Как рассчитать количество секций радиатора отопления на комнату: Расчет количества секций батареи | рассчитать секции батареи

Разное

Содержание

расчет секций батарей по площади на комнату


Содержание:


Одна из главных целей подготовительных мероприятий перед монтажом системы отопления – определить, сколько нагревательных приборов потребуется в каждое из помещений, и какую мощность они должны иметь. Перед тем, как рассчитать количество радиаторов, рекомендуется ознакомиться с основными методиками этой процедуры.


Расчет секций батарей отопления по площади


Это самый простой тип расчета количества секций радиаторов отопления, где необходимый на обогрев помещения объем тепла определяется с ориентиром на квадратные метры жилища.


Площадь комнат посчитать нетрудно, а для определения необходимого тепла на помощь приходят строительные нормы СНиПа:

  • Средний климатический пояс на обогрев 1 м2 жилья требует 60-100 Вт.
  • Для северных регионов это норма соответствует 150-200 Вт.


Имея на руках эти цифры, проводится подсчет необходимого тепла. К примеру, для квартир средней полосы обогрев комнаты площадью 15 м2 потребует 1500 Вт тепла (15х100). При этом следует понимать, что речь идет об усредненных нормах, поэтому лучше ориентироваться на максимальные показатели для конкретного региона. Для местностей с очень мягкими зимами допускается использование коэффициента 60 Вт.



Делая запас по мощности, желательно не переусердствовать, так как это потребует использования большого числа обогревающих приборов. Следовательно, объем необходимого теплоносителя также возрастет. Для обитателей многоквартирных домов с центральным отоплением этот вопрос не является принципиальным. Жильцам же частного сектора приходится увеличивать затраты на подогрев теплоносителя, на фоне возрастания инерционности всего контура. Это предполагает необходимость тщательного проведения расчета радиаторов отопления по площади.


После определения всего необходимого на обогрев тепла, появляется возможность выяснить число секций. Сопроводительная документация на любой нагревательный прибор содержит информацию о выделяемом им тепле. Для подсчета секций общий объем необходимого тепла нужно разделить на мощность батареи. Чтобы увидеть, как это происходит, можно обратится к уже приведенному выше примеру, где в результате проведенных подсчетов был определен необходимый объем для обогрева комнаты 15 м2 – 1500 Вт.


Возьмем за мощность одной секции 160 Вт: выходит, что число секций будет равняться 1500:160 = 9,375. В какую сторону округлять – это выбор самого пользователя. Обычно в учет берется наличие косвенных источников обогрева комнаты и степень ее утепления. К примеру, в кухне воздух обогревается также бытовыми приборами во время готовки, поэтому там округлять можно в сторону уменьшения.


Способ расчета секций батарей отопления по площади характеризуется значительной простотой, однако из поля зрения пропадет ряд серьезных факторов. К ним можно отнести высоту помещений, количество дверных и оконных проемов, уровень утепления стен и пр. Поэтому способ расчета количества секций радиатора по СНиП можно назвать приблизительным: чтобы получить результат без погрешностей, не обойтись без поправок.

Объем комнаты


Этот подход расчета предполагает учет также высоты потолков, т.к. обогреву подлежит весь объем воздуха в жилище.


Методика вычисления используется очень схожая — вначале определяют объем, после чего руководствуются следующими нормами:

  • Для панельных домов нагревание 1 м3 воздуха необходим 41 Вт.
  • Кирпичный дом требует 34 Вт/м3.


Для наглядности можно провести расчет батарей отопления того же помещения в 15м2 для сопоставления результатов. Высоту жилища возьмем 2,7 м: в итоге объем получится 15х2,7 = 40,5.



Подсчет для различных зданий:

  • Панельный дом. Для определения необходимого на обогрев тепла 40,5м3х41 Вт = 1660,5 Вт. Для расчета требуемого числа секций 1660,5:170 = 9,76 (10 шт.).
  • Кирпичный дом. Общий объем тепла – 40,5м3х34 Вт = 1377 Вт. Подсчет радиаторов – 1377:170 = 8,1 (8 шт.).


Получается, что для отопления кирпичного дома секций потребуется значительно меньше. Когда проводился расчет секций радиатора на площадь, результат получился усредненный – 9 шт.

Корректируем показатели


Для более успешного решения вопроса, как рассчитать количество радиаторов на комнату, в учет необходимо взять некоторые дополнительные факторы, способствующие увеличению или уменьшению теплопотерь. Значительное влияние имеет материал изготовления стен и уровень их теплоизоляции. Немалое значение играет также количество и размер окон, вид используемого для них остекления, наружные стены и т.д. Для упрощения процедуры, как рассчитать радиатор на комнату, вводятся специальные коэффициенты.

Окна


Через оконные проемы теряется примерно 15-35% тепла: на это влияют размеры окон и степень их утепления. Это объясняет наличие двух коэффициентов.


Соотношение площади окна и пола:

  • 10% — 0,8
  • 20% — 0,9
  • 30% — 1,0
  • 40% — 1,1
  • 50% — 1,2



По типу остекления:

  • 3-камерный стеклопакет или 2-камерный стеклопакеты с аргоном — 0,85;
  • стандартный 2-камерный стеклопакет — 1,0;
  • простые двойные рамы — 1,27.

Стены и крыша


Выполняя точный расчет батарей отопления на площадь, не обойтись без учета материала стен, степени их термоизоляции. Для этого также имеются коэффициенты.


Уровень утепления:

  • За норму берутся кирпичные стены в два кирпича — 1,0.
  • Небольшой (отсутствует) — 1,27.
  • Хороший — 0,8.


Внешние стены:

  • Не имеются — без потерь, коэффициент 1,0.
  • 1 стена — 1,1.
  • 2 стены — 1,2.
  • 3 стены— 1,3.


Уровень теплопотерь тесно связан с наличием или отсутствием жилой мансарды или второго этажа. Если такое помещение имеется, коэффициент будет уменьшающим 0,7 (для чердака с обогревом– 0,9). Как данность предполагается, что степень влияния на температуру помещения нежилого чердака – нейтральная (коэффициент 1,0).



В тех ситуациях, когда при расчете секций радиаторов отопления по площади приходится иметь дело с нестандартной высотой потолка (стандартом считается 2,7 м), применяются уменьшающие или увеличивающие коэффициенты. Для их получения имеющаяся высота делится на стандартную 2,7 м. Возьмем пример с высотой потолка 3 м: 3,0м/2,7м=1,1. Далее показатель, полученный при расчете секций радиаторов по площади помещения, возводят в степень 1,1.


При определении вышеперечисленных норм и коэффициентов за ориентир брались квартиры. Чтобы выяснить уровень теплопотерь в частном доме со стороны кровли и подвала, к результату добавляют еще 50%. Таким образом, этот коэффициент будет равняться 1,5.

Климат


Существует также корректировка по средним зимним температурам:

  • 10 и выше градусов — 0,7
  • -15 градусов — 0,9
  • -20 градусов — 1,1
  • -25 градусов — 1,3
  • -30 градусов— 1,5


После внесения всех возможных корректировок в расчет алюминиевых радиаторов по площади получается более объективный результат. Однако приведенный выше перечень факторов будет не полным без упоминания критериев, влияющих на мощность обогревания.

Тип радиатора


Если систему отопления будет комплектоваться секционными радиаторами, в которых осевое расстояние имеет высоту 50 см, то расчет секций радиаторов отопления особых затруднений не вызовет. Как правило, солидные производители имеют собственные сайты с указанием техническим данных (включая тепловую мощность) всех моделей. Иногда вместо мощности может указываться расход теплоносителя: перевести его в мощность очень просто, ведь потребление теплоносителя 1л/мин соответствует примерно 1 кВт. Чтобы определить осевую дистанцию, необходимо замерить расстояние между центрами трубы подачи до обратки.


Для облегчения задачи множество сайтов оснащены специальной программой по калькуляции. Все, что необходимо для расчета батарей на комнату – внести ее параметры в указанные строки. Нажав поле «Ввод», на выходе мгновенно высвечивается число секций выбранной модели. Определяясь с типом обогревательного прибора, берут во внимание разницу тепловой мощности радиатора отопления по площади, в зависимости от материала изготовления (при прочих равных условиях).



Облегчит понимание сути вопроса простейший пример расчета секций биметаллического радиатора, где в учет берется только площадь помещения. Определяясь с количеством биметаллических нагревательных элементов со стандартной межосевой дистанцией в 50 см, за отправную точку берут возможность обогревания одной секцией 1,8 м2 жилища. В таком случае для комнаты 15 м2 потребуется 15:1,8 = 8,3 шт. После округления получаем 8 шт. Схожим образом проводится расчет батарей из чугуна и стали.


Для этого потребуются следующие коэффициенты:

  • Для биметаллических радиаторов — 1,8 м2.
  • Для алюминиевых — 1,9-2,0 м2.
  • Для чугунных — 1,4-1,5 м2.


Эти параметры подходят для стандартной межосевой дистанции 50 см. В настоящее время выпускаются радиаторы, где это расстояние может колебаться от 20 до 60 см. Встречаются даже т.н. «бордюрные» модели высотой менее 20 см. Понятное дело, что мощность этих батарей будет другой, что потребует внесения определенных корректив. Иногда эта информация указывается в сопроводительной документации, в других же случаях потребуется самостоятельный подсчет.


Учитывая то, что площадь нагревательной поверхности напрямую влияет на тепловую мощность прибора, несложно догадаться, что по мере уменьшения высоты радиатора этот показатель будет падать. Поэтому корректирующий коэффициент определяется путем соотношения высоты выбранного изделия со стандартом 50 см.


Для примера рассчитаем алюминиевый радиатор. Для помещения в 15 м2 расчет секций радиаторов отопления по площади помещения выдает результат 15:2 = 7,5 шт. (округляем до 8 шт.) Намечена была эксплуатация маломерных приборов высотой 40 см. Вначале нужно найти соотношение 50:40 = 1,25. После корректировки количества секций получается результат 8х1,25 = 10 шт.

Учет режима системы отопления


Сопроводительная документация на радиатор обычно содержит информацию о его максимальной мощности. Если используется высокотемпературный режим эксплуатации, то в трубе подачи теплоноситель нагревается до +90 градусов, а в обратке — +70 градусов (маркируется 90/70). Температура жилища при этом должна быть +20 градусов. Подобный режим функционирования современными системами обогрева практически не используется. Чаще встречается средняя (75/65/20) или низкая (55/45/20) мощность. Этот факт требует корректировки расчета мощности батарей отопления по площади.


Чтобы определить режим работы контура, в учет берется показатель температурного напора системы: так называют разницу температуры воздуха и поверхности радиатора. За температуру отопительного прибора принимают среднее арифметическое между показателями подачи и обратки.



Для большего понимания рассчитаем чугунные батареи со стандартными секциями в 50 см в режиме высокой и низкой температуры. Площадь комнаты прежняя – 15 м2. Обогрев одной чугунной секции в высокотемпературном режиме обеспечивается для 1,5 м2, поэтому общее число секций будет равняться 15:1,5 = 10. В контуре запланировано применение низкотемпературного режима.


Определения температурного напора каждого из режимов:

  • Высокотемпературный — 90/70/20- (90+70):20 =60 градусов;
  • Низкотемпературный — 55/45/20 — (55+45):2-20 = 30 градусов.


Получается так, что для обеспечения нормального обогрева помещения в режиме низких температур число радиаторных секций нужно удвоить. В нашем случае для комнаты 15 м2 необходимо 20 секций: это предполагает наличие довольно широкой чугунной батареи. Именно поэтому приборы из чугуна не рекомендуется использовать в низкотемпературных системах.


Во внимание может быть взята и желаемая температура воздуха. Если за цель ставится поднять ее с 20 до 25 градусов, осуществляют расчет теплового напора с этой поправкой, высчитывая нужный коэффициент. Проведем расчет мощности батарей отопления по площади все того же чугунного радиатора, введя корректировку в параметры (90/70/25). Вычисление температурного напора в этой ситуации будет выглядеть так: (90+70):2-25=55 градусов. Теперь высчитываем соотношение 60:55=1,1. Чтобы обеспечить температурный режим 25 градусов, необходимо 11 шт х1,1=12,1 радиаторов.

Влияние типа и места установки


Наряду с уже упомянутыми факторами, степень теплоотдачи отопительного прибора зависит также от того, каким образом он был подключен. Самое эффективной считается коммутация по диагонали с подачей сверху, которая сводит уровень теплопотерь практически к нулю. Наибольшие потери тепловой энергии демонстрирует боковое подключение – почти 22%. Для остальных типов установки характерна средняя эффективность.



Способствуют уменьшению фактической мощности батареи и различные заграждающие элементы: к примеру, нависающих сверху подоконник снижает теплоотдачу почти на 8%. Если полного перекрывания радиатора не происходит, потери снижаются до 3-5%. Сетчатые декоративные экраны частичного покрытия провоцируют падения теплоотдачи на уровне нависающего подоконника (7-8%). Если батарею полностью закрыть таким экраном, ее эффективность снизится на 20-25%.

Как рассчитать количество радиаторов для однотрубного контура


Следует учесть тот факт, что все вышесказанное относится к двухтрубным отопительным схемам, предполагающим подачу на каждый из радиаторов теплоносителя одинаковой температуры. Рассчитать секции радиатора отопления в однотрубной системе на порядок сложнее, ведь каждая следующая батарея по ходу движения теплоносителя обогревается на порядок меньше. Поэтому расчет для однотрубного контура предполагает постоянный пересмотр температуры: такая процедура занимает много времени и усилий.


В качестве облегчения процедуры используется такой прием, когда расчет отопления на квадратный метр проводится, как для двухтрубной системы, а потом с учетом падения тепловой мощности наращивают секции для увеличения теплоотдачи контура в общем. Для примера возьмем схему однотрубного типа, которая имеет 6 радиаторов. После определения числа секций, как для двухтрубной сети, вносим определенные корректировки.


Первый из отопительных приборов по ходу движения теплоносителя обеспечивается полностью нагретым теплоносителем, поэтому его можно не пересчитывать. Температура подачи на второй по счету прибор уже меньшая, поэтому нужно определить степень снижения мощности, увеличив на полученное значение число секций: 15кВт-3кВт=12кВт (процентное соотношение уменьшения температуры составляет 20%). Итак, для восполнения потерь тепла понадобятся добавочные секции — если вначале их нужно было 8шт, то после добавления 20% получаем конечное число — 9 или 10 шт.


При выборе, в какую сторону округлить, учитывают функциональное назначение помещение. Если речь идет о спальне или детской, округление проводится в большую сторону. При расчете гостиной или кухни округлять лучше в меньшую сторону. Свою долю влияние имеет также то, на какой стороне расположена комната – южной или северной (северные помещения обычно округляются в большую сторону, а южные – в меньшую).


Данный метод подсчета не является совершенным, так как предполагает увеличение последнего радиатора на линии до поистине гигантских размеров. Следует также понимать, что удельная теплоемкость подаваемого теплоносителя почти никогда не равняется ее мощности. Из-за этого котлы для оснащения однотрубных контуров выбираются с некоторым запасом. Оптимизируют ситуацию наличие запорной арматуры и коммутация батарей через байпас: благодаря этому достигается возможность регулировки теплоотдачи, что несколько компенсирует снижение температуры теплоносителя. Однако от необходимости увеличивать размеры радиаторов и количество его секций по мере удаления от котла при использовании однотрубной схемы даже эти приемы не освобождают.


Чтобы решить задачу, как рассчитать радиаторы отопления по площади, много времени и сил не понадобится. Другое дело – провести корректировку полученного результата, взяв во внимание все характеристики жилища, его размеры, способ коммутации и дислокацию радиаторов: эта процедура достаточно трудоемкая и длительная. Однако именно таким образом можно получить максимально точные параметры для отопительной системы, что обеспечит тепло и уют помещений.


Как рассчитать радиаторы отопления на площадь квартиры

Как рассчитать радиаторы отопления так, чтобы температура в квартире была предельно комфортной — вопрос, который возникает у каждого, кто решился на ремонт. Слишком малое количество секций не будет полностью прогревать помещение, а излишек только повлечёт за собой слишком большие траты на коммунальные услуги. Итак, что необходимо учитывать, чтобы правильно подсчитать размеры батарей?

Как рассчитать радиаторы отопления на площадь квартиры

Предварительная подготовка

Что необходимо учитывать для рассчета мощности радиатора отопления на комнату:

  • определить температурный режим и потенциальные термопотери;
  • разработать оптимальные технические решения;
  • определить тип теплового оборудования;
  • установить финансовые и тепловые критерии;
  • учесть надёжность и технические параметры обогревательных приборов;
  • составить схемы теплопровода и расположение батарей для каждого помещения;

Без помощи специалистов и дополнительных программ рассчитать количество секций радиаторов отопления достаточно сложно. Чтобы расчёт был наиболее точен, не обойтись без тепловизора или специально установленных для этого программ.

Необходимая мощность радиаторов отопления

Что будет, если провести вычисления неправильно? Основное последствие — более низкая температура в помещениях, а следовательно, и эксплуатационные условия не будут соответствовать желаемому. Слишком мощные отопительные приборы приведут к избыточным тратам как на сами приборы и их монтаж, так и на коммунальные услуги.

Самостоятельные подсчёты

Можно приблизительно подсчитать, какой должна быть мощность батарей, использовав только рулетку для измерения длины и ширины стен и калькулятор. Но точность таких вычислений крайне мала. Погрешность будет составлять 15-20%, но такое вполне допустимо.

Формула для расчета

Вычисления в зависимости от типа отопительных приборов

При выборе модели учитывайте, что тепловая мощность зависит от материала, из которого они сделана. Методы вычисления размеров секционных батарей не отличаются, а вот итоги выйдут разными. Есть среднестатистические значения. На них и стоит ориентироваться, выбирая оптимальное число отопительных приборов. Мощности отопительных приборов с секциями в 50 см:

  • батареи из алюминия — 190 Вт;
  • биметаллические — 185 Вт;
  • чугунные приборы обогрева — 145 Вт;

Таблица для расчета количества секций батареи

Чтобы правильно рассчитать радиаторы отопления по площади комнаты, важно знать не только мощность, но и сколько квадратов обогревает одна секция, значение этого параметра зависит от металла:

  • алюминий — 1,9-2 м кв.;
  • алюминий и сталь — 1,8 м кв.;
  • чугун — 1,4-1,5 м кв;

Вот пример вычисления количества секций алюминиевых радиаторов отопления. Допустим, что размеры комнаты 16 м. кв. Выходит, что на помещение такого размера нужно 16м2/2м2 = 8 шт. По такому же принципу считайте для чугунных или биметаллических приборов. Важно только точно знать норму — приведённые выше параметры верны для моделей высотой в 0,5 метра.

Виды радиаторов отопления

На данный момент выпускаются модели от 20 до 60 см. Соответственно площадь, которую способна обогреть секция, будет отличаться. Самые маломощные модели — бордюрные, высотой в 20 см. Если вы решили приобрести тепловой агрегат нестандартных размеров, то в вычислительную формулу придётся вносить корректировку. Ищите необходимые данные в техпаспорте.

При внесении корректировок стоит учитывать, что размер батарей напрямую влияет на теплоотдачу. Следовательно, чем меньше высота при той же ширине, тем меньше площадь, а вместе с ними и мощность. Для верных подсчётов найдите соотношение высот выбранной модели и стандартной, а уже с помощью полученных данных подкорректируйте результат.

Расчитываем, насколько сильно должна греть батарея

Допустим, вы выбрали модели высотой 40 см. В этом случае расчёт количества секций алюминиевых радиаторов отопления на площадь комнаты будет выглядеть следующим образом:

  • воспользуемся предыдущими подсчётами: 16м2/2м2 = 8штук;
  • посчитайте коэффициент 50см/40см = 1,25;
  • подкорректируйте вычисления по основной формуле — 8шт*1,25 = 10 шт.

Расчёт количества радиаторов отопления по объёму начинается в первую очередь со сбора необходимой информации. Какие параметры нужно учесть:

  • Площадь жилья.
  • Высота потолков.
  • Число и площадь дверных и оконных проёмов.
  • Температурные условия за окном в период отопительного сезона.

Теплопотери

Нормы и правила, установленные для мощности отопительных проборов, регламентируют минимально допустимый показатель на кв. метр квартиры — 100 Вт. Расчёт радиаторов отопления по объему помещения будет более точен, чем тот, в котором за основу берётся только длина и ширина. Итоговые результаты корректируются в зависимости от индивидуальных характеристик конкретного помещения. Делается это посредством умножения на коэффициент корректировки.

При вычислении мощности отопительных приборов берётся среднестатистическая высота потолков — 3 м. Для квартир с потолком 2,5 метра этот коэффициент составит 2,5м/3м = 0,83, для квартир с высокими потолками 3,85 метров — 3,85м/3м = 1,28. Угловые комнаты потребуют внесения дополнительных корректировок. Итоговые данные умножаются на 1,8.

Расчёт количества секций радиатора отопления по объему помещения должен проводиться с корректировкой, если в комнате одно окно большого размера или сразу несколько окон (коэффициент 1,8).

Радиаторы отопления с нижним подключением

Нижнее подключение также потребует внести свои корректировки.  Для такого случая коэффициент составит 1,1.

В районах с экстремальными погодными условиями, где зимние температуры достигают рекордно низких показателей, мощность должна быть увеличена в 2 раза.

Пластиковые стеклопакеты, наоборот, потребуют корректировку в сторону уменьшения, за основу берётся коэффициент 0,8.

В выше приведённых данных приведены усреднённые значения, поскольку не были дополнительно учтены:

  • толщина и материал стен и перекрытий;
  • площадь остекления;
  • материал напольного покрытия;
  • наличие или отсутствие утеплителя на полу;
  • занавески и гардины в оконных проёмах.

Дополнительные параметры для более точных вычислений

Работа с тепловизором

Точный расчёт количества радиаторов отопления на площадь не обойдётся без данных из технических документов. Это важно, чтобы точнее определить значение теплопотерь. Лучше всего определить уровень потери тепла с помощью тепловизора. Прибор быстро определит самые холодные области в помещении.

Всё было бы в разы легче, если каждая квартира была построена по стандартной планировке, но это далеко не так. В каждом доме или городской квартире свои особенности. С учётом множества характеристик (числа оконных и дверных проёмов, высоты стен, площади жилья и пр.) резонно возникает вопрос: как же рассчитать количество радиаторов отопления?

Расчет радиаторов отопления по площади

Особенности точной методики в том, что для вычислений необходимо больше коэффициентов. Одно из важных значений, которое нужно вычислить — это количество тепла. Формула отлична от предыдущих и выглядит следующим образом: КТ = 100 Вт/м2*П*К1*К2*К3*К4*К5*К6*К7.

Подробнее о каждом значении:

  • КТ — количество тепла, которое нужно для обогрева.
  • П — размеры комнаты м2.
  • К1 — значение этого коэффициента учитывает качество остекления окон: двойное — 1,27; пластиковые окна с двойным стеклопакетом — 1,0; с тройным — 0,85.
  • К2 — коэффициент, учитывающий уровень теплоизоляционных характеристик стен: низкая — 1,27; хорошая (например двухслойная кирпичная кладка) — 1,0; высокая — 0,85.
  • К3 — это значение учитывает соотношение площадей оконных проёмов и полов: 50% — 1,2; 40% — 1,1; 30% — 1,0; 20% — 0,9; 10% — 0,8.
  • К4 — коэффициент, зависящий от среднестатистических температурных показателей воздуха в зимнее время года: — 35 °С — 1,5; — 25 °С — 1,3; — 20 °С — 1,1; — 15 °С — 0,9; -10 °С — 0,7.
  • К5 зависит от числа внешних стен здания, данные этого коэффициента таковы: одна — 1,1; две — 1,2; три — 1,3; четыре — 1,4.
  • К6 рассчитывается, исходя из типа помещения, находящегося этажом выше: чердак — 1,0; чердачное отапливаемое помещение — 0,9; отапливаемая квартира — 0,8.
  • К7 — последний из корректировочных значений и зависит от высоты потолка: 2,5 м — 1,0; 3,0 м — 1,05; 3,5 м — 1,1; 4,0 м — 1,15; 4,5 м — 1,2.

Описанный расчёт секций батарей отопления по площади — наиболее точный, поскольку учитывает значительно больше нюансов. Полученное в ходе этих подсчётов число делится на значение теплоотдачи. Итоговый результат округляется до целого числа.

Корректировка с учётом температурного режима

В техпаспорте отопительного прибора указана максимальная мощность. Например, при температуре воды в теплопроводе 90°С во время подачи и 70°С в обратном режиме в квартире будет +20°С. Такие параметры обычно обозначают так: 90/70/20, но самые распространённые мощности в современных квартирах — 75/65/20 и 55/45/20.

Параметры теплоносителя системы отопления.

Для правильного расчёта необходимо для начала высчитать температурный напор — это разница между температурой самой батареи и воздуха в квартире. Учтите, что для вычислений берётся усреднённое значение между температурами подачи и обратки.

Как рассчитать количество секций алюминиевых радиаторов с учётом выше перечисленных параметров? Для лучшего понимания вопроса будут произведены вычисления для батарей из алюминия в двух режимах: высокотемпературном и низкотемпературном (расчёт для стандартных моделей высотой 50 см). Размеры комнаты те же — 16 м кв.

Одна секция алюминиевого радиатора в режиме 90/70/20 обогревает 2 кв метра., следовательно, для полноценного обогрева помещения понадобится 16м2/2м2 = 8 шт. При вычислении размера батарей для режима 55/45/20 нужно для начала подсчитать температурный напор. Итак, формулы для обеих систем:

  • 90/70/20 — (90+70)/2-20 = 60°С;
  • 55/45/20 — (55+45)/2-20 = 30°С.

Расчитываем количество секций в радиаторе отопления

Следовательно, при низкотемпературном режиме нужно увеличить размеры отопительных приборов в 2 раза. С учётом данного примера на помещении 16 кв. метров нужно 16 алюминиевых секций. Учтите, что для чугунных приборов понадобится 22 секции при той же площади помещения и при таких же температурных системах. Подобная батарея получится слишком большой и массивной, поэтому чугун меньше всего подходит для низкотемпературных контструкций.

С помощью этой формулы можно легко вычислить, сколько необходимо секций радиаторов на комнату с учётом желаемого температурного режима. Чтобы зимой в квартире было +25°С, просто поменяйте температурные данные в формуле теплового напора, а полученный коэффициент подставьте в формулу вычисления размера батарей. Допустим, при параметрах 90/70/25 коэффициент будет таким: (90+70)/2 — 25 = 55°С.

Далее нужно подсчитать соотношение 60°С/55°С = 1,1. В итоге, чтобы добиться температуры в +25 °С для помещения с высокотемпературным режимом понадобится 8шт*1,1 = 8,8. С округлением получится 9 штук.

Если не хочется тратить время на расчёт радиаторов отопления, можно воспользоваться онлайн-калькуляторами или специальными программами, установленными на компьютер.

Как пользоваться онлайн-калькулятором

Он-лайн калькулятор для расчета мощности радиаторов

Посчитать, сколько секций радиаторов отопления на кв. метр понадобится, можно с помощью специальных калькуляторов, которые всё посчитают в мгновение ока. Такие программы можно найти на официальных сайтах некоторых производителей. Воспользоваться этими калькуляторами легко. Просто введите в поля все соответствующие данные и вам моментально будет выведен точный результат. Чтобы вычислить, сколько секций радиаторов отопления нужно на квадратный метр, надо вводить данные (мощность, температурный режим и т.д.) для каждой комнаты отдельно. Если же помещения не разделены дверями, сложите их общие размеры, а тепло будет распространяться по обоим помещениям.

Интерфейс калькулятора отопления.

Во избежание неточностей при вычислениях, внимательно вводите все параметры и проверьте, насколько точные данные вы указали в соответствующих полях. Лучше несколько раз перепроверить, чем потом испытывать на себе последствия своих ошибок в виде слишком низкой или высокой температуры в доме.

Подведение итогов

Итак, из выше приведённых формул понятно, как правильно сделать расчёт алюминиевых (чугунных, биметаллических и др.) радиаторов для квартиры. Как видите, дело это не такое уж и сложное. Главное, внимательность и точность. Чтобы получить максимально правильные данные, используйте специальное оборудование.

расчет количества секций и мощности, размеры, видео и фото





Знать о том, как рассчитать количество радиаторов на комнату, нужно не только профессионалам в области проектировки отопительных систем. Даже простая замена батарей в доме невозможна без точного расчета и подбора достаточно эффективных устройств, так что информация, изложенная ниже, будет востребована каждому из нас.

Важно знать, какое количество батарей будет достаточным

Зачем нужен точный расчет?

Инструкция по вычислению точных параметров отопительных устройств, приведенная в этой статье, весьма полезна:

  • Во-первых, от мощности обогрева зависит комфорт в нашем доме. Если мы установим слишком слабые радиаторы, то в холодное время года они не смогут справляться с возрастающей нагрузкой, и потому параметры микроклимата будут далеки от оптимальных.

Маломощная батарея может не справиться с нагрузкой, и в доме будет холодно

  • Во-вторых, цена качественного радиатора весьма высока, и потому переплачивать за установку ненужных конструкций тоже не следует. Зная, как рассчитать количество радиаторов отопления на комнату, мы сможем сократить наши расходы, купив ровно столько батарей, сколько нам требуется.
  • Наконец, предварительный просчет позволит нам спланировать наши затраты еще на этапе планирования. Зная, какое количество тепла потребуется для обогрева помещений, мы сможем выбрать подходящий тип отопительной системы, начиная от котла и заканчивая материалом, из которого будут изготовлены секции батарей в доме.

Технология вычислений мощности

Простая методика

Если вы не знаете, как рассчитать какой радиатор выбрать для комнаты, и не хотите возиться с расчетами – воспользуйтесь простой таблицей

На вопрос о том, как рассчитать – сколько нужно радиаторов на комнату, есть несколько ответов. В таблице ниже мы приводим данные, которыми стоит пользоваться при ориентировочных вычислениях:

Характеристики помещения Тепловая мощность на 1м2, Вт
Комната с одним окном, одной наружно стеной и высотой потолков не более 2,5 – 2,7 м. 100
Комната с одним окном, двумя наружными стенами и потолками высотой до 3 м. 120
Комната с двумя окнами, двумя наружными стенами и потолками стандартной высоты. 130

Далее площадь помещения умножаем на выбранную из таблицу величину, а полученное число делим на теплоотдачу нужной нам модели радиаторов (в Вт). Результат округляем до целого значения в большую сторону.

Каждое окно – это дополнительный источник теплопотерь

Совет!
Округление необходимо, поскольку запас по мощности точно лишним не будет, а вот недостаток придется компенсировать с большими дополнительными затратами.

Боле точный способ

Есть и еще один вариант решения задачи о том, как рассчитать мощность радиатора на комнату своими руками.

Для этого нам нужно вычислить объем комнаты:

Для начала нужно вычислить площадь и объем помещения

  • Площадь помещения умножаем на его высоту, получая искомую величину в кубометрах.
  • Объем умножаем на нормативный коэффициент, который для европейской части РФ равен 41 Вт.
  • Далее поступаем как в предыдущем случае: полученное значение делим на теплоотдачу секции или панельного радиатора, а затем округляем результат в большую сторону.

Как видите, метод не намного сложнее предыдущего. Однако с его помощью можно максимально точно вычислить, сколько тепла потребляет помещения, и какое количество батарей необходимо для его обогрева.

Достаточно мощные приборы способны поддерживать комфортную температуру даже в холодное время года

Пример расчета

В этом разделе мы на простом примере продемонстрируем, как рассчитать мощность радиатора отопления на комнату:

  • Итак, допустим, у нас есть помещение длиной 5м, шириной 4 м с потолками высотой 2,7 м.
  • Вычисляем объем: 5 х 4 х 2,7 = 54м3.
  • Далее рассчитываем, сколько тепла требуется для эффективного обогрева: 54 х 41 = 2214 Вт.
  • Затем выбираем модель обогревателя. Мы выполним вычисление для биметаллической конструкции Sira RS500 с теплоотдачей одной секции, равной 199 Вт.

Фото радиатора Sira RS500, используемого в статье в качестве примера

Обратите внимание!
Перед тем как рассчитать стальные радиаторы на комнату, нужно внимательно изучить паспорт изделия.
Очень часто у таких устройств теплоотдача указывается за всю панель целиком, в то время как у чугунных, алюминиевых и биметаллических конструкций чаще применяется посекционный расчет.

  • Потребность в тепле делим на теплоотдачу секции: 2214 / 199 = 11,1. Для получения запаса по мощность округлим до 12 – именно столько ребер батареи нам нужно установить, чтобы обеспечить комфортный микроклимат в комнате.

Габаритные размеры

Вопрос о том, как рассчитать размер радиатора для комнаты, также очень важен.

Как правило, установка одного большого устройства менее затратна, чем двух изделий поменьше, однако здесь действуют определённые ограничения, связанные с габаритами простенков:

  • Так, нельзя устанавливать батарею вплотную к полу. Минимальный зазор должен составлять около 80 – 120 мм.
  • Отступ от нижнего края подоконника также важен. Эта величина не должна быть меньше 60 – 120 мм, иначе тепло просто не будет поступать к окну, и на стекле будет собираться конденсат.
  • Существуют и ограничения по ширине. Если радиатор монтируется внутри подоконной ниши, то по бокам должно оставаться минимум по 150 мм свободного пространства.

Ограничения, которые накладывает место установки на габариты изделий

Обратите внимание!
Оптимальная ширина отопительной панели составляет от 50 до 75% от ширины оконного проема.

Руководствуясь этими данными, вы без труда вычислите максимальную величину изделия, которое можно установить в выбранной вами точке.

Заключение

Сведения о том, как рассчитать количество секций радиатора на комнату, нужны каждому из нас, особенно если в обозримом будущем мы планируем обустройство или реконструкцию отопительной системы. Чтобы ознакомиться с используемыми методами более подробно, рекомендуем вам просмотреть видео в этой статье.

Расчет количества секций радиаторов отопления

При монтировании системы отопления, или просто при смене радиаторов нужно всегда четко понимать — сколько радиаторов отопления нужно. ТО есть какое количество поставить в ту или иную комнату. Если поставить мало — то будет холодно, а вот если поставить много — то в комнате будет жарко. Однако если обратиться к СНиПу, то все уже рассчитано, нужно только правильно этим пользоваться …

Для расчета количества секций радиаторов отопления стоит принимать во внимание: мощность одной секции радиатора, а также расположение квартиры (угловые наружные стены или стены внутри дома)

Итак, что говорит нам СНиП:

– 1 квадратный метр внутри здания (нет уличных угловых стен), с высотой потолков 2,7 метра требует мощность одной секции радиаторов в 100 Вт

— 1 квадратный метр угловой уличная стена, с высотой потолков 2,7 метра, требует мощность одной секции радиаторов в 120 Вт

Теперь радиаторы отопления

Чугунные – 1 секция радиатора выделяет тепловую мощность равную в 180 Вт

Алюминиевые – 1 секция выделяет тепловую мощность в 180 Вт

Биметаллические – 1 секция выделяет тепловую мощность в 180 Вт

То есть, разницы в радиаторах практически нет, все производители стараются придерживаться одного показателя в 180 Вт, не зависимо от материала. Кстати интересная статья про — выбор биметаллических или алюминиевых радиаторов

Расчет секций радиаторов

Как вы понимаете, рассчитать все достаточно просто.

Допустим — у нас дана комната в 20 квадратных метра (рассмотрим два случая, когда она угловая и когда средняя между комнатами)

1)      Угловая комната – по СНиПу, требуемая мощность 20 Х 120Вт (для угловой комнаты) = 2400 Вт.

Теперь 2400 / 180 Вт (мощность одной секции) = 13,33. Округляем в большую сторону (для задела мощности) равняется 14 радиаторов отопления на такую комнату.

2)      Средняя комната (не угловых уличных стен) —  по СНиПу, требуемая мощность 20 Х 100Вт (для обычной комнаты) = 2000 Вт

Теперь 2000/180 Вт = 11,11. Опять же округляем в большую сторону (для задела мощности) получается 12 радиаторов отопления.

Как видите ничего сложного.

Однако в квартирах есть еще и панельные радиаторы

Панельные радиаторы

Тут все индивидуально. На рынке сейчас существует очень много производителей таких радиаторов. Мощность колеблется примерно от 1000Вт до 2500Вт, все зависит от размеров радиатора. При выборе обязательно обращайте внимание, на мощность, это важно для расчета!!!

И опять же все просто, мы уже подсчитали — что на комнату в 20 кв. метров, нужно либо 2000 Вт (если она в середине дома и не имеет угловых наружных стен), или 2400 Вт если она угловая.

Если взять самый маломощный панельный радиатор (1000 Вт), то получается 2000/1000 = 2, то есть нужно два таких радиатора. Или же достаточно одного, но мощного – 2400/2500 Вт = 0,96, хватит даже с заделом мощности!

Как видите рассчитать количество секций радиаторов, не так то и сложно, главное обратиться к СНиПу

Как рассчитать количество секций радиаторов

Пришло время менять батареи.

От расчетов количества узлов зависит комфорт в холодное время года.

Как правильно произвести все вычисления, измерения?

Все достаточно просто, если следовать приведенной ниже инструкции.

Методы оценки теплоотдачи

Перед тем как приобрести батареи отопления рассмотрим способы, рассчитать количество их элементов.

Первый метод строится исходя из площади помещения. Строительные нормативы (СНиП) гласят, что для нормального обогрева 1 кв. м. требуется 100 Вт. тепловой мощности. Измерив длину, ширину комнаты, и перемножив эти два значения, получим площадь помещения (S).

Чтобы вычислить общую мощность (Q), подставим в формулу, Q=S*100 Вт., наше значение. В паспорте к радиаторам отопления указывается теплоотдача одного элемента (q1). Благодаря этой информации узнаем необходимое их количество. Для этого разделим Q на q1.

Второй способ более точен. Также его следует использовать при высоте потолка от 3-х метров. Его отличие заключается в измерении объема комнаты. Площадь помещения уже известна, измерим высоту потолка, затем перемножим эти значения. Полученное значение объема (V) подставим к формуле Q=V*41 Вт.

По строительным нормам 1 куб. м. должен обогреваться 41 Вт. тепловой мощности. Теперь найдем отношение Q к q1, получив общее количество узлов радиатора.

Подведем промежуточный итог, вынесем данные, которые понадобятся для всех видов расчетов.

  • Длина стены;
  • Ширина стены;
  • Высота потолка;
  • Нормативы мощности, обогрева единицы площади или объема помещения. Они даны выше;
  • Минимальная теплоотдача элемента радиатора. Она обязательно указывается в паспорте;
  • Толщина стен;
  • Число оконных проемов.

Быстрый способ расчета количества секций

Если речь идет о замене чугунных радиаторов биметаллическими, можно обойтись без скрупулезных расчетов. Приняв во внимание несколько факторов:

  • Биметаллическая секция дает десяти процентный прирост тепловой мощности по сравнению с чугунной.
  • Со временем эффективность батареи падает. Это связано с отложениями, которыми покрываются стенки, внутри радиатора.
  • Лучше пусть будет теплее.

Количество элементов биметаллической батареи, должно быть тем же, что и у ее предшественницы. Однако это число увеличивается на 1 – 2 штуки. Делается это для борьбы с будущим снижением эффективности обогревателя.

Для стандартного помещения

Нам уже известен этот способ расчета. Он описан в начале статьи. Разберем его подробно, обратившись к конкретному примеру. Рассчитаем количество секций для помещения площадью 40 кв. м.

По правилам 1 кв. м требует 100 Вт. Предположим, что мощность одной секции 200 Вт. Используя формулу, из первого раздела найдем требуемую тепловую мощность помещения. Умножим 40 кв. м. на 100 Вт, получим 4 кВт.


Для определения числа секций это число разделим на 200 Вт. Получается, что для помещения заданной площадью потребуется 20 секций. Главное помнить, формула актуальна для квартир, где высота потолков менее 2,7 м.

Для нестандартных

К нестандартным помещениям относятся угловые, торцевые комнаты, с несколькими оконными проемами. Под эту категорию попадают и жилища с высотой потолка более 2,7 метра.

Для первых расчет ведется по стандартной формуле, но окончательный результат умножается на специальный коэффициент, 1 – 1,3. Используя данные полученные выше: 20 секций, предположим, что комната угловая и имеет 2 окна.

Конечный результат получится, если умножить 20 на 1,2. Для этого помещения требуется 24 секции.

Если же взять ту же комнату, но с высотой потолка 3 метра, результаты вновь изменятся. Начнем с расчета объема, умножим 40 кв. м. на 3 метра. Помня, что на 1 куб. м требуется 41 Вт., вычислим общую тепловую мощность. Полученные 120 куб. м умножим на 41 Вт.

Количество радиаторов получим, разделив 4920 на 200 Вт. Но комната, угловая с двумя окнами, следовательно, 25 нужно умножить на 1,2. Конечный итог 30 секций.

Точные вычисления со множеством параметров

 

Произвести подобные расчеты сложно. Приведенные выше формулы справедливы для нормального помещения средней полосы России. Географическое положение дома и ряд других факторов, будут вносить дополнительные поправочные коэффициенты.

  • Конечная формула, для угловой комнаты, должен иметь дополнительный множитель 1,3.
  • Если дом расположен не в средней полосе страны, дополнительный коэффициент описан строительными нормами этой территории.
  • Необходимо учитывать место установки биметаллического радиатора и декоративные элементы. К примеру, ниша под окном отнимет 7%, а экран до 25% тепловой мощности батареи.
  • Для чего будет использоваться комната.
  • Материал и толщина стен.
  • Какие стоят рамы и стекла.
  • Дверные и оконные проемы вносят дополнительные проблемы. Остановимся на них подробнее.

Стены с окнами, уличные и с дверными проемами, изменяют стандартную формулу. Необходимо полученное количество секций умножить на коэффициент теплоотдачи комнаты, но его нужно сначала высчитать.

Этот показатель будет складываться из теплоотдачи окна, дверного проема и стены. Всю эту информацию можно получить, обратившись к СНиП, согласно своему типу помещения.

Полезные советы для правильного обустройства системы отопления

Биметаллические радиаторы идут с завода соединенными по 10 секций. После расчетов у нас получилось 10, но мы решили довить еще 2 про запас. Так, лучше не делать. Заводская сборка значительно надежнее, на нее дается гарантия от 5 до 20 лет.

Сборка из 12 секций будет производиться магазином, при этом гарантия составит менее года. Если радиатор потечет, вскоре после окончания этого срока, ремонт придется проводить своими силами. Итог – лишние проблемы.

Поговорим об эффективной мощности радиатора. Характеристики биметаллической секции, указанные в паспорте изделия, исходят из того, что температурный напор системы равен 60 градусов.

Такой напор гарантирован, если температура теплоносителя батарее равна 90 градусов, что не всегда соответствует реальности. Это необходимо учитывать при расчете системы радиаторов комнаты.

Ниже приведены несколько советов по установке батареи:

  • Расстояние от подоконника до верхнего края батареи, должно быть, минимум 5 см. Воздушные массы смогут нормально циркулировать и передавать тепло всей комнате.
  • Радиатору необходимо отставать от стены на длину от 2 до 5 см. Если позади батареи будет крепиться отражающая теплоизоляция, то нужно приобрести удлиненные кронштейны, обеспечивающие указанный зазор.
  • Нижнему краю батареи полагается отступ от пола, равный 10 см. Несоблюдение рекомендации ухудшит теплоотдачу.
  • Радиатор, монтируемый у стены, а не в нише под окном, должны иметь с ней зазор, минимум 20 см. Это предотвратит скопление пыли за ним и поможет обогреву помещения.

Очень важно производить подобные расчеты правильно. От этого зависит, насколько эффективной и экономичной будет полученная система отопления. Вся приведенная в статье информация направлена помочь обывателю с этими вычислениями.


Мы подобрали для Вас ещё восемь полезных статей, смотрите далее.

Расчет количества секций радиаторов отопления

Для климатической зоны Украины уже давно рассчитана потребляемая тепловая мощность при стандартных условиях. Стандартные условия подразумевают: комнату с одным окном (обычным), одной дверью, одной внешней стеною. Для одного кубического метра такой жилплощади принято брать 41 Вт тепловой мощности. Исходя из этих данных не трудно рассчитать необходимое количество секций радиатора, зная его тепловую мощность.

Для примера, можно взять комнату 5 на 6 м и со стандартной высотою потолка, которая равна 2,7 м. Сначала надо рассчитать обьем помещения. Итак 5*6*2,7= 81 м3. Не стоит забывать, что если входная дверь в комнату выполнена в виде арки, которая не закривается, к обьему комнаты обьязательно следует додать обьем соседнего помещения. Когда обьем Вам известен, умножаем его на 41 Ватт: 81 * 41 = 3321. Полученное число, это и есть тепловая энергия, необходимая для обогрева нашего помещения.

Если Вы уже решили, какие радиаторы будете использовать и Вам известна их тепловая мощность, довольно просто рассчитать количество секций. Также можно отталкиваться от желанного колличества секций, манипулируюя их тепловой мощностью. Для примера возьмем радиаторы отопления с тепловой отдачей 1 секции равной 200 Ватт. Обьем комнаты разделяем на мощность 1 секции: 3321 / 200 = 16.605. Полученное число округляем до большего, итак для обогрева нашего помещения нам понадобится 17 секций радиатора отопления, мощностью 200 Ватт каждая. Если у Вас установлены чугунные батареи с межосевим расстоянием 600 мм, и температура в помещении Вас устраивает, но Вы хотите заменить их на новые радиаторы, можно рассчитать необходимое количество секций новых батарей. Теплоотдача одной секции такой чугунной батареи составляет 150 Ватт. Соответственно 150 умножаем на количество установленных у Вас секций и получаем число тепловой энергии отопления вашего помещения. Отталкиваясь от этого числа находим выше описаным способом количество секций новых радиаторов.

Этот нехитрый расчет произведен за условия, что температура теплоносителя не ниже 70 C. Если температура теплоносителя ниже, стоит увеличить число секций радиатора. Также, при рассчетах, необходимо учесть тепловие потери помещения. Установка стеклопакета уменьшит теплопотери на 15-20%, а установка декоративной панели, закрывающей радиатор, уменьшит теплоотдачу радиатора на 20-30%. Также стоит учитывать расположение Вашей комнаты — угловая или нет, первый или последний этаж, а также степень утепления стен.

способы и схемы, что влияет на теплопотери

Для расчёта количества радиаторов существует несколько методик, но суть их одна: узнать максимальные теплопотери помещения, а затем рассчитать количество отопительных приборов, необходимое для их компенсации.

Способы расчёта радиаторов отопления

Сделать расчёт радиаторов можно двумя способами: по площади или объёму помещения

Методы расчёта есть разные. Самые простые дают приблизительные результаты. Тем не менее их можно использовать, если помещения стандартные или применить коэффициенты, которые позволяют учесть имеющиеся «нестандартные» условия каждого конкретного помещения (угловая комната, выход на балкон, окно во всю стену и т. п.). Есть более сложный расчёт по формулам. Но по сути это те же коэффициенты, только собранные в одну формулу.

Есть ещё один метод. Он определяет фактические потери. Специальное устройство — тепловизор — определяет реальные потери тепла. И на основании этих данных рассчитывают сколько нужно радиаторов для их компенсации. Чем ещё хорош этот метод, так это тем, что на снимке тепловизора точно видно, где тепло уходит активнее всего. Это может быть брак в работе или в строительных материалах, трещина и т. д. Так что заодно можно выправить положение.

По площади

Самый простой способ. Посчитать требуемое на обогрев количество тепла исходя из площади помещения, в котором будут устанавливаться радиаторы. Площадь каждой комнаты вы знаете, а потребность тепла можно определить по строительным нормам СНиПа:

  • для средней климатической полосы на отопление 1 кв. м жилого помещения требуется 60-100 Вт;
  • для областей выше 60ºC требуется 150-200 Вт.

Исходя из этих норм, можно посчитать, сколько тепла потребует ваша комната. Если квартира/дом находится в средней климатической полосе, для отопления площади 16 кв. м, потребуется 1 600 Вт тепла (16*100=1600). Так как нормы средние, а погода постоянством не балует, считаем, что требуется 100 Вт. Хотя, если вы проживаете на юге средней климатической полосы и зимы у вас мягкие, считайте по 60 Вт.

Запас по мощности в отоплении нужен, но не очень большой: с увеличением количества требуемой мощности возрастает количество радиаторов. А чем больше радиаторов, тем больше теплоносителя в системе. Если для тех, кто подключён к центральному отоплению это некритично, то для тех у кого стоит или планируется индивидуальное отопление, большой объем системы означает большие (лишние) затраты на обогрев теплоносителя и большую инерционность системы (менее точно поддерживается заданная температура). И возникает закономерный вопрос: «Зачем платить больше?».

Рассчитав потребность помещения в тепле, можем узнать, сколько потребуется секций. Каждый из отопительных приборов выделять может определённое количество тепла, которое указывается в паспорте. Берут найденную потребность в тепле и делят на мощность радиатора. Результат — необходимое количество секций, для восполнения потерь.

Посчитаем количество радиаторов для того же помещения. Мы определили, что требуется выделить 1 600 Вт. Пусть мощность одной секции 170 Вт. Получается 1 600/170=9,411 шт. Округлять можно в большую или меньшую сторону на ваше усмотрение. В меньшую можно округлить, например, в кухне — там хватает дополнительных источников тепла, а в большую — лучше в комнате с балконом, большим окном или в угловой комнате.

Система проста, но недостатки очевидны: высота потолков может быть разной, материал стен, окна, утепление и ещё ряд факторов не учитывается. Так что расчёт количества секций радиаторов отопления по СНиП — ориентировочный. Для точного результата нужно внести корректировки.

По объёму помещения

При таком расчёте учитывается не только площадь, но и высота потолков, ведь нагревать нужно весь воздух в помещении. Так что такой подход оправдан. И в этом случае методика аналогична. Определяем объём помещения, а затем по нормам узнаём, сколько нужно тепла на его обогрев:

  • в панельном доме на обогрев кубометра воздуха требуется 41 Вт;
  • в кирпичном доме на 1 куб. м — 34 Вт.

Обогревать нужно весь объем воздуха в помещении потому правильнее считать количество радиаторов по объёму.

Рассчитаем все для того же помещения площадью 16 кв. м и сравним результаты. Пусть высота потолков 2,7 м. Объём: 16*2,7=43,2 куб. м.

Дальше посчитаем для вариантов в панельном и кирпичном доме:

  • В панельном доме. Требуемое на отопление тепло 43,2 куб м*41В=1 771,2 Вт. Если брать все те же секции мощностью 170 Вт, получаем: 1 771 Вт/170 Вт=10,418 шт. (11 шт.).
  • В кирпичном доме. Тепла нужно 43,2 куб. м*34 Вт=1 468,8 Вт. Считаем радиаторы: 1 468,8 Вт/170 Вт=8,64 шт. (9 шт.).

Как видно, разница получается довольно большая: 11 и 9 шт. Причём при расчёте по площади получили среднее значение (если округлять в ту же сторону) — 10 шт.

Корректировка результатов

Для того чтобы получить более точный расчёт нужно учесть как можно больше факторов, которые уменьшают или увеличивают потери тепла. Это то, из чего сделаны стены и как хорошо они утеплены, насколько большие окна, и какое на них остекление, сколько стен в комнате выходит на улицу и т. п. Для этого существуют коэффициенты, на которые нужно умножить найденные значения теплопотерь помещения.

Как количество секций зависит от величины потерь тепла

Теплопотери зависят от нескольких факторов: размещения окон, стен

Окна

На окна приходится от 15 до 35% потерь тепла. Конкретная цифра зависит от размеров окна и от того, насколько хорошо оно утеплено. Потому имеются два соответствующих коэффициента:

Соотношение площади окна к площади пола:

  • 10% — 0,8;
  • 20% — 0,9;
  • 30% — 1,0;
  • 40% — 1,1;
  • 50% — 1,2;

Остекление:

  • трёхмерный стеклопакет или аргон в двухкамерном стеклопакете — 0,85;
  • обычный двухкамерный стеклопакет — 1,0;
  • обычные двойные рамы — 1,27.

Стены и кровля

Для учёта потерь важен материал стен, степень теплоизоляции, количество стен, выходящих на улицу. Вот коэффициенты для этих факторов.

Степень теплоизоляции:

  • кирпичные стены толщиной в два кирпича считаются нормой — 1,0;
  • недостаточная (отсутствует) — 1,27;
  • хорошая — 0,8;

Наличие наружных стен

  • внутреннее помещение — без потерь, коэффициент 1,0;
  • одна — 1,1;
  • две — 1,2;
  • три — 1,3.

На величину теплопотерь оказывает влияние отапливаемое или нет помещение находится сверху. Если сверху обитаемое отапливаемое помещение (второй этаж дома, другая квартира и т. п.), коэффициент уменьшающий — 0,7, если отапливаемый чердак — 0,9. Принято считать, что неотапливаемый чердак никак не влияет на температуру в и (коэффициент 1,0).

Если расчёт проводили по площади, а высота потолков нестандартная (за стандарт принимают высоту 2,7 м), то используют пропорциональное увеличение/уменьшение при помощи коэффициента. Считается он легко. Для этого реальную высоту потолков в помещении делите на стандарт 2,7 м. Получаете искомый коэффициент.

Посчитаем для примера: пусть высота потолков 3,0 м. Получаем: 3,0 м/2,7 м=1,1. Значит количество секций радиатора, которое рассчитали по площади для этого помещения нужно умножить на 1,1.

Все эти нормы и коэффициенты определялись для квартир. Чтобы учесть теплопотери дома через кровлю и подвал/фундамент, нужно увеличить результат на 50%, то есть коэффициент для частного дома 1,5.

Климатические факторы

Можно внести корректировки в зависимости от средних температур зимой:

  • 10ºC и выше — 0,7;
  • 15ºC — 0,9;
  • 20ºC — 1,1;
  • 25ºC — 1,3;
  • 30ºC — 1,5 .

Учитывая все требуемые корректировки, получаяте более точное количество требуемых на обогрев комнаты радиаторов с учётом параметров помещений. Но это ещё не все критерии, которые оказывают влияние на мощность теплового излучения. Есть ещё технические тонкости, о которых расскажем ниже.

Расчёт разных типов радиаторов

Если вы собрались ставить секционные радиаторы стандартного размера (с осевым расстоянием 50 см высоты) и уже выбрали материал, модель и нужный размер, никаких сложностей с расчётом их количества быть не должно. У большинства солидных фирм, поставляющих хорошее отопительное оборудование, на сайте указаны технические данные всех модификаций, среди которых есть и тепловая мощность. Если указана не мощность, а расход теплоносителя, то перевести в мощность просто: расход теплоносителя в 1 л/минуту примерно равен мощности в 1 кВт (1 000 Вт).

Осевое расстояние радиатора определяется по высоте между центрами отверстий для подачи/отведения теплоносителя. Чтобы облегчить жизнь покупателям на многих сайтах устанавливают специально разработанную программу-калькулятор. Тогда расчёт секций радиаторов отопления сводится к внесению данных по вашему помещению в соответствующие поля. А на выходе вы имеете готовый результат: количество секций данной модели в штуках.

Осевое расстояние определяют между центрами отверстий для теплоносителя. Но если просто пока прикидываете возможные варианты, то стоит учесть, что радиаторы одного размера из разных материалов имеют разную тепловую мощность. Методика расчёта количества секций биметаллических радиаторов от расчёта алюминиевых, стальных или чугунных ничем не отличается. Разной может быть только тепловая мощность одной секции.

Чтобы считать было проще, есть усреднённые данные, по которым можно ориентироваться. Для одной секции радиатора с осевым расстоянием 50 см приняты такие значения мощностей:

  • алюминиевые — 190 Вт;
  • биметаллические — 185 Вт;
  • чугунные — 145 Вт.

Если вы пока только прикидываете, какой из материалов выбрать, можете воспользоваться этими данными. Для наглядности приведём самый простой расчёт секций биметаллических радиаторов отопления, в котором учитывается только площадь помещения.

При определении количества отопительных приборов из биметалла стандартного размера (межосевое расстояние 50 см) принимается, что одна секция может обогреть 1,8 кв. м площади. Тогда на помещение 16 кв. м нужно: 16 кв. м/1,8 кв. м=8,88 шт. Округляем — нужны 9 секций.

Аналогично считаем чугунные или стальные баратареи. Нужны только нормы:

  • биметаллический радиатор — 1,8 кв. м;
  • алюминиевый — 1,9-2,0 кв. м;
  • чугунный — 1,4-1,5 кв. м.

Это данные для секций с межосевым расстоянием 50 см. Сегодня же в продаже есть модели с самой разной высоты: от 60 до 20 см и даже ещё ниже. Модели 20 см и ниже называют бордюрными. Естественно, их мощность отличается от указанного стандарта, и, если вы планируете использовать «нестандарт», придётся вносить коррективы. Или ищите паспортные данные, или считайте сами. Исходим из того, что теплоотдача теплового прибора напрямую зависит от его площади. С уменьшением высоты уменьшается площадь прибора, а, значит, и мощность уменьшается пропорционально. То есть, нужно найти соотношение высот выбранного радиатора со стандартом, а потом при помощи этого коэффициента откорректировать результат.

Расчёт чугунных радиаторов отопления. Считать может по площади или объёму помещения. Для наглядности сделаем расчёт алюминиевых радиаторов по площади. Помещение то же: 16 кв. м. Считаем количество секций стандартного размера: 16 кв. м/2 кв. м=8 шт. Но использовать хотим маломерные секции высотой 40 см. Находим отношение радиаторов выбранного размера к стандартным: 50/40 см=1,25. И теперь корректируем количество: 8 шт.*1,25=10 шт.

Корректировка в зависимости от режима отопительной системы

Производители в паспортных данных указывают максимальную мощность радиаторов: при высокотемпературном режиме использования — температура теплоносителя в подаче 90ºC, в обратке — 70ºC (обозначается 90/70) в помещении при этом должно быть 20ºC. Но в таком режиме современные системы отопления работают очень редко. Обычно используется режим средних мощностей 75/65/20 или даже низкотемпературный с параметрами 55/45/20. Понятно, что требуется расчёт откорректировать.

Для учёта режима работы системы нужно определить температурный напор системы. Температурный напор — это разница между температурой воздуха и отопительных приборов. При этом температура отопительных приборов считается как среднее арифметическое между значениями подачи и обратки.

Нужно учесть особенности помещений и климата чтобы правильно рассчитать количество секций радиатора. Чтобы было понятнее произведём расчёт чугунных радиаторов отопления для двух режимов: высокотемпературного и низкотемпературного, секции стандартного размера (50 см). Помещение то же: 16 кв. м. Одна чугунная секция в высокотемпературном режиме 90/70/20 обогревает 1,5 кв. м. Потому нам потребуется 16 кв. м/1,5 кв. м=10,6 шт. Округляем — 11 шт. В системе планируется использовать низкотемпературный режим 55/45/20. Теперь найдём температурный напор для каждой из систем:

  • высокотемпературная 90/70/20 — (90+70)/2-20=60ºC;
  • низкотемпературный 55/45/20 — (55+45)/2-20=30ºC.

То есть если будет использоваться низкотемпературный режим работы, понадобится в два раза больше секций для обеспечения помещения теплом. Для нашего примера на комнату 16 кв. м требуется 22 секции чугунных радиаторов. Большая получается батарея. Это, кстати, одна из причин, почему этот вид отопительных приборов не рекомендуют использовать в сетях с низкими температурами.

При таком расчёте можно принять во внимание и желаемую температуру воздуха. Если вы хотите, чтобы в помещении было не 20ºC а, например, 25ºC просто рассчитайте тепловой напор для этого случая и найдите нужный коэффициент. Сделаем расчёт все для тех же чугунных радиаторов: параметры получатся 90/70/25. Считаем температурный напор для этого случая (90+70)/2-25=55ºC. Теперь находим соотношение 60/55ºC=1,1. Чтобы обеспечить температуру в 25ºC нужно 11 шт*1,1=12,1 шт.

Зависимость мощности батарей от подключения и места расположения

 

Кроме всех описанных выше параметров, теплоотдача радиатора изменяется в зависимости от типа подключения. Оптимальным считается диагональное подключение с подачей сверху, в таком случае потерь тепловой мощности нет. Самые большие потери наблюдаются при боковом подключении — 22%. Все остальные — средние по эффективности. Приблизительно величины потерь в процентах указаны на рисунке.

Уменьшается фактическая мощность радиатора и при наличии заграждающих элементов. Например, если сверху нависает подоконник, теплоотдача падает на 7-8%, если он не полностью перекрывает радиатор, то потери 3-5%. При установке сетчатого экрана, который не доходит до пола, потери примерно такие же, как и в случае с нависающим подоконником: 7-8%. А вот если экран закрывает полностью весь отопительный прибор, его теплоотдача уменьшается на 20-25%.

Для однотрубных систем

Есть ещё один очень важный момент: все вышеизложенное справедливо для двухтрубной системы отопления, когда на вход каждого из радиаторов поступает теплоноситель с одинаковой температурой. Однотрубная система считается намного сложнее: там на каждый последующий отопительный прибор вода поступает все более холодная. И если хотите рассчитать количество радиаторов для однотрубной системы, нужно каждый раз пересчитывать температуру, а это сложно и долго. Какой выход? Одна из возможностей — определить мощность радиаторов как для двухтрубной системы, а потом пропорционально падению тепловой мощности добавлять секции для увеличения теплоотдачи батареи в целом.

Поясним на примере: на схеме изображена однотрубная система отопления с шестью радиаторами. Количество батарей определили для двухтрубной разводки. Теперь нужно внести корректировку. Для первого отопительного прибора все остаётся по-прежнему. На второй поступает уже теплоноситель с меньшей температурой. Определяем % падения мощности и на соответствующее значение увеличиваем количество секций. На картинке получается так: 15-3кВт=12кВт. Находим процентное соотношение: падение температуры составляет 20%. Соответственно для компенсации увеличиваем количество радиаторов: если нужно было 8 шт., будет на 20% больше — 9 или 10 шт. Вот тут и пригодится вам знание помещения: если это спальня или детская, округлите в большую сторону, если гостиная или другое подобное помещение, округляете в меньшую. Принимаете во внимание и расположение относительно сторон света: в северных округляете в большую, в южных — в меньшую.

В однотрубных системах нужно в расположенных дальше по ветке радиаторах добавлять секции. Этот метод явно не идеален: ведь получится, что последняя в ветке батарея должна будет иметь просто огромные размеры: судя по схеме на ее вход подается теплоноситель с удельной теплоемкостью равной ее мощности, а снять все 100% на практике нереально. Потому обычно при определении мощности котла для однотрубных систем берут некоторый запас, ставят запорную арматуру и подключают  радиаторы через байпас, чтобы можно было отрегулировать теплоотдачу, и таким образом компенсировать падение температуры теплоносителя. Из всего этого следует одно: количество или/и размеры радиаторов в однотрубной системе нужно увеличивать, и по мере удаления от начала ветки ставить все больше секций.

Приблизительный расчёт количества секций радиаторов отопления дело несложное и быстрое. А вот уточнение в зависимости от всех особенностей помещений, размеров, типа подключения и расположения требует внимания и времени. Зато вы точно сможете определиться с количеством отопительных приборов для создания комфортной атмосферы зимой.

Оцените статью:

Поделитесь с друзьями!

Калькулятор отопления

БТЕ — Trade Radiators

Чтобы упростить выбор радиатора, подходящего для вашего дома, калькулятор отопления Trade Radiators рассчитает необходимую тепловую мощность (в БТЕ и ваттах), необходимую для поддержания комфортной температуры в помещении. Эти значения указаны для всех радиаторов, которые мы продаем на сайте, чтобы помочь вам составить короткий список подходящих продуктов. Чтобы помочь вам лучше понять, как, где, почему и когда вы будете использовать этот калькулятор, мы ответили на некоторые популярные вопросы о BTU, калькуляторе отопления, как он влияет на ваш дом и как он работает.

Для чего нужен этот калькулятор?

Допустим, вам нужен новый радиатор для кухни, и вы пытаетесь понять, какой тип купить. Вы думаете о самом большом радиаторе, потому что в вашей комнате все время становится холодно. Однако покупка самой большой модели будет означать, что ваша кухня может быстро нагреваться все время, и вы в конечном итоге будете тратить энергию (и, в свою очередь, деньги) на обогрев кухни. Чтобы этого избежать, воспользуйтесь этим калькулятором.

Зачем нужен счетчик отопления?

Чтобы убедиться, что вы не покупаете радиатор неправильного размера, а также знаете, какие ватты и BTU требуются для обогрева помещения, в которое будет помещен радиатор.

Что такое БТЕ?

BTU — британские тепловые единицы. Это измерение, используемое для определения количества энергии, необходимого для обогрева (и охлаждения) комнаты в зависимости от ее размера. Проще говоря; чем выше BTU, тем выше будет выход энергии. Насколько это эффективно, зависит от размера комнаты и того, что находится за стенами, полом и крышей.

А может радиатор не того размера?

Вы бы не поставили небольшую вешалку для полотенец 600 мм на 600 мм в гостиной и не поставили бы вертикальный радиатор высотой 1600 мм в спальне с коробкой.Можно выбрать радиатор неправильного размера для своего дома, особенно если вы не понимаете, сколько энергии необходимо для обогрева указанной комнаты, и какие препятствия могут естественным образом стоять на пути. Определение размера и характеристик комнаты помогает сделать осознанную покупку.

Какие измерения мне нужны?

Чтобы эффективно рассчитать выходной сигнал BTU для любой комнаты, вы должны начать с рулетки и измерить высоту комнаты, ширину комнаты, длину комнаты и, наконец, размер окна ( это длина по ширине окна в м²).

И чтобы помочь устранить любую путаницу в том, что считается шириной и длиной, длина комнаты (сверху вниз) почти всегда будет больше ширины (из стороны в сторону).

Почему важен тип комнаты?

Сообщив нам, какой тип комнаты, мы сможем лучше рассчитать, сколько энергии потребуется для обогрева помещения.

Разные комнаты имеют разные особенности и предметы, которые необходимо учитывать. Например, вы удивитесь, сколько жилых комнат имеют большой радиатор, но спрятан за диваном, который втягивает все тепло.Кухни, как правило, облицованы плиткой или ламинатом и часто представляют собой комнату, где двери в и из дома постоянно открываются и закрываются, а это означает, что им требуется высокий уровень БТЕ, чтобы оставаться в тепле.

То же самое касается коридоров, которые будут иметь наибольшую высоту, наименьшую ширину и больше всего подвержены воздействию холода на улице при открывании и закрывании входной двери.

Почему имеет значение то, что находится под комнатой?

Жара не просто поднимается. Он распространяется по всей комнате во всех направлениях, и когда у вас есть пол на один этаж выше или вы укладываете бетон, это может значительно повлиять на сохранение тепла в вашей комнате.

Для любых комнат наверху BTU обычно будет ниже, поскольку естественное тепло, поднимающееся с первого этажа, в сочетании с изолированными полами и ковровым покрытием означает, что такие помещения, как ваша спальня, могут довольно хорошо удерживать тепло.

Когда мы находимся на первом этаже, тепловая эффективность может быть изменена, если у вас есть грунт под деревянным полом, грунт под бетоном или подвесной пол. То, что происходит под полом, очень важно, так как плохо вентилируемый пол может вызвать конденсацию или скопление загрязненного воздуха.Во многих современных домах есть собственная вытяжная вентиляция под полом для циркуляции тепла.

Если вы обойдете дом снаружи и увидите, что на одном из кирпичей на нижней стене есть пластиковая решетка кирпичного цвета, у вас есть подвесной пол, и это вентиляционное отверстие, выходящее из него. Если вы знаете, что под вашим деревянным полом или ковром находится просто большой твердый серый пол, у вас есть земля под твердым бетонным полом.

Почему имеет значение то, что находится над комнатой?

Если вы не в бунгало, есть вероятность, что над любой комнатой на первом этаже будет комната, до которой захочется подняться тепло.Вот что означает каждая из опций в этом разделе калькулятора:

Обогреваемая комната
Если ваша спальня или ванная комната находится над любой используемой ниже комнатой, то они над отапливаемой комнатой. Это означает, что возникающее тепло может служить своего рода буфером для вашей комнаты.

Скатная изолированная крыша
Если ваш чердак находится наверху и не изолирован, ваша комната уже может быть очень теплой с точки зрения тепла или вам потребуется мощный радиатор для сохранения тепла.

Утепленная скатная крыша 50 мм
Тонко утепленная крыша обычно является признаком того, что ваши комнаты на верхнем этаже уже имеют хорошую изоляцию.

Изолированная скатная крыша 100 мм
Толсто изолированная крыша будет признаком того, что в вашей комнате проблемы с теплом, но эта изоляция должна помочь ей довольно легко оставаться в тепле.

Почему важен тип наружных стен?

Все стены могут выглядеть одинаково, но то, что внутри, может сильно отличаться. Как правило, дома, построенные здесь, в Великобритании, начиная с 1920-х годов, будут иметь полые стены, то есть стены с пространством посередине. Сейчас некоторые из них могут быть без теплоизоляции, но во многих современных зданиях есть изоляция из пенопласта в полости, которая помогает дому сохранять тепло.

Определить, какие у вас стены, не составит труда. Если кирпичи чередуются от ряда к ряду, вероятно, у вас есть изоляция полости. Теперь, если ваша стена закрыта, и вы не видите кирпич, просто перейдите к внешней стене с окном в ней. Если вы можете с уверенностью сказать, что стена толще 26 см, в ней будет полость. Если он намного тоньше или явно толще, это может быть сплошная кирпичная стена. И если вам интересно, что такое стена с деревянным каркасом, это просто старая стена, которая частично поддерживается деревянным каркасом, но обычно это всегда присутствует только в очень старых домах.

Почему важен тип окон?

Тепло любит окна. Они всегда холодные, и это самый простой способ сбежать из комнаты. Окна с одинарным остеклением — самые слабые, и когда в комнатах вы много используете, выходная мощность в BTU должна быть выше, чтобы согреть пространство.

Во многих современных домах есть двойное остекление, которое помогает удерживать много тепла и снижает BTU.

Почему имеет значение количество внешних стен?

Количество стен, выходящих наружу, влияет на способность помещения сохранять тепло.В большинстве домов в гостиной две стены, расположенные ближе всего к двери, обращены внутрь дома, а две — наружу. Те, что находятся внутри, будут тоньше, но к ним будут примыкать другие стены с другими радиаторами, излучающими тепло, в то время как внешние стены будут иметь только изоляцию, а затем внешние элементы.

Наружные стены почти всегда находятся там, где отвод тепла меньше всего. Вот почему во многих домах вы обнаружите, что радиатор в гостиной находится либо у внутренней стены, где он требует наименьшего сопротивления нагреву, либо у внешней стены под вашим большим окном, где он может вызвать сквозняк из пола вверх.Это предотвращает постоянное ощущение холода в комнате из-за конвекции (поскольку многие люди не понимают, что радиаторы отводят тепло, а не излучают тепло).

Ваши радиаторы и рейтинги Delta

Когда вы нажмете на любой радиатор или полотенце на месте, вы заметите, что первая указанная нами спецификация — это BTU продукта. Мы используем рейтинг Delta 50 (также известный как T50 / Δ50) для всех наших продуктов. Это стандартный отраслевой рейтинг, в котором указано, что расход = 75 ° C, возврат = 65 ° C, помещение = 20 ° C.Большинство систем отопления домов в Великобритании следуют этому рейтингу.

Дельта-рейтинг важен для расчетов в БТЕ, поскольку он соответствует ожидаемой идеальной комнатной температуре 20 ° C. Любой уважаемый магазин придерживается стандарта BS EN 442 и использует Delta 50 в качестве ориентира. Если вы видите, что другой интернет-магазин перечисляет продукты как Delta60 (Δ60) или Delta 70 (Δ70), они предоставляют завышенные выходные BTU (они повышают предполагаемую температуру, чтобы характеристики продукта выглядели лучше).

Не обманывайтесь рейтингами Delta

Важно соблюдать осторожность при использовании Delta 60 и Delta 70.Нечестный поставщик, по сути, лжет, заявляя, что его радиаторы обеспечивают большую тепловую мощность, когда вы сравниваете ту же марку и модель на их сайте с той, которую вы найдете в Trade Radiators.

Например, радиатор, обозначенный как Δ60, когда он должен быть Δ50, будет иметь более высокий рейтинг BTU на 1,264 (например, радиатор Δ50 с BTU, равным 1000, теперь волшебным образом будет иметь рейтинг BTU, равный 1264). Остерегайтесь этого, иначе вы получите радиатор, который недостаточно отапливает вашу комнату.

Нужна помощь в выборе радиатора?

Описание калькулятора БТЕ | Только радиаторы

Добро пожаловать обратно в блог Only Radiators, где на этой неделе мы демистифицируем неуловимые BTU.

Мы начнем с разбивки самого устройства, а затем перейдем к использованию лучших функций нашего калькулятора BTU, чтобы улучшить ваши впечатления от просмотра нашего обширного интернет-магазина, позволив вам отфильтровать поиск радиаторов только до наиболее актуальные единицы.

Итак, давайте начнем с вопроса, который мы слышим так часто.

Что означает BTU?

«Британская тепловая единица» — традиционная единица тепла, определяемая как количество, необходимое для поднятия одного фунта воды на один градус по Фаренгейту.Если вы хотите понять, что это означает в реальном мире, одна БТЕ составляет примерно 1,06 кДж (килоджоулей) или тепло, выделяемое при сжигании одной деревянной спички на кухне!

Итак, теперь у нас есть определение, давайте перейдем к делу.

Сколько БТЕ для обогрева комнаты?

«Сколько БТЕ мне нужно для обогрева дома?» Это вопрос, который мы слышим так же часто, и ответ сводится к ключевым элементам комнаты, которую мы хотим отапливать.

Требования к БТЕ помещения зависят от таких факторов, как площадь пола и высота по вертикали, наличие в помещении внешних стен, количество пространства на стенах, занимаемое окнами и их остеклением, и т. Д.

Что расположено в комнате внизу — пол с подогревом, комната с подогревом, деревянный пол или что-то еще? А сверху — шиферная, соломенная или деревянная крыша и какой толщины утеплителя?

В расчетах

БТЕ учитывается тепло, необходимое для наполнения комнаты, а также количество тепла, которое может уйти. Лучшая изоляция равняется меньшему количеству БТЕ, в то время как то же самое верно и для противоположного.

Очень просто!

Расчет BTU

Чтобы узнать количество БТЕ, необходимое для обогрева помещения с новым радиатором, вы можете использовать наш удобный калькулятор БТЕ .

Использование нашего калькулятора BTU

Имея всего лишь рулетку (или один из тех классных лазерных инструментов, если вы чувствуете себя футуристично!), Комнату для измерений и несколько минут вашего времени, вы успешно сузите свой поиск до только самых подходящих радиаторов. , экономя ваши деньги, время и усилия, и позволяя вам непрерывно просматривать наш огромный интернет-магазин.

Давайте рассмотрим это шаг за шагом.

Шаг 1 — Размеры комнаты

Во-первых, вам нужно измерить длину, ширину и высоту помещения, которое вы хотите обогреть.Затем вы можете ввести эти измерения в калькулятор БТЕ в метрах или футах.

Шаг 2 — Дополнительная информация о комнате

Затем калькулятору BTU требуется немного больше информации о планировке и конструкции вашей комнаты.

Как он вписывается в остальную часть дома, какой тип остекления предлагает окна и насколько комната подвержена воздействию элементов.

Ответьте на них, выбрав тип комнаты, тип окна и уровень укрытия.

Шаг 3 — Результаты BTU!

И вот вам ответ.

Наш калькулятор БТЕ предоставляет вам два измерения — БТЕ / час и требуемую мощность в ваттах. Это единственные два измерения, которые вам понадобятся, и два измерения, которые вы найдете для каждого радиатора в нашем интернет-магазине.

Минимальная производительность — это самое важное число здесь. При условии, что мощность в BTU выбранного вами радиатора равна или больше минимального значения, указанного в калькуляторе, у вас будет достаточно тепла, чтобы обогреть комнату.

Просмотр только радиаторов по BTU

Теперь, когда вы знаете, как рассчитать, сколько БТЕ для обогрева комнаты, вы можете отточить свой поиск до только самых подходящих доступных радиаторов.

Чтобы просмотреть наши радиаторы по мощности в BTU, сначала зайдите в любой раздел нашего обширного интернет-магазина, например, на главную страницу вертикальные радиаторы , и обратите внимание на набор критериев поиска в левой части страницы.

Помимо возможности просматривать наш выбор по размеру, цвету и другим параметрам, мы даем вам возможность осуществлять поиск по:

  • БТЕ: количество БТЕ, вытесняемых радиатором в час.
  • Вт: стандарт для определения размера электрического обогревателя, необходимого для обогрева помещения.

Общее правило — 10 Вт мощности, необходимой на квадратный фут обогреваемого помещения. Следите за обновлениями, чтобы увидеть статью о том, что к чему с ваттами, а пока давайте вернемся к нашим любимым БТЕ.

Гибкость БТЕ?

Не отчаивайтесь, если окажется, что радиатор, который вам просто необходим, недостаточно мощный, чтобы наполнить комнату теплом.

Радиатор со слишком низкой выходной мощностью в BTU может быть не в состоянии эффективно обогревать комнату в одиночку, хотя, если это абсолютно необходимо, обычно будет нормально около 10% ниже.

Помните, что измерение, полученное с помощью нашего калькулятора BTU, является всеобъемлющим показателем, учитывающим все возможные нагревательные элементы в комнате. Несмотря на то, что зимой вам не нужно ставить в ряд шесть дополнительных электрических обогревателей, вы, безусловно, можете выбрать два или три радиатора меньшего размера, которые соответствуют требованиям к БТЕ для вашей комнаты.

Когда речь заходит о технических характеристиках BTU, на самом деле нет топ-класса, поэтому вам не нужно беспокоиться о чрезмерных расходах на радиатор, здесь вам пригодятся термостатические клапаны, вы можете просто выключить их, чтобы найти идеальный тепло.

Вот почему использование нашего калькулятора BTU на самом деле увеличивает гибкость при покупке нового радиатора, а не ограничивает его.

Если у вас есть расчет в БТЕ, ваш поиск станет намного проще, и вы не будете тратить деньги на запуск гигантских радаров на половинной мощности или выстраивание шести электрических обогревателей, чтобы пополнить незащищенное помещение зимой.

Нажимая темп

Вы можете увеличить или уменьшить BTU радиатора несколькими способами, например, увеличив температуру воды, протекающей через систему.Хотя обычно используется тепло 50 ° C, его можно увеличить до 60 ° C с небольшой регулировкой, которая повысит BTU радиатора.

И когда дело доходит до материала радиатора, который вы имеете в виду, он также имеет большое значение для выхода продукта в BTU. Если вам требуется максимальное количество тепла от радиатора наименьшего размера, лучше всего подойдет одна из наших алюминиевых моделей.

БТЕ и вы

Проще говоря, БТЕ — это универсальная единица измерения эффективности радиатора.

Думайте о них как о руководстве по выбору размеров радиатора и верном пути к поиску радиатора подходящего размера для вашей комнаты.

Теперь наслаждайтесь просмотром нашего сайта и получите еще более полное представление о радиаторе, который идеально вам подойдет!

И если вам нужен совет или помощь относительно того, что мы только что рассмотрели, позвоните нашей группе экспертов.

От чего зависит теплоотдача радиатора. Методика расчета тепловыделения радиатора батарей отопления

Вопрос об эффективной работе системы отопления во многом зависит от того, как рассчитывается тепловая мощность радиаторов.Эти устройства являются основным источником тепла, которое нагревает воздух внутри помещения. Поэтому еще на этапе проектирования инженеры проводят расчеты, на основании которых в каждой комнате устанавливается радиатор с определенным количеством секций. Эти расчеты не так просты, потому что они должны учитывать большое количество критериев.

Что нужно учитывать при расчетах?

Расчет радиаторов

Обязательно учтите:

  • Материал, из которого изготовлена ​​нагревательная батарея.
  • Его размер.
  • Количество окон и дверей в комнате.
  • Материал, из которого построен дом.
  • Сторона света, на которой находится квартира или комната.
  • Наличие теплоизоляции здания.
  • Тип разводки трубопроводной системы.

И это лишь малая часть того, что нужно учитывать при. Не забывайте о региональном расположении дома, а также о средней уличной температуре.

  • Обычный — с помощью бумаги, ручки и калькулятора. Формула расчета известна, и в ней используются основные показатели — теплопроизводительность одной секции и площадь отапливаемого помещения. Также коэффициенты добавляются-понижаются и повышаются, что зависит от ранее описанных критериев.
  • С помощью онлайн-калькулятора. Это простая в использовании компьютерная программа, в которую загружаются определенные данные о размерах и конструкции дома. Он дает достаточно точный показатель, который берется за основу при проектировании системы отопления.

Для обычного обывателя любой вариант — не самый простой способ определить тепловую мощность отопительной батареи. Но есть еще один метод, для которого используется простая формула — 1 кВт на 10 м² площади. То есть для обогрева помещения площадью 10 квадратных метров потребуется всего 1 киловатт тепловой энергии. Зная коэффициент теплоотдачи одной секции радиатора, можно точно рассчитать, сколько секций нужно установить в том или ином помещении.

Давайте рассмотрим несколько примеров, как это сделать правильно.Различные типы радиаторов имеют большой размерный диапазон, который зависит от межосевого расстояния. Это размер между осями нижнего и верхнего коллектора. Для большинства отопительных батарей этот показатель составляет либо 350 мм, либо 500 мм. Есть и другие параметры, но они встречаются чаще других.

Это первый. Во-вторых — на рынке представлено несколько видов отопительных приборов из разных металлов. У каждого металла своя теплоотдача, и это необходимо учитывать при расчете.Кстати, какой выбрать и поставить радиатор в своем доме, каждый решает сам.

Теплоотдача чугунных радиаторов

Диапазон теплопередачи чугунных аккумуляторов колеблется в пределах 125-150 Вт. Разброс зависит от межосевого расстояния. Теперь можно посчитать. Например, ваша комната имеет площадь 18 м². Если планируется установка батареи 500 мм, то воспользуемся следующей формулой: (18: 150) x100 = 12. Получается, что в этом помещении нужно установить 12-секционный радиатор.

Все просто. Аналогичным образом можно рассчитать чугунный радиатор с межосевым расстоянием 350 мм. Но это будет только приблизительный расчет, потому что для точности необходимо учитывать коэффициенты. Их не так много, но с их помощью можно получить максимально точную цифру. Например, наличие в комнате не одного, а двух окон увеличивает теплопотери, поэтому конечный результат необходимо умножить на коэффициент 1,1. Мы не будем рассматривать все коэффициенты, так как это займет много времени.Мы уже писали о них на нашем сайте, поэтому найдите статью и прочтите.

Теплоотдача алюминиевых радиаторов

Для сравнения двух противоположных металлов была выбрана алюминиевая батарея. Алюминиевые радиаторы

Тепловыделение радиаторов Global рассчитывается согласно EN-442

тепловая мощность больше, и одна секция излучает 200 Вт тепла. Подставляя этот показатель в формулу, определяем, сколько секций следует использовать в помещении площадью 18 м².

(18: 200) x100 = 9. Количество секций уменьшилось только за счет высокой теплоотдачи алюминиевых устройств. Так что выбрать радиатор можно не только по размеру, но и по модели.

Способ подключения

Не все понимают, что разводка труб отопления и правильное подключение влияют на качество и эффективность теплопередачи. Разберем этот факт подробнее.

Есть 4 способа подключения радиатора:

  • Боковой. Этот вариант чаще всего используется в городских квартирах многоэтажных домов.Квартир в мире больше, чем частных домов, поэтому производители используют этот тип подключения как номинальный метод определения теплопередачи радиаторов. Для его расчета коэффициент равен 1,0.
  • Диагональ. Идеальное соединение, потому что теплоноситель проходит по всему устройству, равномерно распределяя тепло по его объему. Обычно этот вид применяется, если в радиаторе более 12 секций. В расчетах используется коэффициент приращения 1,1–1,2.
  • Нижний.В этом случае подводящий и обратный патрубки подключаются снизу радиатора. Обычно такой вариант используется при скрытой разводке труб. У такого типа подключения есть один минус — потери тепла 10%.
  • Одинарная труба. Это, собственно, нижнее подключение. Обычно его используют в системе разводки труб. И здесь не обошлось без тепловых потерь, правда, они в несколько раз больше — 30-40%.

Заключение по теме

Таблица мощности радиаторов

Вы сами смогли убедиться, что можно правильно рассчитать теплопередачу радиатора простым, хотя и не очень точным способом.Кроме того, мы должны учитывать широкий разброс размерных параметров батарей, материалов, из которых они изготовлены, а также дополнительные факторы. Так что все сложно.

Поэтому советуем действовать проще. Возьмите за основу саму формулу с соотношением площади комнаты и необходимого количества тепла. Сделайте расчет и прибавьте к нему до 10%. Если ваш дом находится в северном регионе, прибавьте 20%. Даже 10% — это очень щедро, но лишнего тепла нет.Более того, можно с помощью различных устройств контролировать подачу теплоносителя к радиаторам. Вы можете уменьшить, но можете увеличить. Единственный минус такой прибавки — первоначальная стоимость приобретения радиаторов с большим количеством секций. Особенно это касается алюминиевых и биметаллических устройств отопления.

Общепринятой температурой квартирного комфорта считается 21 0 по Цельсию. Чтобы иметь его в квартире на таком уровне и в зимние холода, используются различные системы отопления, в том числе автономные и системы центрального отопления.Здравый смысл и грамотный расчет тепловыделения радиатора отопительных батарей позволяет установить необходимое количество отопительных приборов, в том числе радиаторы.

Цели и задачи расчетов радиаторов отопления

Расчеты радиаторов проводятся для обеспечения эффективного функционирования системы отопления для обогрева конкретного жилого помещения, а в расчетах тепловой комфорт трактуется не только как положительная температура произвольной величины, но и предельно допустимая.Нет смысла устанавливать сверхвысокое количество обогревателей, если приходится открывать окно ради свежего воздуха (помните, слишком горячие батареи «сжигают» кислород). То есть расчеты определяют границы низкотемпературного и высокотемпературного нагрева.

Еще одна задача тепловых расчетов — определение параметров теплопередачи, позволяющих равномерно распределять тепловые потоки по помещению. В этом случае необходимо учитывать тепловые потери в зависимости от наличия в подвальном и мансардном помещении, например, материала стен, толщины стен, размеров окон и многих других сопутствующих факторов.

При проектировании строительного объекта используются специальные программы, тепловизоры можно использовать для расчета радиаторов в квартире. Но для приблизительных расчетов используются простые алгоритмы, которые принято называть калькуляторами расчета батарей отопления. Их методы основаны, в основном, на соотношении необходимой тепловой мощности обогревателя и площади отапливаемого помещения.

Методика расчета радиатора по площади

В условном расчете на площадь значение теплопроизводительности, регламентированной санитарными нормами, на 1 кв.метровая площадь помещения. Для умеренного климата на широте Москвы этот показатель составляет от 50 до 100 Вт. Для северных районов выше 60 0 северной широты он выше и принимается в пределах от 150 до 200 Вт на 1 кв. Км. метр. Паспортное значение теплопередачи одной чугунной секции указано размером от 125 до 150 Вт.

Определите необходимую мощность на 15 кв. метры:

100 x 15 = 1500 Вт.

Определить количество секций:

1500/125 = 12 секций, которые можно представить в виде двух шестисекционных чугунных батарей.

Этот расчет также эквивалентен для биметаллического радиатора, так как его теплопередача имеет практически такие же значения.

При расчетах использовались нормы потолка стандартной высоты 270 см. Для более высоких потолков расчеты радиаторов производятся исходя из параметров кубической комнаты.

Методика расчета радиатора по объему

В данном случае методика, или, как ее еще называют, калькулятор для выбора батарей кВт, оперирует такими понятиями, как номинальный тепловой поток Qn конкретного типа радиатора и количество тепловой энергии Qp, необходимое для обогрева 1 кубометра. .метр комнаты. Величина Q должна быть указана в паспорте радиатора. Значение Qp для помещения стандартного панельного дома составляет 0,041 кВт. Для кирпичного дома этот показатель снижается до 0,034 кВт на 1 куб. метр. Для жилых помещений, в которых хорошая теплоизоляция, тепловая мощность еще меньше — 0,02 кВт.

Количество секций радиатора определяется аналогично вычислителю батареи отопления по площади, то есть путем умножения объема помещения на удельную объемную тепловую энергию и последующего деления на значение номинальной тепловой энергии. поток радиатора:

N = V x Qp / Qnom, шт.Результат округляется в большую сторону.

Важно! Поскольку эти расчеты весьма приблизительны и не учитывают тепловые потери здания, округление в большую сторону даст некоторый запас для улучшения комфортных условий обогрева.

Учет дополнительных факторов при тепловых расчетах радиаторов

Дополнительными факторами, влияющими на теплопередачу радиаторов, являются поправочные коэффициенты, корректирующие отклонения от стандартных условий, принятых в основных расчетах.

Регулировка высоты

Стандартная высота комнаты 270 см. В случае большей высоты поправочный коэффициент определяется делением высоты комнаты на стандартное значение 270 см. То есть для комнаты высотой 324 см соотношение будет 324/270 = 1,2. Соответственно, удельная тепловая мощность составляет 100 Вт на 1 кв. Км. метр надо увеличить в 1,2 раза, то есть уже будет 120 Вт на кВ. метр.

Тепловая мощность батарей отопления зависит от расположения, поскольку конвекционные потоки смешиваются по-разному на разных расстояниях между ребрами радиатора и полом или подоконником.Поправочные коэффициенты показаны на диаграмме. При этом следует учитывать, что для угловых помещений потери тепла в два раза выше, так как в таких помещениях два окна.

Коэффициент поправки к номиналу тепловыделения радиатора является наиболее оптимальным при диагональном подключении труб отопления. Но особые условия монтажа аккумуляторов не всегда позволяют использовать эту схему.

Сводка

Сложно учесть все факторы, влияющие на теплопередачу радиатора.По словам сантехников, если в доме идеальная теплоизоляция, можно обойтись без отопления. Достаточно тепла от электроприборов и плиты. Также очень важно уметь рассчитывать теплопотери в зависимости от размеров окон, дверей и окон. Однако считается, что усредненные значения тепловых характеристик помещений и радиаторов позволяют с определенной точностью определить необходимое количество секций радиатора и не пропускать при комнатной температуре.

Тепловой расчет устройств заключается в определении необходимого номинального теплового потока, марки панельного радиатора или конвектора и количества секций или колонн секционных и трубчатых радиаторов. Расчет отопительных приборов выполняется согласно рекомендациям ООО ВИТАТЕРМ. Технические характеристики системы отопления приняты для устройства с межосевым расстоянием 500 мм (кроме конвектора).

Требуемый номинальный тепловой поток устройства, Вт, определяется по формуле

,
(11)

где Q и т. Д. — необходимая теплоотдача устройства, Вт;

— комплексный коэффициент приведения к номинальным условиям.

Тепловая мощность устройства Q и т. Д. , Вт, рассчитывается по формуле

Q и т. Д. =
Q p

Q tr ,
(12)

где Q p — тепловые потери помещения, определенные при расчете теплового баланса (из таблицы 3) W;

Q tr — суммарная теплоотдача труб, проложенных внутри помещения, Вт.

В курсовой работе полезная теплоотдача труб Q tr , Вт принимается в долях от тепловых потерь помещения: в двухтрубной вертикальной системе отопления верхнего этажа теплоотдача из труб — 5% тепловых потерь помещения и 15% остальных этажей; 5% от тепловых потерь помещения.

Комплексный коэффициент приведения к номинальным условиям определяется по формуле

,
(13)

где n, m, c — эмпирические численные значения, учитывающие влияние схемы течения теплоносителя на тепловой поток и коэффициент теплопередачи устройства, приведены в рекомендациях ООО «ВИТАТЕРМ» по наиболее оптимальной схеме движения воды «сверху вниз»;

p — коэффициент, учитывающий направления движения теплоносителя в устройстве;

б — коэффициент атмосферного давления на участке;

Δ
t — разница между средней температурой воды в приборе и температурой окружающего воздуха в помещении;

G etc — расход воды через устройство, кг / час.

Разница температур в приборе определяется по формуле

,
(14)

где т в ,
t out — температуру воды на входе и выходе из устройства, ºС, для двухтрубной системы водяного отопления со стальными трубами следует принимать t in = 95 ° C, t out = 70 ° С; при разводке полимерных труб температура выбирается в зависимости от характеристик их материала.Для металлополимерных труб t вх = 90 ºС и t вых = 70 ºС; для полипропилена t вход = 85 ºС и t вых = 65 ºС.

Расход воды через водонагреватель

, кг / час, определяется по формуле

,
(15)

где

— теплопотери помещения из таблицы 3, Вт;

β
1
— коэффициент, зависящий от шага номенклатуры устройства;

β
2
— коэффициент, зависящий от типа устройства и способа установки.

Оба коэффициента подбираются согласно таблице.

Количество секций нагревателя определяется по формуле

,
(16)

где — номинальный тепловой поток одной секции, Вт, указан в рекомендации по расчету нагревателя, таблица;

— коэффициент, характеризующий зависимость теплоотдачи радиатора от количества секций, табл.

Тепловой расчет нагревателей следует выполнять в табличной форме.

Таблица 4 — Тепловой расчет отопительных приборов

№ стояка, комн.

Теплопотери помещения Qrec, Вт

Теплоотдача труб Q tp, Вт

Требуемая теплоотдача прибора Qпр, Вт

Коэффициент β 1

Коэффициент β 2

Температура воздуха в помещении t в, 0 С

Температура воды на входе в прибор t в, 0 С

Температура воды на выходе из аппарата t вых, 0 С

Температурный напор Δt, 0 С

Расход воды через устройство Г пр, кг / ч

Продолжение таблицы 4

Емкость аккумулятора на 1 кв.Расчет радиаторов отопления: варианты и методы

Очень важно покупать современные качественные и эффективные аккумуляторы. Но гораздо важнее правильно рассчитать количество секций радиатора, чтобы в холодное время года он как следует прогрел комнату и не приходилось думать об установке дополнительных переносных отопительных приборов, которые увеличат стоимость отопления.


СНиП и основные положения

Сегодня можно назвать огромное количество СНиПов, в которых описаны правила устройства и эксплуатации систем отопления в различных помещениях.Но наиболее понятным и простым является документ «Отопление, вентиляция и кондиционирование» под номером 2.04.05.

Он детализирует следующие разделы:

  1. Общие положения по проектированию систем отопления
  2. Правила проектирования систем отопления зданий
  3. Особенности системы отопления

Также необходимо установить радиаторы отопления по СНиП под номером 3.05.01 … Он предписывает следующие правила монтажа, без которых расчеты количества секций будут неэффективными:

  1. Максимальная ширина радиатора не должна превышать 70% той же характеристики оконного проема, под которым он установлен
  2. Радиатор необходимо установить по центру оконного проема (допускается небольшая погрешность — не более 2 см)
  3. Рекомендуемое расстояние между батареями отопления и стеной — 2-5 см
  4. Высота над полом не должна превышать 12 см
  5. Расстояние до подоконника от верхней точки аккумулятора не менее 5 см
  6. В остальных случаях для улучшения теплоотдачи поверхность стен покрывают светоотражающим материалом.

Необходимо соблюдать такие правила, чтобы воздушные массы могли беспрепятственно циркулировать и сменять друг друга.

Читайте также, разные типы радиаторов отопления

Расчет объема

Чтобы точно рассчитать количество секций радиатора отопления, необходимое для эффективного и комфортного обогрева жилища, следует учитывать его объем. Принцип довольно прост:

  1. Определяем потребность в тепле
  2. Узнайте количество секций, способных выдать его

СНиП предписывает учитывать потребность в тепле для любого помещения — 41 Вт на 1 куб.Однако этот показатель весьма условен. Если стены и пол плохо изолированы, рекомендуется увеличить это значение до 47-50 Вт, так как будет потеряна часть тепла. В ситуациях, когда на поверхности уже уложен качественный утеплитель, установлены качественные окна ПВХ и устранены сквозняки — этот показатель можно принять равным 30-34 Вт.

Если в помещении есть отопление, необходимо увеличить потребность в тепле до 20%. Часть нагретых нагретых воздушных масс не будет проходить мимо экрана, циркулируя внутри и быстро остывая.

Формулы для расчета количества секций по объему помещения, на примере

Определившись с необходимостью одного куба, можно приступить к подсчету (пример с конкретными числами):

  1. На первом этапе рассчитываем объем помещения по простой формуле: [высота длина Ширина] (3x4x5 = 60 кубометров)
  2. Следующим шагом является определение потребности в тепле для конкретного рассматриваемого помещения по формуле: [объем] * [потребность на кубический метр] (60×41 = 2460 Вт)
  3. Требуемое количество ребер можно определить по формуле: (2460/170 = 14.5)
  4. Рекомендуем округлить — получаем 15 участков

Многие производители не учитывают, что теплоноситель, циркулирующий по трубам, далек от максимальной температуры. Следовательно, мощность ребер будет ниже заданного предельного значения (именно оно прописано в паспорте). Если нет показателя минимальной мощности, то существующий занижается на 15-25% для упрощения расчетов.

Расчет площади

Предыдущая методика расчета — отличное решение для помещений высотой более 2-х.7 мес. В помещениях с низкими потолками (до 2,6 м) можно использовать другой прием, взяв за основу площадь.

В данном случае, рассчитывая общее количество тепловой энергии, необходимо на один квадратный метр. м. принимаем равным 100 ватт. Пока это необходимо, вносить в него какие-либо изменения не требуется.

Формулы для расчета количества секций по площади помещения, на примере

  1. На первом этапе определяется общая площадь помещения: [длина Ширина] (5х4 = 20 кв.М.)
  2. Следующим шагом является определение количества тепла, необходимого для обогрева всего помещения: [площадь] * [потребность на кв. М.] (100×20 = 2000 Вт)
  3. В паспорте, прилагаемом к радиатору отопления, нужно узнать мощность одной секции — средний показатель современных моделей 170 Вт
  4. Для определения необходимого количества секций используйте формулу: [общая потребность в тепле] / [мощность одной секции] (2000/170 = 11,7)
  5. Вводим поправочные коэффициенты ( учтем дальше )
  6. Рекомендуем округлить — получаем 12 участков

Приведенные выше методы расчета количества секций радиатора идеально подходят для помещений, высота которых достигает 3 метров.Если этот показатель больше, необходимо увеличивать тепловую мощность прямо пропорционально увеличению высоты.

Если весь дом оборудован современными пластиковыми окнами, у которых максимально снижен коэффициент теплопотери, появляется возможность сэкономить деньги и снизить получаемый результат до 20%.

Считается, что стандартная температура теплоносителя, циркулирующего по системе отопления, составляет 70 градусов. Если оно ниже этого значения, необходимо увеличивать результат на 15% на каждые 10 градусов.Если он выше, наоборот, уменьшите.

Помещение площадью более 25 кв.м. обогреть одним радиатором, даже состоящим из двух десятков секций, будет крайне проблематично. Для решения этой проблемы необходимо расчетное количество секций разделить на две равные части и установить две батареи. Тепло в этом случае будет более равномерно распределяться по комнате.

Если в комнате два оконных проема, радиаторы отопления необходимо разместить под каждым из них.Они должны быть в 1,7 раза больше номинальной мощности, определенной в расчетах.

Купив штампованные радиаторы, которые нельзя разделить на секции, необходимо учитывать общую мощность изделия. Если этого мало, стоит подумать о покупке второй батареи такой же или чуть меньшей теплоемкости.

Поправочные коэффициенты

Многие факторы могут повлиять на конечный результат. Рассмотрим, в каких ситуациях необходимо вводить поправочные коэффициенты:

  • Окна с обычным остеклением — коэффициент увеличения 1.27
  • Недостаточная теплоизоляция стен — коэффициент увеличения 1,27
  • Более двух оконных проемов в комнате — коэффициент увеличения 1,75
  • Разъемы с нижней разводкой — множитель 1,2
  • Резерв на случай непредвиденных ситуаций — повышающий коэффициент 1,2
  • Применение улучшенных теплоизоляционных материалов — коэффициент уменьшения 0,85
  • Монтаж качественных стеклопакетов — коэффициент уменьшения 0,85

Количество исправлений, вносимых в расчет, может быть огромным и зависит от каждой конкретной ситуации.Однако следует помнить, что уменьшить теплоотдачу радиатора отопления намного проще, чем увеличить ее. Таким образом, все округление выполняется вверх.

Подводя итоги

Если вам необходимо произвести максимально точный расчет количества секций радиатора в сложном помещении, не бойтесь обращаться к специалисту. Наиболее точные методы, которые описаны в специальной литературе, учитывают не только объем или площадь помещения, но и температуру снаружи и внутри, теплопроводность различных материалов, из которых построена коробка дома. , и многие другие факторы.

Конечно, можно не бояться и наметить несколько граней к результату. Но чрезмерное увеличение всех показателей может привести к неоправданным расходам, которые не сразу, а иногда и не всегда удается окупить.

Расчет количества секций радиаторов отопления

Радиаторы отопления являются наиболее распространенным отопительным прибором, устанавливаемым в жилых, общественных и производственных помещениях. Представляет собой полые внутренние элементы, заполненные охлаждающей жидкостью. Через них в комнату поступает тепловая энергия, которая нагревает его.При выборе радиаторов в первую очередь необходимо обратить внимание на два технических показателя. Это мощность устройства и выдерживающее давление теплоносителя. Но чтобы окончательно определиться с температурным режимом помещения, необходимо провести точный расчет радиаторов отопления.

Сюда входит не только количество самих устройств и их секций, но и материал, из которого они сделаны. Современный рынок отопительного оборудования предлагает огромный ассортимент аккумуляторов с разными техническими характеристиками.Главное знать возможности одной секции батареи, а именно ее способность выделять максимальное количество тепловой энергии. Этот показатель ляжет в основу расчета для всей системы отопления.


Сделаем расчет

Зная, что на 1 квадратный метр площади помещения необходимо 100 Вт тепла, можно легко рассчитать количество необходимых радиаторов. Поэтому для начала нужно точно определить площадь помещения, где будут установлены батареи.

Необходимо учитывать высоту потолков, а также количество дверей и окон — ведь это отверстия, через которые быстрее всего испаряется тепло. Поэтому учитывается и материал, из которого изготовлены двери и окна.

Теперь определяется самая низкая температура в вашем районе и одновременно температура теплоносителя. Все нюансы рассчитываются с использованием коэффициентов, которые вводятся в СНиП. Принимая во внимание эти факторы, можно также рассчитать мощность нагрева.

Быстрый расчет выполняется простым умножением площади комнаты на 100 Вт. Но это не будет точно. Коэффициенты используются для коррекции и.

Коэффициенты коррекции мощности

Их два: убывающая и возрастающая.

Коэффициенты снижения мощности применяются следующим образом:

  • Если на окнах установлены пластиковые многокамерные стеклопакеты, то показатель умножается на 0,2.
  • Если высота потолка меньше стандартной (3 м), то применяется понижающий коэффициент.Он определяется как отношение фактической высоты к стандартной высоте. Пример — высота потолка 2,7 м. Это означает, что коэффициент рассчитывается по формуле: 2,7 / 3 = 0,9.
  • Если котел отопления работает с повышенной мощностью, то каждые 10 градусов вырабатываемой им тепловой энергии мощность радиаторов отопления снижается на 15%.

Коэффициенты увеличения мощности учитываются в следующих ситуациях:

  1. Если высота потолка больше типоразмера, то коэффициент рассчитывается по той же формуле.
  2. Если квартира угловая, то для увеличения мощности отопительных приборов применяется коэффициент 1,8.
  3. Если радиаторы имеют нижнее подключение, то к расчетному значению прибавляется 8%.
  4. Если котел отопления понижает температуру теплоносителя в самые холодные дни, то на каждые 10 градусов понижения необходимо увеличение мощности батарей на 17%.
  5. Если иногда температура на улице достигает критических отметок, то мощность обогрева придется удвоить.

Определить количество секций одного радиатора

Оборудование секций

Специалисты предлагают несколько вариантов расчета количества радиаторов отопления и их секций.

Первый — это так называемый обычный способ. Самый простой. Обычно технические параметры устанавливаются в паспорте или сертификате качества, который выдается как сопроводительный документ на каждое изделие. Здесь вы можете найти информацию о том, какая мощность у одной секции радиаторов отопления.

Например, он равен 200 Вт. Мощность, необходимая для обогрева помещения, рассчитывается с учетом понижающего и повышающего коэффициентов. Предположим, что она равна 2400 Вт.

Теперь производятся чисто математические вычисления: 2400/200 = 12. Это количество секций, которые необходимо установить в данном помещении. Вы можете использовать одну 12-элементную батарею или две 6-элементные батареи.

Вариант второй — расчет производится с учетом теплопроизводительности одной секции на определенный объем помещения.Для этого рассчитывается общий объем помещения и делится на объемный показатель обогрева секции.

Расцветка отопительного оборудования

Третий примерный расчет, который мастера используют на собственном опыте. Все радиаторы практически одинакового размера. Отличия есть, но незначительные. Так было замечено, что при высоте потолка 2,7 метра одна секция может обогреть площадь, равную 1,8 квадратных метра.

Проблем с выбором радиаторов отопления на сегодняшний день нет.Вот и чугун, и алюминий, и биметаллический — выбирайте, что хотите. Однако сам факт покупки дорогих радиаторов особой конструкции не является гарантией того, что в вашем доме будет тепло. В этом случае роль играют и качество, и количество. Разберемся, как правильно рассчитать радиаторы отопления.

Расчет всего напора — от площади

Неправильный расчет количества радиаторов может привести не только к недостатку тепла в помещении, но и к слишком большим счетам за отопление и слишком высоким температурам в помещениях.Расчет следует производить как при самой первой установке радиаторов, так и при замене старой системы, где, казалось бы, давно все было ясно, так как теплопередача радиаторов может существенно отличаться.

Разные комнаты означают разные расчеты. Например, для квартиры в многоэтажном доме можно обойтись простейшими формулами или спросить соседей об их опыте отопления. В большом частном доме простые формулы не помогут — нужно будет учесть множество факторов, которые просто отсутствуют в городских квартирах, например, степень утепления дома.

Самое главное — не доверять цифрам, озвученным наугад всевозможными «консультантами», которые на глаз (даже не видя комнаты!) Подскажут количество секций для отопления. Как правило, она значительно завышена, из-за чего вы постоянно будете переплачивать за лишнее тепло, которое будет буквально уходить в открытое окно. Рекомендуем использовать несколько методов расчета количества радиаторов отопления.

Простые формулы — для квартиры

Жители многоэтажных домов могут пользоваться довольно простыми расчетными методами, совершенно непригодными для частного дома.Самый простой расчет не блещет высокой точностью, но подходит для квартир со стандартными потолками не выше 2,6 м. Обратите внимание, что для каждой комнаты ведется отдельный расчет количества секций.

Он основан на утверждении, что для обогрева квадратного метра помещения требуется 100 Вт тепловой мощности радиатора. Соответственно, чтобы рассчитать необходимое для помещения количество тепла, умножаем его площадь на 100 Вт. Итак, для помещения площадью 25 м 2 необходимо приобретать секции общей мощностью 2500 W или 2.5 кВт. Производители всегда указывают на упаковке теплоотдачу секций, например 150 Вт. Наверняка вы уже разобрались, что делать дальше: 2500/150 = 16,6 секций

Результат округляется в большую сторону, однако для кухни, можно округлить в меньшую сторону — помимо батареек будет еще плита и чайник для обогрева воздуха.

Также следует учитывать возможные потери тепла в зависимости от расположения комнаты. Например, если это комната, расположенная в углу здания, то тепловую мощность аккумуляторов можно смело увеличивать на 20% (17 * 1.2 = 20,4 секции), столько же секций понадобится для комнаты с балконом. Учтите, что если вы намерены спрятать радиаторы в нише или спрятать их за красивым экраном, то вы автоматически потеряете до 20% тепловой мощности, которую придется компенсировать количеством секций.

Расчеты по объему — что написано в СНиП?

Более точное количество секций можно рассчитать с учетом высоты потолков — этот метод особенно актуален для квартир с нестандартной высотой комнат, а также для частного дома в качестве предварительного расчета.В этом случае мы определим тепловую мощность исходя из объема помещения. По нормам СНиП для обогрева одного кубометра жилой площади в стандартном многоэтажном доме требуется 41 Вт тепловой энергии. Это стандартное значение нужно умножить на общий объем, который можно получить, высоту комнаты умножаем на ее площадь.

Например, объем комнаты 25 м 2 с потолками 2,8 м равен 70 м 3. Умножаем это число на стандартный 41 Вт и получаем 2870 Вт. Затем действуем как в предыдущем примере — делим общее число. ватт за счет теплопередачи одной секции.Так, если теплопередача 150 Вт, то количество секций примерно 19 (2870/150 = 19,1). Кстати, ориентируйтесь на минимальные показатели теплоотдачи радиаторов, ведь температура носителя в трубах редко соответствует требованиям СНиП в наших реалиях. То есть, если в паспорте радиатора указаны рамки от 150 до 250 Вт, то по умолчанию берем меньшую цифру. Если вы сами отвечаете за отопление частного дома, то берите средний.

Точные цифры для частных домов — учитываем все нюансы

Частные дома и большие современные квартиры никак не подпадают под стандартные расчеты — слишком много нюансов, чтобы учесть их.В этих случаях можно применить наиболее точный метод расчета, в котором учтены эти нюансы. Собственно, сама формула очень проста — с этим справится школьник, главное правильно подобрать коэффициенты, учитывающие характеристики дома или квартиры, влияющие на способность экономить или терять тепловую энергию. Итак, вот наша точная формула:

  • CT = N * S * K 1 * K 2 * K 3 * K 4 * K 5 * K 6 * K 7
  • CT — это количество тепловой мощности в Вт, которое нам нужно для обогреть конкретное помещение;
  • N — 100 Вт / м2, стандартное количество тепла на квадратный метр, к которому мы применим понижающие или повышающие коэффициенты;
  • S — площадь помещения, для которой мы будем рассчитывать количество секций.

Следующие ниже коэффициенты имеют свойство увеличивать и уменьшать количество тепловой энергии в зависимости от условий в помещении.

  • К 1 — учитываем характер остекления окон. Если это окна с обычным стеклопакетом, то коэффициент 1,27. Окна с двойным остеклением — 1,0, с тройным стеклопакетом — 0,85.
  • К 2 — учитываем качество утепления стен. Для холодных неизолированных стен этот коэффициент равен 1.По умолчанию 27, для нормальной теплоизоляции (кладка в два кирпича) — 1,0, для хорошо утепленных стен — 0,85.
  • K 3 — учитываем среднюю температуру воздуха в пик зимних холода. Так, для -10 ° C коэффициент равен 0,7. На каждые -5 ° C прибавляйте 0,2 к коэффициенту. Таким образом, для -25 ° C коэффициент будет 1,3.
  • К 4 — учитываем соотношение пола и площади окон. Начиная с 10% (коэффициент 0,8), на каждые следующие 10% прибавляйте 0.1 к коэффициенту. Таким образом, для коэффициента 40% коэффициент будет 1,1 (0,8 (10%) + 0,1 (20%) + 0,1 (30%) + 0,1 (40%)).
  • K 5 — понижающий коэффициент, корректирующий количество тепловой энергии с учетом типа помещения, расположенного выше. Холодный чердак берем на единицу, если отапливаемый чердак — 0,9, если отапливаемое жилое пространство над помещением 0,8.
  • K 6 — скорректировать результат в сторону увеличения с учетом количества стен, контактирующих с окружающей атмосферой. Если стена 1 — коэффициент равен 1.1, если два — 1,2 и так до 1,4.
  • К 7 — и последний фактор, корректирующий расчеты относительно высоты потолков. За единицу принимается высота 2,5, а на каждые полметра роста к коэффициенту прибавляется 0,05, то есть для 3 метров коэффициент равен 1,05, для 4 — 1,15.

Благодаря такому расчету вы получите то количество тепловой энергии, которое необходимо для поддержания комфортной среды обитания в частном доме или нестандартной квартире.Осталось только поделить готовый результат на величину теплоотдачи выбранных вами радиаторов, чтобы определить количество секций.

На первый взгляд несложно подсчитать, сколько секций радиатора установить в том или ином помещении. Чем больше комната, тем из большего количества секций должен состоять радиатор. Но на практике, насколько тепло будет в том или ином помещении, зависит более чем от десятка факторов. С их учетом можно гораздо точнее рассчитать необходимое количество тепла от радиаторов.

Общая информация

Теплоотдача одной секции радиатора указывается в технических характеристиках продукции любого производителя. Количество радиаторов в комнате обычно соответствует количеству окон. Чаще всего радиаторы располагаются под окнами. Их размеры зависят от площади свободной стены между окном и полом. При этом следует учитывать, что радиатор необходимо опускать не менее чем на 10 см от подоконника.И расстояние между полом и нижней линией радиатора должно быть не менее 6 см. Эти параметры определяют высоту устройства.

Теплоотдача одной секции чугунного радиатора 140 Вт, более современного металлического — от 170 и выше.

Можно рассчитать количество секций радиатора отопления ,
покидает площадь комнаты или ее объем.

По нормам считается, что для обогрева одного квадратного метра помещения необходимо 100 Вт тепловой энергии.Если исходить из объема, то количество тепла на 1 кубометр будет не менее 41 Вт.

Но ни один из этих методов не будет точным, если не учитывать характеристики конкретной комнаты, количество и размер окон, материал стен и многое другое. Поэтому, рассчитывая секции радиатора по стандартной формуле, мы будем складывать коэффициенты, созданные тем или иным условием.

Площадь помещения — расчет количества секций радиатора отопления

Этот расчет обычно применяется для помещений, расположенных в типовых панельных жилых домах с высотой потолков до 2.6 метров.

Площадь помещения умножается на 100 (количество тепла на 1м2) и делится на теплоотдачу одной секции радиатора, указанную производителем. Например: площадь помещения 22 м2, теплоотдача одной секции радиатора 170 Вт.

22X100 / 170 = 12,9

В этом помещении необходимо 13 радиаторных секций.

Если одна секция радиатора имеет теплоотдачу 190 Вт, то получаем 22X100 / 180 = 11.57, то есть можно ограничиться 12 разделами.

К расчетам нужно добавить 20%, если комната имеет балкон или находится в конце дома. Батарея, установленная в нише, снизит теплоотдачу еще на 15%. Зато на кухне теплее будет на 10-15%.

Делаем расчеты по объему помещения

Для панельного дома со стандартной высотой потолков, как уже было сказано выше, тепло рассчитывается из потребности 41 Вт на 1м3.Но если дом новый, кирпичный, в нем установлены стеклопакеты, а наружные стены утеплены, то на 1м3 нужно 34 Вт.

Формула для расчета количества секций радиатора выглядит так: объем (площадь, умноженная на высоту потолка) умножается на 41 или 34 (в зависимости от типа дома) и делится на теплоотдачу одной указанной секции радиатора. в паспорте производителя.

Например:

Площадь помещения 18 м2, высота потолков 2,6 м.Дом типовой панельный. Теплоотдача одной секции радиатора — 170 Вт.

18X2,6X41 / 170 = 11,2. Итак, нам понадобится 11 радиаторных секций. Это при условии, что комната не угловая и в ней нет балкона, иначе лучше установить 12 секций.

Рассчитаем максимально точно

А вот формула, по которой можно максимально точно рассчитать количество секций радиатора :

Площадь помещения умножается на 100 Вт и на коэффициенты q1, q2, q3, q4, q5, q6, q7 и делится на теплопередачу одной секции радиатора.

Подробнее об этих соотношениях:

q1 — тип остекления
:
с тройным стеклопакетом коэффициент составит 0,85, со стеклопакетом — 1 и с обычным остеклением — 1,27.

Правильно рассчитать необходимое количество секций, с одной стороны, не сложно, но тем не менее очень важная задача для любого домовладельца. Именно от правильности расчета будет зависеть комфорт пребывания в жилище даже в самые лютые морозы.При этом чрезмерное количество смонтированных секций приведет к необходимости в течение всего зимнего периода искусственно ограничивать подачу теплоносителя в отопитель или, что еще хуже, открывать окна и обогревать улицу, что чревато дополнительными затратами. .


Стандартная методика расчета радиатора отопления

Самый простой расчет, часто рекомендуемый продавцами данного оборудования, основан на общепринятых нормах, согласно которым на обогрев одного квадратного метра площади помещения необходимо затратить около 100 Вт мощности нагревательного устройства.Это примерно соответствует, по их собственным оценкам, одной батарейной секции на два квадратных метра помещения.

Этот подход слишком упрощен. На выбор количества секций радиатора или его площади влияет ряд различных факторов. В первую очередь следует понимать, что батареи отопления выбираются не в зависимости от площади в помещении, а в зависимости от ее теплопотерь, что определяется наличием одного или нескольких окон, дверей, расположением комнаты, в т.ч. .угловой, а также ряд других факторов.

Тепловая мощность секции — важнейший параметр

Кроме того, разные типы нагревательных приборов имеют разную тепловую мощность. Для алюминиевых радиаторов она может достигать 185-200 Вт на секцию, а для чугунных радиаторов редко превышает 130 Вт. Но помимо материала секций параметр (DT), учитывающий температуру Охлаждающая жидкость, попадающая в аккумуляторную батарею и выходящая из нее, также сильно влияет на тепловую мощность.Так, высокая тепловая мощность алюминиевого аккумулятора, соответствующая паспорту 180 Вт, достигается при DT = 90/70, то есть температура поступающей воды должна быть 90 градусов, уходящей — 70 градусов.

Однако нужно понимать, что практически любой котел в таких условиях работает очень редко. Настенные котлы имеют максимальную температуру 85 градусов, и пока теплоноситель достигнет батареи, значение температуры упадет еще больше. Поэтому даже при покупке алюминиевых аккумуляторов нужно исходить из того, что тепловая мощность секции не будет превышать значения, соответствующего DT = 70/55, т.е.е. около 120 Вт.

От чего зависят теплопотери помещения

Итак, выбор мощности нагрева отопительных приборов основывается на величине тепловых потерь, чтобы иметь возможность их полностью компенсировать.

Факторы, влияющие на теплопотери:

  1. Место, в котором находится комната. Это либо юг, либо север, либо центральная часть страны, для которой значения минимальной годовой температуры сильно различаются.
  2. Как комната расположена относительно сторон света. Наличие окон, расположенных как с северной, так и с южной стороны, сильно влияет на теплопотери помещения.
  3. Высота потолка. В случае, когда высота в здании отличается от стандартных 2,5 метра, в расчет также необходимо внести определенные коррективы.
  4. Требуемая температура. Не всем комнатам нужна одинаковая температура. В зале, например, значения температуры могут быть немного ниже, чем в спальне, что отражается на расчете необходимой мощности отопительных приборов.
  5. Толщина стен, потолков, а также их состав, наличие теплоизоляции, так как коэффициент теплопроводности у разных материалов может сильно различаться. Для бетона, например, коэффициент максимальный, а для пенопласта минимальный.
  6. Наличие оконных проемов, дверей и их количество. Понятно, что чем больше площадь в помещении, тем сильнее будут в нем теплопотери, так как именно через эти отверстия происходят основные теплопотери.
  7. Наличие вентиляции. Этот параметр нельзя игнорировать, даже если он отсутствует в комнате. Так называемая инфильтрация присутствует всегда — время от времени открываются окна, посетители заходят в комнату через двери и т. Д.

Определить необходимую тепловую мощность

Однако можно полностью учесть все возможные факторы, увеличивающие или уменьшающие тепловые потери, используя только достаточно сложные методы расчета и профессиональное программное обеспечение. В целом такие расчеты подтверждают, что для помещения, в котором не проводились специальные работы, направленные на повышение энергоэффективности, верен показатель 100 Вт мощности радиатора на квадратный метр.Это актуально для средней полосы. Для северных регионов параметр следует увеличить до 150 или даже 200 Вт.

Однако, если при строительстве или ремонте также проводились полы, в оконных проемах стоят энергосберегающие стеклопакеты, то даже в суровую зиму мощности отопительных приборов даже на 70 Вт будет вполне достаточно. . Этот вопрос, конечно, не так важен для владельцев квартир с центральным отоплением, но для владельцев частных домов уменьшение необходимой тепловой мощности поможет сэкономить в течение года.

Рассчитываем количество аккумуляторных секций

Итак, проведем несложный расчет количества секций алюминиевого аккумулятора, необходимого для обогрева небольшого помещения площадью 15 квадратных метров и нормальной высотой потолка. За требуемую мощность нагревательных приборов примем значение 100 Вт на 1 кв. М, а номинальная мощность одной аккумуляторной секции составляет 120 Вт. Тогда необходимое количество секций можно определить по формуле:

N = S * Qп / Qн, где

  • N — количество секций,
  • S — площадь помещения,
  • Qп — требуемая тепловая мощность в зависимости от типа помещения,
  • Qн — номинальная тепловая мощность одной секции аккумуляторной батареи.

В нашем случае N = 15 * 100/120 = 12,5

Таблица: пример количества секций радиатора в зависимости от площади помещения

Однако следует учитывать, что тепловая мощность современных аккумуляторов, будь то не только алюминиевых, но и биметаллических, в зависимости от конструкции и производителя может сильно различаться, находясь в пределах от 120 до 200 Вт. Соответственно, количество секций также будет совсем другим.

Практическая поддержка для оценки коэффициентов эффективности системы отопления помещений в холодном климате

В этом разделе объясняется методология, используемая для оценки тепловых потерь в оболочке здания и для расчета коэффициентов эффективности между различными жидкостными панельными радиаторами.В частности, в разделе «Метод расчета коэффициентов эффективности для свободной поверхности нагрева (радиатора) в соответствии с EN 15316-1,2-1 (2007) под названием ‘ Немецкий метод» »объясняется, как рассчитать тепловые потери и КПД радиаторов. В разделе «Переходная модель жидкостного панельного радиатора» представлена ​​переходная модель жидкостного панельного радиатора, используемая в моделировании. В разделе «Проверка модели жидкостного панельного радиатора» описывается проверка модели жидкостного панельного радиатора по сравнению с имеющимися экспериментальными измерениями.Раздел «Испытание на скачкообразную характеристику между жидкостными панельными радиаторами с разным расположением соединительных труб: сравнение выделяемого тепла» описывает испытание на скачкообразную характеристику между жидкостными радиаторами с различным расположением соединительных труб. Раздел «Краткий обзор имитационной модели здания» представляет собой краткий обзор имитационной модели здания. В разделе «План моделирования» описан план моделирования для исследуемого случая.

Метод расчета коэффициентов эффективности для свободной поверхности нагрева (радиатора) в соответствии с EN 15316-1,2-1 (2007), названный как

«« Немецкий метод »

Метод эффективности, объясненный в EN 15316-1 ( 2007), стандартизирует подвод тепла и тепловые потери на ограждающую конструкцию здания для системы отопления помещений.Тепловые потери необходимы для расчета КПД системы отопления помещений. Изменение тепловых потерь из-за климата, типа системы отопления и типа конструкции здания обсуждается позже в разделе «План моделирования». Тепловые потери в оболочку здания следующие: потери тепла из-за неравномерного распределения внутренней температуры Q
и
м , с
т
r
и потери тепла из-за стратегии управления Q
и
м , м
т
r
л
, как показано на Рис.3а. Q
и
м , с
т
r
разделяется на потери тепла, что приводит к повышению / понижению внутренней температуры вблизи границ рассматриваемого контрольного объема (помещения) Q
и
м , с
т
r 1
, а тепловые потери из-за положения излучателя Q
и
м , с
т
r 2
.

Рис. 3

Тепловые потери. a Control. b Стратификация

Q
и
м , с
т
r
относится к потере тепла у потолка Q
и
м , м
e
и
, где на температуру в помещении влияет эффект расслоения.В этом контексте Технический Стандарт рассматривает также потери тепла при расслоении, потери тепла через окна Q
и
м , ширина
и
n
, где на температуру в помещении влияют холодные поверхности. Q
и
м , с
т
r 2
относится к потере тепла в направлении задней стенки радиатора, учитываемой как конвекция и излучение, как показано на рис.3b.

Для обоих условий Q
и
м , с
т
r 1 a
n
d 2
, техническая норма определяет, как их рассчитать, применяя общее уравнение для потерь тепла при передаче, как показано в уравнении.1.

$$ \ mathrm {Q_ {em, str, i}} = \ mathrm {\ Sigma A_ {i}} \ cdot \ mathrm {U_ {inc, i}} \ cdot \ mathrm {(T_ {air, inc , i} — T_ {out, i})} \ cdot \ mathrm {\ Delta \ theta} $$

(1)

Технические стандарты учитывают потери передачи, потому что механизм конвекции между объемом воздуха и внутренними поверхностями, а также излучение между внутренними поверхностями помещения происходит внутри анализируемого контрольного объема. Пример контрольного объема можно найти на рис.3b. Уравнение 1 учитывает локальное повышение / понижение температуры в помещении T
и
n
т , и
n
с
, и локально увеличенный / уменьшенный коэффициент теплопередачи, рассчитанный от изоляционного материала к внутренней поверхности U
и
n
с
.Скорее всего, уравнение. 1 может быть применен к результатам моделирования помещений, разработанных с помощью программного обеспечения вычислительной гидродинамики. Неочевидно рассчитать локальное повышение / понижение температуры в помещении с помощью программного обеспечения для моделирования энергопотребления здания. По этой причине T
с
e
и
и T
w
и
n
, температура внутренней поверхности потолка и окна, заменить T
a
и
r , i
n
с
в формуле.1 с использованием того же коэффициента теплопередачи U
и
рассматриваемой структуры. Особое внимание следует уделять повышению температуры в помещении около потолка. Согласно Приложению A.2 стандарта EN 15316-1 (2007), коэффициент полезного действия при перегреве около потолка составляет 0,95% с кривой нагрева 55/45 ℃ и ΔT = 30 K для радиаторов. Повышение температуры в помещении около потолка считается постоянным в течение всего времени моделирования.

Потери тепла из-за контроля температуры в помещении Q
с
т
r
л
относится к невозвратному теплу, превышающему заданную температуру в помещении. Неидеальный контроль вызывает отклонения и отклонения от предварительно заданной заданной температуры из-за физических характеристик системы управления, самой системы нагрева и расположения датчика.В этой статье, чтобы упростить задачу, датчик определяет только поведение температуры воздуха.

Согласно стандарту EN (EN 15316-2-1 2007), коэффициенты эффективности для расслоения η
и
м , с
т
r , 1 a
n
d 2
и контроль η
и
м , м
т
r
можно количественно оценить с помощью отношения между тепловыми потерями, рассчитанными с идеальной системой отопления, и тепловыми потерями в реальном случае, как показано в формуле.2а и б. В идеальном случае рассчитывается потребность в энергии для обогрева жилого помещения в соответствии с EN 13790 (2008). Температура в помещении поддерживается постоянной (или приблизительно постоянной) в течение всего периода обогрева. Помещение оборудовано как идеальной системой управления, так и идеальной системой отопления. Это означает, что система отопления не учитывает возможные задержки в управлении, тепло, накопленное в тепловом излучателе, и тепло, выделяемое из распределительных труб. Приток тепла от солнца, людей, электроприборов, освещения и механической вентиляции одинаков как для реальных, так и для идеальных случаев.

$$ \ mathrm {\ eta _ {\ mathrm {em, str1 / 2}}} = \ mathrm {\ frac {Q _ {\ mathrm {em, ideal, str1 / 2}}} {Q _ {\ mathrm {em , str1 / 2}}}} $$

(2а)

$$ \ mathrm {\ eta _ {\ mathrm {em, ctrl}}} = \ mathrm {\ frac {Q _ {\ mathrm {em, ideal, ctrl}}} {Q _ {\ mathrm {em, ctrl}}} } $$

(2b)

Общий коэффициент полезного действия системы отопления помещений можно рассчитать, используя выражение в формуле.3, как указано в разделе 7.2 EN (EN 15316-2-1 2007).

$$ \ mathrm {\ eta_ {em}} = \ mathrm {\ frac {1} {4 — (\ eta_ {em, str} + \ eta_ {em, ctr} + \ eta_ {em, embed}) }} $$

(3)

η
и
м , и
м
б
e
д
имеет значение 1, так как радиатор не имеет труб, встроенных в конструкцию здания.Член η
и
м , с
т
r
— среднее значение между η .
и
м , с
т
r 1
и η
и
м , с
т
r 2
.

Переходная модель радиатора жидкостной панели

Модель разработана совместно с IDA ICE. Радиаторы моделируются как изотермическая поверхность, сообщающаяся с моделью зоны посредством температуры и границы раздела теплового потока. Следовательно, одна поверхность моделируется как средняя температура всего металла. Это упрощение связано с относительно высокой теплопроводностью металла по сравнению с теплопроводностью жидкости. Однако для того, чтобы уловить динамические характеристики, жидкость радиатора моделируется несколькими элементами, соединенными последовательно.Тепловые характеристики радиатора (номинальная мощность, мощность n и т. Д.) Указаны в техническом каталоге. Тепло, излучаемое радиатором, оценивается на основе тепловых характеристик радиатора с использованием температуры воздуха и температуры перепада воды. Наконец, температура поверхности получается на основе разницы между расчетным выделенным теплом и общим теплопереносом на границе раздела модели.

Линия подачи расположена в верхнем углу T
с
u
с.
, а выхлопная линия расположена в противоположном нижнем углу T
и
х
ч
.Температура приточного потока элемента i-го — это температура выхлопа элемента (i-1) -го . Когда i = 1, T
эт
d , 0
T
с
u
с.
в радиатор. Таким образом, тепловой поток, подаваемый на каждую емкость \ (\ dot {\ mathrm {Q}} _ {\ mathrm {{sup, i}}} \), можно определить следующим образом:

$$ \ dot {Q} _ {\ mathrm {sup, i}} (\ theta) = \ dot {\ mathrm {m}} _ {\ text {fld}} \ cdot \ mathrm {c_ {fld} } \ cdot \ mathrm {\ left (T_ {fld, i-1} (\ theta) -T_ {fld, i} (\ theta) \ right)} $$

(4)

где \ (\ dot {\ mathrm {m}} _ {\ text {fld}} \) — массовый расход жидкости, подаваемой в радиатор, c
эт
д
— удельная теплоемкость и температура жидкости T
эт
d , i
при разной i-й ёмкости .

Модель рассчитывает температуру каждой жидкости, емкость T
эт
d , i
как разница между тепловым потоком, подаваемым \ (\ dot {\ mathrm {Q}} _ {\ mathrm {sup, i}} \) к каждой емкости, и теплотой, исходящей от каждой емкости жидкости \ (\ dot {\ mathrm { Q}} _ {\ mathrm {fld, i}} \), как показано в уравнении. 5.

$$ \ mathrm {\ frac {C_ {fld}} {nCap}} \ cdot \ mathrm {\ frac {dT_ {fld, i} (\ theta)} {d \ theta}} = \ dot {\ mathrm {Q}} _ {sup, i} (\ theta) — \ dot {\ mathrm {Q}} _ {fld, i} (\ theta) $$

(5)

где C
эт
д
= M
эт
д
c
эт
д
, — это общая емкость жидкости внутри радиатора, а nCap — это количество емкостей.

Модель вычисляет потери тепла из жидкости \ (\ dot {\ mathrm {Q}} _ {\ mathrm {fld, i}} \), как показано в уравнении. 6.

$$ \ dot {\ mathrm {Q}} _ {\ mathrm {fld, i}} (\ theta) = \ mathrm {\ frac {K_ {tot}} {nCap}} \ cdot \ mathrm {\ left (T_ {fld, i} (\ theta) -T_ {air} (\ theta) \ right)} $$

(6)

где общий / эквивалентный коэффициент теплопередачи радиатора K
т
или
т
по формуле.{n}} {L \ cdot H \ cdot \ left | \ left (T_ {fld, i} (\ theta) -T_ {air} (\ theta) \ right) \ right |} $$

(7)

L и H — геометрические параметры, длина и высота радиатора, а \ (\ dot {\ mathrm {Q}} _ {\ mathrm {N}} \) — общее количество тепла, выделяемого радиатором жидкостной панели в номинальных условиях.

Логарифмическая разница температур в уравнении. 7 вычисляется в формуле. 8.

$$ \ mathrm {\ Delta T_ {ln, i} (\ theta)} = \ frac {\ mathrm {T_ {fld, i} (\ theta)} — \ mathrm {T_ {fld, i + 1} (\ theta)}} {ln \ frac {\ mathrm {T_ {fld, i} (\ theta)} — \ mathrm {T_ {air} (\ theta)}} {\ mathrm {T_ {fld, i + 1 } (\ theta)} — \ mathrm {T_ {air} (\ theta)}}} $$

(8)

Уравнение 8 не может быть решено, если отношение разностей температур жидкость-воздух равно 1.Таким образом, уравнение. 8 необходимо заменить арифметической разностью температур, как показано в формуле. 9.

$$ \ mathrm {\ Delta T_ {i}} = \ frac {\ mathrm {T_ {fld, i} (\ theta)} + \ mathrm {T_ {fld, i + 1} (\ theta)}} {2} — \ mathrm {T_ {air} (\ theta)} $$

(9)

Логарифмическая разница температур при номинальных условиях Δ T
л
,
вычисляется как в формуле.{nCap}} \ dot {\ mathrm {Q}} _ {\ mathrm {fld, i}} (\ theta) \: — \ dot {Q} _ {\ text {tot}} (\ theta) $$

(10)

где C
м
e
т
— емкость металлической части радиатора гидронной панели, а Т
с
u
r
f
— средняя температура поверхности излучателя тепла.

Модель радиатора вычисляет общую теплопередачу от поверхности к окружающей среде \ (\ dot {\ mathrm {Q}} _ {\ text {tot}} \) в сочетании с моделью зоны, выраженной как в формуле. 11. Граница раздела между моделями — это длинноволновое излучение, которым обмениваются поверхность радиатора и окружающие поверхности, и конвекция на поверхности радиатора с узлом температуры воздуха в помещении. {n}} $$

(11)

Общее количество тепла, выделяемого в термическую зону, делится на три компонента, как показано на рис.4 тепло к задней стене \ (\ dot {\ mathrm {Q}} _ {\ mathrm {back-wall}} \), конвективное тепло \ (\ dot {\ mathrm {Q}} _ {\ text {conv }} \) и тепло к зоне \ (\ dot {\ mathrm {Q}} _ {\ text {front}} \). Уравнение 12 показывает этот тепловой баланс.

$$ \ dot {\ mathrm {Q}} _ {\ text {conv}} (\ theta) = \ dot {\ mathrm {Q}} _ {\ text {tot}} (\ theta) — \ dot {\ mathrm {Q}} _ {\ text {front}} (\ theta) — \ dot {\ mathrm {Q}} _ {\ mathrm {back-wall}} (\ theta) $$

(12)

Фиг.4

Схема радиатора с соединительными патрубками на противоположной стороне

Тепло к задней стенке вызывается излучением и конвекцией. В этой статье мы аппроксимируем потерю тепла с помощью механизма естественной конвекции. Механизм передачи тепла естественной конвекцией к задней стенке радиатора зависит от температуры задней стенки T
б

с
к к

л
л
, температура воздуха в канале, размер канала b и его высота H.{\ beta}} $$

(13)

Оценка коэффициента теплопередачи за счет конвекции между радиатором и его задней стенкой показана в формуле. 14.

$$ \ mathrm {h_ {back-wall}} = \ text {Nu} \ cdot \ mathrm {\ frac {\ lambda_ {air}} {b}} $$

(14)

где λ
a
и
r
— теплопроводность воздуха.

Средние значения температуры задней стенки, температуры воздуха, толщины и длины канала дают средний коэффициент теплопередачи за счет конвекции к задней стенке радиатора 3 Вт м
−2 К
-1 . Коэффициент теплопередачи за счет конвекции предполагается постоянным на протяжении всего моделирования. Потери тепла к задней стенке рассчитываются, как показано в формуле. 15.

$$ \ dot {\ mathrm {Q}} _ {\ mathrm {back-wall}} (\ theta) \, = \, \ mathrm {h_ {back-wall}} \ cdot \ mathrm {A} \ cdot \ mathrm {\ left (T_ {surf} (\ theta) \, — \, T_ {back-wall} (\ theta) \ right)} $$

(15)

Конвективное тепло \ (\ dot {\ mathrm {Q}} _ {\ text {conv}} \) — это тепло, выделяемое водяным панельным радиатором в помещении за счет конвективного механизма циркуляции воздуха в помещении.Внутренний воздух циркулирует в помещении, попадает в канал между радиатором и его задней стенкой, а затем поднимается к потолку.

\ (\ dot {\ mathrm {Q}} _ {\ text {conv}} \) вычисляется как разница среди других известных членов уравнения. 12, поскольку \ (\ dot {\ mathrm {Q}} _ {\ text {front}} \) вычисляется в модели зоны.

Проверка модели водяного панельного радиатора

Проверка модели водяного панельного радиатора выполняется путем сравнения смоделированной температуры выхлопного потока во время фазы зарядки и тепла, выделяемого при достижении установившегося состояния, с имеющимися экспериментальными измерениями в Стефан (1991).

Стефан (1991) провел испытание на скачкообразную реакцию радиатора с жидкостной панелью, подвергшегося внезапному увеличению массового расхода. Эксперимент проводится в кабине, которая соответствует техническим характеристикам, указанным в стандарте DIN 4704, который в настоящее время заменен на EN 442-2 (2014). Технический стандарт направлен на измерение тепловой мощности водяного панельного радиатора с указанием лабораторных условий и методов испытаний.

Для измерения тепловой мощности водяного панельного радиатора температура воздуха в помещении поддерживается постоянной на протяжении всего испытания за счет соблюдения стационарных условий.Чтобы обеспечить постоянный профиль воздуха в помещении, кабина оборудована системой охлаждения, встроенной в каждую поверхность кабины. Интегрированная система охлаждения позволяет контролировать температуру каждой поверхности кабины (кроме поверхности на задней стенке радиатора), соблюдая установившиеся условия испытания.

Конструкция каждой будки выполнена из сэндвич-панелей. Сэндвич-панель состоит из трех слоев: стальной панели со встроенной системой охлаждения, изоляционной пены (толщиной 80 мм с термическим сопротивлением 2.5 м
2 К Вт
-1 ) и внешний стальной лист. Стена за радиатором гидронной панели имеет такую ​​же сэндвич-панель, но без системы охлаждения. Система охлаждения должна быть спроектирована так, чтобы ограничивать разницу температур между охлаждаемыми внутренними поверхностями в диапазоне ± 0,5 К. Для обеспечения этого каждая панель должна поставляться с массовым расходом не менее 80 кг ч
-1 за каждые м
2 поверхности.Кабина имеет два отверстия в стенах, чтобы гарантировать водное и электрическое соединение между водяным панельным радиатором и за пределами помещения. На рисунке 5 показана схема камеры и системы охлаждения, взятая из стандарта EN 442-2 (2014).

Рис. 5

Камера и система охлаждения. Изображение взято из EN 442-2

Метод оценки тепла, излучаемого водяной панелью радиатора, — это метод взвешивания. Метод взвешивания заключается в вычислении разницы энтальпий между подачей (входом) и возвратом (выходом) жидкости, умноженной на массовый расход.Энтальпия жидкости при давлении и температуре, измеренная в ходе испытания, известна по табличным значениям.

Радиатор с жидкостной панелью, рассмотренный в эксперименте Стефана (1991), имеет номинальные параметры, перечисленные в Таблице 1, с соединительными трубами, расположенными на противоположной стороне.

Таблица 1 Номинальное состояние радиатора гидронной панели

Модель жидкостного панельного радиатора имеет те же технические характеристики, которые указаны в таблице 1. Экспериментальные измерения и результаты моделирования сравниваются на рис.6 по температуре выхлопного потока от времени.

Рис. 6

Сравнение экспериментальных измерений, сделанных Стефаном (1991), и результатов моделирования для воды на выходе

Разница в количестве выделяемого тепла между экспериментальными измерениями и результатами моделирования составляет 3,75% при достижении установившегося состояния.

Испытание на скачкообразную реакцию между жидкостными панельными радиаторами с различным расположением соединительных труб: сравнение выделяемого тепла

Гидравлический панельный радиатор размещается в помещении, в котором поддерживается постоянная наружная температура, поддерживаемая на уровне -15 ° C в течение всего времени моделирования.Выбор поддержания температуры наружного воздуха на уровне –15 ° C является случайным; Фактически, можно выбрать другое значение (как правило, меньшее, чем значение температуры, подаваемой в радиатор), но оно должно быть стабильным на протяжении всего времени моделирования, чтобы избежать помех в системе. Во время испытания отключаются тепловыделение от электроприборов, освещения, присутствия людей, интенсивности ветра и солнца. Массовый расход увеличен до 0,01484 кг с
−1 в момент моделирования 𝜃 = 0.До этого массовый расход составлял 2 × 10 −4 кг с
-1 , а температура подаваемого потока поддерживалась постоянной на уровне 83 .

Такое же испытание было выполнено на том же типе водяного панельного радиатора с соединительными трубками, расположенными на той же стороне. Предполагается, что емкость жидкости вблизи соединительных труб имеет массовый расход на 10% выше, чем емкость, наиболее удаленная от соединительных труб.Этот тип водяного радиатора имеет температуру выхлопного потока; средневзвешенное значение температуры выхлопных газов, заданное разными потоками в каждом элементе.

На рисунке 7 показана схема радиатора, когда соединительные трубы расположены с одной стороны.

Рис.7

Схема радиатора с соединительными трубками, расположенными на той же стороне

Суммарное количество тепла, излучаемого радиатором жидкостной панели при различном расположении соединительных трубок, показано на рис.8.Можно заметить, что радиаторы с соединительными трубками на одной стороне выделяют немного больше тепла, чем радиаторы с соединительными трубками, расположенными на противоположной стороне. Это означает, что радиаторы с соединительными трубками, расположенными на одной стороне, быстрее реагируют на изменение подаваемого массового расхода по сравнению с радиаторами с соединительными трубками, расположенными на противоположной стороне. В конечном итоге оба тепла, выделяемые двумя растворами, достигают одного и того же значения.

Рис. 8

Сравнение тепла, выделяемого радиаторами с различным расположением трубных соединений

Краткий обзор имитационной модели здания

Имитационная модель состоит из комнаты, смежной с другими отапливаемыми комнатами.В идеале тепло не передается в другие кондиционируемые помещения, поэтому для всех внутренних стен, потолка и пола задано адиабатическое граничное условие. Характеристики конструкции, окон, системы отопления, вентиляции и кондиционирования указаны в таблице 2. Помещение имеет чистую площадь пола 10 м
2 с постоянным расходом приточного воздуха при температуре 16 ° C. Еженедельные графики занятости, освещения и электроприборов являются стандартными; комната занята каждый день с 07.С 00:00 до 08:00 и с 17:00. до 20.00 часов в отопительный период.

Таблица 2 Тепловые характеристики здания

Помещение оборудовано системой механической вентиляции, в которой поток приточного вентиляционного воздуха смешивается с воздухом в помещении, обеспечивая примерно однородную температуру всего объема воздуха. Были произведены расчеты размера труб для распределительной системы, мощности, необходимой для циркуляционных насосов, а также мощности, требуемой от радиатора, и мощности, необходимой для установки кондиционирования воздуха.Радиатор подключен к системе хранения, которая состоит из многослойного резервуара для горячей воды. Электрический резистор внутри резервуара гарантирует требуемую температуру подаваемой жидкости в соответствии с погодозависимой кривой нагрева. Циркуляционные насосы работают согласно постоянной кривой нагрузки. Распределительные трубы предполагается изолированными и интегрированными в ограждающую конструкцию здания. Схема имитационной модели здания и системы отопления, вентиляции и кондиционирования представлена ​​на рис.9.

Рис.9

Имитационная модель помещения

План моделирования

В следующем разделе объясняется, как моделирование планируется, чтобы учесть вероятные изменения тепловых потерь из-за различных технических решений здания.План моделирования состоит из анализа чувствительности к местоположению здания, наружной оболочке здания и характеристикам системы отопления.

Первый анализ чувствительности был проведен путем определения местоположения здания в четырех различных климатических условиях Швеции: северный, северо-центральный, южно-центральный и южный. Климат влияет на соотношение свободного тепла и тепловых потерь в помещении; таким образом, обогрев может быть уменьшен для удовлетворения требований комфорта для пассажиров, как показано Bianco et al.(2016). В этом сценарии влажность воздуха также играет роль, как объяснил Menghao (2011), поскольку она влияет на микроклимат в помещении и, следовательно, на конструкцию системы HVAC. Файл погоды, используемый в программном обеспечении моделирования здания, представляет собой синтетический файл погоды, полученный за один час на основе значений внешней температуры по сухому термометру T
или
u
т
, относительная влажность воздуха ϕ, сила ветра в направлениях x и y и процент облачности в%.Значения прямого D и рассеянного d солнечного излучения рассчитываются по модели Чжан-Хуанга. Синтетический файл погоды записывается в базу данных ASHRAE (2001) и используется в коммерческой программе моделирования зданий IDA ICE vers. 4.7. На рисунках 10 и 11 показана среднемесячная температура наружного воздуха и прямая солнечная радиация для каждого выбранного населенного пункта.

Рис.10

Среднемесячная наружная температура

Рис.11

Среднее за месяц прямое солнечное излучение на горизонтальную поверхность

Второй анализ чувствительности был проведен путем изменения активной тепловой массы.Активная тепловая масса — это первый слой материала, контактирующий с воздухом в помещении, учитывая также все слои материала до изоляции, как показано в Brembilla et al. (2015b). Активная тепловая масса накапливает тепловую энергию, которая выделяется в помещении. Многие авторы рассматривали преимущества и недостатки изменения тепловой массы здания. Горейши и Али (2013) утверждают, что тяжелая тепловая масса может сглаживать резкие колебания температуры в помещении, обеспечивая стабильную температуру в помещении.Во время отопительного сезона накопленное тепло будет выделяться в кондиционируемое пространство; тогда как в период похолодания ночная вентиляция рассеивает накопленное тепло. Masy et al. (2015) утверждают, что активная тепловая масса также имеет положительный эффект за счет переключения нагрузки используемой электроэнергии. Автор статьи изменил внутренний слой наружной стены из кирпича ( ρ
б
r
и
с
к
= 1500 кг м
−3 , с
б
r
и
с
к
= 1000 Дж г
-1 К
−1 ) в древесину ( ρ
w
или
или
д
= 600 кг м
−3 , с
w
или
или
д
= 700 Дж г
-1 К
-1 ), регулируя толщину деревянного слоя, чтобы иметь одинаковый коэффициент теплопередачи как для тяжелой, так и для легкой конструкции.Такое же изменение произошло для кирпичного слоя адиабатических стен, прилегающих к кондиционируемым помещениям, и для бетонного слоя в полу и потолке ( ρ
с
или
n
= 2300 кг м
−3 , с
с
или
n
= 880 Дж г
-1 К
-1 ).

Третий анализ чувствительности сосредоточен на местном управлении радиатором. Местное управление переключалось между P (зона пропорциональности с ΔT = 1 K сначала, а затем с ΔT = 2 K) и PI-регулированием. P-регулирование обеспечивает пропорциональную регулировку расхода при изменении температуры в помещении, когда она выходит за пределы диапазона пропорциональности. ПИ-регулирование также гарантирует время интегрирования, которое снижает отклик системы и стабилизирует колебания температуры в помещении, как указано в Sanchis et al.(2010) и Ку и Захируддин (2004).

Последний анализ чувствительности проводился путем изменения местоположения соединительных труб. Соединительные патрубки сначала располагаются на той же стороне радиатора, а затем на противоположной стороне. Весь анализ чувствительности учитывает 48 реальных случаев и 8 идеальных случаев. Для каждого анализируемого климата и для тяжелой, и для легкой активной тепловой массы устанавливаются идеальные случаи.

Радиатор какого размера мне выбрать?

28 февраля 2019 г. Paul

Выбор радиатора правильного размера может во многом повлиять на комфорт вашего дома.

Слишком часто домовладельцы переплачивали по счетам за электроэнергию или были недовольны своими решениями в области отопления. Рассмотрение базовой информации о вашей ситуации и ее требованиях может сэкономить много хлопот.

Наш гид поможет вам выбрать радиатор идеального размера. Самый рентабельный и энергоэффективный вариант — это простой расчет.

Размер

Размер вашей комнаты существенно влияет на размер необходимого радиатора.Маленькому радиатору будет сложно эффективно обогреть большую комнату из-за количества воздуха, против которого он способен воздействовать. Это может привести к несбалансированной температуре в помещении и длительным потерям энергии. Большие радиаторы могут быстро изменять температуру в небольшой комнате, однако их эксплуатация может быть более дорогой.

Получение точного размера очень важно. Чтобы рассчитать площадь пола в вашей комнате, вам нужно измерить и умножить длину пола на его ширину. Например, комната длиной 4 метра и 3.Ширина 5 метров имеет площадь 14 квадратных метров. Для эффективного обогрева этой комнаты вам потребуется модель радиатора подходящего размера с минимальной мощностью 1430 Вт.

Калькулятор помещения Heater Shop подберет наиболее подходящую мощность радиатора для вашей комнаты; он прогнозирует способность модели получать и поддерживать температуру окружающей среды на уровне 21 ° C. Есть и другие факторы, которые также следует учитывать при определении размера радиатора, который подходит для обогрева вашей комнаты.

Изоляция

Учет теплоизоляции вашего здания очень важен для выбора радиатора правильного размера.В помещениях с плохим удержанием тепла может потребоваться радиатор большего размера для эффективного регулирования температуры окружающей среды. Помните, что качество изоляции может варьироваться по всему зданию; влияющие факторы включают количество окон в комнате или чердак.

Если это новое здание, оно обычно имеет очень хорошую изоляцию, но старые постройки могут пропускать много тепла. Строения из кирпича, бетона и дерева имеют разные изоляционные свойства, поэтому тщательно подумайте о своих вариантах или проконсультируйтесь со специалистом.Если вы не уверены, Heater Shop имеет техническую команду, доступную по телефону 01473 276686.

Где вы находитесь в стране

От холмистых Гебридских островов до белых скал Дувра, где вы находитесь в стране, в значительной степени влияет на рекомендуемые размер радиатора, который вам нужен. Длина Великобритании составляет 601 милю, и в ней наблюдаются удручающе странные погодные условия; средняя наружная температура влияет на правильный размер радиатора. Городское или сельское местоположение также влияет на предлагаемое решение по отоплению, поскольку городские города производят и сохраняют немного больше тепла, чем сельские районы.

Наш калькулятор размера комнаты дает приблизительную рекомендацию в зависимости от вашего местоположения: в некоторых частях страны требуется более мощный радиатор, чем в других.

Вид вашей комнаты

В зависимости от того, какую комнату вы хотите обогреть, она может получать больше солнечного света, чем другие. Ориентация вашей комнаты может повлиять на требуемую мощность вашего радиатора и, следовательно, на его необходимый размер. Это фактор, о котором часто забывают, который может сэкономить оператору много денег в течение календарного года.

Мансардные окна, эркеры и французские окна — все это способствует успешному поддержанию хорошего обогрева вашей комнаты. Следует учитывать качество стекла и конструкцию окна, а также высоту и структуру помещения. Размещение радиатора в комнате повлияет на его практическое применение, а также на эстетику; помните о предназначении комнаты и о том, как ваш радиатор может быть наиболее полезным.

Если вам нужны дополнительные разъяснения или заверения, пожалуйста, не стесняйтесь обращаться к нам по телефону 01473 276686.

Space Calc (Калькуляторы) — Ян Маллетт

Есть два эффекта, которые следует учитывать, когда мы работаем с капельными излучателями вместо обычных панельных излучателей: взаимное поглощение и взаимное отражение. В первом случае свет поглощается, преобразуется в тепло и переизлучается в виде теплового излучения. Во втором случае свет просто отражается прямо.

Это уже сложно, но проблема дополнительно усложняется тем фактом, что, когда происходит поглощение, энергия направляется по закону Стефана – Больцмана (см. Выше), который вводит четвертую степень температуры в геометрическую сумму, которую иначе можно трактовать. .

Чтобы решить эту проблему, мы используем симметрию в радиометрической величине яркости: поскольку каждая капля является «средней» и поскольку яркость не зависит от расстояния, приходящая яркость к данной капле от других капель должна быть такой же, как яркость, которая эта же капля испускает другие капли.


По определению, излучаемая яркость (\ (L_o \), «o» для «out») должна быть равна сумме излучаемого света (\ (L_e \), «e» для «испускаемого») и отраженного света. (\ (L_r \), «r» означает «отраженный»):

\ [
L_o = L_e + L_r
\]

Между тем, \ (L_r \) сам по себе — это просто доля (\ (1- \ epsilon \)) входящего излучения (\ (L_i \), «i» для «входящего»), которое отражает:

\ [
L_r = (1- \ epsilon) L_i
\]

Но теперь самое умное: хотя наша капля может излучать в другую каплю, эта другая капля также излучается обратно.Поскольку каждая капля является «средней», обе капли имеют одинаковую температуру, яркость и т. Д. В частности, входящее излучение от закрывающей капли равно исходящему излучению, которое наша капля посылает обратно, то есть когда входящая яркость направление — от закрывающей капли, \ (L_i = L_o \). Когда это не так, мы используем окружающее сияние пространства (\ (L_i = L_s \), «s» для «пространства»).

Назовите долю закрытых направлений «\ (f \)». В \ (f \) направлений наша капля перекрывается другой каплей, испускающей \ (L_o \).В \ ((1-f) \) направлений мы видим \ (L_s \). Следовательно, падающая на нашу каплю яркость в среднем составляет:

\ [
L_i = f \ cdot L_o + (1-f) L_s
\]

Мы можем заменить все это вместе и решить \ (L_o \):

\ begin {align}
L_o & = L_e + L_r \\
& = L_e + (1- \ epsilon) L_i \\
& = L_e + (1- \ epsilon) (f \ cdot L_o + (1-f) L_s) \\
(1 — (1- \ epsilon) f) L_o & = L_e + (1- \ epsilon) (1-f) L_s \\
L_o & = \ left (\ frac {L_e + (1- \ epsilon) (1-f) L_s} {1 — (1- \ epsilon) f} \ right)
\ end {align}

Однако, что нас на самом деле будет интересовать, так это net radiance (\ (L_n \), «n» для «net»), разница между входящим и исходящим сиянием:

\ begin {align}
L_n & = L_i — L_o \\
& = f \ cdot L_o + (1-f) L_s — L_o \\
& = (1-е) (Л_с — Л_о) \\
& = (1-f) \ left (L_s — \ frac {L_e + (1- \ epsilon) (1-f) L_s} {1 — (1- \ epsilon) f} \ right) \\
& = \ frac {1-f} {1- (1- \ epsilon) f} (\ epsilon L_s — L_e)
\ end {align}


Вспомните вышеупомянутый закон Стефана – Больцмана сверху (с \ (A_d \) и \ (r \) площадью поверхности и радиусом капли):

\ begin {align}
\ Phi_e & = A_d \ cdot \ epsilon \ cdot \ sigma_ {sb} \ cdot T ^ 4 \\
& = 4 \ pi r ^ 2 \ cdot \ epsilon \ cdot \ sigma_ {sb} \ cdot T ^ 4 \\
\ end {align}

Нам также нужно связать силу излучения капли с ее сиянием.3
\]

Поскольку мощность является производной энергии по времени, теперь мы можем объединить это уравнение с формулой из предыдущего раздела и проинтегрировать, чтобы получить энергию (или температуру) за время.

К сожалению, интеграция оказывается ужасной из-за члена \ (L_s \). Хотя это можно сделать в закрытой форме, результат плохой: все логарифмы и арктангенсы — и даже не определены в важных местах. Тогда это должно быть инвертировано для \ (J (t) \).2}
\]

Поскольку полная энергия, излучаемая единственной каплей за один проход за время \ (\ Delta t \), равна \ (J (0) -J (\ Delta t) \), полная энергия, излучаемая всеми каплями за то же время \ (\ Delta t \) — это просто произведение уменьшения энергии капли и количества капель. (Если это не очевидно, попробуйте представить себе одну каплю в одной линии тока. Ее соседние капли не летают для всего \ (\ Delta t \), а капельки, которые будут выбрасываться во время \ (\ Delta t \) точно заполнит ту часть, для которой они не испускали.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *