать C-Bus, DALI или какие-либо другие системы домашней автоматизации. Несмотря на то, что между продуктами высокого и низкого уровня очень много общего, процесс автоматизации практически полностью цифровой по своей природе и может быть реализован разными способами для достижения того же конечного результата.

В некоторых юрисдикциях в США предписывает , что датчики затемнения и / или присутствия должны использоваться для минимизации потерь энергии в офисных помещениях и на автостоянках (среди прочего).Ожидайте, что в ближайшие несколько лет это станет более распространенным в стремлении свести к минимуму потери энергии.

Есть две основные категории традиционных диммеров переменного тока (также известных как диммеры с фазовой отсечкой), обычно называемых «передним фронтом» и «задним фронтом», и хотя оба из них будут работать с резистивными нагрузками, такими как лампы накаливания, Выбор важнее для любой лампы, которая включает в себя электронику. Вероятно, есть даже несколько из ныне очень старых (и крайне неэффективных) диммеров-реостатов, и, возможно, несколько, основанных на переменных автотрансформаторах (также известных как Variacs).Поскольку ни один из последних двух не является обычным или когда-либо станет обычным явлением в будущем, они будут описаны только в общих чертах.

Электронные трансформаторы сейчас очень распространены для низковольтного освещения, и они приобрели популярность, потому что они дешевы и сравнительно эффективны. По любому из этих устройств имеется очень мало реальной информации. В сети существует несколько схем основных (передних) диммеров и даже некоторые данные по электронным трансформаторам, но почти ничего о диммерах по заднему фронту и их работе.

Все формы сигналов и расчеты, использованные в этой статье, основаны на питании от сети переменного тока 50 Гц и 230 переменного тока. Другие напряжения и частоты могут быть экстраполированы из показанных данных. Это было сделано в интересах простоты, и общие тенденции идентичны для любого напряжения и частоты. Большинство показанных форм сигналов получены с помощью симулятора, а не путем прямого измерения. Это упрощает процесс построения графиков, а также позволяет очень детально анализировать форму волны, ее коэффициент мощности и гармоники.Хотя можно было бы использовать реальные измерения, подготовка к ним занимает гораздо больше времени и имеет много неопределенностей из-за искажения формы сигнала напряжения, колебаний напряжения питания и внешнего шума и / или искажений.

К сожалению, почти все бытовые диммеры двухпроводные и поэтому не имеют нейтрали. Это накладывает множество ограничений на диммер и на то, насколько хорошо (или иначе) он будет работать, особенно с нерезистивными нагрузками. Эти стандартные диммеры с последовательным соединением отлично работают с лампами накаливания, потому что нить накала лампы обеспечивает непрерывное соединение с нейтралью, а диммер имеет эталон (по крайней мере, своего рода).Для электронных источников питания (КЛЛ, светодиоды и т. Д.) Эта ссылка отсутствует, пока лампа не начнет потреблять ток, и работа регулятора яркости может быть в лучшем случае неустойчивой, а в худшем — бесполезной. Один из способов «исправить» это — использовать лампу накаливания параллельно с электронной лампой. Одну (маленькую) лампу накаливания можно использовать с несколькими электронными лампами — при условии, конечно, что это , а именно , предназначенные для использования с диммерами!

Наконец, есть диммеры, которые используются только с постоянным током.Раньше это было просто любопытство (или использовалось для управления скоростью двигателя постоянного тока), но теперь они получат новую жизнь со светодиодным освещением. Диммируемые балласты состоят из импульсных источников питания постоянного тока, адаптированных для обеспечения постоянного тока, необходимого для светодиодов. Диммирование часто достигается за счет очень быстрого включения и выключения постоянного тока и почти без потерь.

Если не указано иное, напряжение, используемое для всех примеров, соответствует австралийскому / европейскому стандарту 230 В при 50 Гц. Полный цикл занимает 20 мс, а пиковое напряжение номинально составляет 325 В.Для сети 120 В 60 Гц период одного цикла составляет 16,67 мс, а пиковое напряжение — 170 В. Читатели в США должны будут выполнить необходимые преобразования для соответствия более низкому напряжению и более высокой частоте.

ВНИМАТЕЛЬНО ПРИМЕЧАНИЕ: Чрезвычайно важно, чтобы читатель понимал, что
диммируемые электронные лампы (как CFL, так и LED) обычно считаются совместимыми с диммерами передней и задней кромки. С очень мало
исключения, это неправда! Почти все электронные лампы потребляют очень высокий пиковый ток при подключении к диммерам TRIAC (передний фронт), потому что
время нарастания входной сети невероятно быстрое.

Это создает огромную нагрузку на сам диммер и, что более важно, на электронику лампы. Несмотря на заявления производителей, лампа почти наверняка
не выдерживают злоупотребления очень долго, поэтому срок службы лампы сокращается — возможно, значительно. Задний (или универсальный) диммер не подвержен влиянию
лампа быстро нарастающей формы волны, поэтому не вызывает чрезмерно высокий пиковый ток.


Важно понимать, что стандартный 2-проводной диммер был разработан для использования с лампами накаливания.Несмотря на или , которые вы прочитаете в другом месте, работа будет непредсказуемой с ЛЮБОЙ нагрузкой, кроме лампы накаливания! Для надежной работы с электронными нагрузками (регулируемые светодиодные лампы или лампы CFL) диммер должен быть 3-проводным (активный, нейтральный и нагрузочный). К сожалению, это необычно, и обычно их сложно установить в качестве модернизации, потому что в большинстве распределительных коробок освещения нет нейтрали. Двухпроводные диммеры были разработаны для ламп накаливания (резистивных) и никогда не предназначались для использования с электронной нагрузкой.


1 — Принципы коэффициента мощности

Я буду использовать термин «дружественный» для описания форм сигналов, которые вносят небольшие искажения или не вносят никаких искажений в сеть питания и которые имеют хороший коэффициент мощности. Многие люди считают, что коэффициент мощности важен только для индуктивных или емкостных нагрузок, но это совершенно неверно. Любая форма волны тока, которая не является точной копией формы волны напряжения, имеет коэффициент мощности меньше единицы (идеальный вариант). Не имеет значения, просто сдвинута форма сигнала тока по фазе или нелинейна, коэффициент мощности все равно будет затронут.См. «Коэффициент мощности» для получения дополнительной информации.

  • Unity — ток и напряжение совпадают по фазе и имеют идентичную форму волны (резистивные нагрузки)
  • Запаздывание — появляется ток после напряжения , вызванный индуктивными нагрузками (двигатели, трансформаторы)
  • Опережающий — ток возникает с до напряжения, вызванного емкостными нагрузками (редко, но может и происходит))
  • Нелинейный — напряжение и ток синфазны, но имеют разные формы волны (многие электронные нагрузки)

На рисунке 1 показан пример каждого из вышеперечисленных.Напряжение показано красным, а ток — зеленым. Амплитуды двух сигналов намеренно различаются, поэтому два графика хорошо видны. Эти графики не относятся к какому-либо конкретному масштабу, но все коэффициенты мощности настроены как можно ближе к 0,5, а мощность в каждом случае составляет 52,9 Вт. Дополнительные 230 мА потребляются от сети, но не работают.

Рисунок 1 — Осциллограммы напряжения и тока

Поскольку напряжение и ток просто умножаются вместе для получения номинальной мощности в ВА, очевидно, что для индуктивного и емкостного примеров номинальная мощность в ВА составляет 105.8 ВА, но мощность все та же, 52,9 Вт. Нелинейная нагрузка — это особый случай просто потому, что является нелинейной . Мощность составляет 64,8 Вт, а схема по-прежнему требует 105,8 ВА от сети, но мощность нагрузки составляет 64,8 Вт, а коэффициент мощности составляет 0,61 — небольшое улучшение, но его нелегко исправить!

Если номинальная мощность в ВА и номинальная мощность различаются (ВА не может быть ниже мощности), из сети потребляется чрезмерный ток, вызывая потери в распределительных кабелях, трансформаторах, подстанциях и генераторах переменного тока.Генератор мощностью 1 МВт с коэффициентом мощности 0,5 может производить только 500 кВт, поскольку в конечном итоге он ограничен своей номинальной мощностью в ВА. Фактически все компоненты системы распределения электроэнергии ограничены номинальной мощностью в ВА, а не , а не номинальной мощностью.

Рисунок 2 — Цепи, используемые для создания сигналов напряжения и тока

На рис. 2 показаны принципиальные схемы, используемые для получения вышеуказанных сигналов для тех, кому это интересно. Они являются теоретическими, поскольку фактические нагрузки редко бывают такими простыми и обычно не могут быть точно представлены с таким небольшим количеством компонентов.Однако эффект достаточно похож, так что эти схемы вполне адекватны, чтобы показать общую тенденцию. Как указано мелким шрифтом во многих рекламных объявлениях, «фактические результаты могут отличаться».

Даже если мощность трансформатора может быть в пределах номинальной мощности, указанной на паспортной табличке, при превышении номинальной мощности в ВА он перегреется. Постоянный перегрев приведет к отказу. По этой причине компании-поставщики и / или органы власти во всем мире должны иметь наилучший возможный коэффициент мощности, чтобы максимально использовать свое оборудование.За большие установки взимается дополнительная плата, если их коэффициент мощности не находится в указанных пределах.

Формы сигналов, подобные последнему примеру, являются наихудшими, потому что очень мало что можно сделать извне, чтобы изменить форму сигнала для уменьшения нелинейностей, а гармоники сетевой частоты вводятся в систему, вызывая дополнительные проблемы. Полное обсуждение разрушения, вызванного нелинейными формами сигналов, выходит за рамки данной статьи, но многие страны ввели (или планируют ввести) обязательную коррекцию коэффициента мощности для всех электронных нагрузок, превышающих заданный предел мощности.


2 — Принципы диммера

Обычно для уменьшения яркости лампы применяют тем или иным способом подаваемое напряжение. В очень ранних попытках последовательно с лампой использовался реостат (переменный резистор), поскольку в то время не было жизнеспособной альтернативы. Такой подход тратит огромное количество энергии, и, вероятно, прошло уже более 40 лет с тех пор, как кто-либо создал такого зверя. Такой подход действительно обеспечивает очень удобную нагрузку на сеть питания, имея нулевые коммутационные импульсы и идеальный коэффициент мощности.Утилизация избыточного тепла является сложной задачей, особенно для ламп достаточно большой мощности. Можно ожидать, что диммеры с реостатом (если они будут найдены) будут довольно большими из-за тепла, которое необходимо отводить.

Регулируемый автотрансформатор (широко известный как Variac ™) почти не расходует энергию и так же дружественен к электросети, как реостат, но является дорогим (и громоздким) способом уменьшения яркости ламп. Самый дешевый из доступных в настоящее время переменных трансформаторов стоит около 150 долларов и весит несколько килограммов. Хотя нет никаких сомнений в том, что это хороший подход, экономические соображения не позволяют использовать его в общих целях.Диммеры Variac были обычным явлением в телестудиях примерно 20 лет назад. Вы можете увидеть комментарии (в другом месте) о том, что диммеры Variac работают с потерями и неэффективны, но это просто неправда — они очень эффективны и конкурируют с лучшими твердотельными диммерами (TRIAC, SCR или IGBT). Однако они громоздкие и несколько неудобны для использования в качестве диммеров. Дистанционное управление достигается за счет использования серводвигателя для регулировки положения стеклоочистителя и, следовательно, выходного напряжения. Для получения дополнительной информации о вариаках в целом см. Трансформеры — Вариак.

Еще одним методом, который использовался в первые дни, было устройство, называемое «магнитный усилитель» (или просто магнитный усилитель), но, насколько я мог найти, они не были распространены ни в чем, кроме довольно больших промышленных диммеров, используемых для телевизора. студийное освещение. Как и Variac, магнитный усилитель не создает помех или создает небольшие помехи, но они были заменены другими методами. Я не собираюсь описывать принципы работы магнитных усилителей здесь или где-либо еще на сайте ESP.

Сегодня наиболее распространенным диммером является диммер TRIAC с фазовым регулированием (так называемый «срезанный по фазе») переднего фронта.TRIAC — это устройство с двунаправленным переключением, и для его включения требуется всего лишь короткий импульс. В цепи переменного тока он автоматически отключается при изменении полярности напряжения переменного тока. Это происходит потому, что напряжение (и, следовательно, ток) проходят через ноль. TRIAC не может оставаться проводящим при нулевом токе, поэтому отключается. Процесс включения и выключения происходит 100 раз в секунду (120 раз для сети 60 Гц). Тем не менее, бытовые диммеры развиваются, и последний тип называется «универсальным» диммером.Они могут изменять режим работы с передней кромки на заднюю в зависимости от нагрузки (см. Ниже объяснение различных типов).

Изменяя соотношение между включенным и выключенным напряжением, создается грубая схема широтно-импульсной модуляции, которая позволяет изменять мощность лампы в широком диапазоне. Лампы накаливания идеально подходят для этого метода управления и обеспечивают приятный и естественный переход от почти выключенного до (почти) полного включения. Многие дешевые диммеры TRIAC используют самую простую схему, поэтому низкие настройки могут быть нестабильными.При средней настройке среднеквадратичное значение напряжения полуволны составляет 162 В при напряжении питания 230 В переменного тока.

Независимо от фактически используемого метода, цель состоит в том, чтобы изменить мощность, подаваемую на лампу, чтобы пользователь мог установить уровень освещенности, соответствующий случаю. Ни один из общедоступных диммеров не способен поддерживать хороший коэффициент мощности (что важно для исправности электросети).

Для надежной работы диммеры должны быть 3-проводными (активный, нагрузочный и нейтральный), чтобы гарантировать точное поддержание точки пересечения нуля формы сигнала сети.Небольшие диммеры не являются трехпроводными, потому что это усложняет установку, поэтому с любыми другими нагрузками, кроме резистивных, таких как лампы накаливания, диммер часто будет плохо себя вести. Степень ненадлежащего поведения зависит от типа нагрузки (особенно электронных ламп, таких как КЛЛ или светодиодные лампы).

Двухпроводные диммеры не имеют надежной контрольной точки перехода через ноль, потому что они полагаются на нить накала лампы в качестве нейтрального эталона. Электронные нагрузки не дают никакого полезного эталона, потому что заряженные конденсаторы (внутри источника питания лампы) вызывают нулевой ток в течение большей части цикла формы сигнала.Поэтому диммер не может быть включен постоянно (на полную мощность), потому что требуется время, прежде чем TRIAC сможет сработать. Добавление лампы накаливания параллельно с электронными нагрузками может надежно работать только с диммерами задней кромки — передние лампы никогда не должны использоваться с какой-либо электронной нагрузкой.

Внимание Внимание: КЛЛ или светодиодные лампы без диммирования ни в коем случае нельзя подключать к диммируемым
контур — даже если диммер установлен на максимум.Хотя это и не очевидно, ток, потребляемый цепью лампы, может резко возрасти (в 5 или более раз) и может
создают опасность возгорания, а также сокращают срок службы электроники лампы.

Даже коммерческие диммеры, что сделать поддерживать точный справочник пересечения нулевого уровня не должны использоваться с CFL или светодиодные лампы, или любой другой «входной конденсатор
нагрузка источника питания. В одной установке, которую я знаю лично, у конечного пользователя было почти 100% отказов светодиодных ламп, подключенных через коммерческую
диммер.Нормальная частота отказов составляет менее 1%, но поставщики диммера предпочли возразить.

У только разница между их установкой и всеми остальными — это диммер, поэтому он может быть только диммером, вызывающим сбои. Как ни странно,
И конечный пользователь, и поставщик диммеров, похоже, не могли решить эту простую концепцию.

В коммерческих диммерах большой мощности часто используются тиристоры (подключенные в обратном параллельном режиме), поскольку они имеют гораздо более высокие номинальные токи, чем триАК.Запуск обычно осуществляется высокочастотными импульсами, подаваемыми в течение всей продолжительности «включенной» части сигнала сети. Они имеют полную ссылку 3-жильный, и никогда не теряют ссылку пересечения нуля. Тем не менее, как отмечалось выше, даже этим диммерам нельзя доверять, чтобы они функционировали должным образом с нагрузками с электронным источником питания.


2.1 — Передние диммеры

Также известны как диммеры с прямым управлением фазой. В настоящее время это наиболее распространенные типы, и они называются так потому, что диммер функционирует, буквально удаляя передний фронт сигнала переменного тока.Активным переключателем малой и средней мощности почти всегда является TRIAC для типичных домашних диммеров. При срабатывании TRIAC на нагрузку подается сетевой сигнал с периодом задержки от нуля миллисекунд (полностью включен) до примерно 9 мсек (очень тусклый). В качестве примера на рисунке 3 показана форма волны напряжения на нагрузке для регулятора яркости по переднему фронту, установленного на 50%, причем первые два цикла (выделены зеленым цветом) не затемнены в качестве эталона. Эта форма волны является «идеальной», что означает, что это результат, который вы ожидаете от схемы, работающей в точном соответствии с теорией.Большинство передовых диммеров довольно близки к идеалу — по крайней мере, с резистивными нагрузками.

Рисунок 3 — Форма сигнала идеального диммера по переднему фронту

Как отмечалось выше, диммеры с передней кромкой никогда не должны использоваться с компактными люминесцентными лампами (КЛЛ) , даже если в инструкциях прямо указано, что это разрешено . Очень быстро нарастающий сигнал вызывает сильный ток, протекающий через конденсатор основного фильтра, который является частью цепи балласта лампы.У большинства современных светодиодных ламп будет та же проблема. Я предлагаю использовать ТОЛЬКО заднего края или универсальные диммеры с любыми регулируемыми CFL или светодиодными лампами.

Осциллограмма ниже показывает ток, потребляемый лампой накаливания мощностью 75 Вт, подключенной к переднему диммеру. Лампа потребляет 200 мА. Время нарастания сигнала было измерено на уровне 1,8 мкс — это быстро на любом языке! В сети 230 В напряжение увеличивается с нуля до 325 В менее чем за 2 мкс! Именно это чрезвычайно быстрое время нарастания вызывает проблемы с электронными нагрузками, потому что даже с «совместимыми с диммером» CFL или светодиодными лампами всегда есть , некоторая емкость, которая заряжается от почти нуля до полного напряжения менее чем за 2 мкс.С помощью лампы накаливания вы даже можете увидеть небольшое превышение кривой тока! Это вызвано крошечной емкостью провода от диммера к лампе.

Рис. 3A — Форма кривой тока диммера по переднему фронту

Например, если электронный балласт потребляет 83 мА от сети, этого достаточно для питания лампы с электронным переключением мощностью 8 Вт (любого типа). Если для повышения коэффициента мощности не используется никакая дополнительная схема, пиковый ток будет 270 мА, а коэффициент мощности — около 0.42 — довольно плохо, но, конечно, не безвестно. Если та же самая цепь затем запитана через диммер, в худшем случае среднеквадратичный ток вырастет до 240 мА с пиками 4,2 А. Коэффициент мощности упал до 0,14 — поистине ужасный результат. На данный момент источник питания этой лампы потребляет более 55 ВА из сети с действительно неприятным всплеском волны. См. Рисунок 2 (Нелинейная нагрузка) для примера типичного внешнего интерфейса источника питания. Конденсатор фильтра на рисунке 2 (используемый для создания сигналов, показанных на рисунке 1) имеет емкость 18 мкФ.Это не обычное значение, но оно использовалось для обеспечения совпадения примеров. Зарядный ток, протекающий через конденсатор, чрезвычайно высок, поскольку скорость изменения напряжения также очень высока.

Рисунок 4 — Типовая схема диммера передней кромки

Схема, приведенная выше, типична для типичного имеющегося в продаже переднего диммера. C1 и L1 предназначены для подавления радиопомех. Схема работает, используя фазовый сдвиг, создаваемый VR1, C2, R1 и C3.Эта сеть задерживает сигнал, подаваемый на DB1 (двунаправленный пробойный диод, называемый DIAC). Когда напряжение превышает 30 В (типичное) напряжение пробоя DIAC, он полностью проводит, и заряд в C3 используется для запуска TRIAC. После запуска TRIAC будет полностью проводить, пока ток не упадет почти до нуля, после чего снова отключится. Этот процесс повторяется для каждого полупериода сетевого напряжения. Точки задержки, включения и выключения видны и показаны на рисунке 3.

Рисунок 4A — Форма сигнала переднего фронта диммера в электронной нагрузке

Передние диммеры никогда не должны использоваться с какой-либо электронной нагрузкой (большинство электронных балластных схем), потому что очень быстрое время нарастания напряжения вызывает чрезвычайно высокий мгновенный ток, протекающий в конденсатор, как показано выше. На рисунке 4A показаны пики тока более 11A в том же примере нелинейной нагрузки, который использовался для рисунков 1 и 2. Среднеквадратичный ток составляет 1,12 А для мощности нагрузки чуть более 56 Вт.Обратите внимание, что мощность нагрузки упала совсем немного — с 64,8 Вт до ~ 56 Вт. Форма волны напряжения точно такая, как показано на рисунках 3 и 3A. Пиковый ток 11А при среднеквадратичном значении тока, немного превышающем ампер, крайне неблагоприятен для сети, диммера и электронной нагрузки. Стандартный 2-проводный диммер будет отображать форму волны, очень похожую на показанную, даже при установке на максимум!

Возможно, что удивительно, индуктивные нагрузки (такие как обычные трансформаторы с железным сердечником или обычные электродвигатели вентиляторов) вполне безопасны с передовыми диммерами, поскольку индуктивность ограничивает время нарастания тока до безопасных значений.Эти нагрузки должны всегда использовать подходящий диммер передней кромки, который должен быть сертифицирован производителем как подходящий для нагрузок двигателя или трансформатора.

Рисунок 5 — Внутренняя часть переднего диммера

Черное устройство слева — это TRIAC. Хотя он оснащен радиатором, контакт между радиатором и TRIAC лучше всего описать как случайный. Когда его разобрали, в нем почти не было контакта, однако он надежно проработал 12 лет и, вероятно, прослужит еще столько же.Простота схемы очевидна в отсутствии изощренности печатной платы. Все немногие используемые компоненты имеют сквозные отверстия, а на задней стороне платы нет никаких деталей.

Схема почти идентична показанной выше. Катушка и оранжевый конденсатор предназначены для подавления помех, но предохранитель не установлен. В случае короткого замыкания диммера лампа просто включится на полную яркость.

Хотя производители передовых диммеров часто заявляют, что они подходят для использования с трансформаторами с железным сердечником, некоторые, безусловно, не годятся.Распространенная проблема с простыми диммерами TRIAC заключается в том, что они переходят в «полуволновой» режим — проводят только на одной полярности формы волны сети. Это катастрофа для любого трансформатора, который сразу же потребляет очень большой ток, ограниченный только сопротивлением первичной обмотки. Вероятно, лучше использовать «универсальный» диммер для индуктивных нагрузок, потому что они имеют гораздо более сложную схему и гораздо менее вероятно, что они будут «обмануты» для работы с одной полярностью (полуволновой).

Имеется полная схема известного рабочего (т.е.е. построен и протестирован) 3-проводной диммер передней кромки на страницах проекта ESP. См. Подробности в Project 157B.


2.2 — Диммеры задней кромки

Также известны как диммеры с обратным фазовым регулированием. Диммер по заднему фронту — это значительно более сложная схема. Простая схема, которая является общей для типов с передним фронтом, больше не может использоваться, потому что большинство TRIAC не может быть отключено. TRIAC выключения ворот (GTO) существуют, но они намного дороже и реже имеют относительно небольшие размеры, необходимые для освещения.Чтобы иметь возможность реализовать диммер по заднему фронту, переключающее устройство должно включаться, когда форма сигнала переменного тока проходит через ноль, с использованием схемы, называемой детектором перехода через ноль. По прошествии заранее определенного времени, установленного системой управления, переключающее устройство отключается, и оставшаяся часть формы сигнала не используется нагрузкой.

Диммеры с задней кромкой обычно используют полевой МОП-транзистор , так как они почти не требуют управляющего тока и являются прочными и надежными. Кроме того, они относительно дешевы и доступны при номинальном напряжении, подходящем для работы от сети.Другой вариант — использовать IGBT (биполярный транзистор с изолированным затвором), который сочетает в себе преимущества MOSFET и биполярного транзистора. Как правило, они дороже, чем полевые МОП-транзисторы. Опять же, форма сигнала идеальна, и из реальной формы сигнала, показанной на рисунке 9, очевидно, что имеется значительное отклонение, особенно при полной мощности. Это вызвано тем, что часть приложенного напряжения всегда будет потеряна, потому что сложной электронике для работы требуется некоторое напряжение.

У большинства диммеров задней кромки есть еще одна полезная функция — по крайней мере, при использовании с лампами накаливания.Схема предназначена для обеспечения «плавного пуска», при котором напряжение на лампе увеличивается относительно медленно. С лампами накаливания это почти исключает «тепловой удар» — тот короткий период при включении, когда лампа потребляет примерно в 10 раз больший рабочий ток. Термический шок является причиной большинства ранних отказов ламп — действительно, очень редко любая лампа накаливания выходит из строя, когда она включена. Выход из строя почти всегда происходит в момент включения переключателя. Благодаря включению функции плавного пуска срок службы лампы увеличивается, но это не сильно помогает КЛЛ или светодиодным лампам.

Рисунок 6 — Форма сигнала идеального диммера задней кромки

И снова точки переключения и задержка показаны на осциллограмме. Полная принципиальная схема не особенно полезна для диммера по заднему фронту, потому что они обычно используют специализированные интегральные схемы (или довольно сложные схемы с более распространенными ИС) для выполнения необходимых функций. На рисунке 7 показана блок-схема основных частей схемы, а на рисунке 8 показана схема диммера с использованием коммерческой ИС [1].

Рисунок 6A — Форма сигнала диммера задней кромки захваченного сигнала

Идеал близок к реальности. Форма волны тока, показанная выше, была получена с помощью диммера по заднему фронту с использованием лампы накаливания мощностью 75 Вт в качестве нагрузки. Как видите, форма волны практически идентична теоретической (идеальной) форме волны, показанной выше. Среднеквадратичный ток составляет 200 мА. Измеренное время спада (от максимального до нулевого тока) составило около 30 мкс, но это неопасно, потому что это снятие напряжения , а не приложение напряжения — очень, очень разные сценарии.

Рисунок 7 — Блок-схема диммера задней кромки

C1 и L1 снова являются компонентами подавления радиопомех. Выпрямитель необходим, потому что полевые МОП-транзисторы не могут переключать переменный ток, только постоянный ток. Источник питания, детектор перехода через ноль и таймер обычно являются частью ИС, предназначенной для этой цели. Формы сигналов показаны в каждой точке цепи. Выходной сигнал детектора пересечения нуля сбрасывает таймер, отправляя на его выход высокий уровень, и, таким образом, включает полевой МОП-транзистор. По прошествии времени от нуля до 10 мс для 50 Гц на выходе таймера становится низкий уровень, полевой МОП-транзистор выключается, и ток через нагрузку прерывается.

Во многих отношениях диммеры передней и задней кромок являются полной противоположностью друг друга.

Поскольку выходное напряжение растет относительно медленно, массивный всплеск тока, который передний диммер вызывает в емкостной нагрузке, больше не является проблемой, и некоторые регулируемые CFL и светодиодные лампы отлично работают с этим типом диммера. Однако диммеры с задним фронтом никогда не должны использоваться с трансформаторами с железным сердечником, и это всегда указывается в инструкциях.

Почему? Казалось бы, диммер задней кромки должен быть в порядке, но проблема в значительной степени связана с обратной ЭДС, которая генерируется, когда переключатель выключается 100 или 120 раз в секунду.Энергия обратной ЭДС не может быть рассеяна, поэтому она накапливается до потенциально разрушительного напряжения. Кроме того, включение любой индуктивной нагрузки при пересечении нулевого уровня сигнала в сети приводит к намного более высокому, чем обычно, току намагничивания. Наиболее вероятным результатом будет повреждение диммера из-за перегрузки по току или перенапряжения. Маловероятно, что коммерческие установки смогут обрабатывать дополнительный ток или рассеивать энергию обратной ЭДС без сильного перегрева или разрушения.

Обратная ЭДС генерируется при любой индуктивной нагрузке, потому что индуктор является накопителем энергии (реактивным). Энергия сохраняется в виде магнитного поля, и когда ток прерывается, магнитное поле схлопывается, генерируя ток в процессе. Если к индуктивному компоненту не подключена нагрузка (например, лампа), даже небольшой ток становится очень высоким напряжением. Этот эффект наблюдается регулярно, но обычно рассеивается в виде небольшой дуги на контактах переключателя. Такие дуги безвредны, если они возникают только несколько раз в день, но если они повторяются 100 или 120 раз в секунду, средняя мощность становится значительной, равно как и нагревание и возможность возгорания.

Рисунок 8 — Схема диммера задней кромки

Как видите, нелегко понять, как работает схема, если просто столкнуться с многополюсной ИС. Тем не менее, я обозначил функции контактов, и полезно увидеть схему, чтобы увидеть, что было сделано. Обратите внимание, что показанная схема предназначена для 3-проводного подключения, которое намного более стабильно, чем более распространенные 2-проводные диммеры. Естественно, это не единственный способ, и некоторые коммерческие диммеры с задней кромкой, такие как изображенный ниже, используют одну или несколько микросхем таймера 555 и множество других деталей для поверхностного монтажа для достижения той же цели.Однако почти все коммерческие диммеры являются только 2-проводными и часто плохо работают с электронными нагрузками (например, КЛЛ или светодиодные лампы). Atmel U2102B был бы хорошей стартовой базой для правильного 3-проводного диммера, но, к сожалению, сейчас он устарел, и я не могу найти эквивалента. Показанная схема адаптирована из таблицы данных U2102B, но использует полевой МОП-транзистор вместо IGBT (биполярный транзистор с изолированным затвором), показанный в примере схемы. См. Рисунок 10A для обновленной схемы (хотя ИС нелегко достать).

Рисунок 9 — Внутренние части коммерческого диммера задней кромки

Два больших устройства на левой плате — это силовые полевые МОП-транзисторы. Обратите внимание, что нижняя сторона печатной платы также покрыта деталями, включая таймер, еще одну микросхему, которую невозможно идентифицировать, четыре транзистора и несколько резисторов и конденсаторов. Хотя изображенное устройство было бы довольно дешевым в производстве, я полагаю, что доведение конструкции до высокой надежности при нормальном использовании могло бы занять много времени.Примерно 50 австралийских долларов в моем местном магазине оборудования, это не дешево по сравнению с более распространенным диммером с задней кромкой (обычно около 16-20 долларов, но некоторые намного дороже).

Рисунок 10 — Формы измеренного тока

Изображенный коммерческий диммер по задней кромке был протестирован с лампой накаливания мощностью 60 Вт и дал формы волны, показанные выше. Хотя максимальная настройка отличается от идеальной формы сигнала, показанной на рисунке 5, при настройке на минимальную (и примерно половину мощности) теория и реальность очень хорошо совпадают.Схема не может действовать как настоящее короткое замыкание, когда она полностью включена, потому что часть приложенного напряжения требуется для питания электроники. Это вызывает нарушение непрерывности, наблюдаемое в области нулевого тока, когда диммер установлен на максимум. Обратите внимание, что вышеупомянутые формы сигналов были захвачены, когда эта статья была впервые написана в 2008 году, но они так же действительны, как и захват цифрового осциллографа, показанный на рисунке 6A.

Обратите внимание, что если только электронная лампа не имеет номера , в частности заявлена ​​как регулируемая, двухпроводной диммер задней кромки не будет работать.Просто для теста попробовал с обычным КЛЛ. Не было сильных скачков тока, но лампа не гасла разумным или предсказуемым образом, а сама схема диммера запуталась и не могла работать должным образом. Это в равной мере относится к лампам CFL и LED, если в инструкции они не заявляют о возможности регулировки яркости. Продолжение использования любой электронной лампы с диммером может привести к повреждению цепи, сильному перегреву или возгоранию. Как отмечалось ранее, все электронные осветительные приборы с регулируемой яркостью должны всегда использовать только «универсальные» диммеры или диммеры задней кромки, , даже если производитель заявляет, что диммеры передней кромки на основе TRIAC разрешены .

Рисунок 10A — Диммер передней / задней кромки FL5150

Приведенный выше рисунок адаптирован из таблицы данных Fairchild (теперь ON Semiconductor) для ИС диммера FL5150MX. Показана только 3-проводная версия 230 В, 50 Гц, а приведенная выше схема является модифицированной по сравнению с версиями, показанными в исходной таблице данных. Максимальный выходной уровень составляет , только доступен, когда ИС используется в 3-проводном режиме, а 2-проводный режим не рекомендуется для любой электронной нагрузки . Микросхема доступна в небольшом количестве торговых точек (одна только на последний взгляд), но она не была построена и не протестирована.Хотя показаны полевые МОП-транзисторы IRF840, более крупные можно использовать для получения более высокой мощности. С установленными IRF840 максимальная нагрузка ограничена примерно 1 А (до 230 Вт, в зависимости от коэффициента мощности нагрузки). Для работы с частотой 60 Гц используйте FL5160MX (внутренние таймеры другие). Эти микросхемы доступны только в SMD-корпусах. Щелкните здесь для просмотра таблицы.

На страницах проекта ESP также есть полная схема известного рабочего (т.е. построенного и испытанного) 3-проводного диммера задней кромки.См. Подробности в проекте 157A.


2.3 — «Универсальные» диммеры
Универсальные диммеры

имеют встроенные «интеллектуальные» функции, которые позволяют диммеру решать, должен ли он работать как передний или задний фронт. Схема обнаружения не всегда настолько умна, как можно было бы надеяться, и иногда они могут принять неправильное решение. Некоторые системы домашней автоматизации имеют переключатели, которые позволяют настраивать универсальные диммеры на автоматическое определение, передний или задний край. Тем не менее, в помещении обычно нет небольших диммеров, так что вы должны положиться на диммер, который сделает правильное решение.

Рисунок 11 — Универсальный диммер для кишечника

Выше показана внутренняя часть довольно типичного «универсального» настенного диммера. Хотя можно было ожидать, что можно будет использовать небольшой микроконтроллер, он, похоже, основан на двойном таймере 555 и паре полевых МОП-транзисторов. Есть несколько других пассивных компонентов и несколько диодов, и это в основном все, что нужно. Эти диммеры обычно подходят для регулируемых электронных нагрузок, но, как уже отмечалось, они не всегда принимают правильное решение.Как и все двухпроводные диммеры, они часто не работают с электронными нагрузками.

Тесты показали, что он достаточно хорошо работает с некоторыми блоками питания светодиодов с регулируемой яркостью, и само собой разумеется, что производительность с лампами накаливания близка к идеальной. Этот конкретный блок был предназначен для питания регулируемых источников света мощностью 4 x 12 Вт для даунлайтов, которые у меня были в течение некоторого времени, но которые я не использовал, потому что драйверы были мусором и не регулировались.

Важно, чтобы универсальные диммеры не использовались со смешанными нагрузками, такими как электронные трансформаторы и трансформаторы с железным сердечником.Поскольку требования к каждому из них полностью противоположны, диммер никогда не может выбрать правильный режим. Он либо выйдет из строя, либо вызовет внешний отказ подключенного оборудования (или того и другого).

Если вам интересно, я опишу способ, которым некоторые (и, возможно, большинство) универсальных диммеров решают, должны ли они работать как передний или задний фронт. Если присутствует индуктивная нагрузка, когда диммер выключается под нагрузкой, возникает всплеск высокого напряжения. Это тот же пик, который мы укрощаем с помощью диода при включении реле.Диммер имеет схему для обнаружения всплеска, и в случае обнаружения он переключается из режима заднего фронта в режим переднего фронта. Индуктивным нагрузкам вполне подходит диммер по переднему фронту, поэтому диммер останется в режиме переднего фронта после того, как схема обнаружит выбросы.

Этот процесс происходит каждый раз при включении схемы, потому что диммер не имеет памяти, поэтому не может просто запомнить настройку, которую он использовал последней. Обнаружение обычно происходит очень быстро — максимум несколько циклов сети и когда напряжение на нагрузке достаточно низкое.Все диммеры с задней кромкой и универсальные диммеры, которые я видел, имеют функцию «плавного пуска», при которой напряжение на нагрузке повышается в течение нескольких секунд. В это время диммер обнаруживает скачки высокого напряжения, вызванные индуктивной нагрузкой, и переходит в режим переднего фронта.

Процесс защищен патентом — см. Универсальный диммер — EP 1961278 B1, выданный Clipsal Australia в 2012 году. Я думаю, что это очень умное приложение. Он основан на использовании полевых МОП-транзисторов с определенным и гарантированным лавинным рейтингом, поэтому они не будут разрушены шипами, но в наши дни они очень распространены.


3 — Коэффициент мощности диммера

Диммеры по переднему и заднему фронту имеют одинаковый коэффициент мощности при одинаковой выходной мощности нагрузки. Ни один из этих типов не позволяет использовать какой-либо реальный или полезный метод коррекции коэффициента мощности, и единственным смягчающим фактором является то, что при низких настройках ток потребляется из сети во время частей цикла, которые не используются в большинстве небольших источников питания. Однако коэффициент мощности по-прежнему ужасен — особенно при очень низких настройках мощности. Несмотря на это, нет никаких сомнений в том, что потребление энергии уменьшается пропорционально — особенно со светодиодами.С лампами накаливания также снижается мощность, но не в такой степени.

В столбце «Угол наклона» указывается количество градусов формы волны, при которой мощность подается на лампу. Полный цикл составляет 360 °, а каждое полупериод — 180 °. Было использовано приращение 18 °, потому что при 50 Гц 18 ° соответствует интервалу в 1 миллисекунду. Это было использовано для упрощения расчетов для таблицы. Эти данные точно такие же для источника 60 Гц, с той лишь разницей, что время для одного полного цикла при 60 Гц составляет 16.67 мс вместо 20 мс. Это не влияет на угол наклона, мощность или коэффициент мощности, но ток будет другим из-за разного напряжения, используемого в странах 60 Гц.

По углу Идеальный ток Идеальная мощность Процент Коэффициент мощности
180 ° 1000 мА 230 Вт 100% 1,00
162 ° 994 мА 227 Вт 99% 0.99
144 ° 971 мА 217 Вт 94% 0,97
126 ° 918 мА 194 Вт 84% 0,92
108 ° 829 мА 158 Вт 69% 0,83
90 ° 702 мА 113 Вт 49% 0,70
72 ° 557 мА 71 Вт 31% 0.55
54 ° 391 мА 35 Вт 15% 0,39
36 ° 226 мА 11,7 Вт 5,1% 0,23
18 ° 83 мА 1,6 Вт 0,7% 0,08
0 ° 0 0 0 НЕТ

Фазовый угол в зависимости от коэффициента мощности, 230 В переменного тока, нагрузка 230 Ом

Обратите внимание, что нагрузка, используемая в приведенной выше таблице, является чисто резистивной (отсюда «идеальные» ток и мощность) и остается постоянной при всех настройках.Лампы накаливания , но не , представляют постоянную нагрузку. Поскольку при низких настройках нить накала работает меньше, ее сопротивление ниже, и она потребляет больше тока, чем ожидалось. По этой причине, хотя диммирование, несомненно, снижает потребляемую мощность, оно не снижает ее настолько, насколько можно было бы ожидать (или надеяться).

Типичная лампа GLS (общего освещения) мощностью 100 Вт будет потреблять около 18 Вт при тусклом свечении — обычно можно ожидать меньшего. Сопротивление нити накала падает примерно до половины сопротивления полной мощности, потому что он намного холоднее, поэтому потребляется вдвое больше тока, чем было бы в случае фиксированного сопротивления.Для справки, была протестирована лампа GLS мощностью 100 Вт, и ее измерения показали 44 Ом в холодном состоянии и 552 Ом в горячем состоянии (при полной мощности — 95,8 Вт).


4 — Электронные трансформаторы

Во многих новых установках, использующих галогенные лампы низкого напряжения, теперь используется электронный трансформатор. Традиционный трансформатор с железным сердечником работает хорошо и прослужит вечно, но он дорог. Некоторые из них также построены по очень высокой цене и довольно неэффективны, тратя 20% или более общей потребляемой мощности на тепло.Электронные трансформаторы обычно намного меньше и легче, поэтому им не хватает ощущения «безупречного качества», но большинство из них достаточно эффективны, обычно расходуя меньше 10% от общей мощности. Меньшие потери означают меньше тепла и незначительно меньшие счета за электроэнергию. Хотя рассеивание каждого блока по отдельности может показаться разумным, когда тысячи из них работают, дополнительные потери становятся значительными.

Обычный трансформатор с железным сердечником работает на частоте сети (50 или 60 Гц), а сердечник должен быть достаточно большим из-за низкой частоты.Размер сердечника обратно пропорционален частоте, поэтому работа на высокой частоте означает, что трансформатор может быть намного меньше. Термин «электронный трансформатор» на самом деле неправильный — на самом деле это импульсный источник питания (SMPS). Электронные схемы используются для выпрямления сети и преобразования переменного тока в пульсирующий постоянный ток. Этот пульсирующий постоянный ток затем подается на высокочастотную коммутационную схему и небольшой трансформатор. На рисунке 10 представлена ​​фотография типового агрегата.

Рисунок 12 — Внутреннее устройство электронного трансформатора

Клеммы питания находятся слева, а выходные клеммы 12 В — справа.На входе присутствует некоторая ВЧ-фильтрация, а два переключающих транзистора расположены вертикально вдоль нижнего края. Маленькое зеленое кольцо — это переключающий трансформатор транзистора (T1 на рисунке 12), а выходной трансформатор — это большой белый пластиковый объект. Он имеет ферритовый сердечник с первичной обмоткой внутри, а вторичная (выход 12 В) намотана снаружи пластиковой изолирующей крышки.

Выход не выпрямленный — это переменный ток, но он приходит в виде пакетов высокочастотного сигнала (форма выходного сигнала см. На рисунке 13).

Рисунок 13 — Схема электронного трансформатора

T1 — транзисторный переключающий трансформатор. Он имеет три обмотки: первичную (T1A) и две вторичные (T1B и C). Сравните это с зеленым трансформатором на рисунке 10. Первичная обмотка имеет один виток, а каждая обмотка транзистора — 4 витка. Т2 — выходной трансформатор. DB1 — это DIAC (используемый в диммере по переднему фронту), и он используется для запуска колебания схемы, когда напряжение превышает примерно 30 В.Как только начинается колебание, оно будет продолжаться до тех пор, пока напряжение не упадет почти до нуля. Обратите внимание, что базовая выходная частота в два раза больше частоты сети, поэтому электронный трансформатор, используемый на частоте 50 Гц, на самом деле имеет сигнал выходной частоты 100 Гц, который состоит из множества высокочастотных циклов переключения.

Большинство электронных трансформаторов не работают без нагрузки (или без нагрузки). Например, для устройства мощностью 60 Вт обычно требуется нагрузка, потребляющая не менее 20 Вт, прежде чем он сможет нормально работать. При очень небольшой нагрузке ток через первичную обмотку коммутирующего трансформатора недостаточен для поддержания колебаний.

Рисунок 14 — Форма выходного сигнала электронного трансформатора

Хотя показанная осциллограмма в точности такая же, как у моего осциллографа на базе ПК, отчетливо видимые переходы являются артефактом процесса оцифровки — частота намного выше, чем указано. Среднеквадратичное значение напряжения показанной формы сигнала составляет 12,36 В, но эту форму сигнала сложно точно измерить. Я ожидаю, что фактическое напряжение было ближе к 10 В, измеренному с помощью аналогового измерителя (номинал на паспортной табличке — 11.5В). При нагрузке 2 Ом (5 А) выходная мощность составляла около 50 Вт. Источник потреблял 231 мА от сети (52,2 ВА). Измеренная входная мощность составила 52 Вт, поэтому коэффициент мощности достаточно близок к единице. КПД почти 96% — действительно очень респектабельная цифра.

Следует проявлять осторожность при использовании электронного трансформатора с низковольтными светодиодными лампами или КЛЛ. Поскольку эти лампы имеют внутренний выпрямитель, диоды должны быть быстродействующими. Обычные выпрямительные диоды сильно нагреваются, потому что рабочая частота намного выше, чем та, на которую рассчитаны обычные диоды.Хотя огибающая сигнала составляет всего 100 Гц, частота переключения намного выше — обычно около 30-50 кГц (частота обычно уменьшается с увеличением нагрузки).

Следует отметить, что экономия энергии электронных трансформаторов часто может быть завышена. В то время как обычные трансформаторы служат практически вечно, электронные трансформаторы могут выйти из строя в любой момент, и это можно доказать. Высокие температуры, наблюдаемые в пространстве под крышей многих домов, вызывают нагрузку на полупроводниковые устройства, а широкое использование бессвинцового припоя обеспечивает не редкость отказов паяных соединений.Я видел несколько неисправных устройств, и хотя я, возможно, смогу исправить некоторые из них, 99% домовладельцев просто выбросят вышедший из строя блок и установят новый. При производстве, доставке и поездке в магазины за новым устройством все учитываются, вам (и окружающей среде), возможно, было бы лучше, если бы вместо него был использован «неэффективный» трансформатор с железным сердечником.


5 — Диммеры постоянного тока

В то время как многие люди (включая меня 40 с лишним лет назад) экспериментировали с диммерами постоянного тока, до недавнего времени они не пользовались особой популярностью.Бывают случаи, когда автомобильную лампу (прожектор или другую) необходимо приглушить, и в большинстве автомобилей есть регулируемое освещение приборной панели. В последнем случае, как правило, переменный резистор используется последовательно с лампами или, в некоторых случаях, резисторы различных номиналов включаются и выключаются по мере необходимости.

Хотя это нормально для маломощных систем с низким КПД, нет смысла создавать высокоэффективные осветительные приборы и тратить энергию на резистивные диммеры.Чтобы показать ненужную мощность, можно выполнить простой расчет, предполагая, что используется простой источник питания 12 В и лампа 12 Вт …

Мощность лампы Ток Напряжение Последовательный резистор Мощность резистора
12 Вт 1A 12 0 0
9 Вт 866 мА 10,39 В 1.86 Ом 1,4 Вт
6 Вт 707 мА 8,48 В 4,97 Ом 2,48 Вт
3 Вт 500 мА 6,00 В 12 Ом 3 Вт

Для простоты предполагается, что лампа имеет постоянное сопротивление, но это неверно для настоящих ламп накаливания любого напряжения и только усугубляет проблему. Однако это не меняет принципа, и включение сопротивления лампы для различных настроек просто запутает проблему.Обратите внимание, что для выхода 3 Вт ток (батареи) должен составлять 250 мА (без учета потерь), но с резистивным диммером он составляет 500 мА, а 3 Вт рассеивается на резисторе. Даже если бы источник света был эффективен на 100%, резистор уменьшил его до 50%.

Понятно, что этот метод нельзя использовать, если мы хотим максимальной эффективности. Хотя 3W не похоже на много тепла, попытка утилизировать его в замкнутом пространстве очень сложно, если высокие температуры являются проблемой. Проблема эффективности становится гораздо более важной по мере увеличения мощности лампы, и для обеспечения гибкости требуется лучшее решение.К счастью, есть очень простой ответ. Широтно-импульсная модуляция (ШИМ) — распространенный метод в электронике, обеспечивающий чрезвычайно высокий КПД электронных схем. Регулируя периоды включения-выключения напряжения, подаваемого на лампу, ее яркость можно легко контролировать с очень низкими потерями.

Если напряжение включается и выключается с одинаковой синхронизацией (соотношение отметки и пространства 50%), подключенная лампа (или светодиоды высокой мощности) видит полное напряжение (и полную мощность) в течение половины времени, и, следовательно, светодиоды работают при ½ мощности.Поскольку соотношение может быть изменено от нуля (полностью выключено) до максимального (полностью включено) с помощью потенциометра или управляющего напряжения 0-10 В постоянного тока, эта система идеально подходит для светодиодов, питаемых от источника постоянного напряжения .

ШИМ-системы могут сбивать с толку, потому что в некоторых из них есть фильтр на выходе для удаления составляющей переменного тока сигнала. Если это сделано, на лампу подается среднее напряжение. При 50% модуляции лампа будет получать 6 В постоянного тока, а мощность составит всего 3 Вт (мощности).Фильтр нельзя использовать со светодиодными лампами, потому что они сильно зависят от напряжения. Если бы напряжение на светодиодной матрице 12 В было уменьшено до 6 В с помощью системы ШИМ с фильтром, светового выхода не было бы вообще. На светодиодах не хватит напряжения, чтобы преодолеть прямое напряжение ~ 3,3 В. Большинство белых светодиодов имеют прямое напряжение от 3,1 В до 3,3 В или более, а в массиве 12 В будут использоваться 3 последовательно соединенных (9,9 В), а оставшиеся 2,1 В будут поглощаться токоограничивающими резисторами.

Рисунок 15 — Формы сигналов широтно-импульсной модуляции для диммера постоянного тока

Для уменьшения силы света светодиодных ламп мы не используем фильтр, а частота переключения может быть достаточно низкой, чтобы минимизировать радиочастотные помехи.Около 300 Гц работает очень хорошо, и хотя светодиоды будут полностью включаться и выключаться 300 раз в секунду, наши глаза не могут видеть частоту мерцания, поскольку она слишком высока. Мерцание лампы — горячая тема в некоторых областях, но при условии, что оно намного превышает максимальную видимую скорость, проблем возникнуть не должно. Обычно считается, что все, что превышает 100 вспышек в секунду, намного превышает наш порог стойкости зрения (многие ссылки доступны в сети). Однако …

Обратите внимание: Хотя мерцание не видно невооруженным глазом, требуется осторожность
когда диммер с ШИМ используется в любом промышленном приложении.Вполне возможно, что частота мерцания в сочетании с вращающимся механизмом может вызвать остановку.
эффект движения из-за стробоскопической природы импульсных источников света. ШИМ-диммеры не следует использовать в светодиодных светильниках в механических цехах или рядом с оборудованием.
любого вида!

Это может быть чрезвычайно опасно при некоторых условиях, потому что может казаться, что различные машины либо остановлены, либо вращаются медленно, хотя на самом деле они
вращаются с нормальной скоростью. Опасность наиболее велика для таких станков, как токарные, сверлильные и фрезерные станки, но эффект остановки движения может
любая вращающаяся машина кажется «безопасной», хотя на самом деле это совсем не так.Этот эффект иногда проявляется с люминесцентными лампами, но светодиодные лампы с ШИМ-регулировкой яркости
может быть намного хуже в этом отношении.

Отсутствие фильтров также увеличивает эффективность, но подчеркивает возможность стробирования. В типичном импульсном диммере постоянного тока потери мощности на полевом МОП-транзисторе будут менее 100 мВт при питании 12 В и нагрузке 10 А, если используется надежный полевой МОП-транзистор. Опорный сигнал для системы ШИМ обычно представляет собой сигнал треугольной формы, как показано (Рисунок 14, красный цвет).Это сравнивается с управляющим напряжением (синий), и если управляющее напряжение больше, чем треугольная волна, включается силовой полевой МОП-транзистор и на нагрузку подается питание (зеленый). Аналогичным образом, если треугольная волна больше, чем управляющее напряжение, полевой МОП-транзистор выключится. Изменение управляющего напряжения изменяет соотношение включения-выключения и мощность нагрузки.

Рисунок 16 — Блок-схема диммера постоянного тока

Этот тип диммера, конечно, не нов, и аналогичные схемы также используются для управления скоростью двигателя постоянного тока.Его применение для освещения общего назначения еще не принято, но, вероятно, станет таковым для систем с низким энергопотреблением. Поскольку схема очень проста и легка в управлении, она, вероятно, получит широкое распространение по мере того, как станут популярными комплектные светодиодные светильники. Это только вопрос времени, поскольку нет необходимости иметь возможность менять лампу из-за очень длительного срока службы светодиодов. Полноценные светильники, подходящие для домашнего и коммерческого применения, не будут нуждаться в заменяемых лампах в том виде, в котором мы их знаем сейчас, а простая схема и полный диапазон (и практически без потерь) диммирования в конечном итоге определят выбор светильников.Диммер может быть установлен в светильник (как часть источника питания), для чего потребуется только пара низковольтных проводов для управления.

Это также упрощает внедрение систем домашней автоматизации, поскольку отпадает необходимость в изменении сетевого напряжения переменного тока — все можно делать при низком напряжении. Модуль источника питания легко заставить потреблять очень мало энергии, когда не используется питание постоянного тока, так что даже без переключателя можно обойтись. Созданный мной тестовый диммер вполне способен выдерживать до 120 Вт (12 В при 10 А), но потребляет менее 20 мА (менее Вт) при установке на минимум.Рассеивание самого диммера обычно составляет около 3 Вт или меньше при максимальной мощности (почти все в полевом МОП-транзисторе), поэтому он имеет КПД выше 97%.

Этот диммер идеально подходит для светодиодных ламп. Он обеспечивает полный контроль от полного выключения до полного включения и последующее снижение мощности при затемнении светодиодов. Как показано, этот метод диммера подходит только для светодиодных матриц, которые уже имеют ограничение тока. Следующим этапом управления светодиодной лампой является отказ от резисторов для ограничения тока и использование вместо этого ограничения тока ШИМ.Ограничение тока PWM уже используется со многими лампами, особенно с типами высокой мощности, и можно ожидать, что оно станет более распространенным, поскольку светодиоды становятся предпочтительным методом освещения для большинства приложений.

Простота управления светодиодами делает это очень привлекательным, а высокая световая отдача, которая достигается в настоящее время (до 180 люмен / Вт и постоянно улучшается), означает больше света при меньшей мощности и очень малом нагреве. .

Рисунок 17 — Типовая светодиодная матрица 12 В постоянного тока (источник постоянного напряжения)

Типичная светодиодная матрица, предназначенная для работы на 12 В, показана выше — обычно используются резисторы 3 x 120 Ом, поскольку в большинстве массивов используются резисторы для поверхностного монтажа, которые имеют гораздо меньшую мощность, чем традиционные типы сквозных отверстий.Ограничительные резисторы на 40 Ом устанавливают ток через каждую цепочку светодиодов на 52,5 мА, при этом четыре цепочки включены параллельно. Общий ток составит 210 мА для общей мощности 2,5 Вт. С резисторами не повезло, потому что они рассеивают мощность, но не делают полезной работы. Каждый резистор рассеивает около 37 мВт, поэтому в общей сложности теряется 0,44 Вт. Эта схема очень чувствительна к напряжению — увеличение всего на 0,5 В приведет к увеличению тока светодиода до 65 мА, а падение на 0,5 В приведет к падению тока до 40 мА.Хотя это далеко не идеально, в настоящее время неэкономично включать отдельные высокоэффективные регуляторы тока вместо резисторов. Обилие светодиодов средней и высокой мощности теперь делает небольшие массивы, подобные показанным, избыточными.

Обратите внимание, что ШИМ-регулирование яркости между источником питания и светодиодами возможно только в том случае, если матрица светодиодов запитана от источника постоянного напряжения. Если используются источники постоянного тока и , добавление внешней схемы ШИМ может вызвать отказ светодиода, потому что напряжение будет расти, когда светодиоды выключены.При повторном включении более высокое, чем обычно, напряжение вызовет чрезмерный ток и неизбежно повреждение светодиода. Когда используются источники постоянного тока, диммирование является внутренним по отношению к источнику питания. ШИМ-контроллер либо включает и выключает регулятор тока, либо изменяет выходной ток.

Многие светодиодные матрицы в настоящее время изготавливаются с использованием согласованных светодиодов, и они подключаются напрямую последовательно / параллельно без какого-либо сопротивления. Эти массивы неизменно питаются от источника питания с регулируемым током и доступны в модулях очень высокой мощности.Я работал с модулями мощностью 100 и 150 Вт, но обычно лучше использовать большее количество светодиодных матриц с низким энергопотреблением, потому что слишком сложно отвести модуль от радиатора, когда рассеиваемая мощность составляет порядка 100 Вт или более.

Резисторы используются только с маломощными светодиодами, и в большинстве последних светодиодных матриц вместо них используются согласованные светодиоды — даже для относительно низкой мощности. Специализированные ИС импульсного регулятора тока теперь широко распространены и ограничивают ток до требуемого значения, но почти не рассеивают мощность.Для светодиодов большей мощности (например, типа 1-100 Вт) ограничение активного тока используется практически во всех качественных лампах. Неизвестные бренды, которые вы можете найти в супермаркетах или на сайтах онлайн-аукционов, — это азартная игра, и даже у некоторых крупных производителей были серьезные проблемы со светодиодной продукцией.

Принято считать, что цвет «белых» светодиодов изменится при линейном уменьшении тока, в отличие от использования ШИМ. Обычно это неверно, и использование ШИМ не является обязательным.Простое изменение установившегося тока для получения требуемой яркости обычно работает очень хорошо. Хотя почти наверняка существует , некоторый сдвиг цвета и / или изменение индекса цветопередачи (CRI) на , это редко проблема современных светодиодов. Затемненные светодиоды не только снижают энергопотребление, но и уменьшают тепло, выделяемое самими светодиодами, поэтому их срок службы увеличивается. Светодиоды также улучшат их эффективность (измеренная в лм / Вт ) по мере уменьшения тока, поскольку они работают при более низкой температуре.

Более низкая температура = больший срок службы и больший световой поток на каждый поставляемый ватт.


6 — Светодиодное освещение в будущее

По мере того, как продукты светодиодного освещения становятся зрелыми, совершенствуются и ИС, необходимые для их управления. Есть довольно много крупных производителей, которые производят микросхемы драйверов светодиодов, и некоторые из них включают возможность обеспечения диммирования — обычно путем включения и выключения источника тока в режиме переключения с частотой несколько сотен герц (ШИМ). Мы придерживаемся существующих осветительных приборов в течение следующих нескольких лет, потому что люди обычно предпочитают просто заменять лампы, а не заменять их на специальный светодиодный светильник.Сейчас мы видим светильники, которые разработаны специально для светодиодов и имеют встроенные источники питания (балласты) и средства затемнения. Это укомплектованные светильники, для которых не требуются какие-либо сменные лампы. Светодиодные модули и блоки питания можно заменять самостоятельно.

Это делается, но в настоящее время существует несколько стандартов, поэтому каждый производитель использует свою собственную проприетарную систему. Несмотря на то, что ситуация меняется, относительно немногие производители освещения, похоже, готовы принять идею использования стандартизованных световых модулей (широко известных как «световые двигатели»).Возможность для производителей светильников выбирать оптимальный световой двигатель от множества производителей — это непрерывный процесс, который, например, только начинает развиваться [3, 4]. Наличие нескольких органов по «стандартизации» бесполезно. Официальные (регулируемые государством) стандарты также существуют во многих странах.

Характеристики затемнения (с использованием диммеров текущего поколения) значительно улучшаются, если полностью скорректировать коэффициент мощности источника питания / балласта. Этот тип источника питания больше похож на резистивную нагрузку, чем на простые конденсаторные нагрузки входного фильтра, такие как показанные на рисунке 2 (нелинейный).Во многих новейших источниках питания для светодиодов используется коррекция коэффициента мощности, но не все из них регулируются.

Изготовление светильников со слишком сложными характеристиками или не отвечающими реальным потребностям потребителей, задержит распространение светодиодного освещения. Диммирование остается одним из величайших препятствий, и было сделано много попыток. Некоторые работают достаточно хорошо (или, по крайней мере, в ограниченной степени) с существующими диммерами, как в случае с «регулируемыми» КЛЛ, но результаты, как правило, не очень удовлетворительны. Большая часть проблемы (опять же) заключается в том, что не существует стандартов, и люди ожидают, что смогут использовать существующие диммеры — типа «срезания фазы» по передней или задней кромке.

Что необходимо, так это протокол регулирования яркости, совместимый с существующей проводкой, но работающий должным образом и стабильно, и, похоже, на данный момент решения нет. В общем, бесполезно упоминать в рекламе, что «Контроллер Wi-Fi приносит вам удобную жизнь» (так в оригинале), когда вы знаете, что вся система является проприетарной, и если она выйдет из строя, вам некуда больше обратиться для замены. Предложение «Другой четырехканальный контроллер и усилитель RGBW» совершенно бессмысленно, особенно если я не знаю, с чем его сравнивают (в конце концов, он «другой»).«Полностью сенсорный контроллер 2.4G: приятная форма и удобное приложение» говорит само за себя — это реальные претензии, которые я получил в электронном письме, когда я писал этот раздел.

Один простой протокол, который имеет смысл, — это вернуться к старому стандарту 0-10 В (ток поступает от диммируемого драйвера), и есть несколько светодиодных светильников, которые именно это и делают. Это позволяет одиночным установкам использовать переменный резистор для изменения напряжения, поэтому «диммер» представляет собой всего лишь потенциометр на 10 кОм в настенной панели и мало что еще.К сожалению, большинство из них несовместимо с существующей проводкой. Для систем домашней автоматизации C-Bus и DALI уже имеют интерфейсные модули 0-10 В. При использовании простой аналоговой системы управления затраты минимальны для любого типа установленной системы. Если диммирование не требуется, штыри диммера можно просто оставить отсоединенными. Такая компоновка даже позволяет управлять несколькими осветительными приборами с одного пульта управления, а добавленная стоимость каждого светильника минимальна, когда они находятся в массовом производстве.Некоторые светодиодные светильники имеют встроенный интерфейс DALI, хотя есть некоторые заявления о том, что соответствующие стандарты не всегда соблюдаются, поэтому производительность не гарантируется.

К сожалению, даже 0–10 В имеет два разных «стандарта»: в одном диммер обеспечивает ток (IEC 60929), а в другом (ANSI E1.3) ток подается от источника питания / балласта. Хотя общепринято, что линия 0-10 В должна давать или опускать около 1 мА, это также не стандартизировано. Что еще хуже, нет фиксированного стандарта для проводки управления низким напряжением.Никто не может быть полностью уверен, относится ли он к категории «SELV» (безопасное сверхнизкое напряжение) или должен считаться «находящимся под напряжением» вместе с сетевой проводкой. Это определяет тип проводки, необходимой от источника питания к контроллеру светорегулятора, и степень разделения, необходимой между сетью и проводкой управления. Почти всегда для источников питания требуется отдельный переключаемый активный элемент, поскольку нулевое напряжение редко означает, что источник питания будет отключен.

Было бы полезно, если бы поставщики балластов / источников питания, которые используют диммирование 0-10 В, включили переключатель или перемычку, чтобы один блок мог быть настроен на источник тока (1 мА или 10 мА), а остальные — так, чтобы они просто воспринимали уровень напряжения.Это позволит использовать простой потенциометр 10 кОм (1 кОм для 10 мА) для установки напряжения, и все подключенные устройства будут работать в унисон. В настоящее время единственный способ добиться успеха диммирования 0-10 В — это использовать «диммерный модуль» с питанием, который может подавать или потреблять ток по мере необходимости. Использование переключателя позволяет одному «главному» интерфейсу 0–10 В управлять до (скажем) 10 «подчиненных» интерфейсов. Любой отключенный блок просто увеличивал яркость до полной.

Было бы большой ошибкой создавать новые цифровые протоколы только для того, чтобы гарантировать, что люди должны покупать арматуру и средства управления у определенного поставщика.Есть несколько светильников, которые делают именно это, используя инфракрасный (инфракрасный) или RF (радиочастотный) пульт дистанционного управления, аналогичный тому, который используется в домашнем развлекательном оборудовании. Хотя это удобно, стандарты необходимы для совместимости пультов дистанционного управления. Никому не нужна система, которая у нас есть с телевизором, приставками, DVD-плеерами и т. Д., Где у нас обычно есть несколько пультов дистанционного управления, по одному для каждого элемента, которым нужно управлять.

Этот подход вызовет большую популярность на рынке FUD , и (за исключением нескольких уловок потребительских товаров) до сих пор в значительной степени избегали.В то время как цифровые системы (в том числе управляемые с помощью пульта дистанционного управления) могут предложить гораздо большую гибкость (например, изменение цвета и другие эффекты), большинство домовладельцев не захотят использовать освещение своей комнаты в качестве домашней дискотеки. В настоящее время большинство владельцев домов даже не используют диммеры, поэтому попытка продать универсальные осветительные приборы просто оттолкнет людей, которые уже сбиты с толку новой технологией. Кто-нибудь действительно хочет, чтобы в его комнате с 14:00 до 14:30 светился красный свет, а затем зеленый до 16:30? Нет? Я так не думал.

Промышленность в целом окажет себе большую медвежью услугу, если светодиодные светильники не будут обеспечивать простоту эксплуатации, присущую традиционному освещению. Хотя идея системы «домашней дискотеки» сначала понравится нескольким людям, новизна довольно быстро исчезнет. Если арматура не обеспечивает простую работу с минимумом хлопот, она в конечном итоге ужасно выйдет из строя. До сих пор подавляющее большинство профессиональных продуктов, которые я видел и / или оценивал, избегают уловок, наворотов и просто выполняют ту работу, для которой они были разработаны — большинство делают это очень хорошо.

Даже с коммерческими светодиодными светильниками «верхней полки» протокол 0–10 В на удивление распространен, и его часто используют для «сбора дневного света». При этом используется простой датчик для обнаружения окружающего освещения и уменьшения яркости светодиодной арматуры, когда уровень освещенности превышает заданный порог. Лампы могут управляться индивидуально или группами, а световые датчики 0-10 В упрощают установку. Нет необходимости в центральном контроллере, протоколах цифрового управления или какой-либо сложной электронике, только приспособление с затемнением 0-10 В и подходящий датчик, установленный там, где он может «видеть» дневной свет.


7 — Возвращение к синусоидальным диммерам

Выше отмечалось, что самые ранние диммеры были либо переменными резисторами (реостатами), либо вариаками, либо (иногда) магнитными усилителями. Сейчас мы живем в эпоху, когда в электросети используются буквально тысячи очень недружелюбных нагрузок. Импульсные источники питания, которые используются в компьютерах всех типов, бесчисленное количество небольших коммутируемых источников питания типа plug-pack (также известных как «настенные бородавки»), компактные люминесцентные лампы, многие светодиодные лампы и сотни других продуктов, которые используют их, и подавляющее большинство искажение формы сигнала сети.По отдельности они никогда не являются проблемой, но когда их много, проблема становится серьезной и вызывает серьезные проблемы с инфраструктурой распределения сети.

Из-за этого появляется все больше и больше нормативов, направленных на ограничение уровней гармонических искажений, которые могут создавать источники питания. Это гарантирует, что сеть будет достаточно «чистой» (минимальные искажения), так что распределительные трансформаторы и генераторы могут использоваться с максимальной мощностью. Поскольку большинство энергетических компаний во всем мире, похоже, очень неохотно заменяют устаревшее оборудование, они хотят получить максимальную производительность и срок службы того, что у них уже есть.

Хотя в другом месте утверждалось, что Variac рассеивает много тепла (я не буду приводить ссылку, потому что это неправильно во всех отношениях), это неверно. Главное, что исключает
Variac от «современных» систем — это вес и объем трансформатора, а также механические сложности, необходимые для его привода. Мотор-редуктор не может реагировать мгновенно, но электроника может.
Variac (или любой автотрансформатор переменного напряжения) максимально приближен к идеалу с точки зрения эффективности и не влияет на форму сигнала в сети.Это довольно близко к «идеальному»
синусоидальный диммер, но не если вам нужен быстрый отклик (хотя возможность «вспышки» может быть обеспечена переключением). Современные синусоидальные диммеры полностью электронные, но детали найти сложно.

Как показано в этой статье, диммеры с отсечкой по фазе имеют ужасный коэффициент мощности при средних и низких настройках, и его невозможно исправить без значительных затрат. Они также генерируют большие гармонические токи в форме волны сети, а некоторые (особенно старые домашние диммеры на базе TRIAC) могут вызывать радиопомехи.Итак, диммеры в том виде, в каком мы их знаем, находятся (или будут) уходят, потому что они не могут соответствовать ни одному из новых требований, которые вступают в силу. Возврат к использованию Variacs — это один из способов, но они дороги и требуют двигателя и шестерен, чтобы их можно было менять удаленно или с помощью систем автоматизации. Тем не менее, поиск в Интернете показывает, что все еще есть люди, которые используют вариаки в качестве диммеров, поскольку они устраняют все проблемы, создаваемые диммерами со срезанной фазой.

Развитие современной электроники вполне может быть решением, потому что сегодня мы можем делать то, что было немыслимо всего несколько лет назад.Один из них — диммер синусоидального сигнала без потерь. Хотя они еще не стали массовым явлением, а небольшие конструкции настенных панелей еще не появились (или я не смог их найти), они используются в театрах и других помещениях, где используется большое количество источников света и требуется быть тусклым. Основная концепция показана ниже. Хотя концепция на самом деле довольно проста, реальность несколько отличается из-за необходимой фильтрации и характера сетевых нагрузок переменного тока в целом. Хотя показано использование полевого МОП-транзистора, именно появление IGBT (биполярных транзисторов с изолированным затвором) позволило разработать эту технологию.БТИЗ очень надежны и имеют меньшие потери, чем полевые МОП-транзисторы — основные требования для этого приложения. Подход MOSFET по-прежнему применим для небольших диммеров (~ 200 Вт или меньше).

Рисунок 18 — Базовая концепция синусоидального диммера

Показанная схема использует схему управления для очень быстрого включения и выключения MOSFET (Switch). Чтобы снизить сетевое напряжение, переключатель открыт дольше, поэтому ток не может проходить через цепь. Синусоидальные диммеры используют широтно-импульсную модуляцию (ШИМ) почти так же, как усилители мощности класса D.При включении и выключении переключателя (скажем) на частоте 25 кГц потери переключения минимальны, поэтому система может иметь высокий КПД. Хотя концепция проста, исполнение сложно и недешево. Высокие частоты делают фильтр более простым в использовании, меньшим по размеру и более дешевым, но увеличивают коммутационные потери. Обратное также верно.

Ток является более или менее синусоидальным, и он будет следовать за током через нагрузку. Если нагрузка имеет хороший коэффициент мощности, диммер синусоидального сигнала тоже.Комбинированная нагрузка лампы с высоким коэффициентом мощности и диммера синусоидального сигнала «дружественна к сети» и не будет раздражать поставщиков электроэнергии. Схемы фильтров, которые используются для удаления высокочастотного сигнала переключения, должны быть очень эффективными, в противном случае будут создаваться радиочастотные помехи, которые могут вызвать проблемы в другом месте (например, при приеме радио и телевидения).

Обратите внимание, что показанная схема сильно упрощена и не может использоваться в показанном виде. Да, схема будет работать, но она не предназначена для того, чтобы кто-то мог ее построить, это просто средство демонстрации основной концепции.«Настоящие» диммеры синусоидального сигнала значительно сложнее, и найти работоспособную схему в сети — задача (мягко говоря). Как и следовало ожидать, производители синусоидальных диммеров не стремятся публиковать свои схемы.

Несмотря на то, что синусоидальные диммеры являются относительно сложными и дорогими, они имеют большое преимущество в том, что они могут использоваться с любой нагрузкой , которая обычно подключена к сети. Можно использовать двигатели всех типов (но с большой осторожностью, чтобы не допустить их перегрузки при пониженном напряжении), трансформаторы (обычные или электронные) и даже лампы, которые обычно не считаются диммируемыми (хотя для большинства из них только в ограниченном диапазоне напряжений). нагрузки без диммирования).Некоторые производители называют свои синусоидальные диммеры эквивалентом электронного трансформатора.

Без фильтрации сигнал будет выглядеть как красная кривая на следующем графике. Сигнал 50 Гц был переключен с рабочим циклом 50% на частоте 50 кГц, и отфильтрованная форма волны показана зеленой кривой. Входная сеть составляла 230 В / 50 Гц, а напряжение на диммере и нагрузке примерно одинаково (~ 115 В на каждом).

Рисунок 19 — Формы сигналов синусоидального диммера

Путем изменения рабочего цикла выходное напряжение на нагрузке может составлять полные 230 В (за вычетом некоторых небольших потерь), вплоть до нуля.На самом деле невозможно получить достаточно низкий рабочий цикл для напряжений, намного меньших, чем около 10 В, потому что схемы ШИМ обычно будут несколько нестабильными с низким временем включения (например, менее ~ 200 нс). Для справки, в верхнем правом углу показаны развернутые детали прерванной формы волны (рабочий цикл 50%).

На данном этапе невозможно угадать, когда диммеры синусоидальной формы появятся в ближайшем к вам хозяйственном магазине. Я предполагаю, что вам, вероятно, не стоит задерживать дыхание, потому что это может занять некоторое время.Однако, когда станут доступны бытовые диммеры, использующие синусоидальную технологию, тогда (и только тогда) появятся какие-либо разумные шансы на успех и постоянство при затемнении светодиодных ламп или другой арматуры с использованием настенных диммеров. Я предполагаю, что производители микросхем (в конечном итоге), скорее всего, будут изготавливать почти все необходимое в одной микросхеме, для чего потребуется всего несколько пассивных частей и основные переключатели питания, чтобы сделать полный диммер. В настоящее время, кажется, нет никакого способа, чтобы синусоидальный диммер мог быть построен достаточно маленьким, чтобы поместиться в стандартную настенную пластину.

Я заявил, что настоящий синусоидальный диммер более сложен, чем простая концептуальная схема, показанная выше, но насколько сложна «сложная»? Смотрите рисунок 20 для ответа. Даже логический блок PWM сам по себе не является тривиальным, но нам также нужно использовать не один, а четыре MOSFET, плюс все вспомогательные схемы и привод затвора MOSFET с плавающей точкой. Возможно, можно использовать более простую схему, но становится очень трудно предотвратить деструктивные выбросы напряжения или тока, если не используется активная схема ограничения (Q3 и Q4), как показано на рисунке ниже.

Рисунок 20 — Общее устройство синусоидального диммера

Теперь вы можете сами убедиться, почему настенные диммеры с синусоидальной волной на данном этапе невозможны. На рисунке 20 показана упрощенная схема работоспособного синусоидального диммера — здесь много переключающих устройств, а для выходных полевых МОП-транзисторов или IGBT требуется изолированная приводная электроника. На приведенном выше рисунке показаны небольшие импульсные трансформаторы (T1 и T2), но есть также электронные эквиваленты, которые могут делать то же самое.Важно понимать, что схема намного сложнее, чем у обычного диммера с отсечкой фазы, и до тех пор, пока вся логика и системы привода не будут интегрированы в одну ИС, кажется, нет способа сделать «мелкомасштабная» версия.

Форма нефильтрованного выходного сигнала остается такой же, как показано на рисунке 19.

Обратите внимание, что в обеих показанных схемах секция источника питания не показана. Для питания логической схемы ШИМ необходим источник питания, а синусоидальные диммеры должны быть 3-проводными — активными, нейтралью и нагрузкой, а также заземление / заземление для более крупных (автономных) устройств.Попытка сделать двухпроводной синусоидальный диммер невозможна из-за требований к мощности схемы, и даже если бы это было возможно, синусоидальный диммер стал бы столь же восприимчивым к колебаниям нагрузки (и таким же ненадежным), как «традиционный» 2- проводные диммеры уже широко используются.

Во многих отношениях синусоидальный диммер — это, по сути, разновидность усилителя мощности класса D, но он напрямую использует линию переменного тока, а не сначала преобразует ее в постоянный ток. Если вы уже не знакомы с принципами работы усилителей класса D, это, вероятно, вам не очень поможет, но если вы понимаете класс D, то у вас уже есть некоторая информация о том, как работает диммер синусоидального сигнала.Управляющий сигнал, устанавливающий яркость лампы (выходное напряжение), аналогичен аудиовходу. Основное отличие состоит в том, что синусоидальный диммер использует источник переменного тока, а не постоянного тока, а напряжение питания намного выше (например, пиковое значение 325 В, а не более традиционное ± 70 В постоянного тока). Два полевых МОП-транзистора, которые используются спина к спине, образуют схему переключения переменного тока — они пропускают (или блокируют) вход независимо от полярности (см. Статью ESP о реле МОП-транзистора, чтобы узнать, как они работают).

Ключ к правильной работе синусоидального диммера с ШИМ заключается в схемах возбуждения полевых МОП-транзисторов, входных и выходных фильтрах, а также в точном определении мертвого времени (очень короткий период, когда все полевые МОП-транзисторы выключены).Все это нетривиально. Индуктивность коммутируемого выхода вызывает большие всплески напряжения «обратного хода», которые либо необходимо поглощать (что резко увеличивает потери), либо возвращать в систему, чего трудно добиться. Конденсаторы и резисторы должны быть «импульсными» из-за очень высокого пикового тока. Как бы я ни хотел дать читателям известную рабочую схему, я боюсь, что в настоящее время это невозможно. У меня есть симуляция, которая хорошо работает и имеет низкие потери, но преобразовать ее в рабочую схему — совсем другое дело.


Заключение

Регулировка яркости — это непростая задача, с которой согласны лишь немногие производители бытовой осветительной продукции. Почти все диммеры идеально работают с резистивными лампами (лампами накаливания), но их характеристики очень изменчивы с электронными нагрузками. Хотя производители светодиодных балластов / источников питания могут заявлять, что их продукция «регулируется яркостью», не ожидайте найти какую-либо полезную информацию — где угодно! Проблемы усугубляются тем фактом, что подавляющее большинство диммеров являются двухпроводными и зависят от нагрузки, чтобы обеспечить их эталонное значение при переходе через нуль в сети (что означает, что полупериод закончился).

Диммеры и блоки питания представляют собой набор довольно сложной электроники, и нет гарантии, что диммер «А» будет работать с балластом (источником питания) «В» или наоборот. Не существует стандартов для диммеров или источников питания с регулируемой яркостью, и вся проблема усугубляется, когда клиенты настаивают на возможности использовать «устаревшие» продукты, которые были разработаны для использования с лампами накаливания. В некоторых случаях диммер «А» может отлично работать с одним источником питания, но тот же источник питания ужасно не работает с другим диммером — даже с одним из сопоставимых типов.Точно так же диммеры очень разнообразны и могут нормально работать с одним типом источника питания, но выходить из строя с другим. Мигание, мерцание и общая нестабильность — все это неудачи, потому что клиенты не приемлют нестабильное освещение.

До тех пор, пока не будут внедрены стандарты, определяющие взаимодействие диммеров и источников питания, проблема вряд ли улучшится. Одним из методов является использование 0-10 В, но клиентам это часто не нравится, потому что это означает, что необходимо проложить дополнительные провода и заменить любые существующие диммеры модулями 0-10 В.Системы автоматизации (C-Bus, DALI) не подходят, потому что они дороги и требуют дополнительного оборудования, проводки и ввода в эксплуатацию, что значительно увеличивает стоимость установки. Также не хватает диммируемых источников питания / балластов 0-10В — они есть, но не особо распространены. Те, которые вы найдете, могут быть несовместимы с контроллерами диммера.

В настоящее время нет простого ответа, и до тех пор, пока не будут приняты стандарты, обеспечивающие взаимодействие между диммерами и балластами / источниками питания, ситуация не улучшится.Между тем, когда дело доходит до затемнения любой электронной лампы / приспособления (светодиодной или CFL), единственный способ получить шанс — это если вы готовы провести свои собственные тесты. Некоторые комбинации будут работать, некоторые будут нестабильными (мигать / мигать, особенно при низких настройках), а другие могут быть совершенно неудовлетворительными. В некоторых случаях вы можете обнаружить, что не существует комбинаций , которые работают, поэтому необходимо заменить диммер и как источника питания (или всего прибора).

Заявления производителя следует считать в лучшем случае апокрифом, потому что вы редко или никогда не узнаете точный тип диммера, который использовался для их тестов на «совместимость». Если производитель может предоставить как источник питания , так и диммер , это, вероятно, будет лучше, чем покупать каждый из разных поставщиков. Во время тестирования я обнаружил, что Variac обычно является лучшим диммером из всех (это настоящий синусоидальный диммер) и может обеспечивать плавное затемнение от 1% до максимальной яркости.Тесты с диммерами по передней и задней кромке показали, что результаты варьируются от бесполезных до труднопроходимых и приемлемых. Ни один из них не так хорош, как затемнение лампы накаливания, кроме некоторых специальных регуляторов 0-10 В. Как отмечалось ранее, диммеры TRIAC (передние) никогда не должны использоваться с электронными источниками питания из-за чрезмерного повторяющегося пикового тока, который в конечном итоге приведет к выходу из строя диммера и / или источника питания. Интересно, что я видел драйверы светодиодов, которые будут правильно работать только с передним диммером, но, как и ожидалось, потребляют чрезмерный пиковый ток и могут выйти из строя намного раньше, чем можно было бы надеяться.

Вы должны быть готовы экспериментировать. Не ждите, что найдете комбинацию, которая сработает безупречно с первой попытки, кроме как по чистой случайности. Светодиодная арматура / светильники сами по себе не являются проблемой — способность диммирования в конечном итоге зависит от источника питания и диммера. Иногда вы обнаружите, что только способ получить удовлетворительный конечный результат — это подключить лампу накаливания параллельно источникам питания светодиодов или КЛЛ с регулируемой яркостью — вряд ли идеальная ситуация.Другие комбинации диммера / источника питания могут оказаться неудовлетворительными независимо от того, что вы делаете.

Не ожидайте, что светодиодные или CFL лампы или арматура будут тускнеть так же, как лампы накаливания. Это нереально, потому что нельзя ожидать, что электронный блок питания будет вести себя так же, как простая резистивная нить накала. Хотя светодиоды идеально подходят для диммирования, этого не произойдет, пока производители не примут решения о стандартах, которые позволяют подключать источники питания и управлять ими с помощью простого аналогового интерфейса, такого как 0-10 В или какого-либо аналогичного (простого) протокола, который не требует дорогое дополнительное оборудование.Они довольно распространены для коммерческих / промышленных приложений, но не для бытовых продуктов.

Эта статья была написана в 2008 году, и по состоянию на конец 2017 года мало что изменилось. Производители освещения по-прежнему производят полностью герметичные светильники для внутреннего освещения, которые на и на не подходят для использования с электронными лампами, большинство диммеров по-прежнему двухпроводные, и почти ничего не было сделано для решения проблем совместимости диммеров и ламп. Трудно найти комбинации, которые хорошо работают вместе, и ни один из основных производителей не потрудится провести тесты и порекомендовать конкретный диммер как подходящий для их ламп.Большинство (по-прежнему) не рекомендуют использовать только диммеры с задней кромкой и подразумевают, что подходят типы с передней кромкой. Это редко бывает правдой.

Наконец, конечно, мы можем только надеяться, что настенные диммеры синусоидального сигнала станут доступными в недалеком будущем, поскольку это единственная технология, которая обеспечит некоторую степень уверенности. Диммеры по задней кромке также могут работать очень хорошо, но их можно предсказать, только если они спроектированы как 3-проводные, с фиксированным опорным нейтралью, обеспечивающим надежную работу диммера.К сожалению, их очень сложно найти в оборудовании или осветительных приборах.


Источники и ссылки

  1. Двухступенчатое управление обратной фазой с функцией диммирования, Atmel
  2. Электронный трансформатор затемнения галогенной лампы — EDN
  3. Жага Консорциум
  4. Консорциум Designlights
  5. Затемнение светодиодов — что работает и что требует ремонта (конференция Lightfair)
  6. Strand Lighting — Один из немногих полезных документов, которые я нашел по синусоидальному затемнению.


Лампы и индекс энергии

Основной указатель

Уведомление об авторских правах. Этот материал, включая, помимо прочего, весь текст и диаграммы, является интеллектуальной собственностью Рода Эллиотта и защищен авторским правом © 2008. Воспроизведение или повторная публикация любыми средствами, электронными, механическими или электромеханическими, строго запрещены. в соответствии с международными законами об авторском праве. Автор / редактор (Род Эллиотт) предоставляет читателю право использовать эту информацию только в личных целях, а также разрешает сделать одну (1) копию для справки. Полное или частичное коммерческое использование запрещено без письменного разрешения Рода Эллиотта.

Страница создана и авторские права © 15 сентября 2008 г. / Обновлено август / сентябрь 2013 г. — добавлено немного дополнительной информации о диммерах и использовании. / Декабрь 2013 г. — диммеры синусоидальной волны. / Ноябрь 2017 г. — добавлены Рис. 10A и текст, незначительные изменения в других местах.

Цепи регулятора освещенности, схемы


Цепи диммера

Связанная тема: Силовая электроника
Лампа 1200 Вт
Схема диммера Схема представляет собой схему диммера лампы, способную
управление мощностью до 1200 Вт.В схеме используется комбинация Q4015LT Diac и
Симистор
Диммер 220V / 240V
Диммер 220V / 240V, файл pdf
Диммер 230В
Это стандартная схема, которая может использоваться для регулировки яркости освещения в сети и скорости двигателей переменного тока. Он использует симистор, диак и имеет
схема подавления радиочастотных помех (RFI), встроенная в него как
ну pdf файл
Люминесцентная лампа с холодным катодом
Интегрированный КЛЛ с использованием IR53h520, файл pdf
Люминесцентная лампа с холодным катодом
Коммутационный регулятор управления CCFT

CCFL: 1 Вт ЯРКОСТЬ
ЛАМПА НОЧНОЙ СВЕТ pdf файл

Люминесцентная лампа с холодным катодом
ИС инвертора подсветки ЖК-дисплея (FAN7311)
Люминесцентная лампа с холодным катодом
Преобразователь резонансных люминесцентных ламп — эффективное и компактное решение

Схема диммера
диммеры ламп на симисторах

Схема диммера, симистор высокого разрешения, 555, pdf файл

Диммер
цепь, управляемая напряжением 0-10 В постоянного тока
Диммер с MOSFET pdf файл
Затемнение
Электронные балласты pdf файл
Дискотека
VU lights disco VU lights circuit
Вождение
люминесцентная лампа
Переключатель от заката до рассвета
этот переключатель от заката к рассвету включает лампу ночью и автоматически выключает ее днем ​​
Электронный
Балласты с использованием экономичных драйверов IR215X pdf файл
Электронное касание
диммер работает с Siemens S566B, TIC206D, отлично работает
Низкое напряжение постоянного тока
Поставка диммируемого балласта для 1 лампы T8 мощностью 36 Вт. Pdf файл
Схема регулятора освещенности
простая схема регулятора яркости света с использованием управления 0-10 В постоянного тока

Схемы диммеров Как работают диммеры? Стандартный диммер на 120 В переменного тока
цепь, цепь регулятора яркости 1 кВт 230 В переменного тока, Вопросы безопасности при строительстве
схемы, советы по выбору компонентов, детали радиочастотных помех,
Проблемы с гудением в диммерах, Индуктивное диммирование нагрузки, Как работают сенсорные диммеры? pdf файл

Управление выключателем освещения до 500Вт освещения, резистивное
Недорогая конструкция балласта 220 В без затемнения
В этом примечании к применению описывается конструкция балласта с высокими эксплуатационными характеристиками и низкой стоимостью, использующая
микросхема электронного балласта ML4831, pdf файл
Неоновые лампы накаливания
что-то необычное приложение, такого я еще не видел
перед

МОНОЛИТНЫЙ ДИММЕР ЛАМП L9830, файл pdf

On-Off-Delayed Off
Выключатель света
Мощность 6
дюймовая 4-ваттная люминесцентная лампа от источника питания 12 В, потребляющая 300 мА
Дистанционное управление освещением до четырех каналов диммеров с ИК-подсветкой
цепь
Звук для
свет
Стробоскоп
Тиристоры для зажигания люминесцентных ламп pdf файл
Тиристоры для зажигания люминесцентных ламп pdf файл
ЛАМПА СЕНСОРНОГО УПРАВЛЕНИЯ
DIMMER LS7232ND, синхронизация с фазовой синхронизацией, LS7232ND — это MOS
интегральная схема, предназначенная для управления яркостью ламп накаливания.Выход этой ИС контролирует яркость
лампы путем управления углом включения симистора, подключенного последовательно с
лампа, pdf файл
Сенсорный диммер S566B
Сенсорный диммер
просто прикоснувшись к этому сенсорному диммеру, вы можете увеличить интенсивность света
лампы накаливания в три ступени. Сенсорный диммер построен на 8-контактной КМОП-матрице.
Микросхема TT8486A / TT6061A, специально изготовленная для сенсорных диммеров, файл pdf
Сенсорный диммер
HT7700, файл pdf
Электронный диммер вторичной обмотки трансформатора для галогенных ламп низкого напряжения
Схема LS7231, файл pdf
Симисторный свет
цепь диммера симистора диммера,
PDF
файл
Симисторный свет
диммер, симистор, диммер, звук в свет, оптоизолятор, 555

Triac Light Dimmer pdf файл

Сенсорный переключатель управления
для люминесцентных ламп.LS7539 Сенсорный выключатель для люминесцентных ламп
Настенный диммер с неоном
Настенный диммер Locator Bulb с неоновой лампой Locator, файл pdf
Ксенон
стробоскоп
Horizontaal

Дом
|

Карта сайта
|

Электронная почта: support [at] karadimov.инфо

Последнее обновление:
2011-01-15
|
Авторские права © 2011-2013 Educypedia.

http://educypedia.karadimov.info

AC220V 300W Светодиодный регулятор яркости регулятора яркости для потолочного светильника Регулировка прожектора Интернет-магазин белый

Доставка по

/
доллар США

Выберите региональные настройки

Доставить

США

  • США
  • Испания
  • Соединенное Королевство
  • Франция
  • Германия
  • Италия
  • Афганистан
  • Албания
  • Алжир
  • Американское Самоа
  • Андорра
  • Ангола
  • Ангилья
  • Антигуа
  • Аргентина
  • Аруба
  • Австралия
  • Австрия
  • Азербайджанская Республика
  • Багамы
  • Бахрейн
  • Бангладеш
  • Барбадос
  • Беларусь
  • Бельгия
  • Белиз
  • Бенин
  • Бермудские острова
  • Бутан
  • Боливия
  • Бонайре
  • Ботсвана
  • Бразилия
  • Бруней
  • Болгария
  • Буркина-Фасо
  • Бурунди
  • Камбоджа
  • Камерун
  • Канада
  • Канарские острова
  • Кабо-Верде
  • Каймановы острова
  • Центральноафриканская Республика
  • Чад
  • Чили
  • Китай
  • Колумбия
  • Коморские Острова
  • Конго (Браззавиль)
  • Конго (Киншаса)
  • Острова Кука
  • Коста-Рика
  • Кот-д’Ивуар
  • Хорватия
  • Кюрасао
  • Кипр
  • Чешская Республика
  • Дания
  • Джибути
  • Доминика
  • Доминиканская Республика
  • Восточный Тимор
  • Эквадор
  • Египет
  • Сальвадор
  • Эритрея
  • Эстония
  • Эфиопия
  • Фолклендские острова
  • Фарерские острова
  • Фиджи
  • Финляндия
  • Французская Гайана
  • Габон
  • Гамбия
  • Грузия
  • Гана
  • Гибралтар
  • Греция
  • Гренландия
  • Гренада
  • Гваделупа
  • Гуам
  • Гватемала
  • Гернси
  • Республика Гвинея
  • Гвинея-Бисау
  • Гвинея-Экваториальная
  • Гайана (Великобритания)
  • Гаити
  • Гондурас
  • Гонконг, Китай
  • Венгрия
  • Исландия
  • Индия
  • Индонезия
  • Иран
  • Ирак
  • Ирландия
  • Израиль
  • Ямайка
  • Япония
  • Джерси
  • Иордания
  • Казахстан
  • Кирибати
  • Косово
  • Кувейт
  • Кыргызстан
  • Лаосская Народно-Демократическая Республика
  • Латвия
  • Ливан
  • Лесото
  • Либерия
  • Ливия
  • Лихтенштейн
  • Литва
  • Люксембург
  • Макао, Китай
  • Македония
  • Мадагаскар
  • Малави
  • Малайзия
  • Мальдивы
  • Мали
  • Мальта
  • Маршалловы Острова
  • Мартиника
  • Мавритания
  • Маврикий

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *