Диод проверить тестером: Как проверить диод? Всё, что необходимо об этом знать.

Разное

Содержание

Как проверить диод? Всё, что необходимо об этом знать.

Проверка диода цифровым мультиметром

Чтобы определить исправность диода можно воспользоваться приведённой далее методикой его проверки цифровым мультиметром.

Но для начала вспомним, что представляет собой полупроводниковый диод.

Полупроводниковый диод – это электронный прибор, который обладает свойством однонаправленной проводимости.

У диода имеется два вывода. Один называется катодом, он является отрицательным. Другой вывод – анод. Он является положительным.

На физическом уровне диод представляет собой один p-n переход.

Напомню, что у полупроводниковых приборов p-n переходов может быть несколько. Например, у динистора их три! А полупроводниковый диод, по сути является самым простым электронным прибором на основе всего лишь одного p-n перехода.

Запомним, что рабочие свойства диода проявляются только при прямом включении. Что значит прямое включение? А это означает, что к выводу анода приложено положительное напряжение (+), а к катоду – отрицательное, т.е. (). В таком случае диод открывается и через его p-n переход начинает течь ток.

При обратном включении, когда к аноду приложено отрицательное напряжение (), а к катоду положительное (+), то диод закрыт и не пропускает ток.

Так будет продолжаться до тех пор, пока напряжение на обратно включённом диоде не достигнет критического, после которого происходит повреждение полупроводникового кристалла. В этом и заключается основное свойство диода – односторонняя проводимость.

У подавляющего большинства современных цифровых мультиметров (тестеров) в функционале присутствует возможность проверки диода. Эту функцию также можно использовать для проверки биполярных транзисторов. Обозначается она в виде условного обозначения диода рядом с разметкой переключателя режимов мультиметра.

Небольшое примечание! Стоит понимать, что при проверке диодов в прямом включении на дисплее показывается не сопротивление перехода, как многие думают, а его пороговое напряжение! Его ещё называют падением напряжения на p-n переходе. Это напряжение, при превышении которого p-n переход полностью открывается и начинает пропускать ток. Если проводить аналогию, то это величина усилия, направленного на то, чтобы открыть «дверь» для электронов. Это напряжение лежит в пределах 100 – 1000 милливольт (mV). Его то и показывает дисплей прибора.

В обратном включении, когда к аноду подключен минусовой () вывод тестера, а к катоду плюсовой (+), то на дисплее не должно показываться никаких значений. Это свидетельствует о том, что переход исправен и в обратном направлении ток не пропускает.

В документации (даташитах) на импортные диоды пороговое напряжение именуется как Forward Voltage Drop (сокращённо Vf), что дословно переводится как «падение напряжения в прямом включении«.

Само по себе падение напряжения на p-n переходе нежелательно. Если помножить протекающий через диод ток (прямой ток) на величину падения напряжения, то мы получим ни что иное, как мощность рассеивания – ту мощность, которая бесполезно расходуется на нагрев элемента.

Узнать подробнее о параметрах диода можно здесь.

Проверка диода.

Чтобы было более наглядно, проведём проверку выпрямительного диода 1N5819. Это диод Шоттки. В этом мы скоро убедимся.

Производить проверку будем мультитестером Victor VC9805+. Также для удобства применена беспаечная макетная плата.

Обращаю внимание на то, что во время измерения нельзя держать выводы проверяемого элемента и металлические щупы двумя руками. Это грубая ошибка. В таком случае мы измеряем не только параметры диода, но и сопротивление своего тела. Это может существенно повлиять на результат проверки.

Держать щупы и выводы элемента можно только одной рукой! В таком случае в измерительную цепь включен только сам измерительный прибор и проверяемый элемент. Данная рекомендация справедлива и при измерении сопротивления резисторов, а также при проверке конденсаторов. Не забывайте об этом важном правиле!

Итак, проверим диод в прямом включении. При этом плюсовой щуп (красный) мультиметра подключаем к аноду диода. Минусовой щуп (чёрный) подключаем к катоду. На фотографии, показанной ранее, видно, что на цилиндрическом корпусе диода нанесено белое кольцо с одного края. Именно с этой стороны у него вывод катода. Таким образом маркируется вывод катода у большинства диодов импортного производства.

Как видим, на дисплее цифрового мультиметра показалось значение порогового напряжения для 1N5819. Так как это диод Шоттки, то его значение невелико – всего 207 милливольт (mV).

Теперь проверим диод в обратном включении. Напоминаем, что в обратном включении диод ток не пропускает. Забегая вперёд, отметим, что и в обратном включении через p-n переход всё-таки протекает небольшой ток. Это так называемый обратный ток (Iобр). Но он настолько мал, что его обычно не учитывают.

Поменяем подключение диода к измерительным щупам мультиметра. Красный щуп подключаем к катоду, а чёрный к аноду.

На дисплее покажется «1» в старшем разряде дисплея. Это свидетельствует о том, что диод не пропускает ток и его сопротивление велико. Таким образом, мы проверили диод 1N5819 и он оказался полностью исправным.

Многие задаются вопросом: «Можно ли проверить диод не выпаивая его из платы?» Да, можно. Но в таком случае необходимо выпаять из платы хотя бы один его вывод. Это нужно сделать для того, чтобы исключить влияние других деталей, которые соединены с проверяемым диодом.

Если этого не сделать, то измерительный ток потечёт через все, в том числе, и через связанные с ним элементы. В результате тестирования показания мультиметра будут неверными!

В некоторых случаях данным правилом можно пренебречь, например, когда чётко видно, что на печатной плате нет таких деталей, которые могут повлиять на результат проверки.

Неисправности диода.

У диода есть две основные неисправности. Это пробой перехода и его обрыв.

  • Пробой. При пробое диод превращается в обычный проводник и свободно пропускает ток хоть в прямом направлении, хоть в обратном. При этом, как правило, пищит буззер мультиметра, а на дисплее показывается величина сопротивления перехода. Это сопротивление очень мало и составляет несколько ом, а то и вообще равно нулю.

  • Обрыв. При обрыве диод не пропускает ток ни в прямом, ни в обратном включении. В любом случае на дисплее прибора – «1«. При таком дефекте диод представляет собой изолятор. «Диагноз» — обрыв можно случайно поставить и исправному диоду. Особенно легко это сделать, когда щупы тестера порядком изношены и повреждены. Следите за исправностью измерительных щупов, провода у них ох какие «жиденькие» и при частом использовании легко рвутся.

А теперь пару слов о том, как по значению порогового напряжения (падению напряжения на переходе — Forward Voltage Drop (Vf)) можно ориентировочно судить о типе диода и материале из которого он изготовлен.

Вот небольшая подборка, составленная из конкретных диодов и соответствующих им величин Vf, которые были получены при их тестировании мультиметром. Все диоды были предварительно проверены на исправность.

Марка диода

Измеренное пороговое напряжение, мВ (mV)

Тип диода, материал полупроводника

1N5822

167

выпрямительный диод Шоттки

1N5819

200

выпрямительный диод Шоттки

RU4

419

быстрый выпрямительный диод

Д20

358

точечный германиевый диод

Д9

400

точечный германиевый диод

2Д106А

559

диффузионный кремниевый диод

Д104

717

точечный кремниевый диод

Как видим, наименьшее падение напряжения на переходе (Vf) у диодов Шоттки 1N5822 и 1N5819. Это отличительная черта всех диодов на основе перехода металл-полупроводник (барьера Шоттки).

При прямом протекании тока через их переход (барьер Шоттки), на нём падает очень малое напряжение. Сказать проще – диод практически не оказывает никакого сопротивления протекающему току и не расходует драгоценные ватты. Противоположенная ситуация у кремниевых диодов. Прямое падение напряжения у них, как правило, не меньше 0,5 вольт, а то и больше. Кремниевые диоды и диоды с барьером Шоттки очень активно используются для выпрямления переменного тока. Например, в составе диодного моста.

Германиевые диоды имеют прямое падение напряжения равное 300 – 400 милливольт. Например, проверенный нами точечный германиевый диод Д9, который ранее применялся в качестве детектора в радиоприёмниках, имеет пороговое напряжение около 400 милливольт.

  • Диоды Шоттки имеют Vf в районе 100 – 250 mV;

  • У германиевых диодов Vf, как правило, равно 300 – 400 mV;

  • Кремниевые диоды имеют самое большое падение напряжения на переходе равное 400 – 1000 mV.

Таким образом, с помощью описанной методики можно не только определить исправность диода, но и ориентировочно узнать, из какого материала и по какой технологии он изготовлен. Определить это можно по величине Vf.

Возможно, после прочтения данной методики у вас появится вопрос: «А как же проверить диодный мост?» На самом деле, очень просто. Об этом я уже рассказывал здесь.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Проверка диодов мультиметром

Добавлено 3 февраля 2017 в 21:10

Сохранить или поделиться

И для любителей, и для профессионалов электроники очень важным умением является способность определить полярность (где катод, а где анод) и работоспособность диода. Так как мы знаем, что диод, по сути, является не более, чем односторонним клапаном для электричества, то вероятно, мы можем проверить его однонаправленный характер с помощью омметра, измеряющего сопротивление по постоянному току (питающегося от батареи), как показано на рисунке ниже. При подключении диода одним способом мультиметр должен показать очень низкое сопротивление на рисунке (a). При подключении диода другим способом мультиметр должен показать очень большое сопротивление на рисунке (b) (некоторые модели цифровых мультиметров в этом случае показывают «OL»).

Определение полярности диода: (a) Низкое сопротивление указывает на прямое смещение, черный щуп подключен к катоду, а красный – к аноду. (b) Перемена щупов местами показывает высокое сопротивление, указывающее на обратное смещение.

Конечно, чтобы определить, какое вывод диода является катодом, а какой – анодом, вы должны точно знать, какой вывод мультиметра является положительным (+), а какой – отрицательным (-), когда на нем выбран режим «сопротивление» или «Ω». В большинстве цифровых мультиметров, которые я видел, красный вывод используется, как положительный, а черный, как отрицательный, в соответствии с соглашением о цветовой маркировке электроники.

Одна из проблем использования омметра для проверки диода заключается в том, что мы имеем только качественное значение, а не количественное. Другими словами, омметр говорит вам, только в каком направлении диод проводит ток; полученное при измерении низкое значение сопротивления бесполезно. Если омметр показывает значение «1,73 ома» при прямом смещении диода, то число 1,7 Ом не представляет для нас, как для техников или разработчиков схем, никакой реально полезной количественной оценки. Оно не представляет собой ни прямое падение напряжения, ни величину сопротивления материала полупроводника самого диода; это число скорее зависит от обеих величин и будет изменяться в зависимости от конкретного омметра, используемого для измерения.

По этой причини, некоторые производители цифровых мультиметров оснащают свои измерительные приборы специальной функцией «проверка диода», которая показывает реальное прямое падение напряжения на диоде в вольтах, а не значение «сопротивления» в омах. Эти измерительные приборы работают, пропуская через диод небольшой ток и измеряя падение напряжения между двумя измерительными щупами (рисунок ниже).

Мультиметр с функцией «Проверка диода», вместо низкого сопротивления, показывает прямое падение напряжения 0,548 вольт.

Показание прямого напряжения, полученное таким образом с помощью мультиметра обычно меньше, чем «нормальное» падение в 0,7 вольта для кремниевых диодов и 0,3 вольта для германиевых диодов, так как ток, обеспечиваемый измерительным прибором, довольно мал. Если у вас нет мультиметра с функцией проверки диодов, или вы хотели бы измерить прямое падение напряжения на диоде при другом токе, то можно собрать схему из батареи, резистора и вольтметра.

Измерение прямого напряжения диода с помощью мультиметра без функции «проверка диода»: (a) Принципиальная схема. (b) Схема соединений

Подключение диода в этой тестовой схеме в обратном направлении просто приведет к тому, что вольтметр покажет полное напряжение батареи.

Если эта схема была разработана для обеспечения протекания через диод тока постоянной (или почти) величины, несмотря на изменения прямого падения напряжения, то она может быть использована в качестве основы для инструмента, измеряющего температуру: измеренное на диоде напряжение будет обратно пропорционально температуре перехода диода. Конечно, ток через диод должен быть минимален, чтобы самонагревания (значительного количества рассеиваемой диодом мощности), которое могло бы помешать измерению температуры.

Помните, что некоторые цифровые мультиметры, оснащенные функцией «проверка диода», при работе в обычном режиме «сопротивление» (Ω) могут выдавать очень низкое тестовое напряжение (менее 0,3 вольт), слишком низкое для полного схлопывания (сжатия) обедненной области PN перехода. Суть в том, что тестирования полупроводниковых приборов здесь должна использоваться функция «проверка диода», а функция «сопротивления» – для всего остального. Использование очень низкого тестового напряжения для измерения сопротивления облегчает процесс измерения сопротивления неполупроводниковых компонентов, подключенных к полупроводниковым компонентам, так как переходы полупроводникового компонента не будут смещены такими низкими напряжениями в прямом направлении.

Рассмотрим пример резистора и диода, соединенных параллельно и припаянных к печатной плате. Как правило, перед измерением сопротивления резистора необходимо было бы выпаять его из схемы (отсоединить резистор от остальных компонентов), в противном случае любые параллельно подключенные компоненты будут влиять на полученные показания. При использовании мультиметра, который выдает на щупы очень низкое тестовое напряжение в режиме «сопротивление», на PN переход диода не будет подано напряжение, достаточное для того, чтобы он был смещен в прямом направлении, и, следовательно, диод будет пропускать незначительный ток. Следовательно, измерительный прибор «видит» диод, как разрыв, и показывает сопротивление только резистора (рисунок ниже).

Омметр, оснащенный очень низким тестовым напряжением (< 0,7 В), не видит диодов, что позволяет ему измерять параллельно подключенные к диоду резисторы.

Если использовать такой омметр для проверки диода, он покажет очень высокое сопротивление (много мегаом), даже если подключить диод в «правильном» (для прямого смещения) направлении (рисунок ниже).

Омметр, оснащенный очень низким тестовым напряжением, слишком низким для прямого смещения диодов, не видит диодов.

Величина обратного напряжения диода измеряется не так легко, так как превышение обратного напряжения на обычном диоде приводит к его разрушению. Хотя существуют специальные типы диодов, разработанные для «пробоя» в режиме обратного смещения без повреждения диода (так называемые стабилитроны), которые тестируются в той же схеме источник/резистор/вольтметр при условии, что источник напряжения обеспечивает величину напряжения, достаточную для перехода диода в область пробоя. Более подробную информацию об этом читайте в одной из следующих статей этой главы.

Подведем итоги

  • Омметр может быть использован для качественной оценки работоспособности диода. При подключении диода в одном направлении должно получено низкое сопротивление, а подключении в другом направлении – очень высокое сопротивление. При использовании для этой цели омметра, убедитесь, что знаете, какой из тестовых щупов положительный, а какой отрицательный!
  • Некоторые мультиметры имеют функцию «проверка диода», которая отображает фактическое прямое напряжение диода, когда он проводит ток. Такие измерительные приборы обычно показывают слегка заниженное значение прямого напряжения, по сравнению с «номинальным» значением, из-за очень маленькой величины тока, используемой для проверки.

Оригинал статьи:

Теги

ДиодМультиметрОбучениеЭлектроника

Сохранить или поделиться

Как проверить диод и светодиод мультиметром?

Как проверить диод и светодиод мультиметром? Оказывается, все очень просто. Как раз об этом мы и поговорим в нашей статье.

Как проверить диод мультиметром

На фото ниже у нас простой диод и светодиод.

Берем наш мультиметр и ставим крутилку на значок проверки диодов. Подробнее об этом и других значках я говорил в статье как измерить ток и напряжение мультиметром

Хотелось бы добавить пару слов о диоде. Диод, как и резистор, имеет два конца. И называются они катод и анод. Если на анод подать плюс, а на катод минус, то через диод спокойно потечет электрический ток, а если на катод подать плюс, а на анод минус – ток НЕ потечет. Это принцип работы PN-перехода, на котором работают все диоды.

Проверяем первый  диод. Один щуп мультиметра ставим на один конец диода, другой щуп на другой конец диода.

Как мы видим, мультиметр показал напряжение в 436 милливольт. Значит, конец диода, который касается красный щуп – это анод, а другой конец  – катод. 436 милливольт  – это падение напряжения на прямом переходе диода. По моим наблюдениям, это напряжение может быть от 400 и до 700 милливольт для кремниевых диодов, а для германиевых от 200 и до 400 милливольт. 

Далее меняем выводы диода местами

Единичка на мультиметре означает, что сейчас электрический ток не течет через диод. Следовательно, наш диод  вполне рабочий.

Как проверить светодиод мультиметром

А как же проверить светодиод? Да точно также, как и диод! Вся соль в том, что если мы встанем красным щупом на анод, а черным на катод светодиода, то он будет светиться!

Смотрите, он чуть-чуть светится! Значит, вывод светодиода, на котором красный щуп – это анод, а вывод на котором черный щуп – это катод. Мультиметр показал падение напряжения 1130 милливольт. Для светодиодов это считается нормально. Оно также может изменяться, в зависимости от “модели” светодиода.

Меняем щупы местами. Светодиод не загорелся.

Выносим вердикт – вполне работоспособный светодиод!

А как же проверить диодные сборки и диодные мосты? Диодные сборки и диодные мосты  – это соединение нескольких диодов, в основном 4 или 6. Находим схему диодной сборки или моста и проверяем каждый диод по отдельности. Как проверить стабилитрон, читайте в этой статье.

Проверка диодов | Fluke

Проверка диодов цифровым мультиметром выполняется одним из двух способов:

  1. Режим проверки диодов: рекомендуется в большинстве случаев.
  2. Режим измерения сопротивления: обычно используется в тех случаях, когда на мультиметре не предусмотрен режим проверки диодов.

Примечание. В некоторых случаях для проверки требуется отсоединить один выход диода от цепи.

Что необходимо знать о проверке диодов в режиме измерения сопротивления:

  • Не всегда позволяет определить, исправен диод или нет.
  • Проверку в таком режиме не рекомендуется проводить для подключенного к цепи диода, поскольку показания могут быть ошибочными.
  • В некоторых областях применения этот режим МОЖНО ИСПОЛЬЗОВАТЬ для подтверждения неисправности диода после того, как проверка диодов выявила неисправность.

Для оптимальной проверки необходимо измерить падение напряжения на диоде при прямом смещении. Диод с прямым смещением действует как замкнутый переключатель, который обеспечивает прохождение тока.

В режиме проверки диодов мультиметр создает небольшое напряжение между измерительными проводами. Мультиметр показывает падение напряжения, когда измерительные провода подключены к диоду с прямым смещением. Проверку диодов следует выполнять следующим образом:

  1. Убедитесь, что a) в цепь не поступает питание, и б) на диоде отсутствует напряжение. Напряжение в цепи может присутствовать из-за заряженных конденсаторов. В этом случае необходимо разрядить конденсаторы. В соответствии с требованиями настройте мультиметр на измерение напряжения переменного или постоянного тока.
  2. Переведите регулятор (поворотный переключатель) в положение режима проверки диодов ( ). Эта функция на регуляторе может быть совмещена с другой функцией.
  3. Подсоедините измерительные провода к диоду. Запишите полученный результат.
  4. Поменяйте местами измерительные провода. Запишите полученный результат.

Анализ результатов проверки диодов

  • Для наиболее распространенных кремниевых диодов падение напряжения составляет от 0,5 до 0,8 В, что свидетельствует об исправности диода с прямым смещением. Падение напряжения на некоторых германиевых диодах составляет от 0,2 до 0,3 В.
  • При обратном смещении исправного диода на экране мультиметра отображается OL. OL указывает на то, что диод работает как разомкнутый переключатель.
  • Неисправный диод (с обрывом) делает невозможным прохождение тока в любом направлении. Если диод имеет обрыв, мультиметр отображает OL для обоих направлений.
  • На диоде с коротким замыканием наблюдается одинаковое падение напряжения (приблизительно 0,4 В) в обоих направлениях.

Мультиметр в режиме измерения сопротивления (Ω) можно использовать для проведения дополнительной проверки диода или, как уже говорилось ранее, в тех случаях, если на мультиметре не предусмотрен режим проверки диода.

Диод имеет прямое смещение, если положительный (красный) измерительный провод подсоединен к аноду, а отрицательный (черный) измерительный провод — к катоду.

  • Сопротивление исправного диода с прямым смещением должно находиться в диапазоне от 1000 Ом до 10 МОм.
  • При прямом смещении диода показания сопротивления будут высокими, так как ток от мультиметра проходит через диод, результатом чего становится высокое сопротивление, которое требуется для проверки.

Диод имеет обратное смещение, если положительный (красный) измерительный провод подсоединен к катоду, а отрицательный (черный) измерительный провод — к аноду.

  • Если диод с обратным смещением исправен, на мультиметре отображается OL. Диод неисправен, если показания одинаковы для обоих направлений.

Проверку в режиме измерения сопротивления следует выполнять следующим образом:

  1. Убедитесь, что a) в цепь не поступает питание, и б) на диоде отсутствует напряжение. Напряжение в цепи может присутствовать из-за заряженных конденсаторов. В этом случае необходимо разрядить конденсаторы. В соответствии с требованиями настройте мультиметр на измерение напряжения переменного или постоянного тока.
  2. Переведите регулятор в положение измерения сопротивления (Ω). Эта функция на регуляторе может быть совмещена с другой функцией.
  3. Отсоедините диод от цепи и подключите к нему измерительные провода. Запишите полученный результат.
  4. Поменяйте местами измерительные провода. Запишите полученный результат.
  5. Для получения достоверных результатов сравните показания, полученные в режиме измерения сопротивления, с показаниями для известного исправного диода.

Ссылка: Digital Multimeter Principles by Glen A. Mazur, American Technical Publishers.

Подберите подходящий мультиметр

Как проверить диод мультимтером и отличить его от стабилитрона

Определение пригодности радиодеталей – основная процедура, проводимая при ремонте или обслуживании радиоэлектронной аппаратуры. И если с пассивными элементами все более или менее понятно, то активные требуют специальных подходов. Проверить сопротивление резистора или целостность катушки индуктивности не составляет труда.

С активными компонентами дело обстоит немного сложнее. Необходимо отдельно разобраться в том, как проверить диод мультиметром своими руками, учитывая, что это простейший и наиболее часто встречающийся полупроводниковый элемент электронных схем.

Виды диодов и их предназначение

Вкратце можно сказать, что диод представляет собой полупроводниковый компонент электронной схемы, предназначенный для однонаправленного пропускания тока. Другими словами, прибор пропускает ток в одном направлении, запирая его течение в обратном, образуя своеобразный электрический вентиль.

На принципиальных схемах диод обозначается в виде стрелки-указателя, на конце которой изображена черта, означающая запирание. Стрелка указывает направление течения тока.

Нужно помнить, что в теоретической физике ток образуют позитивно заряженные частицы. Поэтому для открытия p-n перехода положительный потенциал прикладывают к началу стрелки, а отрицательный к ее концу. При таких условиях через прибор потечет прямой ток.

Рассмотрим наиболее распространенные типы диодов, учитывая, что интерес в плане проверки представляют лишь некоторые, а именно:

  • обычные диоды, созданные на основе p-n перехода;
  • с барьером Шоттки, чаще называемые просто диоды Шоттки;
  • стабилитрон, служащий для стабилизации потенциала и другие виды.

Существует еще множество типов диодов – варикапы, светодиоды или фотодиоды, например. Но ввиду сходности проверки работоспособности или малой распространенности эти устройства здесь не рассматриваются.

Определение типа элемента

Хорошо если размер корпуса позволяет нанести на нем хоть сколько-нибудь понятную маркировку. Но чаще всего диоды настолько малы, что их трудно маркировать даже цветом. В этом случае отличить диод от стабилитрона, например, не представляется возможным, ведь они как близнецы-братья.

В подобных ситуациях поможет лишь принципиальная схема аппарата, из которого извлечен элемент. В соответствии с ней можно определить тип компонента и его марку.

Если же отсутствует эта информация, можно попробовать поискать принципиальную схему ремонтируемого аппарата в интернете или сделать фотоснимок элемента и также обратиться в Сеть и провести поиск по изображению.

Проверка диодов мультиметром или другим тестером должна проводиться только после определения их типа и марки, потому что разные виды тестируются по-разному.

Применение тестера

Простейшим, но от этого ничуть не менее эффективным, прибором для тестирования элементов электронных схем, полупроводниковых диодов, в том числе, является тестер радиодеталей.

Более того, этот инструмент наиболее распространен в среде радиомастеров по причине неприхотливости, малых массогабаритных параметров и возможности измерения практически любых характеристик радиоэлементов и цепей, важных при ремонте.

Считается, что цифровые мультиметры, благодаря своей точности и удобству в эксплуатации, постепенно вытесняют аналоговые. Однако не стоит грешить на точность старенькой «цешки».

В ее состав уже входят микросхемы, а мостовые резисторы имеют погрешность 1-2% (это очень высокая точность даже для интегральных микросхем). Поэтому, чтобы проверить исправность диода или транзистора нет необходимости покупать новый мультиметр, при наличии аналогового.

Цифровая индикация прижилась из-за отсутствия механических узлов в мультиметре. Это повысило его удароустойчивость и срок эксплуатации.

Проверка диодов упростилась и с появлением звукового сигнала, позволяющего даже не обращать внимания на дисплей. В большинстве мультиметров существует специальный режим, позволяющий в прямом и переносном смысле прозвонить диод. Он отмечен на корпусе соответствующим знаком.

Достаточно вставить черный штекер в разъем COM, а красный в разъем измерения сопротивления (Ω), установить переключатель на режиме прозвонки диодов, и можно начинать проверку.

Методика проверки

Проверка диодов мультиметром заключается в выяснении работоспособности их p-n перехода. Вообще, в радиоэлектронике бывают лишь две неисправности. Первая представляет собой разрыв цепи (перегорание), когда ток не течет ни в одном из направлений. Вторая же вызвана коротким замыканием (пробой) электродов, что превращает компонент в кусок обычного провода.

Методика тестирования предельно проста. При соединении анода с плюсовым щупом мультиметра, а катода с минусовым, p-n переход должен быть открыт, следовательно, его сопротивление близко к нулю.

Цифровые измерители должны подать характерный сигнал. При обратном подключении p-n переход обязан быть заперт, о чем должно свидетельствовать бесконечное (в теории) его сопротивление.

На дисплее цифрового тестера индицируется цифра 1. Так звонится рабочий диод. Если же ток проходит, вне зависимости от полярности подключения, налицо короткое замыкание. В случае когда прибор не звонится ни в ту ни в другую сторону имеет место разрыв.

Нередко можно услышать вопрос о том, как проверить диод Шоттки. Действительно, эти компоненты принципиально отличаются от прочих.

Дело в том, что p-n переход даже в открытом состоянии имеет сопротивление, хотя и небольшое. Это, в свою очередь, вызывает потери энергии, рассеиваемые в виде тепла.

Для сокращения последних один из полупроводниковых электродов диода был заменен металлом. И хотя ток потерь в этом случае немного увеличивается, но в открытом состоянии сопротивление перехода очень низко, что обуславливает экономичность прибора.

В остальном проверка диода Шоттки с использованием мультиметра ничем не отличается от тестирования обычного p-n перехода.

Стабилитроны

Особняком стоит вопрос о проверке стабилитронов. Проверять их по описанной выше методике нет смысла, разве что можно убедиться в целостности p-n перехода. В отличие от обычного выпрямительного диода, стабилитрон использует обратную ветвь вольтамперной характеристики (ВАХ). Поэтому для исследования стабилизирующих свойств рабочую точку нужно сместить именно на этот участок графика.

Для этого используется простенькая схема из источника питания и токоограничительного резистора. В этом случае мультиметром измеряется не сопротивление перехода, а напряжение, при плавном повышении питающего потенциала.

Стабилитрон считается рабочим, если при повышении напряжения питания разница потенциалов на его электродах остается постоянной и равной заявленной в документации на прибор.

Без выпаивания

Отдельно нужно рассмотреть вопрос о том, можно ли проводить тестирование мультиметром непосредственно на плате, не выпаивая из нее элемент.

Здесь все зависит от сложности схемы и квалификации мастера. Смонтированное на плате изделие может звониться через обмотки трансформатора, резистивные элементы, сгоревший конденсатор или что-то еще. Поэтому получить более или менее адекватные показатели чаще всего не удается.

Разумеется, если мастер читает принципиальную схему как открытую книгу или «набил руку» на подобных аппаратах, он может оценить работоспособность прибора. Существуют даже методики проверок без демонтажа для автомобильного питания, например.

Но лучше все же выпаивать элемент из схемы. К тому же достаточно «повесить в воздух» только одну ножку изделия, что занимает 2-3 секунды. А после тестирования мультиметром за тот же промежуток времени диод возвращается в первоначальное положение на плате.

Как проверить диод мультиметром не выпаивая

Как проверить диод мультиметром

Обычно выходят из строя силовые, выпрямительные диоды, т. к. через них проходит значительный прямой ток. Причиной неисправностей диодов может быть их перегрев, нарушение теплового контакта с радиатором или увеличение температуры окружающей среды, выход из строя других элементов схемы которые вызвали увеличение допустимого напряжение на диоде, низкое качество их исполнения.

Неисправность выпрямительных диодов может быть причиной повышения напряжения питания на компонентах схемы и возникновения дополнительных неисправностей. Отказ диода может выражаться в коротком замыкании между разными полупроводниками p-n слоя, отсутствию контакта между ними (обрыв) и появлению тока утечки.

Диод является полупроводником, работа которого основана на свойствах p-n перехода. Работа элемента заключается в том, что при прямом направлении анод (+) – катод (-) ток проходит через полупроводниковый переход, так как его сопротивление составляет всего несколько десятков Ом, а в противоположном направлении катод – анод (перевернутый диод) ток отсутствует, т. к. сопротивление перехода достаточно велико.

Используя это свойство p-n полупроводников не трудно проверить работоспособность диода мультиметром. На некоторых мультиметрах есть режим проверки диодов, отмечается он символом диода. При касании красным щупом прибора анода полупроводника, а отрицательного катода другим щупом, то на экране измерительного прибора, при исправном элементе, отобразится напряжение на переходе, в случае германиевых диодов от 0,3 до 0,7 В, и от 0,7 до 1 В для кремниевых полупроводников.

Режим проверки диодов на мультиметре

Различие величины прямого падения напряжения этих полупроводников зависят от различных сопротивлений переходов. Если перевернуть щупы, к положительному аноду прикоснуться чёрным щупом, а к отрицательному катоду красным, то дисплей отобразит падение напряжения близкое к нулю, (в случае рабочего элемента). Если у мультиметра отсутствует такой режим проверки, тогда работоспособность элемента проверяется в режиме сопротивления.

Ставят переключатель мультиметра в положении измерения сопротивлений 1 Ком, и далее красный щуп прикладывают к аноду элемента, а чёрный к катоду. Экран прибора должен отобразить значение сопротивления прямого перехода для исправного диода от десятков до сотен Ом, что зависит от типа полупроводника. Если материал полупроводника германий, то сопротивление прямого перехода меньше, чем у кремниевых элементов.

Если щупы перевернуть, то сопротивление p-n перехода будет велико (при исправном полупроводнике) от нескольких сотен Ком до Мом. Когда сопротивление обратного перехода заметно ниже, тогда можно говорить о недопустимом токе утечки и неисправном элементе.

Как проверить светодиод, стабилитрон, диод  Шоттки мультиметром

Светодиоды проверяются таким же образом, как и силовые диоды – на сопротивление. При прямом подключении щупов прибора к светодиоду дисплей покажет небольшое сопротивление. При этом светодиод может иметь тусклое свечение. Если поменять щупы, то сопротивление перехода будет велико.

Диод Шоттки проверяется способом проверки обычного диода. Стабилитрон тоже проверяется в разных положениях электродов. Но этого для проверки стабилитронов недостаточно. Мультиметр может показать допустимые значения сопротивлений в обоих направлениях перехода, а напряжение стабилизации будет отличаться от необходимого значения.

Простая схема проверки стабилитрона

Для проверки напряжения стабилизации нужно собрать простейшую схему с токогасящим сопротивлением. Напряжение источника питания обычно берется на 2 – 3 В выше напряжения стабилизации стабилитрона. В качестве примера возьмем стабилитрон Д814Б с напряжением стабилизации 9 В и током стабилизации 5 ма. Ограничительный резистор можно приблизительно рассчитать по формуле:

R = U1-U2/I = 12 -9/0,005 = 600 Ом.

Где,

U1 – напряжение источника питания,

U2 – напряжение стабилизации стабилитрона,

I – номинальный ток стабилитрона.

Поставив такое сопротивление в схему проверки стабилитрона, меряют напряжение стабилизации на стабилитроне, оно должно быть 9 В с учетом отклонения + 0,5 – 1 В, то есть напряжение стабилизации должно иметь значение 8 – 9,5 Вольт.

Как проверить диодный мост мультиметром

Простой диодный мост состоит из четырех диодов, собранных по мостовой схеме и предназначен для первичного выпрямления переменного напряжения. В случае грубой проверке диодного моста можно измерить сопротивление переходов отдельных диодов как обычно. Но тогда ток утечки нельзя будет проверить.

Для проверки этого важного параметра нужно отсоединить любой электрод полупроводника от электрической схемы. Проверить наличие тока утечки отдельных силовых диодов, не отключая их от схемы, возможно по разнице температуры корпусов полупроводников. У неисправного полупроводника температура корпуса будет выше, чем у исправных элементов.

Для такого метода проверки диодов на ток утечки важно чтобы они были отдельно стоящими и без радиаторов. Руками (при выключенном источнике питания) проверить разницу температуры не всегда получается. Поэтому температуру лучше измерять датчиком мультиметра, который имеет такой режим. Грубо проверить диод мультиметром, не выпаивая из платы можно обычным способом, и в большинстве случаев этого вполне достаточно.

Как проверить светодиод мультиметром — все возможные способы

В современной осветительной технике достаточно часто применяются светодиоды (led). Как известно, они гораздо надежнее обычных лампочек, но все же иногда могут выходить из строя. Для того, чтобы проверить светодиод на работоспособность применяется несколько методов. Рассмотрим подробнее каждый из них.

[contents]

Способы проверки

Светодиод, имеет свои электрические параметры, это максимальный рабочий ток, а так же  прямое падение напряжения. Значение первого параметра производители указывают для каждого изделия индивидуально, а второго составляет 1.8 – 2.2 вольта для оранжевых, желтых и красных диодов. Для белых, зеленых и синих 3 – 3.6 вольта.  Проверить эти значения параметров при наличии мультиметра, не составит труда.

Еще один способ проверить led диод на работоспособность, это подать на него питание от нескольких параллельно подключенных пальчиковых батареек или одной батарейки крона. На основе этого способа можно самостоятельно изготовить универсальный тестер для светодиодов, при помощи подручных элементов. Подробный процесс определения работоспособности показан в видео.

Определить неисправный светодиод, можно используя в качестве источника тока для проверки, старые зарядные устройства от мобильных телефонов. Для этого необходимо отрезать штекер подключения к телефону, и зачистить провода. Красный провод, это плюс, его нужно прижать к аноду, черный — минус, его подключают на катод. Если напряжения источника питания достаточно, то он должен загореться.

Для проверки некоторых диодов, напряжения от зарядки телефона может быть недостаточно, тогда можно попробовать проверить с помощью более мощного устройства, например зарядки от фонарика. Таким способом вполне можно проверить на работоспособность диоды в led лампе. Как это сделать, смотрите видео.

Проверка мультиметром

Мультиметр — это универсальный измерительный прибор. С его помощью можно измерить основные параметры практически любого электронного изделия и не только. Для проверки светодиода, потребуется мультиметр в котором есть режим «прозвонки», или его еще называют режимом проверки диодов. Обозначение режима проверки диодов на мультиметре показано на изображении ниже.

Для того чтобы проверить светодиод при помощи мультиметра, нужно установить переключатель прибора в положение соответствующее режиму «прозвонки» и подключить его контакты к щупам тестера.

В процессе подключения необходимо учитывать полярность диода. Анод, следует подключить к красному щупу, а катод к черному. В случаях, когда нет информации какой электрод анод, а какой катод, можно перепутать полярность – это ничего страшного, со светодиодом ничего не произойдет. При неправильном подключении, мультиметр не изменит своих изначальных показаний. При правильном подключении, светодиод должен загореться.

Есть один нюанс, ток «прозвонки» достаточно низкий для нормальной работы светодиода, и стоит приглушить освещение, для того чтобы увидеть как он светится. Если нет возможности этого сделать, можно ориентироваться на показания измерительного прибора. Как правило, если светодиод рабочий, то мультиметр покажет значение отличное от единицы.

Второй вариант — проверить светодиод тестером, это воспользоваться блоком PNP. Данный разъем предназначенный для проверки диодов, позволяет включить светодиод на мощность, достаточную для визуального определения его работоспособности. Анод подключается в разъем, обозначенный буквой Е (эмиттер), а катод диода в разъем колодки, обозначенный буквой С (коллектор).

Светодиод должен гореть при включении мультиметра в не зависимости от режима выбранного регулятором.

Данный способ позволяет проверить даже достаточно мощные светодиоды. Его неудобство в том, что, диоды обязательно нужно выпаивать. Для проверки мультиметром не выпаивая, необходимо изготовить переходники для щупов.

Существует вариант проверки светодиода методом измерения сопротивления, но для этого необходимо знать его характеристики, что достаточно не практично.

Как проверить не выпаивая

Для того чтобы подключить щупы мультиметра к разъемам в колодке PNP, нужно припаять на них небольшие фрагменты, обычной канцелярской скрепки. Между проводами, на которые припаяны скрепки, для изоляции можно установить небольшую текстолитовую прокладку и замотать изолентой. Таким образом, получим простой по конструкции и надежный переходник, для подключения щупов.

Далее необходимо подключить щупы к ножкам светодиода, не выпаивая его из схемы изделия. Вместо тестера, для проверки led диода можно использовать одну батарейку крона, или несколько пальчиковых батареек. Подключение проводится аналогично, просто вместо переходника, для подключения к выходам батарейки щупов, можно использовать небольшие зажимы «крокодильчики».

Рассмотрим на конкретном примере, как проверить led, не выпаивая из схемы.

Как проверить светодиоды в фонарике

Для проверки необходимо разобрать фонарик и вынуть плату, на которой они установлены. Проверка происходит с помощью тестера со щупами, подключенными на PNP разъем. Светодиоды можно не выпаивать, а подключать контакты щупа на них прямо на плате, при этом необходимо помнить о соблюдении полярности.

Определить пробитый светодиод, можно и при помощи измерения сопротивления в схеме подключения. Например, если светодиоды в фонарике подключены параллельно, измерив сопротивление и получив результат близкий к нулю на любом из них, можно быть уверенным, что, по крайней мере, один из них точно неисправен. После этого можно приступать к проверке каждого из светодиодов методами описанными выше.

Проверка светодиодов не сложный процесс, и любой, кто имеет несколько рабочих батареек и пару проводов, может проверить и определить его неисправность в том или ином приборе.

Как проверить диоды с помощью цифрового мультиметра

Цифровые мультиметры могут тестировать диоды одним из двух методов:

  1. Режим тестирования диодов: почти всегда лучший подход.
  2. Режим сопротивления: обычно используется, только если мультиметр не оборудован режимом проверки диодов.

Примечание: В некоторых случаях может потребоваться удалить один конец диода из схемы, чтобы проверить диод.
Что нужно знать о режиме сопротивления при проверке диодов:

  • Не всегда показывает, хороший ли диод или плохой.
  • Не следует принимать, когда в цепь включен диод, так как он может давать ложные показания.
  • Может использоваться для проверки неисправности диода в конкретном приложении после того, как проверка диода показывает, что диод неисправен.

Диод лучше всего проверять путем измерения падения напряжения на диоде, когда он смещен в прямом направлении. Диод с прямым смещением действует как замкнутый переключатель, позволяя току течь.

В режиме проверки диодов мультиметра возникает небольшое напряжение между измерительными проводами.Затем мультиметр отображает падение напряжения, когда измерительные провода подключены к диоду при прямом смещении. Процедура тестирования диодов выполняется следующим образом:

  1. Убедитесь, что а) все питание цепи отключено и б) на диоде отсутствует напряжение. В цепи может присутствовать напряжение из-за заряженных конденсаторов. В таком случае необходимо разрядить конденсаторы. Настройте мультиметр на измерение постоянного или переменного напряжения.
  2. Переведите шкалу (поворотный переключатель) в режим проверки диодов.Он может делить место на циферблате с другой функцией.
  3. Подключите щупы к диоду. Запишите отображаемое измерение.
  4. Поменяйте местами измерительные провода. Запишите отображаемое измерение.

Анализ испытаний диодов

  • Хороший диод прямого действия показывает падение напряжения от 0,5 до 0,8 В для наиболее часто используемых кремниевых диодов. Некоторые германиевые диоды имеют падение напряжения от 0,2 до 0,3 В.
  • Мультиметр показывает OL, когда исправный диод имеет обратное смещение.Показание OL указывает на то, что диод работает как разомкнутый переключатель.
  • Неисправный (разомкнутый) диод не позволяет току течь ни в одном направлении. Мультиметр будет отображать OL в обоих направлениях, когда диод открыт.
  • Закороченный диод имеет одинаковое значение падения напряжения (приблизительно 0,4 В) в обоих направлениях.

Мультиметр, установленный в режим сопротивления (Ω), может использоваться в качестве дополнительной проверки диодов или, как упоминалось ранее, если мультиметр не поддерживает режим проверки диодов.

Диод смещен в прямом направлении, когда положительный (красный) измерительный провод находится на аноде, а отрицательный (черный) измерительный провод — на катоде.

  • Сопротивление исправного диода в прямом смещении должно находиться в диапазоне от 1000 Ом до 10 МОм.
  • Измерение сопротивления высокое, когда диод смещен в прямом направлении, потому что ток от мультиметра течет через диод, вызывая измерение высокого сопротивления, необходимое для тестирования.

Диод имеет обратное смещение, когда положительный (красный) измерительный провод находится на катоде, а отрицательный (черный) измерительный провод находится на аноде.

  • Обратно смещенное сопротивление исправного диода показывает OL на мультиметре. Диод плохой, если показания одинаковы в обоих направлениях.

Процедура режима сопротивления выполняется следующим образом:

  1. Убедитесь, что а) все питание цепи отключено и б) на диоде отсутствует напряжение. В цепи может присутствовать напряжение из-за заряженных конденсаторов. В таком случае необходимо разрядить конденсаторы. Настройте мультиметр на измерение постоянного или переменного напряжения.
  2. Переведите шкалу в режим сопротивления (Ω). Он может делить место на циферблате с другой функцией.
  3. Подключите щупы к диоду после того, как он был отключен от цепи. Запишите отображаемое измерение.
  4. Поменяйте местами измерительные провода. Запишите отображаемое измерение.
  5. Для получения наилучших результатов при использовании режима сопротивления для проверки диодов сравните показания, снятые с заведомо исправным диодом.

Ссылка: Принципы цифрового мультиметра от Glen A.Мазур, американское техническое издательство.

Связанные ресурсы

Проверка счетчика диода | Диоды и выпрямители

Функциональность полярности диода

Способность определять полярность (катод по сравнению с анодом) и основные функции диода — очень важный навык для любителя электроники или техника. Поскольку мы знаем, что диод по сути является не более чем односторонним клапаном для электричества, имеет смысл проверить его односторонний характер с помощью омметра постоянного тока (с батарейным питанием), как показано на рисунке ниже.При одностороннем подключении через диод измеритель должен показывать очень низкое сопротивление в точке (a). Подключенный другой стороной через диод, он должен иметь очень высокое сопротивление в точке (b) («OL» на некоторых моделях цифровых измерителей).

Определение полярности диода: (a) Низкое сопротивление указывает на прямое смещение, черный провод — это катод, а красный провод — анод (для большинства счетчиков) (b) Реверсивные провода показывают высокое сопротивление, указывающее на обратное смещение.

Определение полярности диода?

Использование мультиметра

Конечно, чтобы определить, какой конец диода является катодом, а какой — анодом, вы должны точно знать, какой измерительный провод измерителя положительный (+), а какой отрицательный (-) при установке на «сопротивление». или функцию «Ω».В большинстве цифровых мультиметров, которые я видел, красный провод становится положительным, а черный — отрицательным, когда он настроен на измерение сопротивления в соответствии со стандартным соглашением о цветовой кодировке электроники. Однако это не гарантируется для всех счетчиков. Многие аналоговые мультиметры, например, фактически делают свои черные выводы положительными (+), а их красные выводы — отрицательными (-) при переключении на функцию «сопротивления», потому что так проще изготавливать!

Проблемы проверки диодов с помощью омного измерителя

Одна проблема с использованием омметра для проверки диода заключается в том, что полученные показания имеют только качественную, а не количественную ценность.Другими словами, омметр только говорит вам, в какую сторону ведет диод; индикация низкого значения сопротивления, полученная во время проводки, бесполезна.

Если омметр показывает значение «1,73 Ом» при прямом смещении диода, это значение 1,73 Ом не представляет собой какую-либо реальную величину, полезную для нас, техников или проектировщиков схем. Он не представляет собой ни прямое падение напряжения, ни какое-либо «объемное» сопротивление в полупроводниковом материале самого диода, а скорее является цифрой, зависящей от обеих величин, и будет существенно меняться в зависимости от конкретного омметра, используемого для снятия показаний.

Цифровой мультиметр для проверки диодов с

По этой причине некоторые производители цифровых мультиметров оснащают свои измерители специальной функцией «проверки диодов», которая отображает фактическое прямое падение напряжения на диоде в вольтах, а не значение «сопротивления» в омах. Эти измерители работают, пропуская через диод небольшой ток и измеряя падение напряжения между двумя измерительными проводами. (рисунок ниже)

Измеритель

с функцией «Проверка диодов» показывает падение прямого напряжения равное 0.548 вольт вместо низкого сопротивления.

Прямое напряжение диода с Показание прямого напряжения, полученное с помощью такого измерителя, обычно будет меньше, чем «нормальное» падение 0,7 В для кремния и 0,3 В для германия, потому что ток, обеспечиваемый измерителем, имеет тривиальные пропорции.

Альтернативы функции проверки диодов Если мультиметр с функцией проверки диодов недоступен, или вы хотите измерить прямое падение напряжения на диоде при некотором нетривиальном токе, схема на рисунке ниже может быть построена с использованием аккумулятор, резистор и вольтметр.

Измерение прямого напряжения диода без функции измерителя «проверка диода»: (a) Принципиальная схема. (б) Графическая диаграмма.

Если подключить диод к этой испытательной цепи в обратном направлении, вольтметр просто покажет полное напряжение батареи.

Если бы эта схема была разработана для обеспечения постоянного или почти постоянного тока через диод, несмотря на изменения прямого падения напряжения, ее можно было бы использовать в качестве основы прибора для измерения температуры, напряжение, измеренное на диоде, обратно пропорционально диодному переходу. температура.Конечно, ток диода должен быть минимальным, чтобы избежать самонагрева (диод рассеивает значительное количество тепловой энергии), что может помешать измерению температуры.

Рекомендации в Multimet ers

Помните, что некоторые цифровые мультиметры, оснащенные функцией «проверки диодов», могут выдавать очень низкое испытательное напряжение (менее 0,3 В) при установке на обычную функцию «сопротивления» (Ом): слишком низкое, чтобы полностью разрушить область истощения PN переход.

Философия здесь заключается в том, что функция «проверка диодов» должна использоваться для тестирования полупроводниковых устройств, а функция «сопротивления» — для чего-либо еще. Используя очень низкое испытательное напряжение для измерения сопротивления, техническому специалисту легче измерить сопротивление неполупроводниковых компонентов, подключенных к полупроводниковым компонентам, поскольку переходы полупроводниковых компонентов не будут смещены в прямом направлении при таких низких напряжениях.

Пример тестирования e

Рассмотрим пример резистора и диода, соединенных параллельно, припаянных на печатной плате (PCB).Обычно необходимо отпаять резистор от схемы (отсоединить его от всех других компонентов) перед измерением его сопротивления, в противном случае любые параллельно соединенные компоненты повлияют на полученные показания. При использовании мультиметра, который выдает очень низкое испытательное напряжение на щупы в режиме «сопротивления», на PN переход диода не будет подаваемого напряжения, достаточного для смещения в прямом направлении, и он будет пропускать только незначительный ток. Следовательно, измеритель «видит» диод как обрыв (отсутствие обрыва) и регистрирует только сопротивление резистора.(Рисунок ниже)

Омметр с низким испытательным напряжением (<0,7 В) не видит диодов, позволяющих измерять параллельные резисторы.

Если бы такой омметр использовался для проверки диода, он показал бы очень высокое сопротивление (много МОм), даже если он подключен к диоду в «правильном» (прямом смещенном) направлении. (Рисунок ниже)

Омметр с низким тестовым напряжением, слишком низким для прямого смещения диодов, диодов не видит.

Сила обратного напряжения диода не так легко проверить, потому что превышение PIV нормального диода обычно приводит к разрушению диода.Однако специальные типы диодов, которые предназначены для «пробоя» в режиме обратного смещения без повреждений (называемые стабилитроны ), которые испытываются с той же схемой источника напряжения / резистора / вольтметра, при условии, что источник напряжения достаточно высокого значения, чтобы заставить диод попасть в область пробоя. Подробнее об этом в следующем разделе этой главы.

ОБЗОР:

  • Для качественной проверки работы диода можно использовать омметр. В одном направлении должно быть измерено низкое сопротивление, а в другом — очень высокое.При использовании омметра для этой цели убедитесь, что вы знаете, какой измерительный провод положительный, а какой — отрицательный! Фактическая полярность может не соответствовать цвету проводов, как вы могли ожидать, в зависимости от конкретной конструкции измерителя.
  • Некоторые мультиметры предоставляют функцию «проверки диода», которая отображает фактическое прямое напряжение диода, когда он проводит ток. Такие измерители обычно показывают немного более низкое прямое напряжение, чем «номинальное» для диода, из-за очень небольшого тока, используемого во время проверки.

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Как проверить диод с помощью аналогового и цифрового мультиметра

В этом руководстве мы узнаем, как проверить диод. Диоды — один из основных и важных компонентов в электронных схемах, которые используются для защиты, выпрямления, переключения и многих других приложений. Они являются одними из первых компонентов, которые повреждаются в случае неисправности, и поэтому необходимо знать, как проверить, правильно ли работает диод или нет.

Введение

Прежде всего, прежде чем приступить к разработке или устранению неисправностей электронных схем или проектов, необходимо получить глубокие знания об основных электронных компонентах и ​​их работе, если они находятся в цепях под напряжением. Полное знание того, как проверяются компоненты, является ключом к хорошим навыкам поиска и устранения неисправностей электронных схем.

Перед сборкой основных компонентов рекомендуется проверить компоненты на предмет их рабочего состояния или функционирования, а не после сборки, чтобы избежать условия получения нежелательного результата.В другом случае, после успешной сборки схем, обычно мы ожидаем от схемы желаемого результата.

Но иногда мы получаем неожиданный результат. В обоих этих случаях нам необходимо провести некоторые процедуры тестирования основных компонентов схемы, чтобы знать, как они работают. Итак, давайте посмотрим, как тестировать диоды.

НАЗАД В начало

Как проверить диод

Идентификация терминала диода

Диод представляет собой полупроводниковый прибор с двумя выводами, пропускающий ток только в одном направлении.Они используются в различных приложениях, таких как выпрямители, зажимы, машинки для стрижки и т. Д.

Когда вывод анода становится положительным по отношению к катоду, диод становится смещенным в прямом направлении, и падение напряжения на диоде с прямым смещением обычно составляет 0,7 В для кремниевых диодов. Тестирование этого устройства необходимо для определения его надлежащих условий работы в режимах прямого и обратного смещения.

Перед тестированием диода мы должны идентифицировать выводы диода, который является анодом и катодом.Большинство PN-диодов имеют белую полосу на корпусе, и эта боковая клемма с белой полосой является катодом. А оставшийся анод.

Некоторые диоды могут иметь другую цветовую полосу, но вывод на стороне цветной полосы является катодом. Тестирование диода можно проводить по-разному, однако здесь мы привели некоторые основные процедуры тестирования диода. Обратите внимание, что приведенные ниже процедуры тестирования предназначены только для нормального диода PN.

НАЗАД В начало

Как проверить диод с помощью цифрового мультиметра

Тестирование диодов с помощью цифрового мультиметра (DMM) может выполняться двумя способами, потому что в DMM есть два режима для проверки диода.Это режим диода и режим омметра.

НАЗАД В начало

Процедура тестирования диодного режима

Тестирование диодного режима с помощью цифрового мультиметра

  • Определите клеммы анода и катода диода.
  • Удерживайте цифровой мультиметр (DMM) в режиме проверки диодов, повернув центральную ручку в то место, где отображается символ диода. В этом режиме мультиметр может подавать ток примерно 2 мА между измерительными проводами.
  • Подключите красный датчик к аноду, а черный датчик к катоду. Это означает, что диод смещен в прямом направлении.
  • Наблюдайте за показаниями на дисплее счетчика. Если отображаемое значение напряжения находится в диапазоне от 0,6 до 0,7 (поскольку это кремниевый диод), то диод исправен и идеален. Для германиевых диодов это значение находится в пределах от 0,25 до 0,3.
  • Теперь поменяйте местами выводы измерителя, то есть подключите красный зонд к катоду, а черный — к аноду. Это состояние обратного смещения диода, когда через него не течет ток.Следовательно, прибор должен показывать OL (что эквивалентно разомкнутой цепи), если диод исправен.

Если измеритель показывает значения, не соответствующие двум вышеуказанным условиям, то диод неисправен. Дефект диода может быть как разомкнутым, так и коротким. Открытый диод означает, что диод ведет себя как разомкнутый переключатель как в обратном, так и в прямом смещении. Таким образом, через диод не протекает ток. Следовательно, измеритель будет показывать OL как в обратном, так и в прямом смещении.

Закороченный диод означает, что диод ведет себя как замкнутый переключатель, поэтому через него течет ток, и падение напряжения на диоде будет равно нулю.Таким образом, мультиметр будет показывать нулевое значение напряжения, но в некоторых случаях он будет отображать очень маленькое напряжение в виде падения напряжения на диоде.

НАЗАД В начало

Процедура тестирования режима омметра

Подобно описанному выше методу, это также простой метод проверки диода на исправность, короткое замыкание или обрыв.

  • Определите клеммы анода и катода диода.
  • Удерживайте цифровой мультиметр (DMM) в режиме измерения сопротивления или омметра, повернув центральную ручку или переключатель в место, где отображается символ ома или значения резистора.Установите переключатель в режим низкого сопротивления (может быть 1 кОм) для прямого смещения и оставьте его в режиме высокого сопротивления (100 кОм) для процедуры тестирования обратного смещения.
  • Подключите красный датчик к аноду, а черный датчик к катоду. Это означает, что диод смещен в прямом направлении. Когда диод смещен в прямом направлении, сопротивление диода очень мало.

Если на дисплее прибора отображается умеренно низкое значение, которое может составлять от нескольких десятков до нескольких сотен Ом, то диод исправен и исправен.

  • Теперь переверните клеммы мультиметра так, чтобы анод был подключен к черному щупу, а катод — к красному щупу. Таким образом, диод имеет обратное смещение.
  • Если измеритель показывает очень высокое значение сопротивления или OL на дисплее, значит, диод исправен и работает нормально. Поскольку в обратном смещении диод имеет очень высокое сопротивление.

Из вышесказанного ясно, что для правильной работы диода цифровой мультиметр должен считывать очень низкое сопротивление в состоянии прямого смещения и очень высокое сопротивление или OL в состоянии обратного смещения.

Если измеритель показывает очень высокое сопротивление или OL как в прямом, так и в обратном смещении, то диод считается разомкнутым. С другой стороны, если измеритель показывает очень низкое сопротивление в обоих направлениях, говорят, что диод закорочен.

НАЗАД В начало

Как проверить диод с помощью аналогового мультиметра

Этот метод аналогичен проверке диода в режиме омметра цифрового мультиметра.

Проверка диодов с помощью аналогового мультиметра

  • Удерживайте селекторный переключатель мультиметра в положении низкого сопротивления
  • Подключите диод в прямом смещении, подключив положительную клемму к аноду, а отрицательную — к катоду.
  • Если счетчик показывает низкое значение сопротивления, значит диод исправен.
  • Теперь переведите переключатель в положение высокого сопротивления и поменяйте местами выводы измерителя, подключив положительный полюс к катоду, а отрицательный — к аноду. В этом случае говорят, что диод имеет обратное смещение.
  • Если счетчик показывает OL или очень высокое сопротивление, то это указывает на безупречное состояние диода.
  • Если счетчик не показывает вышеуказанные значения, диод считается неисправным или неисправным.

Речь идет о простой проверке диодов PN с помощью цифровых и аналоговых мультиметров. Процедура тестирования не одинакова для всех типов диодов. Итак, теперь давайте посмотрим, как проверить светодиод и стабилитрон.

НАЗАД В начало

Как проверить светодиод (светоизлучающий диод)

Как обсуждалось выше, перед тестированием любого диода мы должны знать полярность. Полярность светодиодов можно определить по длине проводов. Более длинный — анод, более короткий — катод.Кроме того, другим методом является структура поверхности, в которой плоская поверхность указывает катод, а одна из них является анодом.

Идентификация светодиодного терминала

Давайте посмотрим, как проверить светодиод с помощью цифрового мультиметра.

  • Определите клеммы анода и катода светодиода.
  • Переведите переключатель мультиметра в диодный режим.
  • Подключите щупы измерителя к светодиоду так, чтобы он был смещен в прямом направлении.
  • Если светодиод работает правильно, то он светится, в противном случае светодиод неисправен.
  • Тестирование с обратным смещением невозможно со светодиодом, так как он не работает в состоянии с обратным смещением.

НАЗАД В начало

Как проверить стабилитрон

По сравнению с тестированием обычных диодов, для тестирования стабилитронов требуются дополнительные схемы. Поскольку стабилитрон проводит в состоянии обратного смещения, только если приложенное обратное напряжение больше, чем напряжение пробоя стабилитрона.

Проверка стабилитрона

  • Определите клеммы анода и катода стабилитрона. Процесс идентификации аналогичен обычному PN-диоду.
  • Подключите тестовую схему, как показано на рисунке.
  • Переведите ручку мультиметра в режим измерения напряжения.
  • Подключите измерительные щупы к стабилитрону, как показано на рисунке.
  • Постепенно увеличивайте входную мощность диода и наблюдайте за напряжением на дисплее измерителя. Это показание на измерителе должно быть таким, чтобы при увеличении переменного питания выход измерителя должен увеличиваться до напряжения пробоя диода. И за этой точкой счетчик должен показывать постоянное значение напряжения независимо от увеличения подачи входной переменной.Если это так, то стабилитрон исправен, в противном случае неисправен.

Предположим, если мы подадим на стабилитрон 12 В (напряжение пробоя 6 В) от батареи через резистор, то мультиметр должен показать показание, которое примерно равно 6 В, если стабилитрон исправен.

НАЗАД В начало

ПРЕДЫДУЩИЙ — ПРИМЕНЕНИЕ ДИОДА

ПЕРЕЙТИ К ПЕРВЫМ — ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ

Как проверить диод

Диоды — это один из компонентов, которые можно очень легко протестировать.Обычные диоды, а также стабилитроны можно проверить с помощью мультиметра. При тестировании диода режим прямой проводимости и режим обратной блокировки должны проверяться отдельно.

Проверка обычного диода с помощью цифрового мультиметра.
Чтобы проверить обычный кремниевый диод с помощью цифрового мультиметра, установите переключатель мультиметра в режим проверки диодов. Подключите положительный провод мультиметра к аноду, а отрицательный — к катоду диода.Если мультиметр показывает напряжение от 0,6 до 0,7, можно предположить, что диод исправен. Это тест для проверки режима прямой проводимости диода. Отображаемое значение фактически является потенциальным барьером кремниевого диода, и его значение колеблется от 0,6 до 0,7 вольт в зависимости от температуры.

Теперь подключите положительный провод мультиметра к катоду, а отрицательный — к аноду. Если мультиметр показывает бесконечное значение (вне диапазона), можно предположить, что диод исправен.Это тест для проверки режима обратной блокировки диода.

Процедура проверки германиевых диодов такая же, но на дисплее будет отображаться от 0,25 до 0,3 В, чтобы указать исправное состояние в режиме прямого смещения. Потенциальный барьер для германиевого диода составляет от 0,25 до 0,3 В. При обратном смещении мультиметр будет показывать бесконечное значение (вне диапазона), что указывает на нормальное состояние.

Проверка обычного диода аналоговым мультиметром.
Чтобы проверить обычный кремниевый диод с помощью аналогового мультиметра, установите переключатель мультиметра в положение низкого сопротивления (скажем, 1 кОм). Подключите положительный вывод мультиметра к аноду диода, а отрицательный вывод мультиметра к катоду диода. Если измеритель показывает низкое сопротивление, можно предположить, что диод исправен. Это тест для проверки режима прямого смещения диода.

Теперь переведите переключатель мультиметра в положение с высоким сопротивлением (скажем, 100 кОм).Подключите положительный вывод мультиметра к катоду диода, а отрицательный — к аноду диода. Если счетчик показывает бесконечное значение, можно считать, что диод исправен. Это тест для проверки режима обратной блокировки диода. Измеритель показывает бесконечное или очень высокое сопротивление, потому что диод с обратным смещением имеет очень высокое сопротивление (обычно в диапазоне сотен кОм).

Проверка стабилитрона.
Прямые характеристики стабилитрона аналогичны обычному диоду.Таким образом, методы, используемые для проверки режима прямой проводимости любого обычного диода, применимы и к стабилитрону. Но в обратном режиме обратное напряжение пробоя имеет большое значение, и его необходимо специально проверять. Например, стабилитрон на 5,3 В должен начать проводить только тогда, когда приложенное обратное напряжение чуть превышает 5,3 В. Режим обратного смещения стабилитрона можно легко проверить с помощью схемы, представленной ниже. Сопротивление R1 обычно может составлять 100 Ом. Мультиметр должен быть в режиме напряжения.Теперь медленно увеличивайте мощность переменного источника питания и одновременно наблюдайте за напряжением, показанным на мультиметре. Показания мультиметра увеличиваются вместе с увеличением напряжения питания до напряжения пробоя. Кроме того, показания мультиметра остаются неизменными, несмотря на наличие напряжения питания. Это связано с тем, что стабилитрон сейчас находится в области пробоя, и напряжение на нем останется постоянным независимо от увеличения напряжения питания, и это постоянное напряжение будет равно напряжению пробоя.Если показание мультиметра в этот момент равно напряжению пробоя, указанному производителем, можно считать, что стабилитрон исправен.

При проведении этого теста помните, что входное напряжение возбуждения не должно превышать такое значение, при котором стабилитрон рассеивает больше мощности, чем он может безопасно обрабатывать. Обычно ток через диод не должен превышать 10 мА.

Испытательные сборки с диодами

Эрик Стреб [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)]

Тестовые программы иногда включают инструкции по оценке компонентов, подключенных к тестируемому устройству. Эти инструкции для компонентов оценивают провода, резисторы, конденсаторы, витые пары и диоды.

Для проводов, резисторов и конденсаторов тестер вернет измеренные значения. В случае диодов и витой пары результаты будут проверять, существует ли компонент или нет.

Хотя тестер использует разные методы для проверки каждого компонента, в этой статье мы сосредоточимся на диодах.Как тестер определяет, есть диод или нет? Как получить наиболее точные результаты? Как вы тестируете различные типы диодов от светодиодов до стабилитронов?

Общие сведения о диодах

Диод — это полупроводниковый прибор с двумя электродами, который позволяет электрическому току течь только в одном направлении. Электроды известны как катод и анод. Ток будет течь, когда потенциал на анодном выводе больше, чем на катодном выводе.

Потенциал на зажимах анода и катода равен напряжению.Разница должна составлять от 0,3 до 0,7 вольт в зависимости от типа диода. Эта разница напряжений называется прямым напряжением, и в некоторых приложениях это значение очень специфично.

Когда напряжение на катоде больше, чем на аноде, диод должен предотвращать протекание тока или не проводить его. Однако есть пределы. Пиковое обратное напряжение — это максимальное положительное напряжение, которое диод может выдержать на катоде по отношению к аноду.Если это значение будет превышено, диод выйдет из строя. Напряжение обратного пробоя, которое является более высоким напряжением, чем пиковое обратное напряжение, будет проводиться и может быть повреждено при превышении.

Разновидности диодов

Диоды используются во многих приложениях.

  • Типичный выпрямительный диод может иметь прямое напряжение около 1,1 В и пиковое обратное напряжение 1000 В.
  • Диод Шоттки будет иметь очень низкое прямое напряжение и используется в высокоскоростных приложениях или приложениях, требующих небольшого нагрева. диссипация.
  • Светодиод — это диод, который ведет себя как диод, но его основное назначение — освещение. Прямое напряжение светодиода может быть высоким и переменным, в то время как его пиковое обратное напряжение может быть низким.
  • Стабилитрон использует точное пиковое обратное напряжение, позволяя ему проводить, когда напряжение на катоде равно или превышает определенное напряжение, известное как напряжение стабилитрона. Вы найдете стабилитроны в ограничителях перенапряжения или ограничителях переходных напряжений.

При тестировании собранных схем, содержащих диоды, тестер будет искать ошибки.Диод мог отсутствовать. Это могло быть наоборот. Это мог быть неправильный тип. Это могло быть короткое замыкание на другие цепи.

Когда Cirris Easy-Wire ™ выполняет команду проверки диода,

  1. Тестер подает свой внутренний источник тока на контрольную точку, соединенную с анодом, затем опускает контрольную точку, соединенную с катодом, на потенциал земли.
  2. Вольтметр помещается между источником тока и землей для измерения напряжения. Это прямое напряжение.
  3. Источник перемещается в катодную точку, а тестер опускается в анодную точку.Напряжение снова измеряют, ожидая увидеть напряжение холостого хода.

Тестируемый диод не измеряет; скорее тестер ищет диод. Тест фокусируется на том, что может пойти не так. Он может определить, присутствует ли диод в сборке, что он направлен в правильную сторону, что это правильный тип и что его соединения в порядке.

Диоды и тестеры Cirris

Технологии прошли долгий путь со времен тестеров серии Signature 1000. Для тестеров серии 1000 диод был устройством, у которого было где-то между 0.5 и 1.0 прямое напряжение и обратное разомкнутая цепь. Более современная автономная серия Signature 1100 может сделать немного больше.

Программное обеспечение Easy-Wire дает возможность устанавливать пределы прямого и обратного напряжения; однако уровень тока, требуемый для точного тестирования прямого напряжения, часто оказывается больше, чем мы можем безопасно применить. Хотя условия тестирования не таковы, что вы можете поддержать корректирующие действия поставщика для неисправного диода, этого достаточно, чтобы пометить сомнительную сборку и пройти хорошую сборку.

Светодиоды

Хотя светодиоды технически являются диодами, они не соответствуют модели диодов, запрограммированной в автономных тестерах Signature 1000 и Signature 1100. Часто прямое напряжение светодиода достигает 2,5 вольт, в то время как обратное напряжение имеет высокое сопротивление, но несколько короткое замыкание.

Если программное обеспечение Easy-Wire управляет серией Signature 1100, тестер может тестировать светодиоды, поскольку ожидаемые пределы прямого и обратного напряжения определяются пользователем. Без Easy-Wire можно создать автономные модели для проверки светодиодов с использованием сценария пользовательского компонента, если тестер оснащен дополнительным сценарием SCPT-1R или SCPT-1H.С помощью скрипта тестер может даже зажечь светодиод.

Все модели тестеров Cirris Easy-Touch ™ Pro, CR и Ch3 управляются программным обеспечением Easy-Wire и обеспечивают определяемые пользователем пределы прямого и обратного напряжения диода.

Стабилитроны

Правильная работа схемы, содержащей стабилитрон, зависит от всего, что проверено на стандартном диоде, плюс измерение напряжения Зенера.

Если задано напряжение стабилитрона менее 4,5 В, настольный тестер, управляемый Easy-Wire, проверит это как диодную команду с заданным значением напряжения стабилитрона как обратное напряжение.Имейте в виду, что напряжение стабилитрона зависит от приложенного испытательного тока. Несмотря на то, что условия испытаний не могли поддержать корректирующие действия поставщика для неисправного стабилитрона, этого достаточно, чтобы пометить сомнительную сборку и пройти хорошую сборку.

Если напряжение стабилитрона превышает 30 вольт, настольный анализатор высокого напряжения Cirris может доказать, что установлен правильный диод. Под управлением сценария пользовательского компонента тестер использует свой источник высокого напряжения для проверки напряжения стабилитрона.

Предположим, что спецификация напряжения стабилитрона составляет от 35 до 38 вольт.Это означает, что при напряжении на катоде менее 35 В диод не должен проводить ток. При напряжении более 38 вольт диод должен проводить. Сценарий запрограммирован на установление 34 вольт как обязательного напряжения изоляции и 39 вольт как обязательного напряжения проводимости. Используя источник высокого напряжения тестера, скрипт помещает на катод необходимое изолирующее напряжение и измеряет ток. Если ток ниже заданного пользователем порога, вы увидите флаг прохождения теста. Если ток слишком высок, вы увидите флаг неудачного тестирования.

Затем сценарий применяет к катоду необходимый уровень напряжения и снова измеряет ток через источник питания. Если ток слишком низкий, вы увидите флаг проверки отказа, что означает, что диод не проводит. Если ток высокий, вы увидите флаг проверки пройден, что означает, что диод проводит.

Когда оба теста выдают отметки прохождения теста, диод прошел тест. Этот сценарий также может проверить обратный ток утечки.

Максимальный ток через источник высокого напряжения равен 6.5 мА, поэтому перед применением этого метода убедитесь, что максимальное значение обратного тока диода превышает 6,5 мА.

Опять же, этот метод тестирования не выиграет никаких споров с поставщиком диодов, но он даст вам знать, что диод не перевернут, он не протекает, и что диодный отсек в складском помещении не загрязнен смешанными деталями. .

Прецизионный стабилитрон

Тестер Cirris Ch3 имеет уникальную архитектуру и мощное программное обеспечение для управления внешними приборами.Хотя одни только внешние инструменты не подходят для испытаний многопроводов, Ch3 может выполнять необходимые испытания.

Подключите измеритель источника Keithley к матрице контрольных точек Cirris Ch3. Программное обеспечение Easy-Wire переключит каждую цепь на измеритель источника и сообщит о требуемых измерениях. Источники-измерители могут подавать точные токи и измерять напряжения в диапазоне от милливольт до сотен вольт. Благодаря внешнему прецизионному источнику тока у вас есть принятый в отрасли метод тестирования стабилитронов.

Как проверить транзистор и диод »Электроника

Очень быстро и легко научиться тестировать транзистор и диод с помощью аналогового мультиметра — обычно этого достаточно для большинства приложений.


Руководство по мультиметру Включает:
Основы работы с измерителем
Аналоговый мультиметр
Как работает аналоговый мультиметр
Цифровой мультиметр DMM
Как работает цифровой мультиметр
Точность и разрешение цифрового мультиметра
Как купить лучший цифровой мультиметр
Как пользоваться мультиметром
Измерение напряжения
Текущие измерения

Измерения сопротивления
Тест диодов и транзисторов
Диагностика транзисторных цепей


В то время как многие цифровые мультиметры в наши дни имеют специальные возможности для тестирования диодов, а иногда и транзисторов, не все это делают, особенно старые аналоговые мультиметры, которые все еще широко используются.Однако по-прежнему довольно легко выполнить простой тест «годен / не годен», используя простейшее оборудование.

Этот вид тестирования позволяет определить, работает ли транзистор или диод, и, хотя он не может предоставить подробную информацию о параметрах, это редко является проблемой, потому что эти компоненты проверяются при изготовлении, и производительность сравнительно редко меняется. упадут до точки, в которой они не работают в цепи.

Большинство отказов являются катастрофическими, в результате чего компонент становится полностью неработоспособным.Эти простые тесты мультиметра позволяют очень быстро и легко обнаружить эти проблемы.

Таким образом можно тестировать диоды

большинства типов — силовые выпрямительные диоды, сигнальные диоды, стабилитроны / опорные диоды напряжения, варакторные диоды и многие другие типы диодов.

Как проверить диод мультиметром

Базовый тест диодов выполнить очень просто. Чтобы убедиться, что диод работает нормально, необходимо провести всего два теста мультиметра.

Тест диода основан на том факте, что диод будет проводить только в одном направлении, а не в другом.Это означает, что его сопротивление будет отличаться в одном направлении от сопротивления в другом.

Измеряя сопротивление в обоих направлениях, можно определить, работает ли диод, а также какие соединения являются анодом и катодом.

Поскольку фактическое сопротивление в прямом направлении зависит от напряжения, невозможно дать точные значения ожидаемого прямого сопротивления, так как напряжение на разных измерителях будет разным — оно даже будет различным в разных диапазонах измерителя.

… полоса на корпусе диода представляет катод ….

Метод проверки диода аналоговым измерителем довольно прост.

Пошаговая инструкция:
  1. Установите измеритель на его диапазон Ом — подойдет любой диапазон, но, вероятно, лучше всего подойдет средний диапазон Ом, если их несколько.
  2. Подключите катодную клемму диода к клемме с положительной меткой на мультиметре, а анод — к отрицательной или общей клемме.
  3. Установите измеритель на показания в омах, и должны быть получены «низкие» показания.
  4. Поменяйте местами соединения.
  5. На этот раз должно быть получено высокое значение сопротивления.

Примечания:

  • На шаге 3 выше фактическое показание будет зависеть от ряда факторов. Главное, чтобы счетчик прогибался, возможно, на полпути и более. Разница зависит от многих элементов, включая батарею в глюкометре и используемый диапазон.Главное, на что следует обратить внимание, это то, что счетчик сильно отклоняется.
  • При проверке в обратном направлении кремниевые диоды вряд ли покажут какое-либо отклонение измерителя. Германиевые, которые имеют гораздо более высокий уровень обратного тока утечки, могут легко показать небольшое отклонение, если измеритель установлен на высокий диапазон Ом.

Этот простой аналоговый мультиметр для проверки диода очень полезен, потому что он очень быстро показывает, исправен ли диод.Однако он не может тестировать более сложные параметры, такие как обратный пробой и т. Д.

Тем не менее, это важный тест для обслуживания и ремонта. Хотя характеристики диода могут измениться, это происходит очень редко, и очень маловероятно, что произойдет полный пробой диода, и это будет сразу видно с помощью этого теста.

Соответственно, этот тип теста чрезвычайно полезен в ряде областей тестирования и ремонта электроники.

Проверка диодов мультиметром

Как проверить транзистор мультиметром

Тест диодов с помощью аналогового мультиметра может быть расширен, чтобы обеспечить простую и понятную проверку достоверности биполярных транзисторов. Опять же, тест с использованием мультиметра обеспечивает только уверенность в том, что биполярный транзистор не перегорел, но он все еще очень полезен.

Как и в случае с диодом, наиболее вероятные отказы приводят к разрушению транзистора, а не к небольшому ухудшению характеристик.

Испытание основывается на том факте, что биполярный транзистор можно рассматривать как состоящий из двух встречных диодов, и при выполнении теста диодов между базой и коллектором и базой и эмиттером транзистора с использованием аналогового мультиметра, большая часть можно установить базовую целостность транзистора.

Эквивалентная схема транзистора с диодами для проверки мультиметром.

Требуется еще один тест. Транзистор должен иметь высокое сопротивление между коллектором и эмиттером при разомкнутой цепи базы, так как имеется два встречных диода.Тем не менее, возможно, что коллектор-эмиттерный тракт перегорел, и между коллектором и эмиттером был создан путь проводимости, при этом все еще выполняя диодную функцию по отношению к базе. Это тоже нужно проверить.

Следует отметить, что биполярный транзистор не может быть функционально воспроизведен с использованием двух отдельных диодов, потому что работа транзистора зависит от базы, которая является переходом двух диодов, являясь одним физическим слоем, а также очень тонкой.

Пошаговая инструкция:

Инструкции даны в основном для транзисторов NPN, поскольку они являются наиболее распространенными в использовании.Варианты показаны для разновидностей PNP — они указаны в скобках (.. .. ..):

  1. Установите измеритель на его диапазон Ом — подойдет любой диапазон, но, вероятно, лучше всего подойдет средний диапазон Ом, если их несколько.
  2. Подключите клемму базы транзистора к клемме с маркировкой «плюс» (обычно красного цвета) на мультиметре
  3. .

  4. Подключите клемму с маркировкой «минус» или «общий» (обычно черного цвета) к коллектору и измерьте сопротивление.Он должен читать обрыв цепи (для транзистора PNP должно быть отклонение).
  5. Когда клемма с маркировкой «положительный» все еще подключена к базе, повторите измерение с положительной клеммой, подключенной к эмиттеру. Показание должно снова показать обрыв цепи (мультиметр должен отклоняться для транзистора PNP).
  6. Теперь поменяйте местами подключение к базе транзистора, на этот раз подключив отрицательную или общую (черную) клемму аналогового измерительного прибора к базе транзистора.
  7. Подключите клемму с маркировкой «плюс» сначала к коллектору и измерьте сопротивление. Затем отнесите к эмиттеру. В обоих случаях измеритель должен отклониться (указать обрыв цепи для транзистора PNP).
  8. Далее необходимо подключить отрицательный или общий вывод счетчика к коллектору, а положительный полюс счетчика — к эмиттеру. Убедитесь, что счетчик показывает обрыв цепи. (Счетчик должен показывать обрыв цепи для типов NPN и PNP.
  9. Теперь поменяйте местами соединения так, чтобы отрицательный или общий вывод измерителя был подключен к эмиттеру, а положительный полюс — к коллектору.Еще раз проверьте, что прибор показывает обрыв цепи.
  10. Если транзистор проходит все тесты, то он в основном исправен и все переходы целы.

Примечания:

  • Заключительные проверки от коллектора до эмиттера гарантируют, что база не «продувалась». Иногда возможно, что между коллектором и базой и эмиттером и базой все еще присутствует диод, но коллектор и эмиттер закорочены вместе.
  • Как и в случае с германиевым диодом, обратные показания для германиевых транзисторов не будут такими хорошими, как для кремниевых транзисторов. Допускается небольшой уровень тока, поскольку это является следствием присутствия неосновных носителей в германии.

Обзор аналогового мультиметра

Хотя большинство мультиметров, которые продаются сегодня, являются цифровыми, тем не менее, многие аналоговые счетчики все еще используются. Хотя они могут и не быть новейшими технологиями, они по-прежнему идеальны для многих применений и могут быть легко использованы для измерений, подобных приведенным выше.

Хотя описанные выше тесты предназначены для аналоговых измерителей, аналогичные тесты могут быть проведены с цифровыми мультиметрами, цифровыми мультиметрами.

Часто цифровые мультиметры могут включать специальную функцию тестирования биполярных транзисторов, и это очень удобно в использовании. Общие характеристики тестирования с помощью специальной функции тестирования биполярных транзисторов часто очень похожи на упомянутые здесь, хотя некоторые цифровые мультиметры могут давать значение для текущего усиления.

Использование простого теста для диодов и транзисторов очень полезно во многих сценариях обслуживания и ремонта.Очень полезно иметь представление о том, работает ли диод или транзистор. Поскольку тестеры транзисторов широко не продаются, возможность использования любого мультиметра для обеспечения этой возможности особенно полезна. Это даже удобнее, потому что тест выполнить очень просто.

Другие темы тестирования:
Анализатор сети передачи данных
Цифровой мультиметр
Частотомер
Осциллограф
Генераторы сигналов
Анализатор спектра
Измеритель LCR
Дип-метр, ГДО
Логический анализатор
Измеритель мощности RF
Генератор радиочастотных сигналов
Логический зонд
Тестирование и тестеры PAT
Рефлектометр во временной области
Векторный анализатор цепей
PXI
GPIB
Граничное сканирование / JTAG

Вернуться в тестовое меню.. .

Тестовые диоды

  • Изучив этот раздел, вы сможете:
  • • Опишите методы тестирования диодов с помощью цифровых или аналоговых мультиметров
  • • Распознавайте типичные неисправности диодов.
  • • Обрыв цепи.
  • • Короткое замыкание.
  • • Дырявый.

Рис. 2.8.1 Цифровой измеритель

Мультиметр для проверки диодов

Диоды можно проверить с помощью мультиметра. Обычно проверяется сопротивление диода в прямом и обратном направлениях. Однако при тестировании диодов следует помнить о нескольких моментах.

С цифровыми счетчиками

Большинство цифровых мультиметров подходят для тестирования диодов и во многих случаях имеют специальный диапазон «тестирования диодов», обычно отмеченный символом диода.Этот диапазон всегда следует использовать при тестировании диодов или любого другого полупроводникового прибора. Причина этого в том, что измеритель проверяет диод, подавая напряжение на диодный переход. Нормальные напряжения, используемые измерителем в других диапазонах сопротивления, могут быть недостаточно высокими, чтобы преодолеть потенциал прямого перехода диода, и поэтому диод не будет проводить, даже в прямом направлении. Это указывало бы на то, что диод был разомкнут (очень высокое сопротивление). Если используется диапазон диодов, испытательное напряжение, прикладываемое измерителем, в большинстве случаев будет достаточно высоким, чтобы преодолеть потенциал прямого перехода, и диод будет проводить.Следовательно, в прямом направлении (положительный вывод измерителя к аноду диода и отрицательный вывод к катоду) можно измерить сопротивление диода.

Фактическое значение сопротивления будет зависеть от наклона прямой характеристики диода при напряжении, подаваемом измерителем, и поэтому будет варьироваться от устройства к устройству и от измерителя к измерителю, поэтому точное значение не может быть дано. При измерении исправного кремниевого диода (не подключенного к какой-либо цепи) можно ожидать показания в прямом направлении примерно от 500 Ом до 1 кОм, аналогичного или немного меньшего для германиевых диодов.Если провода измерителя перевернуты, следует ожидать выхода за пределы диапазона (бесконечность) или разрыва цепи (обычно отображается на дисплее, например, «1» на цифровом измерителе, как показано на рис. 2.8.1).

Если диод уже включен в цепь, на измеренные сопротивления, всегда при выключенной цепи, будут влиять любые параллельные пути. Следовательно, показания будут ниже указанных выше. Однако очень низкие или нулевые показания могут указывать на короткое замыкание диода (наиболее частая неисправность диодов), поэтому стоит удалить хотя бы один конец диода из цепи, если нет другой очевидной причины очень низкого показания. цепи и еще раз проверьте прямое и обратное сопротивление диода.

С аналоговыми приборами

Рис. 2.8.2 Аналоговый измеритель

Если аналоговый измеритель используется для тестирования, следует помнить, что, поскольку ноль на шкале сопротивления и напряжения меняются местами из-за внутренней работы измерителя, полярность зондов при использовании аналоговых измерителей для измерения сопротивления также меняется. по сравнению с цифровыми счетчиками. Поэтому при измерении сопротивления диода аналоговым измерителем в любом диапазоне ЧЕРНЫЙ провод является положительным, а КРАСНЫЙ провод — отрицательным.Это означает, что черный провод должен быть подключен к аноду, а красный — к катоду для измерения ПЕРЕДНЕГО сопротивления диода. Некоторые аналоговые измерители имеют определенный диапазон тестирования диодов, но большинство аналоговых измерителей вполне подходят для тестирования диодов. Наиболее подходящий аналоговый диапазон обычно указывается в инструкциях для пользователя, но, как и в случае с цифровыми измерителями, необходимо проверить фактическое напряжение, используемое в диапазоне тестирования, чтобы понять его влияние на ожидаемое прямое и обратное сопротивление.

ПРИМЕЧАНИЕ: приведенный выше абзац относится только к истинным аналоговым измерителям, многие современные «аналоговые» модели, как правило, являются цифровыми измерителями с аналоговым дисплеем. В этом случае следует следовать методу, описанному для цифровых счетчиков. Какой у вас счетчик? Можно использовать простой тест сопротивления заведомо исправного диода; подключите черный отрицательный вывод к катоду, а красный положительный вывод к аноду. Если измеритель показывает ожидаемое прямое сопротивление, полярность проводов измерителя не изменена.

Это также является обычным явлением для измерения прямого сопротивления некоторых светодиодов, особенно таких, как синие светодиоды, у которых есть более высокий потенциал прямого перехода, который во время тестирования кажется очень высоким (бесконечным), если напряжение измерителя на диодном диапазоне низкое, даже когда светодиод в порядке.Однако измеритель с испытательным напряжением около 3 В должен давать некоторое свечение светодиода. Также доступны некоторые мультиметры, которые вместо отображения сопротивления диода в диапазоне проверки диода отображают потенциал перехода (в вольтах). Поэтому важно убедиться, что вы знаете, какие условия использует измеритель, прежде чем тестировать какие-либо полупроводники.

Рис. 2.8.3 Подключение цифрового измерителя

для проверки диода

Проведение испытаний

На схеме ниже показано, как подключить цифровой измеритель для проверки диода.Следует помнить следующее:

  • • Убедитесь, что вы используете диодный диапазон.
  • • Используя цифровой измеритель, подключите черный провод к катоду, а красный — к аноду (прямое смещение — около 1 кОм).
  • • Поменяйте местами подключения счетчика (обратное смещение — бесконечное считывание).

ПОМНИТЕ — Если вы используете аналоговый измеритель для измерения сопротивления, полярность измерительных проводов меняется на обратную.

НЕКОТОРЫЕ СЧЕТЧИКИ при измерении сопротивления диода дают показания, указывающие потенциал перехода (в вольтах), а не сопротивление диода (в омах). ПРОВЕРЬТЕ ИНСТРУКЦИИ К СЧЕТЧИКУ, чтобы быть уверенным в том, что показывает показание измерителя.

Определение соединений диодов

Рис. 2.8.4 Маркировка полярности диодов.

Катодное соединение диода маркируется различными способами. В случае мостового выпрямителя входные клеммы переменного тока и выходные клеммы постоянного тока обычно помечены символом синусоидальной волны и знаками плюс / минус соответственно, как показано.

Мостовые выпрямители

можно тестировать как обычные диоды, если каждый диод тестируется отдельно.Контакты корпуса следует сравнить со схемой внутреннего расположения четырех диодов, как показано на рис. 2.8.4, чтобы вы могли проверить прямое и обратное сопротивление каждого диода. Одиночные диоды обычно обозначаются полосой для обозначения катода, но в выпрямителях шпилечного типа на корпусе обычно печатается символ диода.

Индикация неисправности

Короткое замыкание

Диоды могут быть повреждены высоким напряжением, особенно диоды, работающие с высоким напряжением или мощными приложениями, такими как источники питания, и в результате обычно происходит короткое замыкание 0 Ом при измерении в любом направлении.Когда диод в источнике питания замыкается накоротко, могут протекать большие токи и возникают очевидные повреждения, такие как «сварившиеся» диоды и / или перегоревшие предохранители. Неповрежденные короткозамкнутые диоды показывают 0 Ом или очень низкое сопротивление как в прямом, так и в обратном направлении.

Обрыв цепи

Иногда диоды (особенно малосигнальные диоды) могут размыкать цепь и показывать очень высокое сопротивление или бесконечность (отображается цифрой 1 на цифровых индикаторах) как в прямом, так и в обратном направлении.

Дырявый

Иногда сигнальный диод может стать «негерметичным». В то время как его прямое сопротивление может быть нормальным, его обратное сопротивление может быть ниже ожидаемой бесконечности. Этот тип неисправности обычно ограничивается небольшими сигнальными диодами, поскольку, если силовые диоды выходят из строя, дополнительный обратный ток почти наверняка будет генерировать достаточно тепла, чтобы быстро разрушить диод. В диодах с малым сигналом эта неисправность может быть надежно измерена только при удалении диода из схемы, поскольку параллельные сопротивления любых других компонентов, подключенных поперек диода, будут иметь тенденцию давать более низкое, чем ожидалось, обратное сопротивление.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *