Как рассчитать потери электроэнергии: Расчет потерь электроэнергии в сетях 0,4 кВ: формулы, схемы

Разное

Содержание

Потери электроэнергии в электрических сетях: виды, причины, расчет

Потери электроэнергии в электрических сетях неминуемы, поэтому важно чтобы они не превышали экономически обоснованного уровня. Превышение норм технологического расхода говорит о возникших проблемах. Чтобы исправить ситуацию необходимо установить причины возникновения нецелевых затрат и выбрать способы их снижения. Собранная в статье информация описывает многие аспекты этой непростой задачи.

Виды и структура потерь

Под потерями подразумевается разница между отпущенной потребителям электроэнергией и фактически поступившей к ним. Для нормирования потерь и расчетов их фактической величины, была принята следующая классификация:

  • Технологический фактор. Он напрямую зависит от характерных физических процессов, и может меняться под воздействием нагрузочной составляющей, условно-постоянных затрат, а также климатических условий.
  • Расходы, затрачиваемые на эксплуатацию вспомогательного оборудования и обеспечение необходимых условий для работы техперсонала.
  • Коммерческая составляющая. К данной категории относятся погрешности приборов учета, а также другие факторы, вызывающие недоучет электроэнергии.

Ниже представлен среднестатистический график потерь типовой электрокомпании.

Примерная структура потерь

Как видно из графика наибольшие расходы связаны с передачей по воздушным линиям (ЛЭП), это составляет около 64% от общего числа потерь. На втором месте эффект коронированния (ионизация воздуха рядом с проводами ВЛ и, как следствие, возникновение разрядных токов между ними) – 17%.

Коронный разряд на изоляторе ЛЭП

Исходя из представленного графика, можно констатировать, что наибольший процент нецелевых расходов приходится на технологический фактор.

Основные причины потерь электроэнергии

Разобравшись со структурой, перейдем к причинам, вызывающим нецелевой расход в каждой из перечисленных выше категорий. Начнем с составляющих технологического фактора:

  1. Нагрузочные потери, они возникают в ЛЭП, оборудовании и различных элементах электросетей. Такие расходы напрямую зависят от суммарной нагрузки. В данную составляющую входят:
  • Потери в ЛЭП, они напрямую связаны с силой тока. Именно поэтому при передаче электроэнергии на большие расстояния используется принцип повышения в несколько раз, что способствует пропорциональному уменьшению тока, соответственно, и затрат.
  • Расход в трансформаторах, имеющий магнитную и электрическую природу ( 1 ). В качестве примера ниже представлена таблица, в которой приводятся данные затрат на трансформаторах напряжения подстанций в сетях 10 кВ.

Потери в силовых трансформаторах подстанций

Нецелевой расход в других элементах не входит в данную категорию, ввиду сложностей таких расчетов и незначительного объема затрат. Для этого предусмотрена следующая составляющая.

  1. Категория условно-постоянных расходов. В нее входят затраты, связанные со штатной эксплуатацией электрооборудования, к таковым относятся:
  • Холостая работа силовых установок.
  • Затраты в оборудовании, обеспечивающем компенсацию реактивной нагрузки.
  • Другие виды затрат в различных устройствах, характеристики которых не зависят от нагрузки. В качестве примера можно привестисиловую изоляцию, приборы учета в сетях 0,38 кВ, змерительные трансформаторы тока, ограничители перенапряжения и т.д.
  1. Климатическая составляющая. Нецелевой расход электроэнергии может быть связан с климатическими условиями характерными для той местности, где проходят ЛЭП. В сетях 6 кВ и выше от этого зависит величина тока утечки в изоляторах. В магистралях от 110 кВ большая доля затрат приходится на коронные разряды, возникновению которых способствует влажность воздуха. Помимо этого в холодное время года для нашего климата характерно такое явление, как обледенение на проводах высоковольтных линий, а также обычных ЛЭП.
    Гололед на ЛЭП

Учитывая последний фактор, следует учитывать затраты электроэнергии на расплавление льда.

Расходы на поддержку работы подстанций

К данной категории отнесены затраты электрической энергии на функционирование вспомогательных устройств. Такое оборудование необходимо для нормальной эксплуатации основных узлов, отвечающих за преобразование электроэнергии и ее распределение. Фиксация затрат осуществляется приборами учета. Приведем список основных потребителей, относящихся к данной категории:

  • системы вентиляции и охлаждения трансформаторного оборудования;
  • отопление и вентиляция технологического помещения, а также внутренние осветительные приборы;
  • освещение прилегающих к подстанциям территорий;
  • зарядное оборудование АКБ;
  • оперативные цепи и системы контроля и управления;
  • системы обогрева наружного оборудования, например, модули управления воздушными выключателями;
  • различные виды компрессорного оборудования;
  • вспомогательные механизмы;
  • оборудование для ремонтных работ, аппаратура связи, а также другие приспособления.

Коммерческая составляющая

Под данными затратами подразумевается сальдо между абсолютными (фактическими) и техническими потерями. В идеале такая разница должна стремиться к нулю, но на практике это не реально. В первую очередь это связано с особенностями приборов учета отпущенной электроэнергии и электросчетчиков, установленных у конечных потребителей. Речь идет о погрешности. Существует ряд конкретных мероприятий для уменьшения потерь такого вида.

К данной составляющей также относятся ошибки в счетах, выставленных потребителю и хищения электроэнергии. В первом случае подобная ситуация может возникнуть по следующим причинам:

  • в договоре на поставку электроэнергии указана неполная или некорректная информация о потребителе;
  • неправильно указанный тариф;
  • отсутствие контроля за данными приборов учета;
  • ошибки, связанные с ранее откорректированными счетами и т.д.

Что касается хищений, то эта проблема имеет место во всех странах. Как правило, такими противозаконными действиями занимаются недобросовестные бытовые потребители. Заметим, что иногда возникают инциденты и с предприятиями, но такие случаи довольно редки, поэтому не являются определяющими. Характерно, что пик хищений приходится на холодное время года, причем в тех регионах, где имеются проблемы с теплоснабжением.

Различают три способа хищения (занижения показаний прибора учета):

  1. Механический. Под ним подразумевается соответствующее вмешательство в работу прибора. Это может быть притормаживание вращения диска путем прямого механического воздействия, изменение положения электросчетчика, путем его наклона на 45° (для той же цели). Иногда применяется более варварский способ, а именно, срываются пломбы, и производится разбалансирование механизма. Опытный специалист моментально обнаружит механическое вмешательство.
  2. Электрический. Это может быть как незаконное подключение к воздушной линии путем «наброса», метод инвестирования фазы тока нагрузки, а также использование специальных приборов для его полной или частичной компенсации. Помимо этого есть варианты с шунтированием токовой цепи прибора учета или переключение фазы и нуля.
  3. Магнитный. При данном способе к корпусу индукционного прибора учета подносится неодимовый магнит.

Магнит может воздействовать только некоторые старые модели электросчетчиков

Практически все современные приборы учета «обмануть» вышеописанными способами не удастся. Мало того, подобные попытки вмешательства могут быть зафиксированы устройством и занесены в память, что приведет к печальным последствиям.

Понятие норматива потерь

Под данным термином подразумевается установка экономически обоснованных критериев нецелевого расхода за определенный период. При нормировании учитываются все составляющие. Каждая из них тщательно анализируется отдельно. По итогу производятся вычисления с учетом фактического (абсолютного) уровня затрат за прошедший период и анализа различных возможностей, позволяющих реализовать выявленные резервы для снижения потерь. То есть, нормативы не статичны, а регулярно пересматриваются.

Под абсолютным уровнем затрат в данном случае подразумевается сальдо между переданной электроэнергией и техническими (относительными) потерями. Нормативы технологических потерь определяются путем соответствующих вычислений.

Кто платит за потери электричества?

Все зависит от определяющих критериев. Если речь идет о технологических факторах и расходах на поддержку работы сопутствующего оборудования, то оплата потерь закладывается в тарифы для потребителей.

Совсем по иному обстоит дело с коммерческой составляющей, при превышении заложенной нормы потерь, вся экономическая нагрузка считается расходами компании, осуществляющей отпуск электроэнергии потребителям.

Способы уменьшения потерь в электрических сетях

Снизить затраты можно путем оптимизации технической и коммерческой составляющей. В первом случае следует принять следующие меры:

  • Оптимизация схемы и режима работы электросети.
  • Исследование статической устойчивости и выделение мощных узлов нагрузки.
  • Снижение суммарной мощности за счет реактивной составляющей. В результате доля активной мощности увеличится, что позитивно отразится на борьбе с потерями.
  • Оптимизация нагрузки трансформаторов.
  • Модернизация оборудования.
  • Различные методы выравнивания нагрузки. Например, это можно сделать, введя многотарифную систему оплаты, в которой в часы максимальной нагрузки повышенная стоимость кВт/ч. Это позволит существенно потребление электроэнергии в определенные периоды суток, в результате фактическое напряжение не будет «проседать» ниже допустимых норм.

Уменьшить коммерческие затраты можно следующим образом:

  • регулярный поиск несанкционированных подключений;
  • создание или расширение подразделений, осуществляющих контроль;
  • проверка показаний;
  • автоматизация сбора и обработки данных.

Методика и пример расчета потерь электроэнергии

На практике применяют следующие методики для определения потерь:

  • проведение оперативных вычислений;
  • суточный критерий;
  • вычисление средних нагрузок;
  • анализ наибольших потерь передаваемой мощности в разрезе суток-часов;
  • обращение к обобщенным данным.

Полную информацию по каждой из представленных выше методик, можно найти в нормативных документах.

В завершении приведем пример вычисления затрат в силовом трансформаторе TM 630-6-0,4. Формула для расчета и ее описание приведены ниже, она подходит для большинства видов подобных устройств.

Расчет потерь в силовом трансформаторе

Для понимания процесса следует ознакомиться с основными характеристиками TM 630-6-0,4.

Параметры TM 630/6/0,4

Теперь переходим к расчету.

Итоги расчета

Список использованной литературы

  • Ю. Железко «Потери электроэнергии. Реактивная мощность. Качество электроэнергии: Руководство для практических расчетов» 2009
  • Поспелов Г.Е. «Потери мощности и энергии в электрических сетях» 1981
  • Шведов Г.В., Сипачева О.В., Савченко О.В. «Потери электроэнергии при ее транспорте по электрическим сетям: расчет, анализ, нормирование и снижение» 2013
  • Фурсанов М.И. «Определение и анализ потерь электроэнергии в электрических сетях энергосистем» 2005

Пример определения потерь электроэнергии в линии

Определить потери электроэнергии за год в трехфазной воздушной линии напряжением 6 кВ, питающее промышленное предприятие с трехсменной работой.

Исходные данные:

  • Номинальное напряжение линии – Uном. = 6 кВ;
  • Длина линии – l = 8,2 км;
  • Марка провода — АС95;
  • Максимальная мощность, передаваемая по линии – Рмакс. = 830 кВт;
  • Коэффициент мощности – cosϕ = 0,8.

Решение

Потери электроэнергии для проектируемого объекта можно рассчитать двумя способами или по величине среднеквадратичного тока Iср с учетом времени включения линии Тв, или по максимальному току Iмакс. при времени потерь τ.

Вариант I

1. Определяем общее активное сопротивление линии:

R = r0*l = 0,33*8,2 = 2,7 Ом

где: r0 = 0,33 Ом/км – активное сопротивление провода АС95, определяется по таблице 1.11 [Л2, с.17].

2. Определяем годовой расход при максимальной нагрузке по выражению 4.52 [Л1, с. 116]:

W = Tмакс.*Рмакс. = 6000*830 = 4980*103 кВт*ч

3. Определяем среднеквадратичный ток, который представляет собой эквивалентный ток, который, проходя за время Тв (сутки, месяц, год), вызывает те же потери мощности и электроэнергии, что и действительный, изменяющийся за то же время ток, по выражению 4.46-4.47 [Л1, с. 115]:

где:

  • kф = 1,05-1,1 – коэффициент формы определяется с достаточной для практических расчетов точностью по данным проектных организаций при любом числе (более двух) токоприемников с длительным режимом работы и числом токоприемников более двадцати с повторно-кратковременным режимом.
  • Тв = 8760 ч – время включение линии за год.

4. Определяем потери электроэнергии за год по выражению 4.48 и 4.49 [Л1, с. 115]:

5. Определяем потери активной электроэнергии в процентном соотношении:

Вариант II

Потерю электроэнергии можно определить иным способ, если известен годовой расход электроэнергии W = 4980*103 кВт*ч.

1. Определяем время использования максимума нагрузки Тмакс. исходя из характера производства и сменности работы потребителя составляет в среднем в год (ч) согласно [Л1, с. 116]:

  • Для осветительных нагрузок – 1500 – 2000;
  • Для односменных предприятий – 1800 – 2500;
  • Для двухсменных предприятий – 3500 – 4500;
  • Для трехсменных предприятий – 5000 – 7000;

Принимаем Тмакс. = 6000 ч – для трехсменных предприятий.

2. По графику, представленному на рис.4.8 [Л1, с. 116] определяем время потерь τ = 4700 ч, исходя из cosϕ = 0,8 и времени использования максимума нагрузки Тмакс. = 6000 ч.

3. Определяем максимальный ток за рассматриваемый промежуток времени (сутки, год) по выражению 4.53 [Л1, с. 117]:

4. Определяем потери электроэнергии за год по выражению 4.54 [Л1, с. 115]:

Как мы видим в данном случае результаты расчетов совпали, но может так получится, что у вас результаты расчетов могут не много отличатся друг от друга, связано это с погрешностью при определении времени потерь τ и коэффициента формы kф.

Литература:

  1. Электроснабжение промышленных предприятий и установок. Третье издание. Б.Ю. Липкин. 1981 г.
  2. Справочник по проектированию электроснабжению. Ю.Г. Барыбина. 1990 г.

Всего наилучшего! До новых встреч на сайте Raschet.info.

Поделиться в социальных сетях

Как рассчитать потери электроэнергии • Energy-Systems

 

Как правильно рассчитать потери электроэнергии

О потерях энергии в процессе ее передачи собственники электрифицированных объектов стали задумываться сравнительно недавно. В то же время это достаточно важный параметр, который обязательно следует учитывать владельцам частных домов, сельскохозяйственных и других предприятий.

На вопрос, как рассчитать потери электроэнергии, есть один простой ответ – обратиться к специалистам. Проведение подобных расчетов считается достаточно трудоемкой и сложной задачей, для выполнения которой требуются профессионалы, знакомые с необходимыми формулами и умеющие такими формулами пользоваться.

Условия расчета потери электроэнергии

Проще всего проводить расчеты потерь в электрической сети, где используется только один тип провода с одним сечением, к примеру, если на объекте применяется только алюминиевые кабели с сечением в 35 мм. На практике системы с одним типом кабеля практически не встречаются, обычно для электроснабжения зданий и сооружений используются различные провода. В этом случае для получения точных результатов, следует отдельно проводить расчеты для отдельных участков и линий электрической системы с различными кабелями.

Потери в электрической сети на трансформаторе и до него обычно не учитываются, так как индивидуальные приборы учета потребляемой энергии устанавливаются в цепь уже после такого оборудования. Тем не менее если вам требуется высчитать потери на силовом трансформаторе все-таки необходимо, сделать это достаточно просто. Расчет потерь электроэнергии в трансформаторе осуществляется на основе технической документации такого устройства, где будут указаны все необходимые вам параметры.

Следует помнить, что любые расчеты проводятся для определения величины максимальных потерь в ходе передачи электричества.

При проведении вычислений стоит учитывать, что мощность сети электроснабжения склада, производственного предприятия или другого объекта достаточна для обеспечения всех подключенных к ней потребителей, то есть, система сможет работать без перенапряжения даже в моменты максимальной нагрузки на каждом подключенном объекте.

Пример проекта электроснабжения дома

Назад

1из21

Вперед

Величину выделенной электрической мощности можно узнать из договора с эксплуатирующей организацией на предоставление таких услуг.

Сумма потерь всегда зависит от потребляемой мощности сети. Чем больше напряжения потребляется объектами, тем больше будут потери.

В качестве примера можно рассматривать небольшое садоводческое объединение, в состав которого входит 60 объектов недвижимости, подключенных через алюминиевый кабель к центральной линии электропередач. Общая протяженность линии – 2 км.

Как рассчитывают потери электроэнергии по длине линии

На основе описанных выше параметров, можно воспользоваться формулой для вычисления потерь электроэнергии по время ее передачи.

В данной формуле:

ΔW – общее количество потерь электрической энергии при передаче,

W – объем электрической энергии, потраченной на обеспечение работы линии в течение определенного промежутка времени,

КL – коэффициент, предназначенный для учета распределительной нагрузки на линию потребления, в рассматриваемом примере вся сеть разбита на три отдельных линии, к каждой из которых подключено по 20 объектов потребления,

Кф – коэффициент из графика нагрузки на линию,

L – длина сети электроснабжения,

tgφ – реактивная мощность сети,

F – диаметр сечения провода на участке сети,

Д – отрезок времени, в течение которого осуществляется потребление энергии и, как следствие, потери,

Кф² — коэффициент заполнения графика.

Кф² можно рассчитать по простой формуле:

Кз в данной формуле – это коэффициент заполнения графика потребления. Если отсутствуют точные данные по такому графику, за коэффициент принимают величину 0,3. В этом случае по формуле высчитывается Кф², которое будет равняться 1,78.

Рассчитывать потери следует отдельно для каждой линии фидера, которых всего в сети установлено 3 штуки на 2 километра протяженности сети. В такой ситуации нагрузка на сеть будет равномерно распределена на три линии.

Если за основу расчетов принять годовую мощность сети в 63 тысячи кВт, тогда для каждой отдельной линии на один фидер будет приходиться электроэнергии на 21 тысячу кВт. Для формулы лучше применять величину в Вт, а не в кВт, то есть, 21*106 Вт/ч.

Когда все необходимые параметры для расчета установлены, их следует подставить в основную формулу, которая в нашем случае будет иметь следующий вид:

Проводим расчеты и получаем величину потерь электроэнергии для одной из трех линий, равную 573,67 кВт/ч. Общие потери в год будут в три раза больше, то есть — 1721 кВт/ч. Именно так должен проводиться расчет потерь электроэнергии на разных объектах.

Ниже вы можете воспользоваться онлайн-калькулятором для расчёта стоимости проектирования сетей электроснабжения:

Онлайн расчет стоимости проектирования

VI. Порядок определения потерь в электрическихсетях и оплаты этих потерь 

50. Размер фактических потерь электрической энергии в электрических сетях определяется как разница между объемом электрической энергии, переданной в электрическую сеть из других сетей или от производителей электрической энергии, и объемом электрической энергии, которая поставлена по договорам энергоснабжения (купли-продажи (поставки) электрической энергии (мощности) и потреблена энергопринимающими устройствами, присоединенными к данной электрической сети, а также объемом электрической энергии, которая передана в электрические сети других сетевых организаций.

В отношении потребителя, энергопринимающее оборудование которого присоединено к объектам электросетевого хозяйства, с использованием которых указанный потребитель оказывает услуги по передаче электрической энергии, размер фактических потерь электрической энергии, возникающих на таких объектах электросетевого хозяйства (V(факт)), определяется по формуле:

 

V(факт) = V(отп) x (N / (100% — N)),

 

где:

V(отп) — объем отпуска электрической энергии из электрических сетей потребителя электрической энергии, осуществляющего деятельность по оказанию услуг по передаче электрической энергии, в энергопринимающие устройства (объекты электросетевого хозяйства) смежных субъектов электроэнергетики;

N — величина технологического расхода (потерь) электрической энергии (уровень потерь электрической энергии при ее передаче по электрическим сетям), которая рассчитана в процентах от объема отпуска электрической энергии в электрическую сеть потребителя электрической энергии, осуществляющего деятельность по оказанию услуг по передаче электрической энергии, как сетевой организации и учтена органом исполнительной власти субъекта Российской Федерации в области государственного регулирования тарифов при установлении единых (котловых) тарифов.

(см. текст в предыдущей редакции)

51. Сетевые организации обязаны оплачивать стоимость электрической энергии в объеме фактических потерь электрической энергии, возникших в принадлежащих им объектах сетевого хозяйства.

(см. текст в предыдущей редакции)

Стоимость электрической энергии в объеме фактических потерь электрической энергии, возникших на объектах электросетевого хозяйства, входящих в единую национальную (общероссийскую) электрическую сеть и принадлежащих собственникам или иным законным владельцам, которые ограничены в соответствии с Федеральным законом «Об электроэнергетике» в осуществлении своих прав в части права заключения договоров об оказании услуг по передаче электрической энергии с использованием указанных объектов, оплачивается той организацией, которая в соответствии с договором о порядке использования таких объектов обязана приобретать электрическую энергию (мощность) для компенсации возникающих в них фактических потерь электрической энергии.

(см. текст в предыдущей редакции)

52. Потребители услуг, за исключением производителей электрической энергии, обязаны оплачивать в составе тарифа за услуги по передаче электрической энергии нормативные потери, возникающие при передаче электрической энергии по сети сетевой организацией, с которой соответствующими лицами заключен договор.

(в ред. Постановлений Правительства РФ от 15.06.2009 N 492, от 07.07.2017 N 810)

(см. текст в предыдущей редакции)

Потребители услуг, опосредованно присоединенные через энергетические установки производителей электрической энергии, оплачивают в составе тарифа за услуги по передаче электрической энергии нормативные потери только на объемы электрической энергии, не обеспеченные выработкой соответствующей электрической станцией.

Потребители услуг оплачивают потери электрической энергии сверх норматива в случае, если будет доказано, что потери возникли по вине этих потребителей услуг.

53. Нормативы потерь электрической энергии при ее передаче по электрическим сетям утверждаются федеральным органом исполнительной власти, осуществляющим функции по выработке и реализации государственной политики и нормативно-правовому регулированию в сфере топливно-энергетического комплекса, в соответствии с настоящими Правилами и методикой определения нормативов потерь электрической энергии при ее передаче по электрическим сетям, утверждаемой федеральным органом исполнительной власти, осуществляющим функции по выработке и реализации государственной политики и нормативно-правовому регулированию в сфере топливно-энергетического комплекса, по согласованию с федеральным органом исполнительной власти в области государственного регулирования тарифов и федеральным органом исполнительной власти, осуществляющим функции по выработке государственной политики и нормативно-правовому регулированию в сфере анализа и прогнозирования социально-экономического развития.

(см. текст в предыдущей редакции)

54. Нормативы потерь электрической энергии в электрических сетях устанавливаются в отношении совокупности линий электропередачи и иных объектов электросетевого хозяйства, принадлежащих соответствующей сетевой организации (собственнику или иному законному владельцу объектов электросетевого хозяйства, входящих в единую национальную (общероссийскую) электрическую сеть, который ограничен в соответствии с Федеральным законом «Об электроэнергетике» в осуществлении своих прав в части права заключения договоров об оказании услуг по передаче электрической энергии с использованием указанных объектов), с учетом дифференциации по уровням напряжения сетей при установлении тарифов на услуги по передаче электрической энергии.

(см. текст в предыдущей редакции)

54(1). Нормативы потерь электрической энергии при ее передаче по электрическим сетям территориальных сетевых организаций определяются на основе сравнительного анализа потерь с дифференциацией по уровням напряжения исходя из необходимости сокращения нормативов потерь электрической энергии к 2017 году не менее чем на 11 процентов уровня потерь электрической энергии, предусмотренного в сводном прогнозном балансе производства и поставок электрической энергии (мощности) в рамках Единой энергетической системы России по субъектам Российской Федерации на 2012 год, в соответствии с порядком, предусмотренным методикой определения нормативов потерь электрической энергии при ее передаче по электрическим сетям.

55. Методика определения нормативов потерь электрической энергии при ее передаче по электрическим сетям предусматривает снижение нормативов потерь электрической энергии к 2017 году не менее чем на 11 процентов уровня потерь электрической энергии, предусмотренного в сводном прогнозном балансе производства и поставок электрической энергии (мощности) в рамках Единой энергетической системы России по субъектам Российской Федерации на 2012 год, и определение нормативов указанных потерь на основе:

1) технологических потерь электрической энергии в объектах электросетевого хозяйства, обусловленных физическими процессами, происходящими при передаче электрической энергии, с учетом технических характеристик линий электропередачи, силовых трансформаторов и иных объектов электросетевого хозяйства, определяющих величину переменных потерь в соответствии с технологией передачи и преобразования электрической энергии, условно-постоянных потерь для линий электропередачи, силовых трансформаторов и иных объектов электросетевого хозяйства;

2) сравнительного анализа потерь электрической энергии при ее передаче по электрическим сетям территориальных сетевых организаций с дифференциацией по уровням напряжения.

(см. текст в предыдущей редакции)

55(1). Стоимость потерь электрической энергии при ее передаче по электрическим сетям единой национальной (общероссийской) электрической сети определяется как произведение объема фактического отпуска электрической энергии из единой национальной (общероссийской) электрической сети в течение расчетного периода в отношении потребителя услуг по передаче электрической энергии, норматива потерь электрической энергии при ее передаче по электрическим сетям единой национальной (общероссийской) электрической сети и ставки тарифа на услуги по передаче электрической энергии, используемой для целей определения расходов на оплату нормативных потерь электрической энергии при ее передаче по электрическим сетям единой национальной (общероссийской) электрической сети, определяемой в соответствии с Основами ценообразования в области регулируемых цен (тарифов) в электроэнергетике.

(см. текст в предыдущей редакции)

В случае если центр питания (распределительное устройство подстанции, входящей в единую национальную (общероссийскую) электрическую сеть, или распределительное устройство электрической станции, соединенное с линиями электропередачи, входящими в единую национальную (общероссийскую) электрическую сеть) (далее — центр питания) и энергопринимающие устройства (объекты электросетевого хозяйства) потребителя услуг по передаче электрической энергии, присоединенные к таким центрам питания, расположены в разных субъектах Российской Федерации, при определении стоимости потерь электрической энергии при ее передаче по электрическим сетям единой национальной (общероссийской) электрической сети используется норматив потерь электрической энергии при ее передаче по электрическим сетям единой национальной (общероссийской) электрической сети для соответствующего уровня напряжения в отношении субъекта Российской Федерации, в котором расположен центр питания.

Фактический отпуск электрической энергии из единой национальной (общероссийской) электрической сети потребителю услуг по передаче электрической энергии в течение расчетного периода для целей настоящего пункта определяется как разность между объемами перетоков электрической энергии от центров питания в сеть потребителя услуг по передаче электрической энергии и объемами перетоков из сети потребителя услуг по передаче электрической энергии в единую национальную (общероссийскую) электрическую сеть по каждому субъекту Российской Федерации и уровню напряжения.

В случае если фактический отпуск электрической энергии из единой национальной (общероссийской) электрической сети в сеть потребителя услуг по передаче электрической энергии осуществляется от нескольких центров питания, расположенных в разных субъектах Российской Федерации, при определении фактического отпуска электрической энергии из единой национальной (общероссийской) электрической сети в сеть потребителя услуг по передаче электрической энергии суммарный объем перетока электрической энергии из сети потребителя услуг по передаче электрической энергии в единую национальную (общероссийскую) электрическую сеть вычитается из объемов перетоков электрической энергии от центров питания в сеть потребителя услуг по передаче электрической энергии пропорционально объемам перетоков электрической энергии от центров питания в сеть потребителя услуг по передаче электрической энергии по каждому субъекту Российской Федерации и уровню напряжения.

В случае если объем фактического отпуска электрической энергии из единой национальной (общероссийской) электрической сети потребителю услуг по передаче электрической энергии на одном уровне напряжения имеет положительное значение, а на другом уровне напряжения — отрицательное значение, определяется общий суммарный объем фактического отпуска электрической энергии из единой национальной (общероссийской) электрической сети.

В случае положительного значения суммарного объема фактического отпуска электрической энергии из единой национальной (общероссийской) электрической сети применяется норматив потерь электрической энергии при ее передаче по электрическим сетям единой национальной (общероссийской) электрической сети по соответствующему уровню напряжения того субъекта Российской Федерации, с территории которого фактический отпуск электрической энергии из единой национальной (общероссийской) электрической сети потребителю услуг по передаче электрической энергии имеет положительное значение.

Стоимость потерь электрической энергии при ее передаче по электрическим сетям для территориальных сетевых организаций при применении двухставочного варианта тарифа определяется как произведение объема фактического отпуска электрической энергии потребителям в течение расчетного периода и ставки на оплату нормативных потерь электрической энергии при ее передаче по электрическим сетям для территориальных сетевых организаций на соответствующем уровне напряжения.

(см. текст в предыдущей редакции)

Расчет и экспертиза нормативов потерь электрической энергии

Технологические потери электроэнергии при ее передаче по электрическим сетям включают в себя технические потери в линиях и оборудовании электрических сетей, обусловленных физическими процессами, происходящими при передаче электроэнергии в соответствии с техническими характеристиками и режимами работы линий и оборудования, с учетом расхода электроэнергии на собственные нужды подстанций и потери, обусловленные допустимыми погрешностями системы учета электроэнергии. Объем (количество) технологических потерь электроэнергии в целях определения норматива технологических потерь электроэнергии при ее передаче по электрическим сетям рассчитывается в соответствии с Методикой расчета технологических потерь электроэнергии при ее передаче по электрическим сетям в базовом периоде.

Документы, регламентирующие расчет нормативов расхода электрической энергии

  • «Инструкция по организации в Министерстве энергетики Российской Федерации работы по расчету и обоснованию нормативов технологических потерь электроэнергии при ее передаче по электрическим сетям», утвержденная Приказом Минэнерго РФ от 30.12.2008 № 326.

Документы, регламентирующие порядок утверждения нормативов в Минэнерго РФ

  • «Административный регламент Министерства энергетики Российской Федерации по исполнению государственной функции по утверждению нормативов технологических потерь электроэнергии при ее передаче по электрическим сетям», утвержденный Приказом Минэнерго РФ от 01. 11.2007 г. № 470.

Заказав проведение расчета и экспертизы нормативов в Нашей компании, Вы будете уверены в своевременном утверждении величин нормативов в Минэнерго РФ, поскольку все работы будут выполнены специалистами, имеющими многолетний опыт взаимодействия с Министерством по вопросом утверждения нормативов и досконально знающими все особенности проведения экспертизы. Своим постоянным клиентам ООО «Межрегиональная Энергосберегающая Компания» готова предложить проведение расчета и экспертизы нормативов в сжатые сроки и по цене ниже рыночной.

Для определения точной стоимости работ необходимо заполнить опросный лист.

Скачать Опросный лист в формате Word (ссылка для скачивания)

Заполненный опросный лист просьба направить на нашу электронную почту: Этот адрес электронной почты защищён от спам-ботов. У вас должен быть включен JavaScript для просмотра..

За дополнительной информацией обращайтесь по телефону: 8(495)973-32-67

Расчет потерь электроэнергии в электросетях

Потери электроэнергии в электрических сетях неминуемы, поэтому важно чтобы они не превышали экономически обоснованного уровня. Превышение норм технологического расхода говорит о возникших проблемах. Чтобы исправить ситуацию необходимо установить причины возникновения нецелевых затрат и выбрать способы их снижения.

Как правильно рассчитать потери электроэнергии

О потерях энергии в процессе ее передачи собственники электрифицированных объектов стали задумываться сравнительно недавно. В то же время это достаточно важный параметр, который обязательно следует учитывать владельцам частных домов, сельскохозяйственных и других предприятий.

На вопрос, как рассчитать потери электроэнергии, есть один простой ответ – обратиться к специалистам. Проведение подобных расчетов считается достаточно трудоемкой и сложной задачей, для выполнения которой требуются профессионалы, знакомые с необходимыми формулами и умеющие такими формулами пользоваться.

Расчёт сопротивления провода

Сначала посчитаем сопротивление провода (Ом/м) по формуле:

Предположим, магистральная линия селана СИПом сечением 35 мм². СИП — алюминиевый провод. Итого получаем 0,0287 / 35 = 0,00082 Ом/м.

При желании в удельное сопротивление материала провода можно ввести поправку на его температуру под нагрузкой. В данном случае взято сопротивление материала при 20°С.

Виды и структура потерь

Под потерями подразумевается разница между отпущенной потребителям электроэнергией и фактически поступившей к ним. Для нормирования потерь и расчетов их фактической величины, была принята следующая классификация:

  • Технологический фактор. Он напрямую зависит от характерных физических процессов, и может меняться под воздействием нагрузочной составляющей, условно-постоянных затрат, а также климатических условий.
  • Расходы, затрачиваемые на эксплуатацию вспомогательного оборудования и обеспечение необходимых условий для работы техперсонала.
  • Коммерческая составляющая. К данной категории относятся погрешности приборов учета, а также другие факторы, вызывающие недоучет электроэнергии.

Ниже представлен среднестатистический график потерь типовой электрокомпании.

Примерная структура потерь

Как видно из графика наибольшие расходы связаны с передачей по воздушным линиям (ЛЭП), это составляет около 64% от общего числа потерь. На втором месте эффект коронированния (ионизация воздуха рядом с проводами ВЛ и, как следствие, возникновение разрядных токов между ними) – 17%.

Коронный разряд на изоляторе ЛЭП

Исходя из представленного графика, можно констатировать, что наибольший процент нецелевых расходов приходится на технологический фактор.

Что такое потери электрической энергии?

Под потерями электроэнергии в широком смысле следует понимать разницу между поступлениями в сети и фактическим потреблением (полезным отпуском). Расчет потерь предполагает определение двух величин, что выполняется через учет электрической энергии. Одни стоят непосредственно на подстанции, другие у потребителей.

Потери могут рассчитываться в относительных и абсолютных величинах. В первом случае исчисление выполняется в процентах, во втором – в киловатт-часах. Структура разделена на две основных категории по причине возникновения. Общие потери именуются фактическими и являются основой эффективности работы подразделения.

Технические потери: физические причины появления и где возникают

Сущность технических потерь заключается в несовершенстве технологии и проводников, используемых в современной электроэнергетике. В процессе генерации, передачи и трансформации электроэнергии возникают физические явления, которые и создают условия утечки тока, нагрев проводников или прочие моменты. Технические потери могут возникать в следующих элементах:

  1. Трансформаторы. Каждый силовой трансформатор обладает двумя или тремя обмотками, посередине которого расположен сердечник. В процессе трансформации электроэнергии с большего на меньшего в этом элементе происходит нагрев, что и предполагает появление потерь.
  2. Линии электропередач. При транспортировке энергии на расстояния происходит утечка тока на корону для ВЛ, нагрев проводников. На расчет потерь в линии влияют следующие технические параметры: длина, сечение, удельная плотность проводника (медь или алюминий), коэффициенты потерь электроэнергии, в частности, коэффициент распределенности нагрузки, коэффициент формы графика.
  3. Дополнительное оборудование. К этой категории необходимо отнести технические элементы, которые участвуют в генерации, транспортировке, учете и потреблении электроэнергии. Величины для этой категории в основном постоянные или учитываются через счетчики.

Для каждого вида элементов электрической сети, для которой рассчитываются технические потери, имеется разделение на потери холостого хода и нагрузочные потери. Первые считаются постоянной величиной, вторые зависят от уровня пропуска и определяются для анализируемого периода, зачастую за месяц.

Условия расчета потери электроэнергии

Проще всего проводить расчеты потерь в электрической сети, где используется только один тип провода с одним сечением, к примеру, если на объекте применяется только алюминиевые кабели с сечением в 35 мм. На практике системы с одним типом кабеля практически не встречаются, обычно для электроснабжения зданий и сооружений используются различные провода. В этом случае для получения точных результатов, следует отдельно проводить расчеты для отдельных участков и линий электрической системы с различными кабелями.

Потери в электрической сети на трансформаторе и до него обычно не учитываются, так как индивидуальные приборы учета потребляемой энергии устанавливаются в цепь уже после такого оборудования. Тем не менее если вам требуется высчитать потери на силовом трансформаторе все-таки необходимо, сделать это достаточно просто. Расчет потерь электроэнергии в трансформаторе осуществляется на основе технической документации такого устройства, где будут указаны все необходимые вам параметры.

Следует помнить, что любые расчеты проводятся для определения величины максимальных потерь в ходе передачи электричества.

При проведении вычислений стоит учитывать, что мощность сети электроснабжения склада, производственного предприятия или другого объекта достаточна для обеспечения всех подключенных к ней потребителей, то есть, система сможет работать без перенапряжения даже в моменты максимальной нагрузки на каждом подключенном объекте.

Пример проекта электроснабжения дома

Величину выделенной электрической мощности можно узнать из договора с эксплуатирующей организацией на предоставление таких услуг.

Сумма потерь всегда зависит от потребляемой мощности сети. Чем больше напряжения потребляется объектами, тем больше будут потери.

В качестве примера можно рассматривать небольшое садоводческое объединение, в состав которого входит 60 объектов недвижимости, подключенных через алюминиевый кабель к центральной линии электропередач. Общая протяженность линии – 2 км.

Расходы на поддержку работы подстанций

К данной категории отнесены затраты электрической энергии на функционирование вспомогательных устройств. Такое оборудование необходимо для нормальной эксплуатации основных узлов, отвечающих за преобразование электроэнергии и ее распределение. Фиксация затрат осуществляется приборами учета. Приведем список основных потребителей, относящихся к данной категории:

  • системы вентиляции и охлаждения трансформаторного оборудования;
  • отопление и вентиляция технологического помещения, а также внутренние осветительные приборы;
  • освещение прилегающих к подстанциям территорий;
  • зарядное оборудование АКБ;
  • оперативные цепи и системы контроля и управления;
  • системы обогрева наружного оборудования, например, модули управления воздушными выключателями;
  • различные виды компрессорного оборудования;
  • вспомогательные механизмы;
  • оборудование для ремонтных работ, аппаратура связи, а также другие приспособления.

Расчёт квадрата коэффициента формы графика нагрузки

Квадрат коэффициента формы графика нагрузки — это промежуточный параметр, который также потребуется нам в итоговой расчётной формуле.

При отсутствии исходных данных о коэффициенте заполнения графика нагрузки, в промышленных сетях допускается использовать коэффициент 0,5. Однако в СНТ ввиду сезонного и других факторов этот коэффициент может достигать значений 0,1 и даже менее (низкая плотность, высокие нагрузки).

В нашем случае используем коэффициент 0,2. Тогда квадрат коэффициента будет равен (1 + 2 * 0,2) / (3 * 0,3) = 2,33.

Понятие норматива потерь

Под данным термином подразумевается установка экономически обоснованных критериев нецелевого расхода за определенный период. При нормировании учитываются все составляющие. Каждая из них тщательно анализируется отдельно. По итогу производятся вычисления с учетом фактического (абсолютного) уровня затрат за прошедший период и анализа различных возможностей, позволяющих реализовать выявленные резервы для снижения потерь. То есть, нормативы не статичны, а регулярно пересматриваются.

Под абсолютным уровнем затрат в данном случае подразумевается сальдо между переданной электроэнергией и техническими (относительными) потерями. Нормативы технологических потерь определяются путем соответствующих вычислений.

Кто платит за потери электричества?

Все зависит от определяющих критериев. Если речь идет о технологических факторах и расходах на поддержку работы сопутствующего оборудования, то оплата потерь закладывается в тарифы для потребителей.

Совсем по иному обстоит дело с коммерческой составляющей, при превышении заложенной нормы потерь, вся экономическая нагрузка считается расходами компании, осуществляющей отпуск электроэнергии потребителям.

Расчёт потерь за расчётный период

Теперь осталось посчитать потери за расчётный период (Вт*ч):

Давайте посчитаем годовые потери в магистральной линии. Пусть годовое потребление по этой линии равно 51000 кВт*ч, а коэффициент мощности в сети 0,9 (при этом tg φ = 0,48):

(51000² * (1 + 0,48²) * 2,33) / (24 * 365 * 0,4²) * 0,112 = 600 кВт*ч

600 кВт*ч — это 0,7% от годового потребления 51000 кВт*ч (600 / 51000 * 100).

Таким образом, потери в магистральной линии составляют 1,2% от электроэнергии, отданной в неё.

Методики расчета технических потерь на предприятиях электроэнергетики

Потери электроэнергии в электрических сетях осуществляется по двум основным методикам:

  1. Расчет и составление норматива потерь, что реализовывается через специальное программное обеспечение, куда закладывается информация по топологии схемы. Согласно последней определяются нормативные величины.
  2. Составление небалансов для каждого элемента электрических сетей. В основе этого метода лежит ежедневное, еженедельное и ежемесячное составление балансов в высоковольтной и распределительных сетях.

Каждый вариант обладает особенностями и эффективностью. Необходимо понимать, что выбор варианта зависит и от финансовой стороны вопроса.

Способы уменьшения потерь в электрических сетях

Снизить затраты можно путем оптимизации технической и коммерческой составляющей. В первом случае следует принять следующие меры:

  • Оптимизация схемы и режима работы электросети.
  • Исследование статической устойчивости и выделение мощных узлов нагрузки.
  • Снижение суммарной мощности за счет реактивной составляющей. В результате доля активной мощности увеличится, что позитивно отразится на борьбе с потерями.
  • Оптимизация нагрузки трансформаторов.
  • Модернизация оборудования.
  • Различные методы выравнивания нагрузки. Например, это можно сделать, введя многотарифную систему оплаты, в которой в часы максимальной нагрузки повышенная стоимость кВт/ч. Это позволит существенно потребление электроэнергии в определенные периоды суток, в результате фактическое напряжение не будет «проседать» ниже допустимых норм.

Уменьшить коммерческие затраты можно следующим образом:

  • регулярный поиск несанкционированных подключений;
  • создание или расширение подразделений, осуществляющих контроль;
  • проверка показаний;
  • автоматизация сбора и обработки данных.

Список использованной литературы

  • Ю. Железко «Потери электроэнергии. Реактивная мощность. Качество электроэнергии: Руководство для практических расчетов» 2009
  • Поспелов Г.Е. «Потери мощности и энергии в электрических сетях» 1981
  • Шведов Г.В., Сипачева О.В., Савченко О.В. «Потери электроэнергии при ее транспорте по электрическим сетям: расчет, анализ, нормирование и снижение» 2013
  • Фурсанов М.И. «Определение и анализ потерь электроэнергии в электрических сетях энергосистем» 2005

фактические показатели в электрических сетях, нормативы технологических потерь в кабеле

Виды и причины потерь электрической энергии


Потери электроэнергии — это разница между отпуском в сеть с генерирующего источника и фактически полученным потребителями ресурсом. Они бывают:


  1. Технологические. Возникают из-за действия физических законов при передаче электроэнергии, климатического фактора, неправильной нагрузки на сети и распределительное оборудование.


  2. Расходы на хознужды. Это недоотпуск, связанный с собственным потреблением энергии подстанциями и ЛЭП, на обеспечение условий для обслуживающего персонала.


  3. Коммерческие. В эту группу входят потери из-за погрешностей приборов учета, безучетного потребления.


Технологические потери, по статистике, составляют большую часть в структуре недоотпуска. Основная причина их возникновения в бытовой сети — неправильная нагрузка.


Электропотребление в идеале распределяют равномерно по трем фазам. Пониженное напряжение может возникнуть как по вине сетевиков, так и самого потребителя. Например, недобросовестные работники РЭС могут подключить «цепью» жилые дома и продуктовые магазины, без учета пиковых нагрузок. Или сам потребитель неправильно смонтирует схему электропроводки.

Расчет нормативов технологических потерь при передаче электрической энергии


Потребители оплачивают в составе тарифа за электроэнергию нормативные потери сетевой организации (п. 52 Правил в ред. ПП РФ от 27.12.2004 № 861). Показатели утверждает Минэнерго РФ отдельно:


Методика расчета технологических потерь электроэнергии в электрических сетях утверждена приказом Минэнерго РФ от 07.08.2014 № 706. Она учитывает условно-постоянные затраты на передачу:


  • холостой ход трансформаторов;


  • компенсацию реактивной мощности;


  • потери при увеличении протяженности электрических сетей.


Нормативы потерь в процентах устанавливают отдельно по высокому, среднему (СН1 и СН2) и низкому напряжению. Эти показатели и включают в тариф для конечного потребителя. Получить компенсацию сверхнормативных расходов можно только с прямого виновника их возникновения, при условии доказательств его вины.

Расчет величины потерь электроэнергии на линии в кабеле


Чтобы определить падение напряжения, понадобятся измерительные приборы (вольтметр или мультиметр) и специальные программы (онлайн-калькуляторы). Для самостоятельных расчетов по формулам пригодятся таблицы с показателями удельного сопротивления проводников и данные по сечению кабеля.


Сначала проводят замеры напряжения на участке цепи: в начале и в самой удаленной точке. Определяют разницу и сравнивают ее с нормативным значением, которое берут из специальных таблиц или вычисляют на онлайн-калькуляторе типа «Аврал.Дельта—1.0».


Программа учитывает базовые показатели (длину участка, сечение провода, номинальное напряжение, силу тока, материал проводника). Результат — расчет фактических потерь электроэнергии в электрических сетях, в процентах.

Как снизить технологические потери?


Уменьшить расходы из-за падения напряжения помогают:


  • изменение схемы электроснабжения объекта — перераспределение нагрузки, уменьшение длины участков цепи;


  • увеличение сечения проводов, замена кабеля;


  • снижение температуры в помещениях — нагревание увеличивает удельное сопротивление материалов и расход;


  • улучшение вентиляции в кабельных лотках;


  • уменьшение нагрузки.


Замеры и определение потерь лучше поручить электротехническим специалистам. Они найдут причины падения напряжения и дадут профессиональные рекомендации.  Наши эксперты с радостью помогут как в расчетах, так и в согласовании. Есть богатый опыт работы и согласования проектов с сетевыми организациями.

Расчет технических потерь линии передачи / распределения:

Введение:

  • Есть два типа потерь в линиях передачи и распределения.
  • (1) Технические потери и
  • (2) Коммерческие убытки.
  • Необходимо рассчитать технические и коммерческие потери. Обычно технические и коммерческие потери рассчитываются отдельно. Транспортные (технические) потери относятся непосредственно к тарифу на электроэнергию, но коммерческие потери не распространяются на всех потребителей.
  • Технические потери в распределительной линии в основном зависят от электрической нагрузки, типа и размера проводника, длины линии и т. Д.
  • Попробуем рассчитать Технические потери одной из следующих 11 кВ ВЛ

Пример:

  • Распределительная линия 11 кВ имеет следующий параметр.
  • Основная протяженность ВЛ 11 кВ — 6,18 км.
  • Всего шт. распределительного трансформатора на фидере 25 кВА = 3 шт. , 63 кВА = 3 шт., 100 кВА = 1 шт.
  • Потери в железе трансформатора 25 кВА = 100 Вт, потери в меди = 720 Вт, средние потери в линии LT = 63 Вт.
  • Потери в железе трансформатора 63 кВА = 200 Вт, потери в меди = 1300 Вт, средние потери в линии LT = 260 Вт.
  • Потери в железе трансформатора 100 кВА = 290 Вт, потери в меди = 1850 Вт, потери в линии LT = 1380 Вт.
  • Максимальный ток составляет 12 А.
  • Единица, отправленная во фидер, составляет 4
    кВтч
  • Единица, проданная во время от подачи, составляет 353592 кВт / ч
  • Нормативный коэффициент диверсификации нагрузки для городского питателя составляет 1,5, а для сельского питателя — 2,0

Расчет:

Общая подключенная нагрузка = количество подключенных трансформаторов.

  • Общая подключенная нагрузка = (25 × 3) + (63 × 3) + (100 × 1).
  • Общая подключенная нагрузка = 364 кВА.

Пиковая нагрузка = 1,732 x напряжение сети x макс. Ток

  • Пиковая нагрузка = 1,732x11x12
  • Пиковая нагрузка = 228 кВА.

Коэффициент разнесения (DF) = подключенная нагрузка (в кВА) / пиковая нагрузка.

  • Коэффициент разнообразия (DF) = 364/228
  • Коэффициент разнообразия (DF) = 1,15

Коэффициент нагрузки (LF) = Отправленный блок (в кВтч) / 1.732 x линейное напряжение x макс. x П.Ф. х 8760

  • Коэффициент нагрузки (LF) = 4
    / 1,732x11x12x0,8 × 8760
  • Коэффициент нагрузки (LF) = 0,3060

Коэффициент нагрузки с потерями (LLF) = (0,8 x LFx LF) + (0,2 x LF)

  • Коэффициент нагрузки с потерями (LLF) = (0,8 x 0,3060 x 0,3060) + (0,2 x 0,306)
  • Коэффициент нагрузки с потерями (LLF) = 0,1361

Расчет потерь железа:

  • Общая годовая потеря железа в кВтч = потеря в железе в ваттах X Количество TC на подающем устройстве X8760 / 1000
  • Общая годовая потеря железа (25 кВА TC) = 100x3x8760 / 1000 = 2628 кВтч
  • Общая годовая потеря железа (63 кВА TC) = 200x3x8760 / 1000 = 5256 кВтч
  • Общая годовая потеря железа (100 кВА TC) = 290x3x8760 / 1000 = 2540 кВтч
  • Общая годовая потеря железа = 2628 + 5256 + 2540 = 10424 кВт · ч

Расчет потерь меди:

  • Общие годовые потери меди в кВтч = потери меди в ваттах XNos TC на питателе LFX LF X8760 / 1000
  • Общая годовая потеря меди (25 кВА TC) = 720x3x0. 3 × 0,3 × 8760/1000 = 1771 кВт · ч
  • Общая годовая потеря меди (63 кВА TC) = 1300x3x0,3 × 0,3 × 8760/1000 = 3199 кВтч
  • Общая годовая потеря меди (100 кВА TC) = 1850x1x0,3 × 0,3 × 8760/1000 = 1458 кВтч
  • Общая годовая потеря меди = 1771 + 3199 + 1458 = 6490 кВт · ч

Потери в линии HT (кВтч) = 0,105 x (нагрузка соединения x 2) x длина x сопротивление x LLF / (LDF x DF x DF x 2)

  • Потери в линии HT = 1,05 x (265 × 2) x 6,18 x 0,54 x 0,1361 / 1,5 x 1,15 x1,15 x 2
  • Потери в линии HT = 831 кВт · ч

Пиковые потери мощности = (3 x полные потери в линии LT) / (PPLxDFxDFx 1000)

  • Пиковые потери мощности = 3 x (3 × 63 + 3 × 260 + 1 × 1380) / 1.15 х 1,15 х 1000
  • пиковых потерь мощности = 3,0

LT Потери в линии (кВтч) = (PPL.) X (LLF) x 8760

  • Потери LT Line = 3 x 0,1361 x 8760
  • Потери LT Line = 3315 кВтч

Общие технические потери = (Потери HT + Потери LT + Годовые потери Cu + Годовые потери железа)

  • Общие технические потери = (831+ 3315 + 10424 + 6490)
  • Общие технические потери = 21061 кВтч

% Технические потери = (Общие убытки) / (Единицы, отправленные ежегодно) x 100

  • % технических потерь = (21061/4
    ) x100 = 4. 30%

% Технические потери = 4,30%

Нравится:

Нравится Загрузка …

Связанные

Как рассчитать падение напряжения и потерю мощности в проводах

Вы должны рассматривать провод как еще один последовательно включенный резистор. Вместо этого сопротивление \ $ \ text {R} _ {\ text {load}} \ $ подключено к источнику питания с напряжением \ $ \ text {V} \ $ …

Вы должны увидеть это так: сопротивление \ $ \ text {R} _ {\ text {load}} \ $, подключенное к через два провода с сопротивлением \ $ \ text {R} _ {\ text {wire}} \ $ на блок питания с напряжением \ $ \ text {V} \ $:

Теперь мы можем использовать \ $ \ text {V} = \ text {I} \ cdot {} \ text {R} \ $, где \ $ \ text {V} \ $ означает напряжение, \ $ \ text {I} \ $ для тока и \ $ \ text {R} \ $ для сопротивления.

Пример

Предположим, что напряжение, приложенное к цепи, равно \ $ 5 \ text {V} \ $. \ $ \ text {R} _ {\ text {load}} \ $ равно \ $ 250 \ Omega \ $, а сопротивление \ $ \ text {R} _ {\ text {wire}} \ $ равно \ $ 2.5 \ Omega \ $ (если вы не знаете сопротивление провода, см. ниже в разделе «Расчет сопротивления провода»). Сначала мы вычисляем ток в цепи, используя \ $ \ text {I} = \ dfrac {\ text {V}} {\ text {R}} \ $: \ $ \ text {I} = \ dfrac {5 } {250 + 2 \ cdot2.5} = \ dfrac {5} {255} = 0,01961 \ text {A} = 19.61 \ text {mA} \ $

Теперь мы хотим узнать, какое падение напряжения на одном куске провода используется \ $ \ text {V} = \ text {I} \ cdot {} \ text {R} \ $: \ $ \ text {V} = 0,01961 \ cdot2.5 = 0,049025 В = 49,025 \ text {мВ} \

долл. США

Мы также можем вычислить напряжение в \ $ \ text {R} _ {\ text {load}} \ $ таким же образом: \ $ \ text {V} = 0.01961 \ cdot250 = 4.9025 \ text {V} \ $

Предвидение потери напряжения

Что, если нам действительно нужно напряжение \ $ 5 \ text {V} \ $ over \ $ \ text {R} _ {\ text {load}} \ $? Нам нужно будет изменить напряжение \ $ \ text {V} \ $ от источника питания, чтобы напряжение выше \ $ \ text {R} _ {\ text {load}} \ $ стало \ $ 5 \ text {V } \ $.

Сначала мы вычисляем ток через \ $ \ text {R} _ {\ text {load}} \ $: \ $ \ text {I} _ {\ text {load}} = \ dfrac {\ text {V} _ {\ text {load}}} {\ text {R} _ {\ text {load}}} = \ dfrac {5} {250} = 0,02 \ text {A} = 20 \ text {mA} \ $

Поскольку мы говорим о последовательном сопротивлении, ток во всей цепи одинаков. Следовательно, ток, который должен дать источник питания, \ $ \ text {I} \ $, равен \ $ \ text {I} _ {\ text {load}} \ $. Нам уже известно полное сопротивление цепи: \ $ \ text {R} = 250 + 2 \ cdot2.5 = 255 \ Омега \ $. Теперь мы можем рассчитать необходимое напряжение питания, используя \ $ \ text {V} = \ text {I} \ cdot {} \ text {R} \ $: \ $ \ text {V} = 0.02 \ cdot255 = 5.1 \ text { V} \ $


Что, если мы хотим знать, сколько мощности теряется в проводах? Обычно мы используем \ $ \ text {P} = \ text {V} \ cdot {} \ text {I} \ $, где \ $ \ text {P} \ $ означает мощность, \ $ \ text {V} \ $ для напряжения и \ $ \ text {I} \ $ для тока.

Итак, единственное, что нам нужно сделать, это ввести правильные значения в формулу.

Пример

Мы снова используем блок питания \ $ 5 \ text {V} \ $ с \ $ 250 \ Omega \ $ \ $ \ text {R} _ {\ text {load}} \ $ и двумя проводами \ $ 2.5 \ Omega \ $ за штуку. Падение напряжения на одном куске провода, как вычислено выше, составляет \ $ 0,049025 \ text {V} \ $. Ток в цепи был \ $ 0.01961 \ text {A} \ $.

Теперь мы можем рассчитать потери мощности в одном проводе: \ $ \ text {P} _ {\ text {wire}} = 0,049025 \ cdot0.01961 = 0,00096138 \ text {W} = 0,96138 \ text {mW} \ $


Во многих случаях нам известна длина провода \ $ l \ $ и AWG (американский калибр проводов) провода, но не сопротивление. Однако рассчитать сопротивление несложно.

В Википедии есть список доступных здесь спецификаций AWG, который включает сопротивление на метр в Ом на километр или в миллиОм на метр. У них также есть это за килофуты или футы.

Мы можем вычислить сопротивление провода \ $ \ text {R} _ {\ text {wire}} \ $, умножив длину провода на сопротивление на метр.

Пример

У нас есть \ $ 500 \ text {m} \ $ провода 20AWG. Какое будет общее сопротивление?

\ $ \ text {R} _ {\ text {wire}} = 0.5 \ text {km} \ cdot 33.31 \ Omega / \ text {km} = 16.655 \ Omega \ $

% PDF-1.4
%
47 0 объект
>
эндобдж
xref
47 75
0000000016 00000 н.
0000001848 00000 н.
0000002404 00000 н.
0000002619 00000 н.
0000002683 00000 п.
0000002814 00000 н.
0000002948 00000 н.
0000003100 00000 н.
0000003216 00000 н.
0000003366 00000 н.
0000003518 00000 н.
0000003667 00000 н.
0000003726 00000 н.
0000003785 00000 н.
0000003844 00000 н.
0000003995 00000 н.
0000004130 00000 н.
0000004239 00000 п.
0000004338 00000 п.
0000004436 00000 н.
0000004548 00000 н.
0000004661 00000 п.
0000004770 00000 н.
0000004927 00000 н.
0000005207 00000 н.
0000005439 00000 н.
0000005630 00000 н.
0000005978 00000 п.
0000006201 00000 н.
0000006348 00000 п.
0000006479 00000 н.
0000006841 00000 н.
0000007203 00000 н.
0000007565 00000 н.
0000007927 00000 н.
0000008095 00000 н.
0000008420 00000 н.
0000008476 00000 н.
0000008686 00000 н.
0000008899 00000 н.
0000009067 00000 н.
0000009254 00000 н.
0000009607 00000 н.
0000009697 00000 п.
0000010010 00000 п.
0000010076 00000 п.
0000010186 00000 п.
0000010759 00000 п.
0000010955 00000 п.
0000011131 00000 п.
0000011454 00000 п.
0000011648 00000 п.
0000011993 00000 п.
0000012015 00000 п.
0000016574 00000 п.
0000017040 00000 п.
0000017220 00000 п.
0000017243 00000 п.
0000021155 00000 п.
0000021178 00000 п.
0000024116 00000 п.
0000024139 00000 п.
0000027231 00000 п.
0000027254 00000 п.
0000030361 00000 п.
0000030384 00000 п.
0000033386 00000 п.
0000033573 00000 п.
0000033993 00000 п.
0000034016 00000 п.
0000037103 00000 п.
0000037126 00000 п.
0000040404 00000 п.
0000001963 00000 н.
0000002382 00000 н.
трейлер
]
>>
startxref
0
%% EOF

48 0 объект
>
эндобдж
120 0 объект
>
транслировать
Hb«f«_dπ

Потери в линии передачи переменного тока

Потери в линии передачи переменного тока

Курт Хартинг

24 октября 2010 г.

Представлено как курсовая работа по физике 240,
Стэнфордский университет, осень 2010 г.

Фиг.1: Потери сопротивления на трансмиссии из алюминия
линия как функция радиуса в процентах от потери
1000 км.

Введение

По данным Министерства энергетики Калифорнии.
потеряно около 19,7 x 10 9 кВтч электроэнергии из-за
передача / распределение в 2008 году. [1] Эта сумма
потери энергии составили 6,8% от общего количества электроэнергии, использованной в
состояние в течение того года. По средней розничной цене 2008 г.
$ 0.1248 / кВтч, это означает потерю электроэнергии на сумму около 2,4 миллиарда долларов.
в Калифорнии, и потери в размере 24 миллиардов долларов на национальном уровне. [1] Этот отчет
пытается объяснить и количественно оценить два основных источника потерь в
напряжение в линиях передачи переменного тока: резистивные потери и потери на коронный разряд. В
Первое происходит из-за ненулевого сопротивления обнаруженного металла проволоки.
Потеря короны — это ионизация воздуха, которая происходит, когда электрическая
поля вокруг проводника превышают определенное значение.

Резистивная потеря (скин)

Хотя проводники в линии передачи
чрезвычайно низкое удельное сопротивление, они не идеальны.Этот раздел направлен на
количественно оценить эту потерю путем вычисления глубины скин-слоя и мощности
коэффициенты затухания.

Теория

Величина резистивных потерь в системе может быть
вычислено с использованием уравнений линии передачи без коронного разряда, чтобы найти
количество мощности, подаваемой в любую точку провода, и
вычитая начальное количество мощности. Уравнения для этого следующие:
ниже: [2]

В приведенном выше уравнении c — скорость света, а L,
индуктивность на единицу длины линии передачи определяется как:

Фиг.2: Потери короны в киловаттах, потерянных за
километр провода как функция радиуса. Al 3 фазы 765 кВ
линия передачи и формула Пика были использованы для генерации
этот график.

Уравнения для расчета R l ,
сопротивление на единицу длины, может быть показано ниже. Он включает формулу
для определения глубины скин-слоя провода (δ), которая показывает, насколько далеко в
проводник 90% мощности переносится током.[3]

I B в этом уравнении является поправкой
коэффициент, найденный с использованием первых двух функций Бесселя I.

Используя приведенные выше уравнения, общее количество
мощность, потерянная из-за сопротивления, равна мощности на заданном расстоянии
минус изначальная сила. Поскольку сумма убытка в процентах равна
фиксированная сумма вне зависимости от начальной мощности, перечисленные результаты записываются
в процентах от общей мощности. Перечисленные выше параметры и
Резюме результатов этих уравнений можно найти в Таблице 1.В
это, есть оценочные потери типичной линии электропередачи США, сделанной из
алюминий (Случай 1), европейская линия электропередачи на 50 Гц (Случай 2) и линия
из серебра (футляр 3). Сравнение случаев 1 и 3 показывает, что
строительство длинного кабеля передачи может снизить потерю сопротивления (около
19 млн долларов в год), но строительство будет стоить значительно дороже (18,5 млрд долларов) в 2010 г.
рыночные цены.

Параметр Корпус 1 Корпус 2 Корпус 3
д Разделение строк 10 м
Радиус проводника 0.015м
л Индуктивность на метр 2,6 мкГн / м
f Частота 60 Гц 50 Гц 60 Гц
σ Электропроводность металла 3,82 × 10 7 См / м (Al) 3.82 × 10 7 См / м 6,17 × 10 7 См / м (Ag)
I B Поправочный коэффициент Бесселя 1,1 1,1 1,1
δ Глубина кожи 10,5 мм 11,5 мм 8,3 мм
R л Сопротивление на метр 29.1 мкОм / м 26,5 мкОм / м 22,9 мкОм / м
α коэффициент затухания 18,6 x 10 -9 / м 17,0 x 10 -9 / м 14,7 x 10 -9 / м
мкм 0 Проницаемость свободного пространства 4π x 10 -7 Г / м
с Скорость света 3 x 10 8 м / сек
% P Rloss (1 км) 37.2 стр. / Мин. 34,0 частей на миллион 29,3 частей на миллион
% P Rloss (1000 км) 3,66% 3,34% 2,89%
Таблица 1: Значения резистивных потерь с использованием параметров выборки
и формулы, перечисленные выше.

Измеренные значения

В статье, опубликованной компанией American Electric Power (AEP),
в 1969 г. авторы сделали оценку, что величина потерь мощности от
эффекты, не связанные с коронным разрядом, составляют около 4 МВт на 100 миль в 1 ГВт
система передачи.[7] При переводе в метрические единицы это дает убыток.
около 25 МВт или 2,5% на линии электропередачи протяженностью 1000 км. Это число
в соответствии с резистивной потерей, данной в современнике,
Самостоятельно опубликованный отчет AEP. [11] В этом отчете резистивная
потери составили от 3,1 МВт / 100 миль до 4,4 МВт / 100 миль,
в зависимости от конфигурации проводки. Это соответствует между
Потеря мощности 1,9% и 2,8% на 1000 км.

Корона потери

Потери из-за короны — это другой основной тип потерь мощности в
линии электропередачи.По сути, потеря короны вызвана ионизацией.
молекул воздуха вблизи проводов ЛЭП. Эти короны делают
не искры на линиях, а переносят ток (отсюда и потери) в
воздух по проволоке. Коронный разряд в линиях электропередачи может привести к
шипение / кудахтанье, свечение и запах озона (генерируется из
распад и рекомбинация молекул O 2 ). Цвет
и распространение этого свечения зависит от фразы сигнала переменного тока на
в любой момент времени.Положительные коронки гладкие и синего цвета,
в то время как отрицательные коронки красные и пятнистые. [5] Происходит только потеря короны.
когда межфазное напряжение превышает порог короны. В отличие от
резистивные потери, при которых количество потерянной мощности составляло фиксированный процент от
входной сигнал, процент потери мощности из-за короны является функцией
напряжение сигнала. Потери мощности коронного разряда также сильно зависят
от погоды и температуры.

Теория

Уравнение фактора коронного разряда было получено эмпирическим путем Ф.В. Пик и
опубликовано в 1911 г. [4] В более поздней публикации он модифицировал оригинал
уравнение, и он показал, что общая сумма потерь мощности в проводе из-за
эффект короны был равен приведенному ниже уравнению: [5]

Примеры этих значений и их значения см.
Таблица 2.

Параметр Пример значения
к 0 Фиксированная постоянная 241
г 0 Разрушающий градиент в воздухе 21.1 кв / см
к д Коэффициент нормализованной плотности воздуха
1 (25 ° C, давление 76 см)
1
Радиус проводника 3,5 см (см. Рис.2)
д Расстояние между проводниками 1000 см
f Частота 60 Гц
к i Коэффициент неровности провода 0.95 (обветренные провода)
В 0 Линейное напряжение к нейтрали
(1/1,73 x напряжение между проводниками)
442 кВ
(765 кВ / 1,73)
Критическое напряжение прерывания
(g 0 k i a k d ln (d / a))
397 кв
Corona Loss кВт / км / линия 25 кВт / км
Corona Loss%
(линия 1000 км, 2.25 ГВт)
3,3%
Таблица 2: Пример расчета потерь на коронный разряд на основе
Формула Пика.

Как видно на рис. 2, радиус проводника
имеет большое влияние на общую величину потерь на коронный разряд. Один способ
получение линий с большим эффективным радиусом за счет использования
связки, где 2-6 отдельных, но близких строк сохраняются на одном уровне
напряжение через прерывистые разъемы.Это уменьшает количество металла
необходимо для достижения заданного радиуса и потерь короны. Переходные расчеты
потерь на корону можно найти в [10].

Рис. 3: Полная потеря 2,25 ГВтм 3 фазы
ЛЭП 765 кВ в зависимости от радиуса.

Измеренные значения

В ссылке [6] авторы измерили потери на коронном разряде 765 кВ, 3
фаза, а связанная линия передачи должна быть около 1.87кВт / км на ярмарке
Погода. Это составляет лишь около 0,083% потерь на линии протяженностью 1000 км.
Однако в плохую погоду, по оценкам авторов, потери составили 84,3 кВт / км.
или около 3,7% потерь. Используя эти цифры и среднюю цену
электричество, дневной ливень на 100-километровом участке проводов 765 кВ
стоит электроэнергетической компании около 25000 долларов.

При напряжении выше 765 кВ
Исследовательский институт Hydro-Quebec измерил величину потерь короны на
напряжения до 1200 кВ. [8] Они обнаружили, что потеря короны 6 и 8
жгутов проводов было 22.7 кВт / км и 6,2 кВт / км соответственно. Эти
числа были измерены в условиях «сильного искусственного дождя». Расхождения
между [6] и [8], вероятно, связаны с разными радиусами и проводниками.
интервал.

Наконец, исследователи в Финляндии измерили количество
потерь на коронный разряд в ЛЭП в условиях мороза. [9] Это
В документе также показано значительное снижение потерь на коронный разряд из-за связывания проводов:
примерно 2,5-5x для каждого проводника, добавляемого между 1-3. Под морозом
условиях, они показывают, что потери в линиях составляют около 21 кВт для 2
пучок проводов трехфазной ЛЭП 400кВ.

Рис. 4: Стоимость 2,25 ГВтм 3 фазы 765 кВ
линия передачи как функция радиуса. Стоимость
линия передачи была найдена путем взятия общего объема проводов
и умножив на рыночную цену алюминия 2010 г. ($ 1,14
за фунт).

Сводка

В этом отчете показано, как оценить корону и
резистивные потери в проводе, а также дает экспериментальные результаты.Рис. 3
дает оценку общей суммы потерь в системе как
функция радиуса проводника. Глядя на эту цифру, количество
потери резко снижаются, когда радиус провода увеличивается примерно до 4 см. Если
из твердого металла (как предполагают приведенные выше формулы), это будет
довольно громоздкий размер. Из-за этого компании, работающие по линии электропередач, объединяют
меньшие линии, чтобы снизить затраты на строительство и потери на уровне
возможный.

На рис. 4 показано общее теоретическое значение мощности.
потеря и стоимость высоковольтной линии электропередачи протяженностью 1000 км.Как провод
становится больше, величина потерь уменьшается примерно как 1 / r (резистивная) и
квадратично до 0 (корона). Провода большего размера также вызывают квадратичное
большая стоимость и в конечном итоге достигнет точки безубыточности, когда больше
радиусы проводников не имеют финансового смысла. Необходимо отметить, что
эта цифра (ошибочно) предполагает сплошную однородную проволоку. Линии электропередач,
в дополнение к комплектации, также содержат более дешевый стальной сердечник на
внутренняя часть из проволоки. Это потому, что, пройдя глубину кожи в
провод, по которому передается 90% мощности, удельное сопротивление провода
становится менее важным.

© 2010 К. Хартинг. Автор дает разрешение
копировать, распространять и демонстрировать эту работу в неизменном виде, с
ссылка на автора, только в некоммерческих целях. Все остальные
права, в том числе коммерческие, принадлежат автору.

Список литературы

[1] М. Боулз «,
State Electricity Profiles 2008, «Энергетическая информация США»
Администрация, DOE / EIA 0348 (01) / 2, март 2010 г.

[2] W. Hayt и J. Buck, Engineering
Электромагнетизм
(Mcgraw-Hill, 2006), стр 346, 486.

[3] Ф. Рашиди, С. Ткаченко, Электромагнитный.
Взаимодействие поля с линиями передачи от классической теории к ВЧ
Радиационные эффекты
(WIT Press, 2008).

[4] Ф. В. Пик, «Закон короны и
Диэлектрическая прочность воздуха, Труды A.I.E.E. 30 ,
1889 (1911).

[5] F. W. Peek, Диэлектрические явления в высоком напряжении.
Engineering
(McGraw-Hill, 1929), стр. 169-214.

[6] N, Kolcio et al., «Радиовлияние и
Аспекты потери короны на линиях AEP 765 кВ « IEEE Transactions on Power
Аппараты и системы
ПАС-88 , №9, 1343 (1969).

[7] Г. С. Васселл, Р. М. Малишевский, «АЭП 765-кВ
Система: рекомендации по планированию системы « IEEE Transactions on Power
Аппараты и системы
ПАС-88 , 1320 (1969).

[8] Н. Г. Трин, П. С. Марувада и Б. Пуарье, «A
Сравнительное исследование характеристик короны проводниковых пучков для
Линии электропередачи 1200 кВ, «Сделки IEEE на силовых аппаратах и
Системы , ПАС-93, , 940 (1974).

[9] К. Лахти, М. Лахтинен и К. Ноусиайнен,
«Передача инфекции
Потери линейного коронного разряда в условиях изморози », транзакции IEEE
по энергоснабжению 12 , 928 (1997).

[10] X. Ли, О. Малик и З. Чжао, «Вычисление
Переходные процессы в линии передачи, включая эффекты короны », IEEE
Сделки о поставке электроэнергии
4 , 1816 (1989).

[11] »
Факты о передаче, «American Electric Power».

Калькулятор падения напряжения (постоянного и переменного тока)

Бесплатный онлайн-калькулятор для расчета падения напряжения и потерь энергии в проводе

Потери в проводах солнечных батарей должны быть ограничены,
Потери постоянного тока в цепочках солнечных панелей и потери переменного тока на выходе
инверторы.Способ ограничить эти потери — минимизировать напряжение
падение кабелей. Падение напряжения менее 1% подходит и в любом
в случае, если она не должна превышать 3%.

Экономьте электроэнергию: этот бесплатный онлайн-калькулятор рассчитывает переменный и постоянный ток.
Мощность, падение напряжения, потери энергии в проводе, резистивный нагрев, для
трехфазная и однофазная проводка.
Заполните желтые поля и нажмите кнопки «рассчитать». Результаты
отображается в зеленых полях.

КАЛЬКУЛЯТОР ПЕРЕМЕННОГО НАПРЯЖЕНИЯ И ПОТЕРЯ ЭНЕРГИИ

КАЛЬКУЛЯТОР ПЕРЕПАДА НАПРЯЖЕНИЯ ПОСТОЯННОГО ТОКА И ПОТЕРЯ ЭНЕРГИИ

КАК РАССЧИТАТЬ ПАДЕНИЕ НАПРЯЖЕНИЯ И ПОТЕРИ ЭНЕРГИИ В ПРОВОДЕ?

ПАДЕНИЕ НАПРЯЖЕНИЯ

Падение напряжения определяется по следующей формуле:

Где:

U: Напряжение постоянного или переменного тока
система (В)
Это напряжение фаза-фаза для 3-фазной системы; напряжение фаза-нейтраль для однофазной системы.
Пример:
— Для стран Западной Европы трехфазная цепь обычно имеет напряжение 400 В, а однофазная 230 В.
— В Северной Америке типичное трехфазное напряжение системы составляет 208 вольт, а однофазное напряжение — 120 вольт.
Примечание: для падения напряжения постоянного тока в фотоэлектрической системе, напряжение
система U = Umpp одной панели x количество панелей в серии.
ΔU: падение напряжения в В (В)
b: коэффициент длины кабеля, b = 2 для
однофазная проводка, b = 1 для трехфазной проводки.
ρ1: удельное сопротивление в Ом · мм2 / м материала.
проводник для заданной температуры. При 20 градусах Цельсия значение удельного сопротивления составляет 0,017 для меди и 0,0265 для алюминия.
Обратите внимание, что удельное сопротивление увеличивается с температурой. Удельное сопротивление меди достигает примерно 0,023 Ом.мм2 / м при 100 ° C, а удельное сопротивление алюминия достигает примерно 0,037 Ом.мм2 / м при 100 ° C.
Обычно для расчета падения напряжения в соответствии с электрическими стандартами используется удельное сопротивление при 100 ° C (например, NF C15-100).
ρ1 = ρ0 * (1 + alpha (T1-T0)), здесь ρ0 = удельное сопротивление при 20 ° C (T0) и альфа = температурный коэффициент на градус C и T1 = температура кабеля.
T1: Температура кабеля (значение по умолчанию = 100 ° C).
Обратите внимание, что по опыту проволока с правильным размером не должна иметь внешнюю температуру выше 50 ° C, но она может соответствовать внутренней температуре материала около 100 ° C.
L: простая длина кабеля
(расстояние между источником и прибором) в метрах (м).
S: сечение кабеля
в мм2
Cos φ: коэффициент мощности, Cos φ = 1
для чисто резистивной нагрузки, Cos φ <1 для индуктивного заряда (обычно 0,8).
λ: реактивное сопротивление на единицу длины
(значение по умолчанию 0,00008 Ом / м)
Sin φ: sinus (acos (cos φ)).
Ib: ток в амперах (A)

NB: для цепи постоянного тока cos φ = 1, поэтому sin φ = 0.

Падение напряжения в процентах:

ΔU (%) = 100 x
ΔU / U0
Где:

ΔU: падение напряжения в В
U0: напряжение между фазой и
нейтраль (пример: 230 В в 3-фазной сети 400 В)

ПОТЕРЯ ЭНЕРГИИ

Потери энергии в кабеле в основном связаны с резистивным нагревом кабеля.
кабель.
Он определяется по следующей формуле:

E = a x R x Ib²
Где:

E: потери энергии в проводах,
Ватт (Вт)
a: номер строки
коэффициент, a = 1 для одиночной линии, a = 3 для 3-х фазной цепи.
R: сопротивление одного активного
строка
Ib: ток в амперах (A)

R определяется по следующей формуле:

R = b x ρ1 x L / S

b: коэффициент длины кабеля, b = 2
для однофазной проводки, b = 1 для трехфазной проводки.
ρ1: удельное сопротивление
материал проводника, 0,017 для меди и 0,0265 для алюминия (температура провода 20 ° C) в Ом.мм2 / м. Удельное сопротивление меди достигает примерно 0,023 Ом.мм2 / м при 100 ° C, а удельное сопротивление алюминия достигает примерно 0,037 Ом.мм2 / м при 100 ° C.
L: простая длина кабеля
(расстояние между источником и прибором) в метрах (м).
S: сечение кабеля
в мм2

NB: для постоянного тока потери энергии в процентах равны
падение напряжения в процентах.

Диаграмма
: Пример потерь при падении напряжения в зависимости от поперечного сечения проводов
секция для фотоэлектрической системы мощностью 3 кВт с 50 м солнечного кабеля постоянного тока.

Потери в строках: упускают из виду и часто неправильно понимают

Статья Constellation