Измерение петли фаза ноль для чего: Замер полного сопротивления цепи «фаза-нуль»

Разное

Содержание

Измерение петли фаза-ноль | Заметки электрика

Уважаемые, посетители!!!

Приветствую Вас на своем ресурсе «Заметки электрика».

В прошлой статье мы узнали с Вами, что такое петля фаза-ноль и для чего нужно проводить измерение сопротивления петли фаза-ноль.

Сегодняшняя статья будет посвящена теме измерения петли фаза-ноль, т.е. разберем пошагово и подробно как самостоятельно произвести измерение. Измерение будем проводить в 2 этапа:

1. Внешний осмотр

Проводим тщательный внешний осмотр:

2. Измерение петли фаза-ноль

Перед измерением необходимо проверить плотность соединения проводов к аппаратам защиты. Если провода не протянуты — то смысла измерения нет, т.к. полученные показатели получатся не достоверными.

Цель  — это выяснить соответствие номинального тока аппаратов защиты и сечение проводов измеряемой цепи.

Замер петли фаза-ноль производим на самой удаленной точке измеряемой линии.

Если же проблематично определить самую дальнюю точку линии, то проводим измерение по всем точкам этой линии.

Измеренные величины записываем в блокнот.

 

Методика измерения петли фаза-ноль. Как провести замер?

 Существует несколько методов измерения:

  • метод падения напряжения в отключенной цепи

  • метод падения напряжения на нагрузочном сопротивлении

  • метод короткого замыкания цепи

Наша электролаборатория использует для измерения петли фаза-ноль электроизмерительный прибор MZC-300 от фирмы Sonel, который работает по методу падения напряжения на нагрузочном сопротивлении. Этот метод рекомендуется к использованию ГОСТом  50571.16-99 (приложение D1).

Данный метод измерения я считаю более удобным, а главное безопасным. 

Измерение в рабочей цепи А (L1) — N

Измерение в защитной цепи А (L1) — PE

Проверка защиты от замыкания на корпус электрооборудования в системе заземления TN

Проверка защиты от замыкания на корпус электрооборудования в системе заземления TT

Более подробно видах систем заземления читайте в статьях:  TN-C, TN-C-S, TN-S и TT.

Измерение сопротивления петли мы проводим на электроустановке, которая находится под напряжением.

Как пользоваться прибором MZC-300, более подробно, можно узнать в руководстве по эксплуатации данного прибора.

Периодичность проведения измерений


Согласно нормативно-технического документа ПТЭЭП, измерение петли фаза-ноль проводится с определенной периодичностью, установленной системой ППР организации. Система ППР, включающая в себя циклы текущих и капитальных ремонтов электрооборудования,  утверждается техническим руководителем организации.

Для электроустановок во взрывоопасных зонах, не менее 1 раза в 2 года.

При отказе устройств защиты электроустановок должны выполняться внеплановые электрические измерения.

 

Как сделать заключение?

Выполнив замер петли фаза-ноль по вышеприведенным  схемам, на дисплее прибора отразится величина однофазного тока короткого замыкания.

Это значение сравниваем по время-токовым характеристикам с током срабатывания расцепителя автоматического выключателя или с плавкой вставкой предохранителя, и делаем соответствующее заключение.

Чтобы сделать правильное и верное заключение необходимо внимательно прочитать выдержки из ПТЭЭП и ПУЭ 7 издания. Я их совместил для Вашего удобства в одну картинку.

(для увеличения нажмите на картинку)

Для более наглядного представления, как сделать правильное заключение при измерении ПФО, приведу Вам пример из личного опыта.

Пример:

Производили замер петли фаза-ноль в помещении библиотеки. Измеряемая линия питается от силовой сборки ЩС автоматическим выключателем с номинальным током 16 (А) и характеристикой С (подробнее о всех видах характеристиках).

Как я уже говорил в статье, измерение проводим на самой отдаленной точке этой линии, в нашем случае это розетка, расположенная в самом дальнем углу библиотеки.

Электроснабжение библиотеки выполнено системой заземления TN-C. Поэтому измерение производим в рабочей цепи (фаза — ноль).

Измеренный ток однофазного короткого замыкания, который показал нам прибор, составлял 87 (А).

Внимательно читаем информацию, приведенную на картинке выше.

В данном примере воспользуюсь пунктом из ПТЭЭП. Т.е. ток однофазного замыкания должен быть не менее, чем 1,1 * 16 * 10 = 176 (А). А у нас ток получился 87 (А) —  условие не выполняется.

При токе 87 (А) электромагнитная защита автоматического выключателя не сработает, а сработает тепловая защита, выдержка времени которой составит несколько секунд (больше, чем 0,4 секунды — ПУЭ). За это время есть большой риск возникновения воспламенения или пожара электропроводки.

Вывод:

В моем примере условие не удовлетворяет требованиям ПТЭЭП и ПУЭ. Поэтому необходимо:

  • увеличить сечение проводов, измеряемой линии (при увеличении сечения провода уменьшается его сопротивление, а значит и увеличится ток однофазного замыкания, который пройдет по нашим условиям)
  • установить автоматический выключатель с меньшим номинальным током (при уменьшении номинала автомата мы тем самым жертвуем мощностью линии)

 

Форма протокола измерения петли фаза-ноль

Самым последним этапом является занесение величин измерений в протокол.

(для увеличения нажмите на картинку)

(для увеличения нажмите на картинку)

P.S. Если у Вас в процессе изучения материала появились какие-нибудь вопросы, то смело задавайте их в комментариях. А сейчас смотрите видеоролик про «Измерение петли фаза-ноль в мастерской», который я приготовил специально для Вас. 

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Замер петли фаза-нуль | Центр Энерго Экспертизы

Петля фаза ноль это контур, состоящий из соединения фазного и нулевого проводника. Данное испытание необходимо для проверки соответствия уставки токовой отсечки аппарата защиты току  короткого замыкания, то есть нам необходимо знать, за какое время аппарат защиты отключит поврежденную линию и отключит ли вообще. Измерения проводят на самом удаленном участке линии. Потому что чем больше протяженность, тем хуже будут показатели, ниже ток короткого замыкания. Сопротивление петли фаза ноль зависит от сечения жил кабеля, его протяженности, переходных сопротивлений в соединительных коробках данной линии. Далее по полученным значениям производится расчет тока возможного короткого замыкания и производится сравнение со значением отсечки автоматического выключателя.

Со временем показатели могут увеличиваться из-за ухудшения переходных контактов в цепи фазного и нулевого проводника, поэтому данный параметр необходимо контролировать регулярно.

Так как при увеличении сопротивления петли фаза ноль, уменьшается возможный ток короткого замыкания, и как следствие аппарат защиты может не отключить поврежденную линию. Своевременное проведение проверки позволит предотвратить возникновение нештатных ситуаций и перегрев проводников.

На картинке пример измерения прибором metrel mi3102H SE. Полученное значение : 0,77 Ом, прибор сразу показывает какой ток КЗ возникнет на линии: 299 ампер, этого будет достаточно чтобы автомат категории С на 16 ампер сработал.

Периодичность проведения испытаний

Это испытание проводится при вводе электрооборудования в эксплуатацию, в обязательном порядке, при приёмо-сдаточных испытаниях в 100% объеме.

Это позволяет установить, насколько качественно выполнен монтаж, подобраны аппараты защиты. После этого проверка производится раз в три года, и  согласно ГОСТ Р 50571-16 2007 рекомендовано к включению в объем  эксплуатационных испытаний. По усмотрению ответственного за электрохозяйство испытания можно проводить чаще.

Кто проводит замер петли фаза ноль

Измерения проводят специальные электролаборатории, деятельность которых аккредитована федеральной службой по экологическому, технологическому и атомному надзору. Право на проведение этого вида работ указывается в свидетельстве о регистрации электролаборатории в перечне работ.

Какими приборами производятся измерения

Измерения производятся при помощи приборов, имеющихся у электролабораторий. Современные приборы создают искусственное короткое замыкание в месте измерения внутри прибора и сразу производят расчет  сопротивления петли фаза ноль,  и тока короткого замыкания.

В нашей компании есть все необходимое оборудование, которое позволяет быстро и качественно провести проверку.

Видео как проводится измерение сопротивления петли фаза-ноль


Измерение петли фаза-ноль: самая полная методика

Надежность работы электрических сетей TN с классом напряжения до 1 кВ во многом зависит от параметров срабатывания защитного оборудования, отключающего аварийный участок при образовании сверхтоков. Существует несколько методик, позволяющих проверить надежность срабатывания автоматов защиты, сегодня мы подробно рассмотрим одну из них — измерение сопротивления петли «фаза-ноль». Для лучшего понимания процесса начнем с краткого описания терминологии, после чего перейдем к методике электрических испытаний при помощи специального устройства MZC-300.

Что подразумевается под цепью «фаза-ноль»?

В системах с глухозаземленной нейтралью (подробно о них можно прочитать в статье https://www.asutpp.ru/programmy-dlja-cherchenija-jelektricheskih-shem.html) при контакте одной из фаз с рабочим нулем или защитным проводником РЕ, образуется петля фаза-ноль, характерная для однофазного КЗ.

Как и любая электроцепь, она имеет внутреннее сопротивление, расчет которого позволяет определить остальные значащие параметры, в частности, ток КЗ. К сожалению, самостоятельный расчет сопротивления такой цепи связан с определенными трудностями, вызванными необходимостью учета многих составляющих, например:

  • Суммарная величина всех переходных сопротивлений петли, возникающих в АВ, предохранителях, коммутационном оборудовании и т.д.
  • Движение электротока при нештатном режиме. Петля может образоваться как с рабочим нулем, так и заземленными конструкциями здания.

Учесть в расчетах все перечисленные составляющие на практике не реально, именно поэтому возникает необходимость в электрических измерениях. Спецоборудование позволяет получить необходимые параметры автоматически.

Необходимость в измерениях

Замер сопротивления петли проводится в следующих случаях:

  • При вводе в эксплуатацию, после ремонта, модернизации или переоборудовании установок.
  • Требование со стороны служб различных служб контроля, например Облэнерго, Ростехнадзор и т.д.
  • По заявлению потребителя.

В ходе электрических замеров устанавливаются определенные параметры петли Ф-Н, а именно:

  • Общее сопротивление цепи, которое включает в себя:

электросопротивление трансформатора на подстанции;

аналогичный параметр линейного проводника и рабочего нуля;

образующиеся в коммутационном оборудовании многочисленные переходные сопротивления, например в защитных устройствах (АВ, УЗО, диффавтоматах), пускателях, ручных коммутаторах и т.д. Также влияние оказывает сечение проводников, изоляция кабелей, заземление нейтрали трансформатора, параметры УЗО или другой защиты электроустановок.

  • Ток КЗ (IКЗ). В принципе, его можно рассчитать, используя формулу: IКЗ = UН /ZП  , где UН – номинальный уровень напряжения в электросети, а ZП – общее сопротивление петли. Учитывая, что защитные устройства при КЗ должны автоматически отключать питание согласно установленным временным нормам, то необходимо выполнение следующего условия: ZП*IAB <= UН . В данном случае IAB ток, при котором срабатывает АВ или другое устройство защиты, его величина должна уступать IКЗ.

Перед описанием детальных методик измерений, необходимо кратко описать прибор, который будет использоваться в процессе — MZC-300. Мы остановили свой выбор на этом устройстве, поскольку оно чаще всего применяется измерительными лабораториями.

Краткое описание MZC-300

Рассмотрим внешний вид и основные элементы измерителя MZC-300.

Расположение основных элементов прибора MZC-300

Обозначения:

  1. Информационный дисплей. Полное описание его полей можно найти в руководстве по эксплуатации.
  2. Кнопка «Старт». Запускает следующие процессы измерений:
  • ZП, напомним, это общее сопротивление цепи Ф-Н.
  • IКЗ – ожидаемый ток КЗ.
  • Активного сопротивления, необходимо для калибровки прибора.

Старт каждого измерения сопровождается характерным звуковым сигналом.

  1. Кнопка «SEL». Служит для последовательного вывода на информационный дисплей всех характеристик петли, полученных в результате последнего замера. В частности отображается следующая информация:
  • Параметры ZП.
  • Ожидаемый IКЗ.
  • Уровень активного и реактивного сопротивления (R и Х).
  • Фазный угол ϕ.
  1. Кнопка «Z/I». По окончании испытаний переключает на дисплее отображение характеристик между ожидаемым IКЗ и ZП.
  2. Кнопка отключения/включения измерительного устройства. Если при запуске прибора одновременно с данной кнопкой нажать «SEL», то измеритель перейдет в режим автокалибровки. Его подробное описание можно найти в руководстве пользования.
  3. Разъем для подключения щупа, контактирующего с рабочим нулем, проводником РЕ или, PEN. Соответствующее обозначение нанесено на корпус прибора.
  4. Разъем щупа, подключаемого к одному из фазных проводов. Как правило, помечен литерой «L».
  5. Как и разъем i, в отличии от гнезд для измерительных проводов, используется только в режиме автоматической калибровки. На корпусе прибора обозначаются как «К1» и «К2».

Подготовительный этап

Практически все методы измерений цепи «фаза-ноль» не позволяют получить точную информацию о таких характеристиках, как ZП и IКЗ. Это связано с тем, что векторная природа напряжения не принимается во внимание. Проще говоря, учитываются упрощенные условия при коротком замыкании. В процессе испытания электроустановок такая приближенность допускается только в тех случаях, когда уровень реактивного сопротивления не имеет существенного влияния.

Перед тем, как приступить к измерению характеристик петли «Ф-Н», предварительно следует провести ряд предварительных испытаний. В частности, проверить непрерывность и уровень сопротивления защитных линий. После этого измерить сопротивление между контуром заземления и основными металлическими элементами конструкции здания.

Методика измерений с использованием MZC-300

Прежде, чем переходить непосредственно к испытаниям, кратко расскажем о принятом порядке, он включает в себя:

  • Соблюдение определенных условий, обеспечивающих необходимую точность.
  • Выбор способа подключения устройства.
  • Получение информации о напряжении сети.
  • Измерение основных характеристик петли «Ф-Н».
  • Считывание полученной информации.

Рассмотрим каждый из перечисленных выше этапов.

Соблюдение определенных условий

Следует принять во внимания некоторые особенности работы измерителя:

  • Устройство не допустит проведение испытаний, если номинальное напряжение сети превысит максимальное значение (250В). Превышение диапазона измерения (250,0 В) приведет к тому, что на экране прибора отобразится предупреждение «OFL» сопровождаемое продолжительным звучанием зуммера. В этом случае прибор следует выключить и отключить от измеряемой петли.
  • При обрыве нулевых или защитных проводников на экране устройства будет высвечиваться ошибка в виде символа «—», сопровождаемая длительным сигналом зуммера.
  • Уровень напряжения в измеряемой петле недостаточное для испытаний, как правило, если ниже 180,0 вольт. В таком случае экран выдаст ошибку с символом «U», сопровождаемую двумя сигналами зуммера.
  • Срабатывание термической блокировки прибора. При этом на экране высвечивается символ «Т», а зуммер выдает два продолжительных сигнала.

Выбор способа подключения устройства

Рассмотрим несколько вариантов электрических схем подключения прибора для проведения испытаний:

  1. Снятие характеристик с петли «Ф-Н», в примере, приведенном на рисунке измеряются параметры в цепи С-N.
    Испытание петли С-N
  2. Измерение в петле между одной из фаз и проводником РЕ.
    Испытание петли С-РЕ
  3. Измерения в цепях ТТ.

Подключение прибора в цепях с защитным заземлением

  1. Для проверки надежности заземления электрооборудования применяется способ подключения, приведенный ниже.

Испытание надежности заземления корпусов электрооборудования

Важно! Вне зависимости способа подключения прибора необходимо убедиться в надежности соединения проводов.

Получение информации о напряжении сети

Рассматриваемый нами прибор позволяет измерить UH в пределах диапазона от 0 до 250,0 вольт. Фазное напряжение отображается на дисплее прибора сразу после нажатия кнопки включения или по истечении пяти секунд, после проведения испытаний (если не было произведено нажатие управляющих кнопок, отвечающих за отображение результатов на экране).

Измерение основных характеристик петли «Ф-Н»

Методика измерения ZП в петле, применяемая в модельном ряде MZC основана на создании искусственного КЗ с использованием ограничивающего сопротивления (10,0 Ом), понижающего величину IКЗ. После испытаний микропроцессор прибора производит расчет ZП, выделяя реактивные и активные составляющие. Процедура измерения не превышает 30,0 мс.

Характерно, что прибор автоматически выбирает нужный диапазон для измерения ZП. При нажатии кнопки «Z/I» на дисплей поочередно выводятся такие основные характеристики петли, как ожидаемый ток КЗ (IКЗ) и общее сопротивление (ZП).

Следует учитывать, что при вычислениях микропроцессор устанавливает величину UH на уровне 220,0 вольт, в то время, как текущее номинальное напряжение может отличаться от расчетного. Поэтому для увеличения точности замеров электрической цепи следует вносить поправку. Например, при действительном UH, равном 240,0 В, поправка для снижения погрешности прибора будет равна 1,09 (то есть необходимо 240 разделить 220).

Процесс измерения характеристик петли запускается кнопкой «Старт».

Важно! Испытания, проводимые при помощи приборов модельного ряда MZC, практически гарантированно приводят к срабатыванию УЗО. Чтобы избежать этого, необходимо предварительно зашунтировать устройства защитного отключения. После проведения измерений не забудьте снять шунт с УЗО.

Считывание полученной информации

Как уже упоминалось выше, испытания начинаются после нажатия кнопки «Старт». После завершения измерений, на экране отображаются характеристики петли «Ф-Н», в зависимости от установленных настроек. Перебор отображаемой на дисплее информации осуществляется при помощи кнопок «SEL» и «Z/I».

Следует учитывать, что прибор MZC-300 отображает только результаты последнего измерения. Если необходимо хранение в электронной памяти результатов всех испытаний потребуется устройство с расширенными возможностями, например прибор MZC-303E.

Устройство MZC-303E для измерения характеристик петли «Ф-Н»

Такое устройство позволяет не только хранить информацию обо всех измерениях в электронной памяти, но и при необходимости переносить ее на компьютер, при помощи интерфейса USB.

Меры безопасности при измерении петли «Ф-Н»

Согласно требованиям ПУЭ и норм ПТБ испытания должны проводиться подготовленными сотрудниками электролабораторий. Для проведения данных работ необходимо распоряжение или наряд-допуск, выданный работником, обладающим данным правом.

Испытания могут проводить лица, чей возраст не менее 18 лет, прошедшие соответствующее обучение и проверку знаний ПТБ. Бригада электролаборатории должна быть обеспечена соответствующим инструментом, а также всеми необходимыми средствами индивидуальной защиты.

Бригада должна включать в себя, как минимум, двух работников с третьей группой электробезопасности.

Испытания запрещается проводить в помещениях повышенной опасности, а также, если имеет место высокая влажность.

По завершению процесса испытаний результаты вносятся в специальные протоколы испытаний (проверки).

Методика измерения петли Фаза-Ноль — Электролаборатория

1.Цель проведения измерения.

       Измерение сопротивления петли  “фаза-нуль” проводится с целью проверки срабатывания защиты электрооборудования и отключения аварийного участка при замыкании фазы на корпус. По измеренному полному сопротивлению петли  “фаза-нуль” определяется ток однофазного короткого замыкания. Полученная расчетом величина тока сравнивает с номинальным током защитного аппарата.

2.Меры безопасности.

Пред началом работ необходимо:

  • Получить наряд (разрешение) на производство работ
  • Подготовить рабочее место в соответствии с характером работы: убедиться в достаточности принятых мер безопасности со стороны допускающего (при работах по наряду), либо принять все меры безопасности самостоятельно (при работах по распоряжению).
  • Подготовить необходимый инструмент и приборы.
  • При выполнении работ действовать в соответствии с программами (методиками) по испытанию электрооборудования типовыми или на конкретное присоединение.
  • При окончании работ на электрооборудовании убрать рабочее место, восстановив нарушенные в процессе работы коммутационные соединения (если таковое имело место).
  • Сдать наряд (сообщить об окончании работ руководителю или оперативному персоналу).
  • Оформить протокол на проведённые работы

Измерения сопротивления петли «фаза – нуль» необходимо производить, пользуясь диэлектрическими перчатками, предварительно необходимо обесточить испытуемую цепь. Только после отключения напряжения необходимо проводить подключение прибора с последующей подачей напряжения и проведением измерения.

3.Нормируемые величины.

      Измерения сопротивления петли “фаза-нуль” проводится в сроки, устанавливаемые графиком планово-предупредительного ремонта (ППР). По сопротивлению петли “ фаза-нуль”  Zфо (Ом) ток короткого замыкания Iкз (А) определяется по формуле  Iкз=Uср/Zфо

      где Uср — среднее значение питающего напряжения, В.

      В электроустановках до 1кВ с глухим заземленной нейтралью с целью обеспечения автоматического отключения аварийного участка проводимость фазных и нулевых защитных проводников должна быть выбрана такой, чтобы при замыкании на корпус или на нулевой защитный проводник возникал ток КЗ, превышающий не менее чем:

  • в 3 раза номинальный ток плавкого элемента ближайшего предохранителя;
  • в 3 раза номинальный ток нерегулируемого расцепителя или уставку тока регулируемого расцепителя автоматического выключателя, имеющего обратно зависимую от тока характеристику.

    При защите сетей автоматическими выключателями, имеющими только электромагнитный расцепитель (отсечку), проводимость указанных проводников должна обеспечивать ток не ниже уставки тока мгновенного срабатывания, умноженной на коэффициент, учитывающий разброс(по заводским данным), и на коэффициент запаса 1,1.

4.Определяемые характеристики.

Согласно ПУЭ в электроустановках до 1000В с глухозаземлённой нейтралью с целью обеспечения автоматического отключения аварийного участка проводимость фазных и нулевых рабочих и нулевых защитных проводников должна быть выбрана такой, чтобы при замыкании на корпус или на нулевой проводник возникал ток короткого замыкания, который обеспечивает время автоматического отключения питания не превышающего значений, указанных в табл. 1.7.1.

Таблица 1.7.1 Наибольшее допустимое время защитного автоматического отключения для системы TN

Номинальное фазное напряжение U0, В

Время отключения, с

127

0,8

220

0,4

380

0,2

Более 380

0,1

Приведенные значения времени отключения считаются достаточными для обеспечения электробезопасности, в том числе в групповых цепях, питающих передвижные и переносные электроприемники и ручной электроинструмент класса 1. В цепях, питающих распределительные, групповые, этажные и др. щиты и щитки, время отключения не должно превышать 5 с.

Допускаются значения времени отключения более указанных в табл. 1.7.1, но не более 5 с в цепях, питающих только стационарные электроприемники от распределительных щитов или щитков при выполнении одного из следующих условий:

1) полное сопротивление, защитного проводника между главной заземляющей шиной и распределительным щитом или щитком не превышает значения, Ом:

 

50=Zц/U0,

 

где Zц — полное сопротивление цепи «фаза-нуль», Ом;

U0 — номинальное фазное напряжение цепи, В;

50 — падение напряжения на участке защитного проводника между главной заземляющей шиной и распределительным щитом или щитком, В;

2) к шине РЕ распределительного щита или щитка присоединена дополнительная система уравнивания потенциалов, охватывающая те же сторонние проводящие части, что и основная система уравнивания потенциалов.

Допускается применение УЗО, реагирующих на дифференциальный ток.

А также ток возникающий при однофазном КЗ во взрывоопасных зонах должен превышать:

В 6 раз номинальный ток автоматического выключателя с обратнозависимой характеристикой

во взрывоопасном помещении.

В 4 раза номинальный ток плавкой вставки во взрывоопасном помещении

При защите автоматическими выключателями имеющими только электромагнитный расцепитель время отключения должно соответствовать данным таблицы 1.7.1

Для расчёта тока однофазного КЗ по результатам измерения сопротивления петли «фаза–нуль» используют следующую формулу:

Z = U / I,

 

где Z— сопротивление петли «фаза—нуль», Ом;

U — измеренное испытательное напряжение, В ;

I — измеренный испытательный ток, А..

По рассчитанному току однофазного КЗ определяют пригодность аппарата защиты установленного в цепи питания электроприёмника.

В системе IT время автоматического отключения питания при двойном замыкании на открытые проводящие части должно соответствовать табл. 1.7.2.

Таблица 1.7.2 Наибольшее допустимое время защитного автоматического отключения для системы IT

Номинальное линейное напряжение U0, В

Время отключения, с

220

0,8

380

0,4

660

0,2

Более 660

0,1

Для определения времени отключения аппарата защиты после измерения сопротивления петли «фаза-нуль» и расчёта тока однофазного КЗ необходимо использовать время-токовые характеристики данного аппарата (смотри «Методику проведения испытаний автоматических выключателей и аппаратов управления напряжением 0,4кВ»).

5.Условия испытаний и измерений

Измерение сопротивления петли «фаза – нуль» следует производить при положительной температуре окружающего воздуха, в сухую, спокойную погоду. Атмосферное давление особого влияние на качество проводимых испытаний не оказывает, но фиксируется для занесения данных в протокол.

Влияние нагрева проводников на результаты измерений:

а) Рассмотрение повышения сопротивления проводников, вызванного повышением температуры.

Когда измерения проведены при комнатной температуре и малых токах, чтобы принять в расчет повышение сопротивления проводников в связи с повышением температуры, вызванного током замыкания, и убедиться для системы TN в соответствии измеренной величины сопротивления петли «фаза—нуль» требованиям таблицы 1.7.1, может быть применена нижеприведенная методика.

Считают, что требования таблицы 1.7.1 выполнимы, если петля «фаза—нуль» удовлетворяет следующему уравнению

                       Z S(m)≤ 2U0 / 3Ia,                       

 

Где ZS(m) — измеренная величина сопротивления петли «фаза—нуль», Ом;

U0 — фазное напряжение. В;

Ia — ток, вызывающий автоматическое срабатывание аппаратов защиты в течение времени, указанного в таблице 1.7.1., или в течение 5 с для стационарных электроприёмников

Если измеренная величина сопротивления петли «фаза—нуль» превышает 2 U0/3Iа, более точную оценку соответствия требованиям таблицы 1.7.1 можно сделать путем измерения величины сопротивления петли «фаза—нуль» в следующей последовательности:

— сначала измеряют сопротивление петли «фаза—нуль» источника питания на вводе электроустановки Ze;

— измеряют сопротивление фазного и защитного проводников сети от ввода до распределительного пункта или щита управления;

— измеряют сопротивление фазного и защитного проводников от распределительного пункта или щита управления до электроприемника;

— величины сопротивлений фазного и нулевого защитного проводников увеличивают для учета повышения температуры проводников при протекании по ним тока замыкания. При этом необходимо учитывать величину тока срабатывания аппаратов защиты;

— эти увеличенные значения сопротивления добавляют к величине сопротивления петли «фаза—нуль» источника питания Ze и в результате получают реальную величину ZS в условиях замыкания.

  1. Применяемые приборы, инструменты и аппараты.

      Измерения проводятся специальным приборами типа EurotestXE 2,5 кВ MI 3102H, позволяющим определять полное сопротивление петли “фаза-нуль” при наличии напряжения на источнике питания в электроустановках напряжением 380 В с глухозаземленной нейтралью питающего трансформатора. Во время работы применяют инструмент с изолированными ручками и индикатор напряжения.

  1. Методика проведения измерения.

      7.1 Полное сопротивление контура и предполагаемый ток короткого замыкания

В данной функции доступны две подфункции измерения полного сопротивления контура: Подфункция Z LOOP применяется для измерения полного сопротивления контура в системах питания без встроенного УЗО. Подфункция Zs (узо) – функция блокировки срабатывания УЗО – применяется для измерения полного сопротивления контура в системах питания со встроенным УЗО.

 

7.1.1. Полное сопротивление контура

Полное сопротивление контура представляет собой полное сопротивление контура  повреждения при возникновении короткого замыкания на открытых проводящих частях (замыкание между фазным проводником и защитным проводником заземления).

7.1.2. Порядок проведения измерения полного сопротивления контура

Шаг 1.  С помощью переключателя функций выберите функцию Контур. Используя кнопки, выберите подфункцию полного сопротивления контура Z LOOP. Подключите измерительный кабель к прибору EurotestХЕ 2,5 кВ.

Шаг 2. Установите следующие параметры измерения:

􀂉 Тип предохранителя,

􀂉 Номинальный ток предохранителя,

􀂉 Время срабатывания предохранителя,

􀂉 Масштабный коэффициент IPSC

Шаг 3. Для измерения полного сопротивления контура подключите прибор к испытываемому объекту в соответствии со схемой соединения, приведенной на рисунке 1.

Рисунок 1: Подключение измерительного кабеля с вилкой и 3-проводного измерительного кабеля

 

Шаг 4.  Перед началом измерения проверьте отображаемые на дисплее предупреждения и оперативное напряжение / выходной монитор. Если измерение разрешено, нажмите кнопку TEST. После завершения измерения на дисплее отображаются результаты измерений и оценка результата.

Отображаемые результаты:

Z ………….Полное сопротивление контура,

ISC ………..Предполагаемый ток короткого замыкания,

Lim ………Минимальный предел предполагаемого тока короткого замыкания (если применяется).

Примечания:

􀂉 Измерительные выводы L и N автоматически заменяются в следующих случаях: если измерительные провода L/L1 и N/L2 (3-проводный измерительный кабель) подключены в обратном порядке, если выходы сетевой вилки перепутаны или если щуп «commander» перевернут.

􀂉 Минимальный предел тока короткого замыкания зависит от типа предохранителя, номинального тока и времени срабатывания предохранителя, а также от масштабного коэффициента IPSC.

􀂉 Указанная погрешность измеренных параметров действительна только тогда, когда сетевое напряжение стабильно во время измерений. 􀂉 Измерение полного сопротивления контура в подфункции Z LOOP приводит к срабатыванию УЗО.

 

7.1.3. Функция блокировки срабатывания УЗО

В данной подфункции Zs (узо) измерение полного сопротивления контура не вызывает срабатывания УЗО, благодаря низкому измерительному току. Данная подфункция также может применяться для измерения полного сопротивления контура в электроустановках, оснащенных УЗО с номинальным током срабатывания 10 мA.

 

7.1.4. Порядок проведения измерения полного сопротивления контура в функции блокировки срабатывания УЗО

Шаг 1. С помощью переключателя функций выберите функцию Контур. Используя кнопки, выберите подфункцию блокировки срабатывания УЗО Zs (узо). Подключите измерительный кабель к прибору EurotestХЕ 2,5 кВ.

Шаг 2. Установите следующие параметры измерения:

􀂉 Тип предохранителя,

􀂉 Номинальный ток предохранителя,

􀂉 Время срабатывания предохранителя,

􀂉 Масштабный коэффициент IPSC

Шаг 3. Для измерения полного сопротивления контура в функции блокировки срабатывания УЗО подключите прибор к испытываемому объекту в соответствии со схемой соединения, приведенной на рисунке 1. При необходимости воспользуйтесь меню помощи.

Шаг 4.  Перед началом измерения проверьте отображаемые на дисплее предупреждения и оперативное напряжение / выходной монитор. Если измерение разрешено, нажмите кнопку TEST. После завершения измерения на дисплее отображаются результаты измерений и оценка

результата.

Отображаемые результаты:

Z ………….Полное сопротивление контура,

ISC ………..Предполагаемый ток короткого замыкания,

Lim ………Минимальный предел предполагаемого тока короткого замыкания (если применяется). Сохраните отображенные результаты с целью дальнейшего документирования.

 

Примечания:

􀂉 При проведении измерения полного сопротивления контура в функции блокировки срабатывания УЗО, срабатывания УЗО, как правило, не происходит. Однако срабатывание УЗО может произойти вследствие протекания тока утечки по РЕ-проводнику или в случае наличия емкостного соединения между фазным и защитным проводниками.

􀂉Указанная погрешность измеренных параметров действительна только тогда, когда сетевое напряжение стабильно во время измерений.

 

7.2. Полное сопротивление линии и предполагаемый ток короткого замыкания

Полное сопротивление линии – это полное сопротивление токовой петли при возникновении короткого замыкания между фазным и нулевым проводниками в однофазной системе или между двумя фазными проводниками в трехфазной системе.

 

7.2.1Порядок проведения измерения полного сопротивления линии

Шаг 1. С помощью переключателя функций выберите функцию Линия.

Подключите измерительный кабель к прибору EurotestХЕ 2,5 кВ.

Шаг 2. Установите следующие параметры измерения:

􀂉 Тип предохранителя,

􀂉 Номинальный ток предохранителя,

􀂉 Время срабатывания предохранителя,

􀂉 Масштабный коэффициент IPSC

Шаг 3.Для измерения сопротивления линии фаза – фаза или фаза – нейтраль подключите прибор к испытываемому объекту согласно схеме соединений, приведенной на рисунке 2.

Рисунок 2: Подключение измерительного кабеля с вилкой или 3-проводного измерительного кабеля при измерении полного сопротивления линии

Шаг 4 Перед началом измерения проверьте отображаемые на дисплее предупреждения и оперативное напряжение / выходной монитор. Если измерение разрешено, нажмите кнопку TEST. После завершения измерения на дисплее отображаются результаты измерений и оценка результата

Отображаемые результаты:

Z ………….Полное сопротивление линии,

ISC ………..Предполагаемый ток короткого замыкания,

Lim ………Минимальный предел предполагаемого тока короткого

замыкания (если применяется).

Примечания:

􀂉 Минимальный предел тока короткого замыкания зависит от типа предохранителя, номинального тока и времени срабатывания предохранителя, а также от масштабного коэффициента IPSC.

􀂉 Указанная погрешность измеренных параметров действительна только тогда, когда сетевое напряжение стабильно во время измерений.

 8.Оформление результатов измерений.

Первичные записи рабочей тетради должны содержать следующие данные:

-дату измерений

-температуру,

-влажность и давление

-наименование, тип, заводской номер оборудования

-номинальные данные объекта испытаний

-результаты испытаний

-используемую схему

По данным испытаний и измерений производятся соответствующие расчёты и сравнения. Вычислив ток однофазного КЗ необходимо определить время срабатывания защитного аппарата по его время-токовой характеристике, и затем дать заключение о времени срабатывания выключателя и его соответствии требованиям ПУЭ. Пример работы с время- токовой характеристикой автоматического выключателя, выполненного в соответствии с ГОСТ Р 50345-99 представлен на рисунке 5. Определённый (измеренный, рассчитанный) ток однофазного КЗ откладывается на время-токовой характеристике в виде вертикальной прямой линии. Токи правее зоны срабатывания обеспечивает срабатывание автоматического выключателя со временем менее 0,4 с. Токи внутри зоны срабатывания обеспечивают отключение автоматического выключателя со временем менее 5 с. Таким образом считаем, что для обеспечения требуемого времени срабатывания автоматического выключателя в пределах менее 0,4 с, ток КЗ должен превышать 10Iн для автоматического выключателя с характеристикой типа С (работает электромагнитный расцепитель).

 

Рисунок 3. Работа с время-токовой характеристикой автоматического выключателя с характеристикой типа С

Если время срабатывания автоматического выключателя должно быть не более 5 с, то в этом случае считаем, что наиболее вероятно срабатывание обратнозависимого расцепителя, поэтому для определения зоны срабатывания необходимо пользоваться индивидуальной время-токовой характеристикой конкретного автоматического выключателя. На рисунке 5 индивидуальная время-токовая характеристика построена черной линией, принципы построения данной индивидуальной характеристики описаны в «Методике проведения испытаний автоматических выключателей и аппаратов управления напряжением 0,4кВ». При работе с время токовой характеристикой автоматических выключателей промышленного исполнения уставка электромагнитного расцепителя считается основой для определения времени срабатывания. Соответственно при величине однофазного тока КЗ, превышающем уставку электромагнитного расцепителя, считаем, что автоматический выключатель отключится за время меньше 0,4 с. Для определения тока однофазного КЗ при котором автоматический выключатель отключится с временем не более 5 с необходимо, как и в первом случае, пользоваться индивидуальной время-токовой характеристикой для конкретного автоматического выключателя. Цепи с применением УЗО в качестве дополнительных защитных устройств также необходимо проверять на соответствие полного сопротивления петли «фаза-нуль» и времени срабатывания защитных аппаратов, реагирующих на сверхток.

что это, методика измерения прибором, пример протокола

Электроприборы должны работать без нареканий, если электрическая цепь соответствует всем нормам и стандартам. Но в линиях электропитания происходят изменения, которые со временем сказываются на технических параметрах сети. В связи с этим необходимо проводить периодическое измерение показателей и профилактику электропитания. Как правило, проверяют работоспособность автоматов, УЗО, а также параметры петли фаза-ноль. Ниже описаны подробности об измерениях, какие приборы использовать и как анализировать полученные результаты.

Что подразумевается под термином петля фаза-ноль?

Согласно правилам ПУЭ в силовых подстанциях с напряжением до 1000В с глухозаземленной нейтралью необходимо регулярно проводить замер сопротивления петли фаза-ноль.

Петля фаза-ноль образуется в том случае, если подключить фазный провод к нулевому или защитному проводнику. В результате создается контур с собственным сопротивлением, по которому перемещается электрический ток. На практике количество элементов в петле может быть значительно больше и включать защитные автоматы, клеммы и другие связующие устройства. При необходимости, можно провести расчет сопротивления вручную, но у метода есть несколько недостатков:

  • сложно учесть параметры всех коммутационных элементов, в том числе выключателей, автоматов, рубильников, которые могли измениться за время эксплуатации сети;
  • невозможно рассчитать влияние аварийной ситуации на сопротивление.

Наиболее надежным способом считается замер значения с помощью поверенного аппарата, который учитывает все погрешности и показывает правильный результат. Но перед началом измерения необходимо совершить подготовительную работу.

Для чего проверяют сопротивление петли фаза-ноль

Проверка необходима для профилактических целей, а также обеспечения корректной работы защитных устройств, включая автоматические выключатели, УЗО и диффавтоматы. Результатом измерения петли фаза-ноль является практическое нахождение сопротивления силовой линии до автомата. На основе этого рассчитывается ток короткого замыкания (напряжение сети делим на это сопротивление). После чего делаем вывод: сможет ли автомат, защищающий данную линию отключиться при КЗ.

Например, если на линии установлен автомат C16, то максимальный ток КЗ может быть до 160 А, после чего он расцепит линию. Допустим в результате измерения получим значение сопротивления петли фазы-ноль равным 0,7 Ом в сети 220 В, то есть ток равен 220 / 0,7 = 314 А. Этот ток больше 160 А, поэтому автомат отключится раньше, чем начнут гореть провода и поэтому считаем, что данная линия соответствует норме.

Важно! Большое сопротивление является причиной ложного срабатывания защиты, нагрева кабелей и пожара.

Причина может заключаться во внешних факторах, на которые сложно повлиять, а также в несоответствии номинала защиты действующим параметрам. Но в большинстве случаев, дело во внутренних проблемах. Наиболее распространенные причины ошибочного срабатывания автоматов:

  • неплотный контакт на клеммах;
  • несоответствие тока характеристикам провода;
  • уменьшение сопротивления провода из-за устаревания.

Использование измерений позволяет получить подробные данные про параметры сети, включая переходные сопротивления, а также влияние элементов контура на его работоспособность. Другими словами, петля фаза-ноль используется для профилактики защитных устройств и корректного восстановления их функций.

Зная параметры автомата защиты конкретной линии, после проведения измерения, можно с уверенностью сказать, сможет ли автомат сработать при коротком замыкании или начнут гореть провода.

Периодичность проведения измерений

Надежная работа электросети и всех бытовых приборов возможна только в том случае, если все параметры соответствуют нормам. Для обеспечения нужных характеристик требуется периодическая проверка петли фазы-ноль. Замеры проводятся в следующих ситуациях:

  1. После ввода оборудования в эксплуатацию, ремонтных работ, модернизации или профилактики сети.
  2. При требовании со стороны обслуживающих компаний.
  3. По запросу потребителя электроэнергии.

Справка! Периодичность проверки в агрессивных условиях — не менее одного раза в 2 года.

Основной задачей измерений является защита электрооборудования, а также линий электропередач от больших нагрузок. В результате роста сопротивления кабель начинает сильно нагреваться, что приводит к перегреву, срабатыванию автоматов и пожарам. На величину влияет множество факторов, включая агрессивность среды, температура, влажность и т.д.

Какие приборы используют?

Для измерения параметров фазы используют специальные поверенные устройства. Аппараты отличаются методиками замеров, а также конструктивными особенностями. Наибольшей популярностью среди электриков пользуются следующие измерительные приборы:

  • М-417. Проверенное опытом и временем устройство, предназначенное для измерения сопротивления без отключения источника питания. Из особенностей выделяют простоту использования, габариты и цифровую индикацию. Прибор применяют в любых сетях переменного тока напряжением 380В и допустимыми отклонениями 10%. М-417 автоматически размыкает цепь на интервал до 0,3 секунды для проведения замеров.
  • MZC-300. Современное оборудование для проверки состояния коммутационных элементов. Методика измерений описаны в ГОСТе 50571.16-99 и заключается в имитации короткого замыкания. Устройство работает в сетях с напряжением 180-250В и фиксирует результат за 0,3 секунды. Для большей надежности работы предусмотрены индикаторы низкого или высокого напряжения, а также защита от перегрева.
  • ИФН-200. Устройство с микропроцессорным управлением для измерения сопротивления петли фаза-ноль без отключения питания. Надежный прибор гарантирует точность результата с погрешностью до 3%. Его используют в сетях с напряжением от 30В до 280В. Из дополнительных преимуществ следует выделить измерение тока КЗ, напряжения и угла сдвига фаз. Также прибор ИНФ-200 запоминает результаты 35 последних замеров.

Важно! Точность результатов измерения зависит не только от качества прибора, но и от соблюдения правил выполнения выбранной методики.

Как измеряется сопротивление петли фаза ноль

Измерение характеристик петли зависит от выбранной методики и прибора. Выделяют три основных способа:

  • Короткое замыкание. Прибор подключается к рабочей цепи в наиболее отдаленной точке от вводного щита. Для получения нужных показателей устройство производит короткое замыкание и замеряет ток КЗ, время срабатывания автоматов. На основе данных автоматически рассчитываются параметры.
  • Падение напряжения. Для подобного способа необходимо отключить нагрузку сети и подключить эталонное сопротивление. Испытание проводят с помощью прибора, который обрабатывает полученные результаты. Метод считается одним из наиболее безопасных.
  • Метод амперметра-вольтметра. Достаточно сложный вариант, который проводят при снятом напряжении, а также используют понижающий трансформатор. Замыкая фазный провод на электроустановку, измеряют параметры и делают расчеты характеристик по формулам.

Методика измерения

Наиболее простой методикой считается падение напряжения в сети. Для этого в линию электропитания подключают нагрузку и замеряют необходимые параметры. Это простой и безопасный способ, не требующий специальных навыков, Измерение можно проводить:

  • между одной из фаз и нулевым проводом;
  • между фазой и проводом РЕ;
  • между фазой и защитным заземлением.

После подключения прибора он начинает измерять сопротивление. Требуемый прямой параметр или косвенные результаты отобразятся на экране. Их необходимо сохранить для последующего анализа. Стоит учитывать, что измерительные устройства приведут к срабатыванию УЗО, поэтому перед испытаниями необходимо их зашунтировать.

Справка! Нагрузку подключают в наиболее отдаленную точку (розетку) от источника питания.

Анализ результатов измерения и выводы

Полученные параметры используют для анализа характеристик сети, а также ее профилактики. На основе результатов принимают решения о модернизации линии электропередачи или продолжении эксплуатации. Из основных возможностей выделяют следующие:

  1. Определение безопасности работы сети и надежности защитных устройств. Проверяется техническая исправность проводки и возможность дальнейшей эксплуатации без вмешательств.
  2. Поиск проблемных зон для модернизации линии электроснабжения помещения.
  3. Определение мер модернизации сети для надежной работы автоматических выключателей и других защитных устройств.

Если показатели находятся в пределах нормы и ток КЗ не превышает показатели отсечки автоматов, дополнительные меры не требуются. В противном случае необходимо искать проблемные места и устранять их, чтобы обеспечить работоспособность выключателей.

Форма протокола измерения

Последним этапом в измерении сопротивления петли фаза-ноль является занесение показаний в протокол. Это необходимо для того, чтобы сохранить результаты и использовать их для сравнения в будущем. В протокол вписывается информация о дате проверки, полученный результат, используемый прибор, тип расцепителя, его диапазон измерения и класс точности.

В конце составленной формы подводят итоги испытания. Если он удовлетворительный, то в заключении указывается возможность дальнейшей эксплуатации сети без принятия дополнительных мер, а если нет — список необходимых действий для улучшения показателя.

В заключение необходимо подчеркнуть важность измерений сопротивления петли. Своевременный поиск проблемных участков линий электропитания позволяет принимать профилактические меры. Это не только обезопасит работу с электроприборами, но и увеличит срок эксплуатации сети.

Измерение параметров петли фаза-ноль

Измерение фаза-ноль — очень важное испытание. Результатом его являются величины полного сопротивления и тока, который может протекать по повреждённой цепи, служащие критерием для понимания степени надёжности аппаратов защиты.

Защита может считаться пригодной, если она имеет соответствующий токовый номинал и обеспечивает своевременное отключение аварийного отрезка сети. Для проверки согласованности параметров защиты и параметров цепи и нужно данное тестирование.

Ниже на рисунке приведена общая схема, которая используется для измерения фаза-ноль.




Рисунок 1

Прибор фаза-ноль или тестер включают параллельно в цепь так, как указано на рисунке. Через внутренний резистор прибора, имеющий определённый номинал, начинает течь ток, путь которого обозначен прерывистой линией. Падение напряжения, вызванное испытательным током, измеряется вольтметром. Для получения величины импеданса необходим также угол сдвига фаз между испытательным током и сетевым напряжением. Итоговый результат измерения фаза-ноль для данного примера равен:

Z = Zвт. + Rф.пр. + Rз.пр.,

где

Zвт. – полное сопротивление вторичной обмотки трансформатора,

Rф.пр. – сопротивление проводника фазы от силового трансформатора до места, где подключен прибор фаза-ноль,

Rз.пр. – сопротивление защитного проводника от места подключения прибора до силового трансформатора.


Современные испытательные приборы рассчитывают и прогнозируемый ток короткого замыкания Iкз:


Iкз = Uном/Z,

где

Uном – номинальное сетевое напряжение между фазным и защитным проводниками (220 В),

Z – импеданс петли повреждения.

Приборы METREL, имеющие функцию измерения фаза-ноль, дополнены некоторыми полезными особенностями. Например, приборы MI 3122, MI 3102H BT, MI 3102H SE имеют встроенную таблицу предохранителей, из которой пользователь может выбрать нужный тип защиты, и по окончании измерения будет дана автоматическая оценка уместности использования данного аппарата в конкретной цепи. Кроме этого, оператор может установить в меню упомянутых приборов масштабный коэффициент k для расчёта предполагаемого тока короткого замыкания:

Iкз = k*Uном/Z

Эта опция позволяет учесть специфические требования к аппаратам защиты.


Все приборы фаза-ноль от METREL оснащены режимом измерения без срабатывания устройств защитного отключения (УЗО). Это очень важно, так как в современных сетях УЗО распространены, и возможность вести измерения без оглядки на наличие данных устройств высвобождает время оператора. Работа этого режима возможна благодаря применению пониженного тока.


Приборы METREL уже в базовом комплекте имеют все необходимые принадлежности для этого измерения. Кабель с вилкой предназначен для проведения измерения параметров цепи фаза-ноль прямо в однофазной розетке (опционально доступны кабели с трёхфазной вилкой 16 А), а трёхпроводный кабель может быть подключён к клеммам проводников установки (см. рис. 2).

 



На данный момент прибор фаза-ноль является обязательным компонентом электротехнической лаборатории.

Измерение сопротивления петли «Фаза — ноль»

Электролаборатория ВОЛЬТ ЭНЕРГО предоставляет услугу по измерению петли «фаза-ноль» (или ожидаемый ток короткого замыкания ) в электроустановках до 1 Кв с глухим заземление нейтрали на объектах заказчика по всей Украине.

Целью данного электроизмерения является проверка уставок срабатывания аппаратов защиты на соответствие их требованиям нормативных документов в системе питания с заземленной нейтралью.

Измерение петли «фаза-ноль» — один из основополагающих компонентов обеспечения электробезопасности на любом предприятии. Этот вид работ обязательно проводится электролабораторией ВОЛЬТ ЕНЕРГО при работе на объектах.

Своевременный контроль параметров электросетей – единственный способ обеспечить безопасность электроснабжения и безупречную работу электроустановок.

Потребность в таких измерениях возникает в следующих случаях :

  • при проведении приемо-сдаточных (первичных) испытаний объекта
  • по требованию контролирующих органов и инспекций, запрашивающих предоставление отчета по сопротивлению петли «фаза-ноль»
  • в целях контроля электробезопасности сетей

Все результаты проведенных испытаний оформляются протоколами электроизмерений, которые в свою очередь объединяются в Техническом отчете, содержащем всю информацию о реальном положении дел на объекте заказчика.

Фаза ноль заземление: особенности проведения

Руководитель любого предприятия хочет, чтобы его электрооборудование работало без сбоев. Но это практически не возможно, поскольку активная длительная эксплуатация техники в результате приводит к различным поломкам в электросистеме. Бесперебойность в работе оборудования может обеспечить только ежегодное техническое обслуживание электроцепи, которое поможет вовремя выявить различные неполадки. Если не проводить измерения фаза ноль заземление вовремя, это может привести к нестабильности работы электротехнического оборудования и аварийным ситуациям. Именно по этой причине многочисленные специалисты советуют минимум один раз в год проводить полноценный комплекс электрических замеров.

Петля фаза ноль: этапы измерения

Петля фаза ноль дает возможность полностью устранить или проверить неполадки, которые могут возникать при замыканиях фазных проводников.

Фаза ноль заземление осуществляется в несколько этапов. Для начала специалисты проводят осмотр силового щита. Затем сверяют имеющуюся однолинейную схему, для того, чтобы выяснить, какие перегрузки выдержит кабель. Следует также определить, насколько номинал автоматического выключателя соответствует сечению кабеля.
Перед тем, как будет проводиться измерение, нужно проверить систему на наличие механических повреждений и надежность прикрепленных проводников к выключателям в цепи фаза ноль.

Фаза ноль заземление проводится от последней точки, что находится на линии провода до выключателя. Если возможность определения крайних точек отсутствует, то петля фаза ноль определяется путем замера на абсолютно всех точках соединения.

Измерение заземления фаза ноль проводится с помощью специального прибора, который фиксирует все данные в памяти. В результате, специалисты сравнивают значение тока, которое получилось при измерениях, с интервалом электротока срабатывания автомата, котороый расцепляет КЗ в петле фаза ноль. На основе полученных данных вычисляют размеры и степень надежности автоматов, которые защищают цепь во время замыкания.

После проведения таких электротехнических работ, как фаза ноль заземление, специалистами составляется дефектный акт, карта нагрузок, технический отчет, протокол измерений. Данная документация, в том числе и акт выполненных работ, необходима для предъявления органам контроля.

Периодичность проведения электроизмерений петли «Фаза — ноль»

Измерения сопротивления петли «фаза-ноль» проводятся согласно нормативным документам – ПУЕ, ПТЕЕС, и должно осуществляться не реже одного раза в 6 лет. Но, согласно ПТТЕС Приложение 1, табл. 25, п. 8. – данное измерение проводится также обязательно при изменениях в электроустановках (после монтажа, кап. ремонта, реконструкции), а также в соответствии с установленной на предприятии системою ТОР (технического обслуживания и ремонта) см. Примечания К, М. к данной таблице.
Как правило, проводится вместе с остальными основными электроизмерениями (сопротивление изоляции, контура заземления, металлосвязи)

Ридли Инжиниринг | — [077] Интерпретация измерений усиления контура

Как считывать критические области измерения коэффициента усиления и фазы контура.

Введение

За последние 20 лет в разработке источников питания произошло много кардинальных изменений, но измерение коэффициента усиления контура остается ключом к устойчивой и агрессивной работе системы. Понимание того, как читать усиление контура, важно.

Измерение коэффициента усиления в современных системах управления

Несколько лет назад я закончил колледж и начал заниматься проектированием коммерческих источников питания.Я изучил микропроцессоры, теорию оптимального управления, обратную связь с несколькими состояниями, и я был готов взяться за реальное оборудование и применить все, что, как мне казалось, я знал, на практике. Это было время, когда управление текущим режимом только начинало использоваться, и я мог видеть, что текущий режим был классическим примером обратной связи с несколькими состояниями. Все, что нам нужно было сделать, это определить правильные значения прироста от каждого состояния, и мы могли размещать полюса замкнутого контура там, где мы хотели, — прямо как в колледже!

Но возникла проблема.Никто на работе не знал, о чем я говорю. И, в отличие от набора задач на курсах колледжа, никто не мог сказать мне, где они хотели, чтобы полюса замкнутого контура были. Все они говорили странными терминами, такими как выходной импеданс, усиление контура, чувствительность к звуку, и было неясно, что делать дальше.

Я отчетливо помню три вещи из известного курса аналоговой электроники Миддлбрука: как работал Cuk с нулевой пульсацией, новый способ решения квадратного уравнения и необходимость измерения коэффициента усиления контура в источниках питания.

Затем я посетил знаменитый курс Миддлбрука по проектированию аналоговых схем. Это было давно, но из этого курса я отчетливо помню три вещи:

Во-первых, он измерил коэффициенты усиления контура для всех своих источников питания и других аналоговых примеров и ввел в контур с помощью токового пробника, выведенного в обратном направлении от генератора. Очень изящный трюк, все, что вам нужно было сделать, это вставить петлю провода в тракт обратной связи и закрепить токовый пробник.

Второе, что я запомнил, это преобразователь Cuk с нулевой пульсацией.Была прозрачность (дни до Powerpoint!), Где он вращал изображение связанных сердечников, и когда зазор на сердечнике изменялся, ток пульсаций на входе и выходе выравнивался до нуля. Это был отличный визуальный ряд, который действительно убедил нас в этом.

И, наконец, он показал, что классическое решение квадратного уравнения с использованием обычного радикала b2 — 4ac численно неточно, и дал гораздо лучшее решение.

С тех пор я не использовал его квадратичное решение и не проектировал преобразователь Cuk со связанной индуктивностью.Но как только я покинул его курс, я начал измерять и понимать коэффициенты усиления контура и обнаружил, что они никогда не выходили из моды для импульсных источников питания. Хотя в то время они казались мне архаичными, они просто лучший способ оптимизировать обратную связь с вашим источником питания. Даже если вы используете цифровой контроллер, аналоговое усиление контура — просто лучший способ проверить, что система обратной связи спроектирована и работает должным образом.

Если вы знаете, как правильно интерпретировать петли, они — все, что вам нужно для анализа устойчивости.В учебниках рассказывается о графиках Найквиста и характеристических уравнениях, но в реальном мире нам нужно использовать невероятно мощный инструмент для инженеров, который дал нам мистер Боде. Это удивительно — с помощью пары штрихов на бумаге, показывающих усиление и фазу контура, мы можем определить стабильность систем практически любого порядка. Какой мощный инженерный инструмент, без математики, без расчетов, только лабораторные измерения! Это был большой вклад Боде.

Большой вклад Боде состоял в том, что он позволил инженерам нарисовать пару линий на листе бумаги и объявить, является ли очень сложная нелинейная система высокого порядка стабильной или нет! Нет совпадений, никаких расчетов не требуется.Чего еще мы могли желать?

Мир аэрокосмического дизайна, вероятно, наиболее строг в создании полных наборов графиков Боде для входного импеданса, выходного импеданса, аудиовосприимчивости и петлевого усиления. За пределами аэрокосмического мира выполнение этого полного набора измерений менее распространено. Большинство опытных проектировщиков будут проводить измерения коэффициента усиления контура, поскольку они обнаруживают, что это очень чувствительное измерение практически всего в силовом каскаде и тракте обратной связи. Если какой-то компонент имеет неправильное значение или что-то построено неправильно, усиление контура, скорее всего, покажет, что есть проблема.

Критические области измерения коэффициента усиления контура в режиме напряжения

Говоря о коэффициентах усиления контура, большинство статей ссылаются только на частоту кроссовера и запас по фазе на этой частоте. На самом деле петлевое усиление — это гораздо больше, и если вы хотите получить максимальную пользу от проведения этих измерений, важно понимать, где искать.

На рисунке 1 показано типичное усиление контура для источника питания в режиме напряжения. График на Рисунке 1 начинается с 10 Гц. Это рекомендуется всегда, независимо от частоты переключения вашей энергосистемы.Очень часто в первое десятилетие измерений наблюдается значительный шум (люди, работающие со звуком, болезненно осознают это в отношении шума), и вы должны иметь возможность убедиться, что у вас высокое усиление в низкочастотных областях, чтобы отклонить линию и другие низкочастотные помехи. частотный шум. Эта область показана на рис.1 заштрихованной синим цветом. Анализатор частотной характеристики AP300 [2, 3] может измерять усиление, превышающее 90 дБ, в присутствии высокого уровня шума, и это имеет решающее значение для правильного определения характеристик высокопроизводительных систем.

Рисунок 1: Коэффициент усиления и фаза контура в режиме напряжения с указанием основных областей измерения.

Фазовый детектор

— обзор

3.10.2 Формула ФАПЧ

Весь анализ, представленный здесь, применим независимо от типа частичных разрядов (аналоговый или цифровой). Однако для простоты мы будем рассматривать частные разряды смесительного типа. Для других ФР, таких как трехкаскадный компаратор фаза-частота, удобные поведенческие модели, такие как те, что описаны в работах.[42,46,47] следует ввести в рецептуру. В случае смесителя PD низкочастотная составляющая выходного сигнала имеет вид:

(3.96) ut = Kdsinωit − θotN = Kdsinϕ, ϕ = ωit − θotN

, где ωi = 2πfi — опорная частота, θ o ( t ) — мгновенная выходная фаза VCO, N — порядок деления и ϕ ( t ) — переменная фазовой ошибки. Влияние высокочастотной составляющей выходного сигнала частичных разрядов не учитывалось из-за наличия петлевого фильтра.Обратите внимание, что узел наблюдения, рассматриваемый в модели проводимости (3.95), может отличаться от узла вывода генератора. В этом случае между двумя узлами будет существовать постоянный фазовый сдвиг Δ φ , такой, что:

(3,97) θot = θnt + Δφ

Для упрощения формулировки без потери общности предполагается, что что напряжение смещения В T 0 добавляется к выходному сигналу фильтра для смещения ГУН. Затем, согласно формуле. (3.94) выходное напряжение фильтра согласуется с переменной возмущения Δ V T ( t ).Здесь будет рассматриваться следующий фильтр первого порядка:

(3.98) Fs = τ1s + 1τ2s + 1 = ΔVTsus

Объединение уравнений. (3.95) — (3.98) система дифференциальных уравнений, управляющих динамикой ФАПЧ, имеет вид:

(3.99) τ1Kdϕ˙cosϕ + Kdsinϕ = τ2ΔV˙T + ΔVT, YVTΔVT + YVΔV + YωNωi − ωo − Nϕ˙ − jΔV˙V1 = 0

Система (3.99) состоит из трех реальных нелинейных дифференциальных уравнений в переменных состояния ( ϕ , Δ V , Δ V T ), поскольку уравнение проводимости является сложным.Его можно записать в матричной форме как:

(3.100) MX˙x¯˙t + MXx¯t + G¯x¯t = 0¯, x¯ = ϕ, ΔV, ΔVTt

с:

( 3.101) MX˙ = τ1Kdcosϕ0 − τ2 − NYωrYωi / V10 − NYωiYωr / V0, MX = 00−10YVrYVTr0YViYVTi, G¯ = KdsinϕYωrNωi − ωoYωiNωi − ωo

, где средние и мнимые части r и мнимые вещественные индексы. Тогда уравнение. (3.99) можно выразить в следующей компактной форме:

(3.102) x¯˙t = −MX˙ − 1MXx¯t + G¯x¯t = f¯x¯t

Можно использовать систему (3.102) для моделирования эволюции переменных системы ФАПЧ во время перехода в состояние с синхронизацией по фазе.Решение с синхронизацией по фазе представляет собой ЭП системы (3.102), которая определяется выражением:

(3.103) x¯˙t = f¯x¯t = 0¯ → x¯t = x¯0

Обратите внимание, что x ¯˙t = 0¯ означает, что решение x¯0 с синхронизацией по фазе имеет постоянную частоту и амплитуду. Система (3.103) позволяет прогнозировать изменение амплитуды решения с фазовой синхронизацией в зависимости от опорной частоты или любого другого параметра.

Коэффициент усиления контура и его влияние на аналоговые системы управления

Аннотация

В этой статье собраны воедино идеи усиления разомкнутого контура, усиления замкнутого контура, усиления и запаса по фазе, стабильности минимального усиления и показано, как эти параметры взаимосвязаны в системе обратной связи . Он рассматривает усиление контура с точки зрения теоретической системы управления, а также практических электронных схем, включая линейные регуляторы.

В статье Боба Добкина 2014 «Новые линейные регуляторы решают старые проблемы», в которой описывается революционный линейный стабилизатор с низким падением напряжения LT3081, предполагается, что его постоянный коэффициент усиления контура улучшает переходные характеристики и абсолютную точность выходного напряжения по сравнению с другими решениями LDO. Это утверждение, хотя и впечатляющее и верное, делает важное предположение о понимании инженерами петлевого усиления и о том, что существует четкая связь между постоянным контурным усилением и преимуществами LT3081.К сожалению, усиление контура не так широко признано, как усиление замкнутого или разомкнутого контура.

Без понимания коэффициента усиления контура и его влияния на электронную схему нельзя по-настоящему оценить преимущества LT3081. Эта статья предназначена для инженеров по источникам питания, исследуя влияние коэффициента усиления контура на коэффициент усиления и запас по фазе и связывая их с теоретической системой управления и реальными аналоговыми цепями обратной связи.

Классическим аналоговым строительным блоком является операционный усилитель, и его поведение можно применить к большинству систем управления с обратной связью.Фактически, производительность многих устройств можно упростить, смоделировав их как операционные усилители. Мы можем применить теорию операционных усилителей, скажем, к линейным регуляторам с малым падением напряжения (LDO) и импульсным стабилизаторам, чтобы предсказать стабильность части. На рисунке 1 показана упрощенная схема операционного усилителя.

Рисунок 1. Упрощенная схема операционного усилителя

Входное напряжение подается на усилитель ошибки, который вычитает долю (β) выходного напряжения из V IN для получения сигнала ошибки. Таким образом ошибка

Этот сигнал ошибки подвергается усилению без обратной связи усилителя (A0) для получения выходного напряжения:

Это преобразовано, чтобы найти коэффициент усиления усилителя с обратной связью:

В большинстве схем операционных усилителей коэффициент усиления без обратной связи очень высок, т.е.е. намного больше, чем «1» в знаменателе, что позволяет использовать приближение коэффициента усиления с обратной связью:

На рисунке 2 показана традиционная схема операционного усилителя, предсказуемая работа которой зависит от этого приближения усиления.

Рисунок 2. Схема традиционного ОУ

Для любого заданного напряжения на выходе, если коэффициент усиления разомкнутого контура бесконечен, разность напряжений между двумя входными контактами (V DIFF ) равна нулю, и операционный усилитель регулирует, чтобы поддерживать оба своих входных контакта при одинаковом напряжении.Здесь выход подается обратно на вход через резистивный делитель R1-R2, поэтому доля обратной связи (β) составляет 0,1 (1 кОм / 10 кОм). Из приведенных выше уравнений, если коэффициент усиления разомкнутого контура высокий, коэффициент усиления замкнутого контура схемы приближается к обратной величине доли обратной связи, поэтому схема имеет усиление замкнутого контура, равное 10.

Эта упрощенная теория операционных усилителей полезна при моделировании различных схем, справедливо для низкочастотных входов, но эта простая модель теряет силу на высокочастотных входах.

Операционный усилитель LT1012 отличается классической зависимостью коэффициента усиления разомкнутого контура от частотной характеристики, показанной на рисунке 3.

Рисунок 3. Коэффициент усиления ОУ LT1012 в разомкнутом и замкнутом контурах в зависимости от частоты

На рисунке 3 вы можете видеть, что усиление разомкнутого контура велико до входной частоты 0,3 Гц, а затем уменьшается со скоростью 20 дБ за декаду. Хотя коэффициент усиления остается очень высоким в широком диапазоне входных частот, наступает момент, когда коэффициент усиления без обратной связи нельзя считать относительно бесконечным.То есть, когда коэффициент усиления разомкнутого контура приближается к усилению замкнутого контура, идеальная модель операционного усилителя, описанная выше, и соответствующие предположения, которые мы сделали относительно его характеристик, начинают терять доверие.

Рассмотрим влияние конечного коэффициента усиления разомкнутого контура на усиление замкнутого контура схемы на Рисунке 2. Доля обратной связи (β) составляет 1/10, поэтому в идеальной модели операционного усилителя усиление замкнутого контура является обратной величиной этого , или 10. Если наш операционный усилитель имеет коэффициент усиления разомкнутого контура, равный 100, вычисленное усиление замкнутого контура составляет

Расчетное усиление замкнутого контура

Прирост по-прежнему составляет примерно 10, но с погрешностью 9%.

Теперь рассмотрите возможность использования того же усилителя, но с обратной связью с единичным усилением. Доля обратной связи (β) равна 1, поэтому идеальное усиление замкнутого контура операционного усилителя должно быть обратным этому, или 1. Если наш операционный усилитель имеет усиление разомкнутого контура, равное 100, это приводит к усилению замкнутого контура

.

Хотя коэффициенты усиления разомкнутого контура этих двух схем одинаковы, ошибка в усилении снижается до 1% просто за счет уменьшения усиления замкнутого контура.

Приведенные выше уравнения показывают, что ошибка является функцией того, насколько велика βA 0 по отношению к члену «1» в знаменателе.Обратите внимание, что только коэффициент усиления без обратной связи не всегда определяет ошибку, но важно произведение коэффициента усиления без обратной связи (A 0 ) на долю обратной связи (β). Для больших βA 0 член «1» теряет значение; для βA 0 , близкого к единице, «1» становится значимой, увеличивая ошибку.

Так что же такое βA 0 ? На рисунке 3 разница между кривой замкнутого контура (приблизительно 1 / β) и кривой разомкнутого контура (A 0 ) в логарифмической шкале составляет

.

Таким образом, зазор между кривой усиления без обратной связи и кривой усиления с обратной связью составляет βA 0 (около 105 дБ при постоянном токе).Ссылаясь на рисунок 1, мы видим, что A 0 • β — это коэффициент усиления, проходящий через усилитель и контур обратной связи, поэтому βA 0 — это усиление контура и представляет собой избыточное усиление, доступное в системе. Хотя часто считается, что коэффициент усиления разомкнутого контура усилителя должен быть высоким, чтобы коэффициент усиления операционного усилителя был точным, мы можем видеть, что это не обязательно усиление разомкнутого контура, а усиление контура, которое должно быть высоким. Другими словами, усиление разомкнутого контура должно быть высоким по сравнению с усилением замкнутого контура, чтобы получить точный коэффициент усиления схемы.

Итак, какое влияние оказывает конечное усиление разомкнутого контура на схему операционного усилителя? Базовая теория операционного усилителя утверждает, что два входных напряжения регулируются до одного и того же напряжения, что является подходящим предположением при очень высоких коэффициентах усиления разомкнутого контура, но что происходит, когда усиление разомкнутого контура уменьшается с увеличением частоты сигнала?

Рассмотрим схему на Рисунке 2: поскольку коэффициент усиления без обратной связи усилителя уменьшается с увеличением входной частоты, мы видим возрастающее напряжение переменного тока между двумя входными контактами, равное выходному напряжению, деленному на коэффициент усиления без обратной связи.Это не входное напряжение смещения, а небольшое напряжение переменного тока (V DIFF ), которое равно выходному напряжению, деленному на коэффициент усиления разомкнутого контура усилителя. Если коэффициент усиления разомкнутого контура равен одному миллиону и у нас на выходе 1 В, тогда V DIFF составляет 1 мкВ на двух входных контактах. По мере увеличения входной частоты и уменьшения коэффициента усиления разомкнутого контура V DIFF увеличивается. В крайнем случае, когда коэффициент усиления разомкнутого контура упал до 10, наш V DIFF становится значительным 100 мВ.

Это то место, где многие неправильно понимают работу операционного усилителя на более высоких частотах переменного тока, когда два входных контакта больше не регулируются на одно и то же напряжение. Напряжение между двумя входными контактами состоит из входного напряжения смещения постоянного тока (которое для простоты мы здесь игнорируем) и V DIFF . V DIFF обычно можно игнорировать, но не на высоких частотах.

Мы знаем, что коэффициент усиления разомкнутого контура представлен как

, и мы знаем, что β представлен

, где V — напряжение на инвертирующем входе, поэтому коэффициент усиления контура равен

.

Коэффициент усиления контура сравнивает V (который должен быть равен входному сигналу) с V DIFF .

Также существует фазовый сдвиг, связанный с V DIFF . Кривая усиления без обратной связи на рисунке 3 идентична характеристикам фильтра нижних частот. Частота прерывания составляет 0,3 Гц, после чего усиление снижается до 20 дБ за декаду, а затем — 1 МГц, после чего усиление снижается до 40 дБ за декаду. На рисунке 4 показан фильтр нижних частот с такими же частотами срыва.

Рисунок 4. Фильтр нижних частот с частотной характеристикой, которая соответствует кривой усиления разомкнутого контура на рисунке 2

Передаточная функция фильтра нижних частот одинарного порядка (состоящего из R1 и C1) равна

Как показывает опыт, для фильтра нижних частот одинарного порядка на одной десятой частоты излома фазовый сдвиг примерно равен нулю.При каждой частоте обрыва фаза сдвигается на –45 ° (фазовое отставание), а при десятикратной частоте обрыва фазовый сдвиг составляет приблизительно –90 °, оставаясь на более высоком уровне. Если вторая частота прерывания составляет 1 МГц, то при 100 кГц общий фазовый сдвиг фильтра составляет примерно –90 °, на 1 МГц общий фазовый сдвиг составляет –135 °, а на 10 МГц общий фазовый сдвиг составляет примерно –180 °.

Поскольку коэффициент усиления без обратной связи усилителя ведет себя одинаково, хотя входное и выходное напряжения на Рисунке 2 синфазны, существует фазовый сдвиг между V DIFF и V OUT , связанный с фазовым сдвигом коэффициент усиления разомкнутого контура усилителя.Опять же, поскольку V DIFF обычно невелик, мы можем игнорировать его, но по мере увеличения входной частоты увеличение V DIFF , не совпадающее по фазе с входным напряжением, может привести к проблемам со стабильностью. Кривая усиления разомкнутого контура на Рисунке 3 не представляет проблем со стабильностью, но легко представить, что если бы вторая частота прерывания была на гораздо более низкой частоте, чем 1 МГц, наша схема теперь имела бы увеличивающийся V DIFF , который имеет потенциал для быть на 180 ° не в фазе с входным напряжением, что, безусловно, повлияет на стабильность.

LTspice — полезный инструмент для анализа эффектов фазового сдвига на различных частотах. На рисунке 5a показано отставание выходного напряжения V DIFF на 90 ° на частоте 1 кГц.

Рисунок 5а. V OUT Отставание V DIFF по фазе на 90 ° при 1 кГц

Если входная частота увеличивается с 1 кГц до 10 кГц, V DIFF увеличивается в 10 раз, но фазовая задержка остается 90 °, указывая на то, что мы еще далеко не приблизились ко второй частоте прерывания коэффициента усиления разомкнутого контура.Это показано на рисунке 5b. Когда входная частота приближается к 1 МГц, фазовая задержка начинает увеличиваться выше 90 °, и V DIFF соответственно увеличивается.

Рисунок 5б. V OUT Отставание V DIFF по фазе на 90 ° при 10 кГц

Таким образом, можно видеть, что V DIFF может достигнуть значения, сравнимого с входным напряжением и сдвинутого на 180 ° по фазе с входным напряжением — для того, чтобы схема колебалась, коэффициент усиления вокруг контура должен быть равен единице и фазовый сдвиг вокруг контура должен составлять 180 °.Если V DIFF подвергается усилению без обратной связи усилителя (A 0 ), затем ослаблению цепи обратной связи (β), мы можем видеть, что это усиление контура (βA 0 ) и его фазы, которые определяют устойчивость системы.

Рассматривая схему на Рисунке 2, операционный усилитель усиливает напряжение между своими входами (V DIFF ), и это подвергается усилению βA 0 , создавая напряжение на уровне V . Если коэффициент усиления контура равен 1, это означает, что напряжение на V такое же, как V DIFF , таким образом, амплитуда V DIFF не изменилась, когда оно прошло через контур.Если он претерпел сдвиг фазы на 180 ° и V DIFF не изменился по амплитуде, цепь будет колебаться. Пуристы могут возразить, что фазовый сдвиг должен составлять 360 °, и эти дополнительные 180 ° обеспечиваются инвертирующим входным контактом.

Кстати, если схема на Рисунке 2 имеет высокий коэффициент усиления, это означает, что резисторы обратной связи значительно ослабляют выходное напряжение. Большая часть фазового сдвига происходит в усилителе (поскольку резисторы обратной связи не имеют реактивных компонентов и, следовательно, не имеют фазового сдвига), поэтому чем ниже коэффициент усиления, тем большее «сдвинутое по фазе» выходное напряжение появляется на инвертирующем входе, что увеличивает вероятность нестабильности.Вот почему некоторые усилители имеют минимальную стабильность усиления. Если вы уменьшите коэффициент усиления ниже определенной точки, на инвертирующем выводе появится больше сдвинутого по фазе выходного напряжения, поэтому схема будет более подвержена колебаниям.

Стоит рассмотреть работу схемы на Рисунке 2 для различных коэффициентов усиления контура и фазовых сдвигов.

На низких частотах, когда усилитель имеет большое усиление контура, V DIFF невелик и имеет фазовый сдвиг –90 ° по сравнению с напряжением на инвертирующем входе (V ).В этой ситуации напряжение на инвертирующем входе падает до V DIFF , поэтому V DIFF можно игнорировать. Однако, если фазовый сдвиг V DIFF составляет –180 ° по отношению к V , и есть усиление в контуре, мы можем видеть, что любое напряжение на V DIFF усиливается при перемещении по контуру. и инвертированный, затем усиленный и инвертированный, поэтому цепь колеблется. Для поддержания колебаний в схеме должно быть только единичное усиление контура. Насколько близко V DIFF приближается к –180 °, когда схема имеет единичный коэффициент усиления контура, является мерой запаса по фазе схемы и говорит нам, насколько близка фаза схемы к точке нестабильности.Схема с фазовым сдвигом –120 ° имеет запас по фазе 60 °.

Аналогично, если V DIFF имеет фазовый сдвиг –180 ° по отношению к V , но испытывает затухание при прохождении через контур, напряжение, возвращающееся к V , будет меньше, поэтому любые потенциальные колебания останавливаются из-за отсутствия усиления контура. Степень затухания V DIFF при прохождении через контур (при фазовом сдвиге -180 °) является мерой запаса по усилению схемы и говорит нам, насколько ниже единицы коэффициент усиления контура схемы, когда фаза сдвиг –180 °.Схема с затуханием в контуре 10 дБ, когда V DIFF составляет –180 °, имеет запас усиления 10 дБ.

Все вышеперечисленное может быть связано с теорией управления и блок-схемой на рисунке 1. Мы знаем, что коэффициент усиления замкнутого контура системы обратной связи равен

.

, где βA 0 — контурное усиление системы. Если βA 0 имеет фазовый сдвиг –180 ° и единичное усиление, знаменатель становится равным нулю на одной конкретной частоте, и цепь колеблется на этой частоте.Если βA 0 большое, но не имеет фазового сдвига -180 °, знаменатель не равен нулю и цепь не колеблется — у нас есть достаточный запас по фазе. Точно так же, если βA 0 меньше единицы, но имеет фазовый сдвиг -180 °, схема не колеблется — у нас есть достаточный запас по усилению.

Итак, теперь мы можем видеть, что мы связали усиление разомкнутого контура, усиление замкнутого контура, усиление контура, запас усиления и запас по фазе, а также объяснили это в области теории управления и области теории цепей.

Так как это относится к цепям питания? Большинство систем питания можно смоделировать как схему операционного усилителя. На рисунке 6 показан линейный регулятор LT1086. Мы видим, что в схеме есть два резистора обратной связи, которые обеспечивают часть выходного напряжения на выводе ADJ (который является инвертирующим входом внутреннего операционного усилителя). Неинвертирующий терминал привязан к внутреннему опорному напряжению.

Рисунок 6. Традиционный линейный регулятор (LT1086)

Как обсуждалось выше, точность усиления усилителя определяется контурным усилением усилителя: чем больше контурное усиление в усилителе, тем выше точность усиления.

Увеличение выходного напряжения LT1086 идентично увеличению коэффициента усиления с обратной связью операционного усилителя. На рисунке 7 показан эффект увеличения коэффициента усиления с обратной связью с 20 дБ до 80 дБ. Если усиление контура представлено разностью между кривой усиления разомкнутого контура и кривой усиления замкнутого контура, увеличение выходного напряжения LT1086 уменьшает усиление контура, снижая абсолютную точность выходного напряжения. Еще одним недостатком увеличения выходного напряжения является уменьшение частотной характеристики схемы (в данном случае от 100 кГц до 100 Гц), поэтому страдает переходная характеристика нагрузки.

Рисунок 7. Зависимость усиления напряжения от частоты

Семейство линейных регуляторов LT308x заменяет традиционную архитектуру LDO на ту, что показана на рисунке 8.

Рис. 8. Линейный регулятор LT3080 использует нетрадиционную архитектуру для повышения точности и переходного отклика

LT3080 использует внутренний источник тока для создания напряжения на внешнем резисторе R SET . Затем это напряжение подается на буфер с единичным усилением для получения выходного напряжения.Это имеет ряд последствий.

Внутренний операционный усилитель работает с постоянным единичным коэффициентом усиления с обратной связью, с выходным напряжением, установленным значением резистора R SET на «входе» операционного усилителя.

Сравните LT3080, показанный на рисунке 7, с традиционной схемой операционного усилителя, показанной на рисунке 6. Выходное напряжение LT1086 на рисунке 6 изменяется путем изменения резисторов обратной связи (и, следовательно, коэффициента усиления с обратной связью) LT1086. Сравните это с LT3080, работающим с постоянным усилением замкнутого контура, где «входное» напряжение усилителя изменяется, задаваемое напряжением на R SET .Если коэффициент усиления замкнутого контура остается неизменным, коэффициент усиления контура остается неизменным, поэтому схема обеспечивает хорошую абсолютную точность даже при высоких выходных напряжениях. Кстати, именно поэтому компоненты компенсации контура в преобразователе постоянного / постоянного тока всегда имеют последовательную емкость. Выход усилителя ошибки является источником тока, а последовательная емкость на постоянном токе имеет высокий импеданс, что обеспечивает высокий коэффициент усиления на постоянном токе в компенсационном контуре.

Еще одним следствием сохранения неизменного коэффициента усиления контура является то, что частотная характеристика остается неизменной и не приносится в жертву при высоких выходных напряжениях, поэтому компонент может быстро реагировать на переходные процессы нагрузки.

Еще одно преимущество, представляющее особый интерес в свете постоянно уменьшающегося напряжения питания, заключается в том, что компоненты LT308x могут выдавать выходное напряжение до 0 В. Традиционные LDO-стабилизаторы не могут устанавливать выходное напряжение ниже внутреннего опорного напряжения, тогда как путем замыкания RSET на части LT308x выходное напряжение может быть установлено на уровне 0 В.

Семейство LDO LT308x, благодаря их постоянному высокому коэффициенту усиления контура, отличается более высокой точностью выходного напряжения и переходной характеристикой, чем традиционные LDO.Их также можно использовать способами, недоступными для традиционных LDO, например, для установки выхода на 0 В или их параллельного подключения для работы с более высоким током.

Измерение отклика контура управления источником питания с помощью графика Боде II

Стабильность — одна из важнейших характеристик при проектировании источников питания. Традиционно для измерения стабильности требуются дорогостоящие анализаторы частотной характеристики (АЧХ), которые не всегда доступны в лаборатории. Компания SIGLENT представила функции графика Боде Ⅱ для осциллографов серий SIGLENT SDS1104X-E, SDS1204X-E, SDS2000X-E, SDS2000X Plus и SDS5000X.В сочетании с генератором сигналов произвольной формы Siglent (SDG или SAG) и инжекционным трансформатором можно создавать быстрые кривые частотной характеристики.

В этом примечании к применению мы покажем вам основные принципы выполнения этого измерения стабильности и способы использования этих инструментов для выполнения измерения.

Рисунок 1: Установка Bode II

Стабилизированный источник питания на самом деле представляет собой усилитель с обратной связью с большим током.Любая теория, относящаяся к базовому усилителю с обратной связью, также применима к регулируемому источнику питания.

В теории обратной связи стабильность системы обратной связи может быть определена путем оценки передаточной функции контура. Более практичный способ — измерить график Боде петлевого усиления. На рисунке 2 показана типичная система обратной связи.

Передача с обратной связью A — это математическая связь между входом x и выходом y. Коэффициент усиления контура T, по его названию, определяется как усиление сигнала, проходящего по контуру.

Рисунок 2: Типичный контур обратной связи

Поскольку α и β являются комплексными переменными, они имеют не только величину, но и фазовый угол, а также коэффициент усиления контура T. Если фазовый угол T достигает -180 °, а величина равна 1, передаточная функция замкнутого контура A становится бесконечностью. В этой ситуации система будет поддерживать выходной сигнал, пока нет входа. Таким образом, система действует как генератор, а не как усилитель, а это означает, что система нестабильна.

Если мы построим контурное усиление на графике Боде, мы можем оценить стабильность, найдя запас по фазе и запас по усилению.Запас по фазе определяется как количество градусов, на которое фаза может быть уменьшена до достижения -180 °, когда величина равна 1 (или 0 дБ). Запас усиления определяется как количество дБ по величине, которое может быть добавлено до достижения 1 (или 0 дБ), когда фаза составляет -180 °.

Рисунок 3: График Боде, фаза и запас усиления

Чтобы получить желаемое усиление петли, мы просто разрываем петлю. На рисунке 4 показано, как разорвать петлю в типичной системе обратной связи. Технически вы можете разорвать петлю в любом месте, где захотите.Обычно мы выбираем разрыв петли в точке между выходом усилителя и цепью обратной связи. Затем мы вставляем тестовый сигнал i для обхода контура. Коэффициент усиления контура — это математическая зависимость между выходным сигналом y и тестовым сигналом i .

Рисунок 4: Разрыв цикла в типичной системе обратной связи

На самом деле, мы никогда не сможем действительно разорвать контур, потому что контур обратной связи служит для поддержания постоянной рабочей точки постоянного тока цепей.Без контура обратной связи тестируемое устройство станет насыщенным из-за небольшого входного напряжения смещения, и тогда полезный результат будет невозможно измерить.

Чтобы преодолеть это, мы должны измерить отклик разомкнутого контура внутри замкнутого контура. Поэтому мы просто вводим сигнал в цикл, а не прерываем его. На рисунке 5 показан типичный метод закачки контура. Точка инжекции выбирается так, чтобы полное сопротивление в направлении петли было намного выше, чем в обратном направлении.Одна из возможных точек находится между выходом и цепью обратной связи резисторного делителя. Могут быть выбраны другие точки, отвечающие этому требованию.

Рисунок 5: Контурное впрыскивание

Для поддержания замкнутого контура в точке впрыска вставлен небольшой инжекторный резистор Ri. Резистор должен быть достаточно маленьким, чтобы он мало влиял на схему, а также, чем ниже номинал резистора, тем ниже частота работы трансформатора. Picotest рекомендует номинал резистора 4.99 Ом для J2100A, и может быть выбрано большее значение в зависимости от схем. Затем сигнал инжекции подается на резистор инжекции.

Подаваемый сигнал не должен влиять на рабочую точку цепи постоянного тока. Метод решения проблемы общего заземления заключается в использовании инжекционного трансформатора, как показано на Рисунке 6.

Рисунок 6: Инжекторный трансформатор

Сигнал инжекции начинается на одном конце резистора инжекции, проходит через цепь обратной связи резисторного делителя, усилитель ошибки и транзистор проходного элемента и, наконец, к выходу, который является другим концом резистора инжекции.Связь между вводимым сигналом i и выходным сигналом y — это коэффициент усиления контура, который мы хотим измерить.

Имейте в виду, что мы измеряем параметр разомкнутого контура внутри замкнутого контура, фаза начинается с 180 ° и уменьшается до 0 °, а не начинается с 0 ° и уменьшается до -180 °. Так что запас по фазе следует измерять относительно 0 °.

Осциллограф : Siglent SDS1204X-E с версией прошивки выше 6.1.27R1 (версия Bode Plot Ⅱ)

Источник сигнала: Siglent SDG 2042X

Источник питания: Siglent SPD3303X

Зонд : Пассивный датчик Siglent PP215 переключен на 1X

Инжекторный трансформатор : Picotest J2100A

Тестируемое устройство: Picotest VRTS v1.51

Picotest VRTS v1.51 — демонстрационная плата для тестирования регуляторов напряжения. Технически это линейный стабилизатор, построенный на основе известного TL431 и дискретного транзистора. Схема показана на рисунке 7. Можно выбрать разные выходные конденсаторы, чтобы увидеть влияние на стабильность контура управления.

Рисунок 7: Схема VRTS v1.51

Для предлагаемого измерения отклика контура управления блоком питания точкой впрыска являются TP3 и TP4.Схема подключения показана на рисунке 8.

Генератор подключается к осциллографу через USB (также поддерживается подключение через Ethernet).

Инжекторный трансформатор подключен параллельно инжекционному резистору, так что сигнал подается в контур, предотвращая воздействие генератора на рабочую точку контура постоянного тока.

Точки TP3 и TP4 также подключены к осциллографу, а TP4 определяется как вход DUT, а TP3 — как выход DUT на графике Боде.

Рисунок 8: Подключение цепи

Рисунок 9: Подключение датчика и трансформатора к DUT

В этом разделе мы покажем, как должна быть выполнена конфигурация ключа, чтобы измерения были выполнены правильно. Полные инструкции к графику Боде Ⅱ см. В руководстве пользователя и кратком руководстве.

Перед входом в график Боде Ⅱ рекомендуется активировать настройку ограничения полосы пропускания осциллографа 20 МГц.

Сейчас мы хотим измерить график Боде от 10 Гц до 100 кГц. Этого частотного диапазона должно быть достаточно для схемы с ожидаемой частотой кроссовера около 10 кГц.

Войдите в меню «Конфигурация» и установите для параметра «Тип развертки» значение «Простой», затем введите «Установить развертку», чтобы задать частоту развертки. Установите режим Decade и Start на 10 Гц, Stop на 100 кГц. Установите Points / dec на 20, что достаточно для типичной развертки. Войдите в меню Set Stimulus, чтобы установить амплитуду на 50 мВ. Войдите в меню Set Channel, чтобы установить DUT Input на Ch2 и DUT Output на Ch3.

Рисунок 10: Конфигурация осциллографа Bode II

После завершения настройки вернитесь в главное меню и нажмите «Выполнить», чтобы начать сканирование.

Подождите, чтобы увидеть результаты, как показано на Рисунке 11.

Результат несколько сбивает с толку и вызывает подозрения из-за того, что кривая на низкой частоте, особенно фазовая кривая, чередуется вверх и вниз. В следующем разделе мы представим метод, называемый Vari-level, для решения этой проблемы.

Рисунок 11: Результаты измерений

После завершения развертки снова нажмите кнопку «Выполнить», чтобы остановить ее.Войдите в меню Display, а затем войдите в меню Cursors, чтобы включить курсоры. С помощью ручки Adjust переместите курсоры и установите запас по фазе, как показано на Рисунке 12.

Рисунок 12: Измерение курсором на графике Боде

Вы также можете включить функцию «Список» в меню «Данные», чтобы проверить измеренные данные, или можете экспортировать данные во внешний USB-флэш-драйвер для дальнейшего анализа на компьютере.

Рисунок 13: Экспорт данных

В предыдущем разделе мы видим, что результаты не идеальны для отраженной трассы на низкой частоте.Это связано с тем, что на низкой частоте разница амплитуд между входным и выходным каналами относительно велика, и, поскольку мы используем относительно небольшой стимулирующий сигнал (на этот раз 50 мВpp), сигнал, представленный на входном канале DUT, чрезвычайно мал, так что коммерческий осциллограф общего назначения не может измерить его точно.

Но мы не можем просто увеличить амплитуду сигнала стимула. Результат будет аналогичен тому, что показано на рисунке 14. Сильный сигнал около частотной области кроссовера вызывает серьезные искажения в контуре.Искаженный сигнал во временной области показан на рисунке 15.

Помните, что график Боде имеет смысл только в линейной системе и не имеет смысла в сильно нелинейной системе. Результат бесполезен.

Рисунок 14: Повышенная амплитуда и искажение стимулирующего сигнала

Рисунок 15: Искажения во временной области

Одним из возможных решений проблемы является вариационный уровень (другие производители могут называть его «фигурным уровнем» или «профилем уровня»). Концепция переменного уровня проста: амплитуда стимулирующего сигнала изменяется в зависимости от частоты.Если мы используем большой сигнал на низких частотах и ​​уменьшаем амплитуду до довольно небольшого уровня вблизи области кроссовера, чтобы он не искажал контур, теоретически мы можем получить идеальный результат.

В меню «Настройка» установите для параметра «Тип развертки» значение «Простой» значение «Уровень переменной» и нажмите «Установить уровень переменной», чтобы войти в редактор профиля уровня переменной.

Рисунок 16. Установите для типа развертки значение Vari-level

На рис. 17 показан редактор профиля на уровне переменных. Параметр «Профиль» позволяет пользователю выбрать и сохранить до 4 профилей.Узлы задают количество узлов в трассировке профиля, минимально допустимое количество узлов — 2, потому что по крайней мере 2 точки могут определять линию, и всегда первый и последний узлы устанавливают начало и конец трассировки. Нажмите Edit Table для входа в режим редактора профиля. Редактируемый параметр выделяется курсорами, и затем снова нажмите Edit Table для переключения курсоров между «Freq», «Ampl» и всей строкой, что позволяет пользователю перемещаться по всей таблице. Пользователи могут использовать ручку Adjust для установки выделенного параметра, а нажатие на ручку вызовет визуальную клавиатуру, которая позволяет напрямую вводить параметр.Параметры «Установить развертку» и «Установить стимул» в чем-то похожи на опцию «Простая развертка», но между ними нет корреляции. На этот раз мы установили режим развертки на Десятилетие, и достаточно 40 точек на декаду. Профиль, показанный на Рисунке 17, используется в этом измерении. Это не оптимальный профиль для этой трассы, но с него следует начать.

Рисунок 17: Редактор профиля на уровне переменных

На практике всегда следует экспериментировать с этими параметрами, чтобы найти оптимальное решение для конкретной схемы.

Практический способ сделать это — контролировать сигнал во временной области, уменьшать амплитуду стимулирующего сигнала до тех пор, пока не будут наблюдаться видимые искажения, а затем уменьшить амплитуду еще на 6 дБ. Затем запишите амплитуду и частоту, перейдите к другой частоте и повторите процесс.

Есть лучший способ найти оптимальный профиль, если у вас уже есть заведомо хороший профиль. Уменьшите амплитуду сигнала на 6 дБ и запустите развертку, чтобы увидеть, изменится ли график.Если он изменился, уменьшите амплитуду еще на 6 дБ и снова выполните развертку. Пока результат не изменится, вы можете увеличить амплитуду на 6 дБ, и это оптимальный профиль. Это занимает много времени, но необходимо для получения значимого результата.

После завершения редактирования профиля вернитесь в главное меню и нажмите «Выполнить», чтобы начать сканирование. На рисунке 18 показан окончательный результат измерения с Vari-level. Изменение переключателя выбора конденсатора S1 на демонстрационной плате VRTS v1.51 изменит отклик контура из-за воздействия различных конденсаторов.

Рисунок 18: Результаты с Vari-level

Осциллограф Siglent с недавно выпущенным графиком Боде Ⅱ вместе с генератором сигналов Siglent и инжекционным трансформатором Picotest предлагает очень гибкую и простую в использовании систему измерения контура управления источником питания.

(PDF) Определение запаса фазы в конфигурации с замкнутым контуром

-14-

2. Графическое представление (

GR, пик) –1 f (|

Z |) на основе по крайней мере на двух подходящих

Z значениях

(после (A11) и рис.4) и отождествление перехода через нуль при |

Z | 

PM. Этот график

легко построить, используя возможности постпроцессора программы моделирования (Per-

formance Analysis, PA). Для этой цели в разделе 3.2 предоставляется подходящая целевая функция GF f (1/

GR, пиковая)

.

Примечание: До сих пор рассматривались только сети второго порядка. Однако в ответе

систем более высокого порядка — с дополнительными полюсами и / или нулями — в большинстве случаев также преобладает однополюсная пара

.Следовательно, приведенные выше соображения также применимы к большинству других активных схем

, представляющих практический интерес. Это верно, в частности, если введенные дополнительные значения фазы сдвигают доминирующую пару полюсов

довольно близко к мнимой оси s-плоскости. По этой причине может быть полезно, чтобы

проходил через более чем два значения Z

во время анализа переменного тока. В этом случае должен применяться второй подход

для оценки экстремумов групповой задержки (анализ производительности, целевая функция GF).

Ссылки

1. Миддлбрук Р.Д .: Измерение коэффициента усиления контура в системах с обратной связью. Международный журнал

Электроника

, 38, 485-512 (1975)

2. Джейкокс, Дж. М .: Инструменты CAE разрушают барьеры измерения обратной связи. Electronic Design, 28 мая,

117-120 (1987)

3. Хагеман, С.К .: Используйте современные методы SPICE для анализа цепей обратной связи.

IEEE Circuits and Devices Magazine, 5 (4), 54-55 (1989)

4. Тиан, М., Вишванатан, В., Хантган, Дж., Кундерт, К .: Стремление к стабильности слабых сигналов. IEEE

Circuits and Devices Magazine, 17, 31-41 (2001)

5. Джустолизи, Г., Палумбо, Г.: Подход к тестированию параметров разомкнутого контура усилителей обратной связи

. IEEE Transactions on Circuits and Systems- I: Fundamental Theory and

Applications, 49, 70-75 (2002)

ER180 измерения >> 3 шт. Дешево купить у производителя

Внимание !!! Доставка всех инструментов, представленных на сайте, осуществляется по всей территории следующих стран: Россия, Украина, Беларусь, Казахстан и другие страны СНГ.

По России существует налаженная система доставки в города: Москва, Санкт-Петербург, Сургут, Нижневартовск, Омск, Пермь, Уфа, Норильск, Челябинск, Новокузнецк, Череповец, Альметьевск, Волгоград, Липецк, Магнитогорск, Тольятти, Когалым. Кстово Новый Уренгой Нижнекамск, Нефтеюганск, Нижний Тагил, Ханты-Мансийск, Екатеринбург, Самара, Калининград, Надым, Ноябрьск, Выкса, Нижний Новгород, Калуга, Новосибирск, Ростов-на-Дону, Верхний Чеарскма, Казань, Пышкма, Мурманский, Красноярский, Красноярский , Всеволожск Ярославль, Кемерово, Рязань, Саратов, Тула, Усинск, Оренбург, Новотроицк, Краснодар, Ульяновск, Ижевск, Иркутск, Тюмень, Воронеж, Чебоксары, Нефтекамск, Новгород, Тверь, Астрахань, Новомосковск, Пеномосковск, Ульяновск Первоуральск, Белгород, Курск, Таганрог, Владимир, Нефтегорск, Киров, Брянск, Смоленск, Саранск, Улан-Удэ, Владивосток, Воркута, Подольск, Красногорск, Новоуральск, Новороссийск, Хабаровск, Железногорск, Зеленогорск, Кострома, Кострома. ол, Светогорск, Жигулевск, Архангельск и другие города РФ.

Украина имеет налаженную систему доставки в городах: Киев, Харьков, Днепр (Днепропетровск), Одесса, Донецк, Львов, Киев, Николаев, Луганск, Винница, Симферополь, Херсон, Полтава, Чернигов, Черкассы, Сумы, Житомир, Кировоград, Хмельницкий, Ровно, Черновцы, Тернополь, Ивано-Франковск, Луцк, Ужгород и другие города Украины.

На территории Беларуси налажена система доставки в города: Минск, Витебск, Могилев, Гомель, Мозырь, Брест, Лида, Пинск, Орша, Полоцк, Гродно, Жодино Молодечно и другие города Беларуси.

В Казахстане налажена система доставки в города Астана, Алматы, Экибастуз, Павлодар, Актобе, Караганда, Уральск, Актау, Атырау, Аркалык, Балхаш, Жезказган, Кокшетау, Костанай, Тараз, Шымкент, Кызылорда, Петропавловск, Лисаковск, Шахтинск. , ридер, Руда, Семьи, Талдыкорган, Темиртау, Усть-Каменогорск и другие города Казахстана. Продолжаются поставки устройств в такие страны: Азербайджан (Баку), Армения (Ереван), Кыргызстан (Бишкек), Молдова (Кишинев), Таджикистан ( Душанбе), Туркменистан (Ашхабад), Узбекистан (Ташкент), Литва (Вильнюс), Латвия (Рига), Эстония (Таллинн), Грузия (Тбилиси).

Иногда заказчики могут ввести название нашей компании неправильно — например, западприбор, западприлад, западприбор, западприлад, західприбор, західприбор, захидприбор, захидприлад, захидприбор, захидприбор, захидприлад. Правильно — Западприбор или західприлад.

Если на сайте нет нужной описательной информации по устройству, вы всегда можете обратиться к нам за помощью. Наши квалифицированные менеджеры обновят для вас технические характеристики устройства из его технической документации: руководство пользователя, сертификат, форма, инструкция по эксплуатации, схема.При необходимости мы сфотографируем ваше устройство или подставку под устройство. Вы можете оставить отзыв о приобретенном у нас устройстве, счетчике, приборе, индикаторе или продукте. Ваш отзыв для утверждения будет опубликован на сайте без контактной информации.

Описание приборов взято из технической документации или технической литературы. Большинство фотографий товаров делается непосредственно нашими специалистами перед отгрузкой товара. В описании прибора приведены основные технические характеристики прибора: номинальный диапазон измерения, класс точности, шкала, напряжение питания, габариты (габариты), вес.Если на сайте вы увидите несоответствие названия устройства (модели) техническим характеристикам, фото или приложенных документов — сообщите нам — вы получите полезный подарок вместе с проданным устройством.

При необходимости уточнить общий вес и размер или размер отдельного счетчика вы можете в нашем сервисном центре. При необходимости наши инженеры помогут подобрать наиболее полный аналог или подходящую замену интересующему вас устройству. Все аналоги и замены будут проверены в одной из наших лабораторий на полное соответствие вашим требованиям.

В технической документации на каждое устройство или изделие указывается перечень и количество содержания драгоценных металлов. В документации указан точный вес в граммах драгоценных металлов: золота Au, палладия Pd, платины Pt, серебра Ag, тантала Ta и других металлов платиновой группы (МПГ) на единицу единицы. Эти драгоценные металлы встречаются в природе в очень ограниченном количестве и поэтому имеют такую ​​высокую цену. На нашем сайте вы можете ознакомиться с техническими характеристиками устройств и получить информацию о содержании драгоценных металлов в устройствах и радиодетали, произведенных в СССР.Обращаем ваше внимание, что зачастую фактическое содержание драгоценных металлов на 10-25% отличается от эталонного в меньшую сторону! Цена на драгоценные металлы будет зависеть от их стоимости и массы в граммах.

Вся текстовая и графическая информация на сайте носит информативный характер. Цвет, оттенок, материал, геометрические размеры, вес, комплектация, комплект поставки и другие параметры товаров, представленных на сайте, могут различаться в зависимости от партии и года выпуска.За дополнительной информацией обращайтесь в отдел продаж.

ООО «Западприбор» — огромный выбор измерительного оборудования по оптимальной цене и качеству. Так что вы можете покупать недорогие устройства, мы следим за ценами конкурентов и всегда готовы предложить более низкую цену. Мы продаем только качественную продукцию по лучшим ценам. На нашем сайте вы можете недорого купить как последние новинки, так и проверенное оборудование от лучших производителей.

На сайте действует специальное предложение «купи по лучшей цене» — если на других интернет-ресурсах (доска объявлений, форум или анонс другого онлайн-сервиса) в товарах, представленных на нашем сайте, цена ниже, то мы продадим вам ее еще дешевле. ! Покупателям также предоставляется дополнительная скидка за оставление отзыва или фото использования нашей продукции.

В прайс-листе указан не весь ассортимент предлагаемой продукции. О ценах на товары, не включенные в прайс-лист, можете узнать у менеджера. Также у наших менеджеров Вы можете получить подробную информацию о том, насколько дешево и выгодно купить КИП оптом и в розницу. Телефон и электронная почта для консультации по поводу покупки, доставки или получения указаны в описании товара. У нас самый квалифицированный персонал, качественное оборудование и лучшая цена.

ООО «Западприбор» — официальный дилер-производитель испытательного оборудования.Наша цель — продавать нашим покупателям товары высокого качества по оптимальным ценам и сервису. Наша компания может не только продать вам необходимый прибор, но и предложить дополнительные услуги по его калибровке, ремонту и установке. Чтобы у вас были приятные впечатления от совершения покупок на нашем сайте, мы предусмотрели специальные подарки для самых популярных товаров.

Завод «МЕТА» — самый надежный производитель оборудования для диагностики. Тормозной стенд СТМ производится на этом заводе.

Производитель ТМ «Инфракар» — производитель многофункциональных приборов газоанализатора и дымомера.

Также мы обеспечиваем такие метрологические процедуры: калибровка, тара, градуировка, поверка средств измерений.

По запросу каждому измерительному устройству предоставляется метрологическая аттестация или поверка. Наши сотрудники могут представлять ваши интересы в таких организациях, как метрологический Ростест (Росстандарт), Госстандарт, Государственный стандарт (Госпоживстандарт), ЦЛИТ, ОГМетр.

Если вы можете произвести ремонт устройства самостоятельно, наши инженеры могут предоставить вам полный комплект необходимой технической документации: принципиальную схему ТО, ЭР, ФД, ПС.Также у нас есть обширная база технических и метрологических документов: технические условия (ТЗ), техническое задание (ТЗ), ГОСТ (ДСТУ), отраслевой стандарт (ОСТ) методика испытаний, метод сертификации, схема поверки на более 3500 наименований измерительной техники от производителя данного оборудования. С сайта вы можете скачать все необходимое программное обеспечение (драйверы программного обеспечения), необходимое для приобретенного продукта.

Наша компания выполняет ремонт и обслуживание измерительной техники на более чем 75 различных заводах бывшего Советского Союза и СНГ.

У нас также есть библиотека юридических документов, относящихся к нашей сфере деятельности: закон, кодекс, постановление, указ, временная должность.

ООО «Западприбор» является поставщиком амперметров, вольтметров, измерителей мощности, частотомеров, фазометров, шунтов и других устройств таких производителей измерительной техники, как: ПО «Электроточприбор» (М2044, М2051), г. Омск, ОАО «Прибор». -Завод «Вибратор» (М1611, Ц1611), г. Санкт-Петербург, ОАО «Краснодарский ЗИП» (Е365, Е377, Е378), ООО «ЗИП Партнер» (Ц301, Ц302, Ц300) и «ЗИП» Юримова »(М381, г. C33), г. Краснодар, ОАО «ВЗЭП» («Витебский завод электротоваров») (E8030, E8021), г. Витебск, ОАО «Электроприбор» (M42300, M42301, M42303, M42304, M42305, M42306), г. Чебоксары, ОАО «Электроизмеритель» (Ц4342, Ц4352, Ц4353) Житомир, ПАО «Уманский завод« Меггер »(F4102, F4103, F4104, M4100), г. Умань.

Реализует блок измерения фазора с использованием контура фазовой автоподстройки частоты

Описание

Блок PMU (PLL-Based, Positive-Sequence) реализует вектор
блок измерения (PMU) с использованием схемы фазовой автоподстройки частоты (PLL), которая вычисляет
компонент прямой последовательности входного сигнала abc во время работы
окно одного цикла основной частоты, заданное входом abc . В
Сигнал может быть набором из трех сбалансированных или несимметричных сигналов, которые могут содержать гармоники.Блок PMU (PLL-Based, Positive-Sequence) основан на стандарте IEEE Std.
C37.118.1-2011.

Блок ФАПЧ (3 фазы) отслеживает частоту и фазу синусоидального сигнала.
трехфазный сигнал ( abc ) с помощью внутреннего генератора частоты.
Система управления регулирует частоту внутреннего генератора для сохранения фазы
разница на 0 .

Блок Positive-Sequence (PLL-Driven) вычисляет положительную последовательность
компоненты (амплитуда и фаза) синусоидального трехфазного входного сигнала
( abc ) в рабочем окне одного цикла основной
частота отслеживается системой управления с обратной связью PLL (3ph).Система отсчета
требуемый для расчета угол (рад, варьирующийся от 0 до 2 * пи),
синхронизированы по пересечению нуля основной гармоники (прямой последовательности) фазы A.
угол также отслеживается системой управления с обратной связью PLL (3ph).

Поскольку блок использует окно скользящего среднего для выполнения анализа Фурье, один
цикл моделирования должен завершиться до того, как выходные данные дадут правильную величину и
угол.Например, реакция блока на ступенчатое изменение положительной последовательности
Компонент трехфазного сигнала представляет собой линейное изменение за один цикл. Для
в первом цикле моделирования выходной сигнал поддерживается постоянным на значениях, заданных параметром
начальные входные параметры.

Три выхода блока PMU (PLL-Based, Positive-Sequence)
вернуть величину (те же единицы, что и входной сигнал), фазу (в градусах относительно
фаза ФАПЧ), а частота составляющей прямой последовательности
abc вход на основной частоте соответственно.

Время выборки ( Ts ) блока в секундах является функцией
номинальная частота fn и частота дискретизации
НСР .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *