Как рассчитать сечения кабеля по мощности: Расчет сечения кабеля по мощности

Разное

Содержание

таблица и формула, фото и видео урок как рассчитать сечение кабеля по мощности и длине


Автор Aluarius На чтение 6 мин. Просмотров 694 Опубликовано

Электрическая проводка – это важнейшая часть большой коммуникационной системы, которая снабжает дом электроэнергией. От ее качественной и долгой эксплуатации зависит качество работы освещения и бытовых электрических приборов, которых в последнее время становится в каждом доме все больше и больше. Поэтому все чаще встречаются на строительных порталах вопросы, которые касаются именно электропроводки. И один из таких вопросов, как правильно провести расчет сечения кабеля по мощности, а точнее сказать, по нагрузке.

Опытные электрики на глаз определяют приблизительно данный показатель. Инженеры пользуются специальными таблицами, которых в Интернете в свободном доступе большое количество. Но давайте рассуждать здраво. В каждом доме есть определенное количество бытовых приборов, у которых разная мощность. Это первое. Второе – количество комнат и служебных помещений может быть сильно отличаться в каждом доме. А это влияет на потребляемую мощность по освещению. К тому же у кого-то в доме висят многорожковые люстры, а кто-то обходится и точечными светильниками. Плюс разнообразие всевозможных ламп.

Таблица расчета сечения кабеля

Третье – это опять-таки мощность бытовых приборов, которую подсчитывают по фактическим показателям. То есть, практически пересчитывают по пальцам, какими приборами и с какой мощностью владельцы домов пользуются. И самое важное, что при подсчете общей мощности нет необходимости учитывать фактор, который влияет на то, как работают приборы и освещение: постоянно или периодически. Важно знать общую нагрузку на кабель.

Формула расчета

Итак, существует формула расчета сечения электрического кабеля или провода по мощности. Вот она:

I=P*K/U*cos φ – эта формула применяется для однофазных сетей с напряжением в 220 В.

В ней

  • «Р» – это суммарная мощность всех бытовых приборов и освещения.
  • «К» – это тот самый коэффициент одновременности, то есть, он выравнивает показатель мощности по временному показателю. Ведь не все время же мы пользуемся освещением или приборами. Это величина постоянная и равна 0,75.
  • «U» – напряжение 220 В.
  • cos φ – это также постоянная величина, равная единице.

Практически в этой формуле все величины, кроме общей мощности, постоянные. Поэтому в основе расчета лежат именно нагрузки, которые создают бытовые приборы и светильники. То есть, величина тока зависит от потребляемой мощности. Эти показатели обычно указываются в технической документации, которая поступает в комплекте с электрическим прибором. Нередко производители указывают ее на бирках. Вот только некоторые показатели мощности основных бытовых приборов, используемых чаще других.

  • Освещение от 300 Вт до 1500 Вт. Как было сказано выше, все зависит от количества и вида ламп.
  • Телевизор от 140 до 300 Вт. Это мощность современных моделей.
  • Холодильник от 300 до 800.
  • Утюг от 1000 до 200. Это один из самых энергопотребляемых агрегатов.
  • К этой же категории относится электрочайник: 1000-2500 Вт.
  • Добавим сюда же стиральную и посудомоечную машину – 2500 Вт.
  • Микроволновая печь в среднем в пределах 1000 Вт.
  • Компьютер от 300 до 600 Вт.

Можно было бы сюда добавить и другие приборы, к примеру, фен, музыкальный центр, пылесос, бойлер и так далее. То есть, для подсчета сечения электрического кабеля по мощности необходимо сначала определить, сколько приборов есть в доме. Складывая их мощность, устанавливается суммарная общая потребляемая мощность, которая и будет действовать на электрическую проводку.

Итак, все величины вставляются в формулу, по которой определяется сила тока. Давайте подсчитаем мощность всех вышеперечисленных приборов по минимальной ставке. И определим, какой кабель будет необходим. Общая мощность составляет – 6540 Вт или 6,54 кВт. Вставляем ее в формулу:

I=6540*0,75/220=22,3 А

Теперь для определения сечения кабеля потребуется таблица, в которой установлено соотношение двух величин.

Внимание! Величина электрического тока в таблицах обычно показана целыми цифрами. Поэтому стоит округлить наш полученный результат до большей величины. Это создаст определенный запас прочности. В нашем случае это будет 27 А по медным проводам, и 28 А по алюминиевым. Соответственно сечение кабеля будет 2,5 мм² по меди и 4 мм² по алюминию.

Теперь вы знаете, как рассчитать сечение кабеля.

Расчет сечения кабеля по помещениям

Вышеописанный расчет с формулой предназначается для вводного кабеля в дом. Но давайте рассмотрим внутреннюю разводку по комнатам и помещениям. Все дело в том, что с освещением все более или менее понятно. Бросаете под него во все комнаты кабель сечением 1,5 мм², и будьте уверены, что все вы сделали правильно. Ни перегрева, ни замыкания у вас не будет.

С розетками все не так просто. Есть в доме комнаты, где наличие бытовых приборов зашкаливает. Это кухня и ванная. В последней обычно часто работает стиральная машина и фен. Кстати, у него немаленькая мощность от 1000 до 2500 Вт. Так что нагрузку этот небольшой прибор создает приличную.

Так вот необходимо решить одну очень важную задачу – правильно распределить нагрузку по розеточным группам. К примеру, на кухне. Сначала рассчитывается сила тока по вышеописанной формуле, где в качестве потребляемой мощности складываются мощности всех присутствующих на кухне бытовых электрических приборов, плюс освещение. Производится выбор сечение кабеля, который будет заходить в эту комнату. А вот по розеткам растащить проводку под каждый бытовой прибор с меньшим сечением. Для холодильника отдельно, для кофеварки и чайника отдельно, для посудомоечной машины отдельно. И так по всем точкам.

Таблица расчета сечения кабеля по длине

Многие могут сказать, не много ли розеток для одного небольшого помещения? Есть альтернатива, запитать на блок розеток (двойную или тройную) кабель большего сечения. Придется провести еще один расчет. То есть, вариаций на схему разводки электрических контуров может быть много. Но во всех случаях придется использовать формулу и таблицы определения кабельного сечения. Хотя специалисты уверяют, что оптимальный вариант – это под каждый прибор свою розетку.

И еще один момент, касающийся длины кабеля и его потери напряжения. По законам физики, чем длиннее провод, тем больше у него потери напряжения. Поэтому электрики проводят расчет сечения провода по его длине. Правда, внутреннюю разводку такому расчету не подвергают. Слишком мизерны потери.

Какой кабель лучше: медный или алюминиевый

Не будем глубоко вникать в этот вопрос. Просто сделаем небольшой сравнительный анализ.

  • Медный кабель более прочный и гибкий. При многократном изгибе он не ломается.
  • Медь хоть и окисляется, но не так интенсивно, как алюминий. Поэтому контакты эксплуатируются дольше.
  • Показатель проводимости медных жил почти в два раза больше, чем у медных. Отсюда и более высокая нагрузка, которую медный кабель выдерживает.
  • Алюминиевый провод почти в четыре раза дешевле медного.

Для внутренней разводки электропроводки рекомендуется применять медный кабель

Существуют современные правила проведения электрической разводки. Так вот в них рекомендуется внутреннюю разводку проводить медными проводами, а внешнюю алюминиевыми.

Заключение по теме

Итак, подводя итог всему вышесказанному, необходимо сделать заключение, что расчет мощности приборов и сечения кабеля по нагрузке – ответственный процесс. Допущенная в расчетах ошибка может обойтись очень дорого. Так что внимательность и только внимательность.

таблица, формулы, фото, видео разбор ошибок, допускаемых при выборе кабеля


Автор Aluarius На чтение 8 мин. Просмотров 346 Опубликовано

Расчет производственных электрических сетей проводится на основе нескольких технических показателей. Но когда дело доходит до бытовых линий, то обычно берется за основу один параметр – это мощность бытовых приборов и освещения. Поэтому расчет кабеля по мощности – единственно правильный метод грамотно собрать электрическую разводку дома. Конечно, придется учитывать и длину каждого шлейфа, ведь современные частные дома – это иногда целые дворцы, где проложено километры кабеля. Но в основе расчета все равно лежит мощность.

Начнем с того, что мощностные характеристики бытовых приборов можно обнаружить на самих приборах или в сопроводительной документации к ним (паспорт, инструкция и так далее). Обратите внимание, что на некоторых приборах указываются две величины: среднее значение мощности и максимальное. Для расчета необходимо именно второе.

Необходимо отметить, что некоторые бытовые приборы работают в разных режимах. К примеру, стиральная машина может потреблять всего лишь несколько десятков ватт в режиме полоскания, или сотни ватт в режиме стирки, ну и несколько киловатт в режиме нагрева воды и кипячения. То есть, в определенный момент машинка потребляет разную мощность. Определить, в какой точно момент будет производиться стирка с кипячением, никто не может, поэтому для того, чтобы произвести правильный подбор кабеля, необходимо взять за основу именно максимальный показатель мощности.

Кстати, точно также придется рассчитывать и электрическую проводку для кондиционера. Ведь этот прибор будет при режиме простой вентиляции потреблять всего лишь 50-60 ватт, а при кондиционировании 1,0-1,0 кВт.

Параметры для проведения расчета

Запомните один момент – электрическая сеть дома разбивается на участки (шлейфы), в которых необходимо провести расчет по отдельности. Плюс рассчитать сечение провода общего, подводящего к дому. Все дело в том, что количество бытовых приборов и источников света в разных комнатах будет отличаться. К примеру, на кухне их будет больше, в прихожей кроме освещения вообще ничего нет. К тому же современный подход к электроразводке требует разделения участков в комнатах на две группы: освещение и розетки. То есть, к каждой группе будет вести свой отдельный провод.

Давайте рассмотрим, как правильно провести расчет сечения кабеля по мощности в одной комнате, где используется несколько бытовых приборов. Итак, вводные данные.

  • Максимальная суммарная нагрузка всех потребителей. Как уже было сказано выше, эти показатели можно найти в паспорте изделия или на бирках самого прибора. Если ни того, ни другого не осталось, то единственная вам дорога – это Интернет. Сегодня в сети много сайтов, предлагающих таблицы с параметрами мощности каждого бытового прибора. Так что это сегодня не проблема.
  • Напряжение сети. Это или 220 вольт, или 380 вольт.
  • Материал, из которого изготовлен электрический провод. В принципе, разнообразие здесь небольшое, всего лишь две позиции: медь или алюминий. Не будем вдаваться в подробности, таблица соотношения сечения кабеля и материала в Интернете тоже есть. Единственное отметим, что при одинаковой мощности потребления можно устанавливать медный кабель меньшего сечения по сравнению с алюминиевым.

Расчет сечения

Итак, в первую очередь необходимо просуммировать мощности всех бытовых приборов. Это совсем просто, можно сделать даже в уме. К примеру, результат будет равен 7,5 кВт. Кстати говоря, это средняя величина нагрузки в большинстве городских квартир. Буквально лет так двадцать тому назад этот показатель не превышал 5 кВт. Все дело в росте количества используемых нами бытовых приборов. Теперь переходим к реализации выбора материала электрического провода. Сравнивая по таблице, можно сделать вывод, что в случае с медным кабелем значение сечения будет равно 4 мм², с алюминиевым – 6 мм². При этом медный сечением 4 мм² может выдержать нагрузку до 8,3 кВт, алюминиевый до 7,9 кВт. То есть, уже заложен определенный запас прочности, что повышает надежность эксплуатации электрической разводки.

Внимание! В независимости от того, что запас по мощности уже определен, рекомендуется сечение кабеля брать чуть больше (до следующего показателя). Это делается на будущее, ведь есть большая вероятность, что в доме появятся новые бытовые приборы, который увеличат суммарную нагрузку на сеть.

Сечение кабеля по мощности, выбор по таблице. Расчет сечения кабеля по мощности.

  • Опубликовано: 2013-08-08 23:00:3908.08.2013
  • Привет. Тема сегодняшней статьи «Сечение кабеля по мощности«. Эта информация пригодиться как в быту, так и на производстве. Речь пойдет о том, как произвести расчет сечения кабеля по мощности и сделать выбор по удобной таблице.

    Для чего вообще нужно правильно подобрать сечение кабеля?

    Если говорить простым языком, это нужно для нормальной работы всего, что связано с электрическим током. Будь-то фен, стиральная машина, двигатель или трансформатор. Сегодня инновации не дошли еще до безпроводной передачи электроэнергии (думаю еще не скоро дойдут), соответственно основным средством для передачи и распределения электрического тока, являются кабели и провода.

    При маленьком сечении кабеля и большой мощности оборудования, кабель может нагреваться, что приводит к потере его свойств и разрушению изоляции. Это не есть хорошо, так что правильный расчет необходим.

    Итак, выбор сечения кабеля по мощности. Для подбора будем использовать удобную таблицу:

    Таблица простая, описывать ее думаю не стоит.

    Теперь нам нужно рассчитать общую потребляемую мощность оборудования и приборов, используемых в квартире, доме, цехе или в любом другом месте куда мы ведем кабель. Произведем расчет мощности.

    Допустим у нас дом, выполняем монтаж закрытой электропроводки кабелем ВВГ. Берем лист бумаги и переписываем перечень используемого оборудования. Сделали? Хорошо.

    Как узнать мощность? Мощность вы сможете найти на самом оборудовании, обычно имеется бирка, где записаны основные характеристики:

    Мощность измеряется в Ваттах ( Вт, W ), или Киловаттах ( кВт, KW ). Нашли? Записываем данные, затем складываем.

    Допустим, у вас получилось 20 000 Вт, это 20 кВт. Цифра говорит нам о том, сколько энергии потребляют все электроприемники вместе. Теперь нужно подумать сколько вы будете использовать приборов одновременно в течении длительного времени? Допустим 80 %. Коэффициент одновременности в таком случае равен 0,8 . Делаем расчет сечения кабеля по мощности:

    Считаем: 20 х 0,8 = 16 (кВт)

    Чтобы сделать выбор сечения кабеля по мощности, смотрим на наши таблицы:

    =»nofollow»>

    Для трехфазной цепи 380 Вольт это будет выглядеть вот так:

    Как видите, не сложно. Хочу также добавить, советую выбирать кабель или провод наибольшего сечения жил, на случай если вы захотите подключить что-нибудь еще.

     

    Похожие записи:

     

    Полезный совет: если вы вдруг оказались в незнакомом районе в темное время суток. Не стоит подсвечивать себе дорогу сотовым телефоном

    На этом у меня все, теперь вы знаете как подобрать сечение кабеля по мощности. Смело делитесь с друзьями в социальных сетях.

    Как вам статья? Подписывайтесь на новости!

    Расчет сечения кабеля по мощности: таблицы и формулы

    Автор Петр Андреевич На чтение 5 мин. Просмотров 1.1k. Обновлено

    Электросети являются потенциальным источником пожарной опасности. Чтобы свести к минимуму возможность аварии, монтаж внутридомовой проводки осуществляется в строгом соответствии с установленными техническими нормативами. Рассмотрим правила правильного выбора необходимого материала, таблицу сечения кабелей по мощности, нюансы расчета нагрузки на электросети.

    Для чего нужен расчёт сечения кабеля

    Основное требование, предъявляемое к линиям электропередач – безопасность их эксплуатации. Поэтому, с особой внимательностью следует подходить к выбору сечения кабеля по току. Если оно окажется чересчур маленьким, проводка будет греться из-за большой нагрузки. Это, в свою очередь, способно привести к расплавлению изоляционной оплётки, короткому замыканию с последующим пожаром.

    Использование проводов слишком большого сечения обезопасит дом от возгорания, но приведёт к неоправданному перерасходу денежных средств. Самый рациональный вариант при прокладке проводки – подобрать кабеля с оптимальным сечением жилы. Точные рекомендации по правильному подбору проводки даны в гл. №1.3 «Правил установки электрооборудования».

    Выбор площади поперечного сечения проводника производится в соответствии со следующими параметрами:

    • Сила тока (А).
    • Мощность тока (кВт).
    • Материал изготовления проводки (медь или алюминий).
    • Количество фаз (1 или 3).

    Выбираем сечение по мощности

    Выбор сечения провода в зависимости от мощности тока начинается с проведения небольших расчётов. Для этого следует сложить общую мощность электрических устройств, которые будут одновременно включаться в квартире. На каждом приборе обычно указывается его мощность в ваттах или киловаттах. В будущем возможно приобретение новых бытовых электроприборов, поэтому к полученной суммарной мощности нужно прибавить ещё 1-2 киловатта.

    Для устройства внутридомовой электропроводки рекомендуется использовать медные кабели. Они, хотя и стоят дороже алюминиевых, но обладают большей гибкостью, долговечностью и лучшей электропроводностью. Ниже представлены таблицы выбора сечения кабеля по мощности и силе тока для медной проводки.

    Таблица 1. Вычисление мощности медной однофазной проводки напряжением в 220 вольт:

    Мощность тока (кВт) Сила тока (амперы) Сечение провода (кв. мм)
    4,1 19 1,5
    5,9 27 2,5
    8,3 38 4
    10,1 46 6
    15,4 70 10
    18,7 85 16
    25,3 115 25
    29,7 135 35
    38,5 175 50
    47,3 215 70
    57,2 260 95
    66 300 120

    Таблица 2. Подбор сечения кабеля для медной трёхфазной проводки напряжением в 380 вольт.

    Мощность тока (кВт) Сила тока (амперы) Сечение провода (кв. мм)
    10,5 16 1,5
    16,5 25 2,5
    19,8 30 4
    26,4 40 6
    33 50 10
    49,5 75 16
    59,4 90 25
    75,9 115 35
    95,7 145 50
    118,8 180 70
    145,2 220 95
    171,6 260 120

    Таблица сечения проводки в зависимости от силы и мощности тока для алюминиевых проводов выглядит иначе. В представленных выше таблицах приведены показатели соотношения сечение – ток, в зависимости от его мощности и силы. Сила тока, проходящего по проводнику, не является постоянной величиной, и может изменяться в зависимости от следующих показателей:

    • Длина провода.
    • Размера сечения.
    • Показатель удельного сопротивления материала, из которого он сделан.
    • Температура проводника. С нагревом проводки сила тока падает.

    Ниже показаны соотношения «сила тока – сечение провода» для различных вариантов прокладки. Основные цифры отдельно указаны для медных и алюминиевых проводов.

    Таблица 3. Подбор сечения кабеля по мощности для алюминиевой однофазной проводки напряжением в 220 вольт.

    Мощность тока (кВт) Сила тока (амперы) Сечение провода (кв. мм)
    4,4 20 2,5
    6,1 28 4
    7,9 36 6
    11 50 10
    13,2 60 16
    18,7 85 25
    22 100 35
    29,7 135 50
    36,3 165 70
    44 200 95
    50,6 230 120

    Таблица 4. Подбор сечения кабеля для алюминиевой трёхфазной проводки напряжением 380 вольт.

    Мощность тока (кВт) Сила тока (амперы) Сечение провода (кв. мм)
    12,5 19 2,5
    15,1 23 4
    19,8 30 6
    25,7 39 10
    36,3 55 16
    46,2 70 25
    56,1 85 35
    72,6 110 50
    92,4 140 70
    112,2 170 95
    132,2 200 120

    Как рассчитать по току

    В представленных выше таблицах приведены показатели соотношения сечение – ток, в зависимости от его мощности и силы. Сила тока, проходящего по проводнику, не является постоянной величиной, и может изменяться в зависимости от следующих показателей:

    • Длина провода.
    • Размера сечения.
    • Показатель удельного сопротивления материала, из которого он сделан.
    • Температура проводника. С нагревом проводки сила тока падает.

    В таблицах ниже приведены соотношения «сила тока – сечение провода» для различных вариантов прокладки. Основные цифры отдельно указаны для медных и алюминиевых проводов.

    Таблица 5. Соотношение силы тока и сечение алюминиевой проводки.

    Сечение провода (кв. мм) Показатель силы тока для алюминиевых проводов
    Открыто проложенных Проложенных в защитной трубе
    Два одножильных Три одножильных Четыре одножильных Один двухжильный
    2 21 19 18 15 17
    2,5 24 20 19 19 16
    3 27 24 22 21 22
    4 32 28 28 23 25
    5 36 32 30 27 28
    6 39 36 32 30 31
    8 46 43 40 37 38
    10 60 50 47 39 42
    16 75 60 60 55 60
    25 105 85 80 70 75
    35 130 100 95 85 95
    50 165 140 130 120 125
    70 210 175 165 140 150
    95 255 215 200 175 190
    120 295 245 220 200 230
    150 340 275 255
    185 390
    240 465
    300 535
    400 645

    Таблица 6. Соотношение силы тока и сечение медной проводки.

    Сечение провода (кв. мм) Показатель силы тока для медных проводов
    Открыто проложенных Проложенных в защитной трубе
    Два одножильных Три одножильных Четыре одножильных Один двухжильный
    0,5 21
    0,75 24 20 19 19 16
    3 27 24 22 21 22
    4 32 28 28 23 25
    5 36 32 30 27 28
    6 39 36 32 30 31
    8 46 43 40 37 38
    10 60 50 47 39 42
    16 75 60 60 55 60
    25 105 85 80 70 75
    35 130 100 95 85 95
    50 165 140 130 120 125
    70 210 175 165 140 150
    95 255 215 200 175 190
    120 295 245 220 200 230
    150 340 275 255
    185 390
    240 465
    300 535
    400 645

    Расчёт сечения кабеля по мощности и длине

    Из-за сопротивления материала происходит некоторая потеря напряжения при прохождении тока сквозь проводник. Чем длиннее проводка, тем большая величина этих потерь. Однако, ощутимые потери могут возникнуть на линиях электропередач протяжённостью, измеряемой километрами. Для бытовой проводки они столь несущественны, что ими можно вполне пренебречь.

    Рассчитываются основные показатели электротока по следующим формулам:

    • Сила тока: I = Р / (U cos ф), где:
      I – искомая сила тока.
      Р – мощность.
      U – напряжение.
      cos ф – коэффициент, применяемый для бытовой проводки. Обычно принимается за единицу.
    • Сопротивление провода: Rо=р L / S, где:
      Rо – удельное сопротивление проводника.
      р – удельное сопротивление материала, из которого он изготовлен (медь или алюминий).
      L – длина проводки.
      S – площадь сечения провода.

    Открытая и закрытая прокладка проводов

    При расчёте нагрузки на кабель принимается во внимание и особенности прокладки электрической линии. Существует два способа её размещения – закрытый и открытый. В стенах, изготовленных из негорючих стройматериалов – бетона, кирпича, – применяют закрытую прокладку, в специально проделанных канавках-штробах.

    В деревянных зданиях проводка прокладывается открытым способом, в защитных кабель-каналах или в гофрированных трубах. Для закрытого способа монтажа используют плоские провода, а для открытой-округлые.

    ПолезноБесполезно

    Расчёт сечения кабеля провода по мощности току 220

    Ток Амп

    220 Вольт

    380 Вольт

    Сечение mm2

    1 А

    0,22 кВт

    0,66 кВт

    0. 5 mm2

    2 А

    0,44 кВт

    1,3 кВт

    0.5 mm2

    3 А

    0,66 кВт

    1,97 кВт

    0.75 mm2

    4 А

    0,88 кВт

    2,63 кВт

    0.75 mm2

    5 А

    1,1 кВт

    3,3 кВт

    1.0 mm2

    6 А

    1,32 кВт

    3,9 кВт

    1.0 mm2

    10 А

    2,2 кВт

    6,6 кВт

    1.5 mm2

    16 А

    3,52 кВт

    10,5 кВт

    1.5 mm2

    25 А

    5,5 кВт

    16,45 кВт

    2.5 mm2

    35 А

    7,7 кВт

    23,03 кВт

    4.0 mm2

    42 А

    9,2 кВт

    27,6 кВт

    6. 0 mm2

    55 А

    12.1 кВт

    36.19 кВт

    10 mm2

    75 А

    16,5 кВт

    49,36 кВт

    16 mm2

    95 А

    20,9 кВт

    62.52 кВт

    25 mm2

    120 А

    26.4 кВт

    78.98 кВт

    35 mm2

    145 А

    31,9 кВт

    95,43 кВт

    50 mm2

    180 А

    39,6 кВт

    118,4 кВт

    70 mm2

    220 А

    48,4 кВт

    144.7 кВт

    95 mm2

    260 А

    57,2 кВт

    171.1 кВт

    120 mm2

    305 А

    67.1 кВт

    200,7 кВт

    150 mm2

    350 А

    77 кВт

    230. 3 кВт

    185 mm2

    ***

    Так как значения силы тока и напряжения постоянны и равны мгновенным значениям в любой момент времени, то мощность в однофазной сети можно вычислить по формуле: P = I * U.

    Например рассчитать мощность: ток I — 16 Амп умножаем на напряжение U — 220 Вольт и получаем мощность P — 3.520 ватт или 3.52 кВт.

    Например рассчитать силу тока по формуле I = P / U: Мощность P — 8800 Ватт или 8.8 кВт делим на напряжение U — 220 Вольт и получаем силу тока I — 40 Амп.

    Значит в квартире в однофазной сети с напряжением 220 Вольт и сечением кабеля 6 mm2, на 40 Амперный автомат можно подключить электрооборудования не более 8.8 кВт.

    Mощность в трехфазной сети можно вычислить по формуле: P = 1.732 * U * I

    Например рассчитать мощность: Корень из 3 или 1.732 умножаем на напряжение U — 380 Вольт и умножаем на ток I — 25 Амп получаем мощность P — 16.45 кВт или 16450 ватт.

    Например рассчитать силу тока в трёхфазной сети по формуле I = P / (1.732 * U): Мощность p — 16 кВт или 16000 ват делим на значение в скобках (Корень из 3 или 1.732 умножить на U — 380 Вольт)

    Ток I = Мощность P — 16000 делим на U — 658.1793 и получаем силу тока I — 24.3 Амп.

    ***

    1. Эл. щит в магазине

    В результате проверки было выявлено следующее (небольшой перекос по фазам A B C).

    На фотографии выше, показано стрелками, подключение кабеля Головной станции к автомату 32 амп., и произведены замеры тока по фазам, которые составляют — фаза А — 17.3 амп., фаза В — 9.1 амп., фаза С — 19.4 амп. (Показания Соответствуют Рабочим Параметрам)

    На фотографии ниже , стрелками показано подключение к автомату 50 амп. в ВРУ дома (вводное распределительное устройство дома), и сделаны замеры тока полной нагрузки по фазам. Они составляют фаза А -17 амп. фаза В — 11 амп. фаза С -26 амп. (Показания Соответствуют Рабочим Параметрам )

    Данные показания соответствуют рабочим параметрам и не считаются аварийными. Сечение кабеля в эл. щите соответствует заявленным параметрам нагрузки.

    На фотографии выше также указана аварийная фаза с обгоревшей изоляцией. Это могло произойти от послабления в местах соединения, плохого контакта, замыкания, повышенной нагрузки. На данный момент нагрузка соответствует нормам.

    Также на фотографии сверху показано где можно дополнительно снять нагрузку.

    Пояснение: Нет смысла снимать нагрузку в полтора киловатта с фазы С, которая питает некоторые комнаты магазина. А вот если добавить на Головной станции дополнительный кондиционер двух киловаттный, на фазу В, то нагрузка по фазам примерно станет равномерная, по 20 — 25 АМП. на одну фазу. И в обязательном порядке провести ППР(Планово-предупредительный ремонт) электрооборудования. Протяжку болтовых соединений. осмотр автоматических пускателей, контактов.

    ***

    2. ВРУ в доме

    по мощности, силе тока, длине

    В зависимости от потребляемой мощности оборудования, рассчитывается сечение кабеля, которое зависит от силы тока, напряжения и длине самого кабеля. Производители кабельной продукции предлагают рынку богатый ассортимент, разобраться в котором и выбрать то, что нужно не просто.

    От правильного выбора зависит не только его стоимость, но и электробезопасность при эксплуатации электрооборудования. Если сечение кабеля рассчитано неправильно и оно значительно ниже требуемого, то это может привести к перегреву изоляции, короткому замыканию и возможному возгоранию, что приведет к пожару.

    Затраты на устранение последствий от такой ситуации несоизмеримы с теми, которые нужны чтобы выполнить грамотный расчет проводки, даже с привлечением специалиста.

    В этой статье предлагается простая методика расчета сечения проводника, которая окажет методическую помощь, желающим самим правильно рассчитать и смонтировать кабельную проводку.

    Содержание статьи

    Расчет по мощности электроприборов

    Любой кабель или провод, в зависимости от материала из которого он изготовлен, может выдержать определенную (номинальную) силу тока, а она имеет прямую зависимость от его сечения и длины. Определить общую потребляемую мощность всех установленных приборов не сложно. Для этого составляется перечень всего оборудования с указанием потребляемой мощности каждой единицы. Все указанные значения суммируются.

    Этот расчет выполняется по следующей формуле:
    Pобщ = (P1+P2+P3+…+Pn)×0.8

    Где:

    • Pобщ – общая сумма всех нагрузок.
    • (P1+P2+P3+…+Pn) – потребляемая мощность каждого оборудования.
    • 0,8 – это поправочный коэффициент, который характеризует степень загрузки всех приборов. Обычно приборы редко когда используются одновременно. Такие, как фен, пылесос или электрокамин, используются довольно редко

    Полученная сумма будет использоваться для дальнейшего расчета.

    Таблицы, по которым выбирается сечение кабеля

    Расчет для алюминиевого проводаРасчет для медного провода

    Выбрать нужное сечение по данным таблицы не так, сложно. По установленной мощности, величине напряжения и тока, выбирается размер сечения кабеля для закрытой и открытой проводки. Так же подбирается и материал, из которого изготовлен кабель.

    На примере это будет выглядеть так: допустим общая потребляемая мощность электроэнергии в доме составила 13 кВт. Если это значение умножить на поправочный коэффициент 0.8, то номинальная потребляемая мощность составит 10.4 кВт. По таблице выбирается близкая по значению величина мощности. В данном случае для однофазной сети будет число 10.1 кВт, а для трехфазной 10.5 кВт. Для этих значений потребляемой мощности, выбирается сечение 6 мм2 и 1.5 мм2 соответственно.

    Расчет сечения кабеля по силе тока

    Если расчет по мощности не такой уж точный, то расчет по силе тока может дать самые оптимальные размеры сечения кабеля, что довольно важно, если используется медный кабель и в большом количестве.

    Для начала необходимо определить токовую нагрузку на всю электропроводку. Она складывается из такой нагрузки для каждого из приборов и рассчитываются по таким формулам.

    Для однофазной сети применяется следующая формула: I= P:(Uˑcos), а для трехфазной I=P÷√3×Uˑcos

    Где:

    • I- сила тока
    • U – напряжение в сети
    • Cos – коэффициент мощности

    Полученные таким способом расчета данные суммируются, и определяется токовая нагрузка на всю проводку. Из таблицы подбираются точные размеры сечения для всей сети. В таблице имеются значения для открытой и закрытой проводки. Они значительно отличаются друг от друга.

    Таблица по выбору сечения кабеля в зависимости от силы тока.

    Соотношения диаметра жил к токовым нагрузкам

    Расчет по длине кабеля

    В любом проводнике, сопротивление тока зависит от его длины. На этом свойстве и основан третий способ расчета сечения кабеля. Чем длиннее проводник, тем больше потери в сети. Если они превышают более 5%, то выбирают кабель с большим сечением.

    Для определения сечения кабеля определяют суммарную мощность всех установленных приборов и силу тока, который будет протекать по проводнику. Для этого можно использовать, выше приведенную форму расчета. Далее выполняется расчет сопротивления проводки по следующей формуле:

    • R=(p×L)÷S, где p — удельное сопротивление проводника, которое приводится в специальных таблицах;
    • L – длина проводника в метрах, умножается на два, так как ток течет по фазному и нулевому проводу;
    • S- площадь поперечного сечения кабеля.

    Далее производится расчет потери напряжения, где сила тока умножается на сопротивление, полученное при расчете. Полученное значение делится на величину напряжение в сети и умножается на 100%.

    Если итоговое значение меньше 5%, то сечение кабеля выбрано правильно. В противном случае необходимо подобрать проводник большего сечения.

    В любом случае при расчете сечения проводки, необходимо делать соответствующие поправки на перспективу. Возможно, появится желание приобрести более современные дополнительные бытовые приборы, которые будут потреблять больше электроэнергии. Поэтому желательно увеличить сечение проводки хотя бы на одну ступень. При этом вся проводка должна быть выполнена из медного провода.

    Видео по расчету сечения кабеля

    Понравилась статья? Поделиться с друзьями:

    Таблица текущей пропускной способности

    | Расчет поперечного сечения кабеля

    Допустимая нагрузка по току: таблицы

    (Выдержка из таблиц VDE 0298 T4 06/13: 11, 17, 18, 21, 26 и 27)

    Допустимая нагрузка по току, кабели с номинальным напряжением до 1000 В и термостойкие кабели VDE 0298 T4 08/03 таблица 11, столбец 2 и 5
    столбец 2 столбец 5
    способ прокладки в воздухе на поверхности или на поверхности
    монопроводы

    — с резиновой изоляцией
    — с изоляцией из ПВХ
    — термостойкие

    Многожильные кабели
    (кроме домашних или переносных устройств)
    — с резиновой изоляцией
    — ПВХ изолированный
    — термостойкий
    Количество заряженных проводников 1 2 или 3
    Номинальное сечение Емкость (Ампер)
    0,75 мм 2 15A 12A
    1,00 мм 2 19A 15A
    1,50 мм 2 24A 18A
    2,50 мм 2 32A 26A
    4,00 мм 2 42A 34A
    6,00 мм 2 54A 44A
    10,00 мм 2 73A 61A
    16,00 мм 2 98A 82A
    25,00 мм 2 129A 108A
    35,00 мм 2 158A 135A
    50,00 мм 2 198A 168A
    70,00 м м 2 245A 207A
    95,00 мм 2 292A 250A
    120,00 мм 2 344A 292A
    150, 00 мм 2 391A 335A
    185,00 мм 2 448A 382A
    240,00 мм 2 528A 453A
    300 , 00 мм 2 608A 523A
    Допустимая нагрузка кабеля при изменении температуры окружающей среды
    VDE 0298 T4 06/13, таблица 17, столбец 4 1 )
    Температура окружающей среды Коэффициент
    10 ° C 1,22
    15 ° C 1,17
    20 ° C 90 020

    1,12
    25 ° C 1,06
    30 ° C 1,00
    35 ° C 0,94
    40 ° C 0,87
    45 ° C 0,79
    50 ° C 0,71
    55 ° C 0,61
    60 ° C 0, 50
    65 ° C 0,35

    1) для кабелей с рабочей температурой макс.70 ° C на проводнике

    Пределы допустимой нагрузки многожильных кабелей номинальным сечением до 10 мм2
    VDE 0298 T4 06/13 таблица 26. При прокладке на открытом воздухе.
    Количество нагруженных сердечников Коэффициент
    5 0,75
    7 0,65
    10 0,55
    14 0,50
    19 0,45
    24 0,40
    40 0,35
    61 0,30

    900 10

    Допустимая нагрузка кабеля для разделения температур окружающей среды для термостойких кабелей VDE 0298 T4 06/13 таблица 18, столбец 3-6
    столбец 3 столбец 4 столбец 5 колонка 6
    zulässige Betriebstemperatur
    90 ° C 110 ° C 135 ° C 180 ° C
    температура окружающей среды коэффициенты преобразования, применяемые к емкости термостойких кабелей в таблице 11, столбец 2 и 5
    до 50 ° C 1,00 1,00 1 , 00 1,00
    55 ° C 0,94 1,00 1,00 1,00
    60 ° C 0,87 1, 00 1,00 1,00
    65 ° C 0,79 1,00 1,00 1,00
    70 ° C 0,71 1,00 1,00 1,00
    75 ° C 0,61 1,00 1,00 1,00
    80 ° C 0,50 1,00 1,00 1,00
    85 ° C 0,35 0,91 1,00 1,00
    90 ° C —— 0,82 1,00 1,00
    95 ° C —— 0,71 1,00 1,00
    100 ° C —— 0,58 0,94 1,00
    105 ° C —- — 0,41 0,87 1,00
    110 ° C —— —— 0,79 1,00
    115 ° C —— —— 0,71 1,00
    120 ° C —— —— 0,61 1,00
    125 ° C —— —— 0,50 1,00
    130 ° C — —- —— 0,35 1,00
    135 ° C —— —— —— 1,00
    140 ° C —— —— — —- 1,00
    145 ° C —— —— —— 1,00
    150 ° C —— —— —— 1,00
    155 ° C —— —— — — 0,91
    160 ° C —— —— —— 0,82
    165 ° C —— —— —— 0,71
    170 ° C —— —— — — 0,58
    175 ° C —— —— —— 0,41
    90 009

    Допустимая токовая нагрузка кабелей для накопления на стенах, в трубах и трубопроводах, на полу и потолке VDE 0298 T4 06/13 таблица 21

    No.многожильных кабелей

    (2 или 3 токоведущих жилы)

    Фактор

    1

    1,00

    2 0,80
    3 0,70
    4 0,65
    5 0,60
    6 0,57
    7 0,54
    8 0,52
    9 0,50
    10 0,48
    12 0,45
    14 0,43
    16 0,41
    18 0,39
    20 0,38

    Максимально допустимая токовая нагрузка в соотв.согласно DIN VDE 0891, часть 1, пункт 7 необходимо учитывать при использовании изолированных кабелей в телекоммуникационных системах и устройствах обработки данных.

    Допустимая нагрузка на кабели для намотанных кабелей VDE 0298 T4 06/13 таблица 27
    1 2 3 4 5 6
    нет. слоев на одном барабане 1 2 3 4 5
    коэффициенты пересчета 0,80 0,61 0,49 0,42 0, 38

    Примечание : для спиральной намотки действителен коэффициент преобразования 0,80

    Расчет рейтингов повреждения кабеля

    При выборе кабеля важно учитывать характеристики кабеля в условиях неисправности.Важно провести расчеты, чтобы убедиться, что любой кабель способен выдержать воздействие любого потенциального повреждения или короткого замыкания. В этой заметке рассматривается, как это сделать.

    Основная проблема с кабелями, находящимися в состоянии неисправности, — это выделяемое тепло и любое возможное отрицательное воздействие, которое оно может оказать на изоляцию кабеля.

    Расчет рейтинга неисправности основан на том принципе, что защитное устройство изолирует неисправность в течение определенного времени, так что допустимое повышение температуры внутри кабеля не будет превышено.

    Адиабатическое уравнение

    При расчете рейтингов неисправностей кабеля обычно предполагается, что продолжительность настолько мала, что кабель не отводит тепло в окружающую среду. Принятие этого подхода упрощает расчет и дает возможность ошибиться.

    Обычно используемым уравнением является так называемое уравнение адиабаты. Для данной неисправности I , которая длится t , минимально требуемая площадь поперечного сечения кабеля определяется по формуле:

    A = I2tk

    A — номинальная площадь поперечного сечения, мм 2

    I — ток короткого замыкания, A

    t — длительность тока короткого замыкания, с

    k — коэффициент, зависящий от типа кабеля (см. Ниже)

    В качестве альтернативы, с учетом поперечного сечения кабеля и ток повреждения, максимальное время, допустимое для защитного устройства, можно найти из:

    t = k2A2I2

    Коэффициент k зависит от изоляции кабеля, допустимого повышения температуры в условиях повреждения, удельного сопротивления проводника и теплоемкости. .Типичные значения k :

    37 9000

    C резина (резина

    900

    Значение k
    Температура Материал проводника
    Начальная ° C] Конечная [° C] Медь Алюминий Сталь
    Термопласт 70 ° C (ПВХ)

    70

    160/140

    115/103

    76/78

    Термопласт 90 ° C (ПВХ)

    90

    160/140

    100/86

    66/57

    36/31

    Термореактивный, 90 ° C (XLPE, EDR)

    90

    250

    143

    52

    Термореактивная, 60 ° C (резина)

    60

    200

    141

    93

    51 85

    ) )

    85

    220

    134

    89

    48

    Термореактивная, 185 ° C (силиконовая резина)

    180

    350

    132

    8710

    8710

    * где два значения; меньшее значение применяется к проводнику CSA> 300 мм 2
    * эти значения подходят для продолжительности до 5 секунд, источник: BS 7671, IEC 60364-5-54

    Совет: для лучшего понимания изоляции кабеля и о том, как он классифицируется, см. нашу заметку о свойствах изоляции кабеля.

    Пример

    Рассмотрим максимальный ток короткого замыкания 13,6 кА, и защитное устройство сработает за 2,6 с. Минимальная безопасная площадь поперечного сечения медного термореактивного кабеля 90 ° C ( k = 143) составляет:

    S = 136002 × 2,6143 = 154 мм2

    Любой выбранный кабель большего размера выдержит отказ.

    Вывод — адиабатическое уравнение и k

    Термин адиабатический применяется к процессу, в котором отсутствует теплопередача.Что касается повреждений кабеля, мы предполагаем, что все тепло, выделяемое во время повреждения, содержится внутри кабеля (а не передается от него). Очевидно, что это не совсем так, но это безопасно.

    Из физики теплота Q , необходимая для подъема материала ΔT , определяется по формуле:

    Q = cmΔT

    Q — добавленное тепло, Дж

    c — удельная теплоемкость материала , Jg -1 .K -1

    м — масса материала, г

    ΔT — повышение температуры, K

    Энергия в кабеле во время повреждения определяется по формуле:

    Q = I2Rt

    R — сопротивление кабеля, Ом

    Исходя из физических свойств кабеля, мы можем рассчитать м и R как:

    м = ρcAl и R = ρrlA

    ρ c — плотность материала в г.мм -3

    ρ r — удельное сопротивление жилы, Ом.мм

    l — длина кабеля, мм

    Комбинируя и заменяя, получаем:

    I2Rt = cmΔT

    I2tρrlA = cρcAlΔT

    и перестановка для A дает:

    S = I2tk, позволяя k = cρcΔTρr

    Примечание: ΔT — максимально допустимое превышение температуры для кабеля:

    ΔT =

    −9Δθ

    θ f — конечная (максимальная) температура изоляции кабеля, ° C

    θ i — начальная (рабочая) температура изоляции кабеля, ° C

    Единицы: выражены в граммах (граммы) и 2 мм, в отличие от кг и м.Это широко используется разработчиками кабелей. При необходимости уравнения могут быть легко переделаны в килограммах и миллиметрах.

    Получение значений k

    Константу k можно вычислить по приведенному выше уравнению.

    Более распространенным подходом является использование табличных значений для k , например, из BS 7671 [1] .

    IEC 60364-5-54 [2] также позволяет более прямой расчет k , используя:

    k = Qc (β + 20) ρ20ln (β + θfβ + θi)

    Q c — объемная теплоемкость проводника при 20 ° С, Дж.K -1 . Мм -3

    β — величина, обратная температурному коэффициенту удельного сопротивления при 0 ° C, ° C

    ρ 20 — удельное сопротивление проводника при 20 ° C, Ом.мм

    θ i — начальная температура проводника, ° C

    θ f — конечная температура проводника, ° C

    β [° C] 9003 14

    90 c [J.K -1 . Мм -3 ] ρ 20 [Ом.мм]
    Медь 234,5 3,45 x 10 -3 17,241 x 10 — 6
    Алюминий 228 2,5 x 10 -3 28,267 x 10 -6
    Сталь 202 3.8 x 10 -3 138 x 10 -6

    Подставив приведенные выше значения и немного изменив уравнение IEC, получаем:

    k = 226ln (1 + θf − θi234,5 + θi) — медные проводники

    k = 148ln (1 + θf − θi228 + θi) — алюминиевые проводники

    k = 78ln (1 + θf − θi202 + θi) — стальные

    Неадиабатические эффекты

    As Как уже упоминалось, адиабатическое уравнение предполагает, что во время короткого замыкания от кабеля не отводится тепло.Принимая во внимание надежность расчетов, в некоторых ситуациях, особенно при более длительной продолжительности замыкания, есть вероятность, что можно обойтись меньшим поперечным сечением. В этих случаях можно произвести более точный расчет.

    Учет неадиабатических эффектов сложнее. Если нет какого-либо драйвера, использовать адиабатические уравнения проще простого. Доступно программное обеспечение для учета неадиабатических эффектов, однако с этим связаны затраты, время и сложность.

    IEC также публикует стандарт, который касается неадиабатических уравнений:

    • IEC 60949 «Расчет термически допустимого тока короткого замыкания с учетом неадиабатических эффектов нагрева».

    Метод, принятый в МЭК 60949, заключается в использовании адиабатического уравнения и применении коэффициента для учета неадиабатических эффектов:

    I = εIAD

    I — допустимый ток короткого замыкания, А (или кА)

    I AD — адиабатический расчетный допустимый ток короткого замыкания, А (или кА)

    ε — коэффициент, учитывающий отвод тепла от кабеля

    Основная часть стандарта IEC 60949 касается Расчет ε .

    Другие проблемы с повреждениями кабеля

    Помимо прямого нагрева от токов короткого замыкания, следует учитывать и другие факторы:

    • Электромеханическое напряжение и уровни повреждения, достаточно большие, чтобы вызвать отказ кабеля
    • производительность соединения и концевой заделки при повреждении условия

    Хотя в большинстве случаев отсутствие нагрева не является серьезным, могут возникнуть ситуации, когда они могут представлять опасность для кабеля или оборудования / персонала в непосредственной близости.

    Ссылки

    • [1]. BS 7671 — Требования к электроустановкам . 17-е изд. Соединенное Королевство: IEE; 2008.
    • [2] IEC 60364-5-54 Электроустановки низкого напряжения — Часть 5-54: Выбор и монтаж электрооборудования — Устройства заземления и защитные проводники . 3-е изд. IEC; 2011.

    Как найти подходящий размер кабеля и провода?

    Как определить правильный размер провода и кабеля для установки электропроводки?

    Падение напряжения в кабелях

    Мы знаем, что все проводники и кабели (кроме сверхпроводника) имеют определенное сопротивление.

    Это сопротивление прямо пропорционально длине и обратно пропорционально диаметру проводника, т.е.

    R ∝ L / a … [Закон сопротивления R = ρ (L / a)]

    Когда ток течет по проводнику в этом проводе происходит падение напряжения. Как правило, падением напряжения можно пренебречь для проводов малой длины, но в случае проводов меньшего диаметра и большой длины мы должны учитывать значительные падения напряжения для правильной установки проводки и управления нагрузкой в ​​будущем.

    Согласно правилу IEEE B-23 , в любой точке между клеммой источника питания и установкой, Падение напряжения не должно превышать 2,5% от предоставленного (питающего) напряжения .

    Пример:

    если напряжение питания составляет 220 В переменного тока, то значение допустимого падения напряжения должно быть;

    • Допустимое падение напряжения = 220 x (2,5 / 100) = 5,5 В

    В цепях электропроводки падение напряжения также происходит от распределительной платы к другой подсхеме и конечной подсхеме, но для вспомогательной цепей и конечных подсхем, значение падения напряжения должно составлять половину этого допустимого падения напряжения (т.е. 2,75 В из 5,5 В, как рассчитано выше)

    Обычно падение напряжения в таблицах описывается в Ампер на метр (А / м) например, Каким будет падение напряжения в кабеле длиной один метр, по которому проходит ток в один ампер?

    Существует два метода определения падения напряжения в кабеле , которые мы обсудим ниже.

    В SI (международная система и метрическая система ) падение напряжения описывается как ампер на метр (А / м) .

    В FPS (фут-фунтовая система) падение напряжения описывается на основе длины, которая составляет 100 футов.

    • Обновление : Теперь вы также можете использовать следующие электрические калькуляторы, чтобы найти падение напряжения и размер провода в американской системе калибра .
    1. Калькулятор размеров электрических проводов и кабелей (медь и алюминий)
    2. Калькулятор размеров проводов и кабелей в AWG
    3. Калькулятор падения напряжения в проводах и кабелях

    Таблицы и диаграммы для надлежащих кабелей и проводов Размеры

    Ниже приведены важные таблицы, которым вы должны следовать, чтобы определить правильный размер кабеля для установки электропроводки.

    Щелкните изображение, чтобы увеличить

    Щелкните изображение, чтобы увеличить

    Щелкните изображение, чтобы увеличить

    Щелкните изображение, чтобы увеличить

    Щелкните изображение, чтобы увеличить

    0007 Падение напряжения в кабеле?

    Чтобы определить падение напряжения в кабеле, выполните простые шаги, указанные ниже. 1

  • Из таблицы 1 найдите падение напряжения в метрах или 100 футах (какую систему вы предпочитаете) в соответствии с его номинальным током
  • (Сохраняйте спокойствие 🙂 мы будем следовать обоим методам и системе для определения падения напряжения (в метрах и 100 футах) ) в нашем решенном примере для всей электропроводки).

    • Теперь рассчитайте падение напряжения для фактической длины электрической цепи в соответствии с ее номинальным током с помощью по формуле .

    (Фактическая длина цепи x падение напряжения на 1 м) / 100 —->, чтобы найти падение напряжения на метр.
    (Фактическая длина цепи x падение напряжения на 100 футов) / 100—>, чтобы найти падение напряжения на 100 футов.

    • Теперь умножьте это вычисленное значение падения напряжения на коэффициент нагрузки, где;

    Коэффициент нагрузки = ток нагрузки, принимаемый кабелем / номинальный ток кабеля, указанный в таблице.

    • Это значение падения напряжения в кабелях, когда через них протекает ток нагрузки.
    • Если рассчитанное значение падения напряжения меньше значения, рассчитанного на шаге (1) (Максимально допустимое падение напряжения), то размер выбранного кабеля является правильным.
    • Если рассчитанное значение падения напряжения больше, чем рассчитанное значение на шаге (1) (Максимально допустимое падение напряжения), затем рассчитайте падение напряжения для следующего кабеля (большего размера) и так далее, пока рассчитанное значение падения напряжения не станет меньше максимально допустимого падения напряжения, рассчитанного на шаге (1).

    Связанные сообщения:

    Как определить правильный размер кабеля и провода для данной нагрузки?

    Ниже приведены решенные примеры, показывающие, как найти правильный размер кабеля для данной нагрузки.

    Для данной нагрузки размер кабеля можно найти с помощью различных таблиц, но мы должны помнить и соблюдать правила, касающиеся падения напряжения.

    Определяя сечение кабеля для данной нагрузки, примите во внимание следующие правила.

    Для данной нагрузки, за исключением известного значения тока, должен быть 20% дополнительный диапазон тока для дополнительных, будущих или аварийных нужд.

    От счетчика электроэнергии до распределительного щита падение напряжения должно составлять 1,25% , а для конечной подсхемы падение напряжения не должно превышать 2,5% напряжения питания.

    Учитывайте изменение температуры, при необходимости используйте температурный коэффициент (Таблица 3)

    Также учитывайте коэффициент нагрузки при определении размера кабеля

    При определении размера кабеля учитывайте систему проводки, т. Е. Систему открытой проводки, температура будет низкой, но в кабелепроводе температура повышается из-за отсутствия воздуха.

    Связанные сообщения:

    Решенные примеры правильного размера провода и кабеля

    Ниже приведены примеры определения правильного размера кабелей для установки электропроводки, которые помогут легко понять метод «как определить правильный размер кабеля для данной нагрузки ».

    Пример 1 ……. (британская / английская система)

    Для установки электропроводки в здании, общая нагрузка составляет 4.5 кВт, а общая длина кабеля от счетчика электроэнергии до распределительного щита составляет 35 футов. Напряжение питания составляет 220 В, а температура — 40 ° C (104 ° F). Найдите наиболее подходящий размер кабеля от счетчика электроэнергии до подсхемы, если проводка проложена в кабелепроводах.

    Решение: —

    • Общая нагрузка = 4,5 кВт = 4,5 x1000 Вт = 4500 Вт
    • Дополнительная нагрузка 20% = 4500 x (20/100) = 900 Вт
    • Общая нагрузка = 4500 Вт + 900 Вт = 5400 Вт
    • Общий ток = I = P / V = ​​5400 Вт / 220 В = 24.5A

    Теперь выберите размер кабеля для тока нагрузки 24,5A (из таблицы 1), который составляет 7 / 0,036 (28 ампер), это означает, что мы можем использовать кабель 7 / 0,036 в соответствии с таблицей 1.

    Теперь проверьте выбранный кабель (7 / 0,036) с температурным коэффициентом в таблице 3, поэтому температурный коэффициент составляет 0,94 (в таблице 3) при 40 ° C (104 ° F), а допустимая нагрузка по току (7 / 0,036) составляет 28A, следовательно, допустимая нагрузка по току этого кабеля при 40 ° C (104 ° F) будет;

    Номинальный ток для 40 ° C (104 ° F) = 28 x 0.94 = 26,32 ампер.

    Поскольку расчетное значение ( 26,32 А, ) при 40 ° C ( 104 ° F ) меньше, чем допустимая нагрузка по току кабеля (7 / 0,036), которая составляет 28A , поэтому данный размер кабеля ( 7 / 0,036 ) также подходит по температуре.

    Теперь найдите падение напряжения на 100 футов для этого (7 / 0,036) кабеля из Таблица 4 , что составляет 7V , Но в нашем случае длина кабеля составляет 35 футов.Следовательно, падение напряжения для кабеля длиной 35 футов будет:

    Фактическое падение напряжения для 35 футов = (7 x 35/100) x (24,5 / 28) = 2,1 В

    И допустимое падение напряжения = (2,5 x 220) / 100 = 5,5 В

    Здесь Фактическое падение напряжения (2,1 В) меньше максимально допустимого падения напряжения 5,5 В. Следовательно, подходящий и наиболее подходящий размер кабеля (7 / 0,036) для данной нагрузки при установке электропроводки.

    Пример 2 ……. (СИ / метрическая / десятичная система)

    Кабель какого типа и размера подходит для данной ситуации

    Нагрузка = 5.8 кВт

    В = 230 В AV

    Длина цепи = 35 метров

    Температура = 35 ° C (95 ° F)

    Решение: —

    Нагрузка = 5,8 кВт = 5800 Вт

    Напряжение = 230 В

    Ток = I = P / V = ​​5800/230 = 25,2 A

    20% дополнительный ток нагрузки = (20/100) x 5,2 A = 5A

    Общий ток нагрузки = 25,2 А + 5 А = 30,2 А

    Теперь выберите размер кабеля для тока нагрузки 30.2A (из таблицы 1), что составляет 7 / 1,04 (31 ампер), это означает, что мы можем использовать кабель 7 / 0,036 в соответствии с таблицей 1 .

    Теперь проверьте выбранный кабель (7 / 1,04) с температурным коэффициентом в таблице 3, так что температурный коэффициент равен 0,97 (в таблице 3) при 35 ° C (95 ° F), а допустимая нагрузка по току (7 / 1,04) составляет 31A, следовательно, допустимая нагрузка по току этого кабеля при 40 ° C (104 ° F) будет;

    Номинальный ток для 35 ° C (95 ° F) = 31 x 0,97 = 30 А.

    Поскольку расчетное значение (30 А) при 35 ° C (95 ° F) меньше, чем допустимая токовая нагрузка (7/1.04) на 31 А, поэтому кабель этого размера (7 / 1,04) также подходит для измерения температуры.

    Теперь найдите падение напряжения на амперметр для этого кабеля (7 / 1,04) из таблицы 5, которое составляет 7 мВ. Но в нашем случае длина кабеля составляет 35 метров. Следовательно, падение напряжения для 35-метрового кабеля будет:

    Фактическое падение напряжения для 35-метрового прибора =

    = мВ x I x L

    (7/1000) x 30 × 35 = 7,6 В

    И Допустимое падение напряжения = (2.5 x 230) / 100 = 5,75 В

    Здесь фактическое падение напряжения (7,35 В) больше, чем максимально допустимое падение напряжения 5,75 В. Следовательно, этот размер кабеля не подходит для данной нагрузки. Итак, мы выберем следующий размер выбранного кабеля (7 / 1,04), который равен 7 / 1,35, и снова найдем падение напряжения. Согласно таблице (5) номинальный ток 7 / 1,35 составляет 40 ампер, а падение напряжения на амперметр составляет 4,1 мВ (см. Таблицу (5)). Следовательно, фактическое падение напряжения для 35-метрового кабеля будет;

    Фактическое падение напряжения для 35 метров =

    = мВ x I x L

    (4.1/1000) x 40 × 35 = 7,35 В = 5,74 В

    Это падение меньше, чем максимально допустимое падение напряжения. Итак, это наиболее подходящий и подходящий кабель или размер провода .

    Пример 3

    В здании подключены следующие нагрузки: —

    Подконтур 1

    • 2 лампы по 1000 Вт и
    • 4 вентилятора по 80 Вт
    • 2 телевизора по 120 Вт

    Подсхема 2

    • 6 ламп по 80 Вт и
    • 5 розеток по 100 Вт
    • 4 лампы по 800 Вт

    Если напряжение питания 230 В переменного тока, тогда рассчитает ток цепи и Размер кабеля для каждой подсхемы ?

    Решение: —

    Общая нагрузка подсхемы 1

    = (2 x 1000) + (4 x 80) + (2 × 120)

    = 2000 Вт + 320 Вт + 240 Вт = 2560 Вт

    Ток для подсхемы 1 = I = P / V = ​​2560/230 = 11.1A

    Общая нагрузка подсхемы 2

    = (6 x 80) + (5 x 100) + (4 x 800)

    = 480 Вт + 500 Вт + 3200 Вт = 4180 Вт

    Ток для вспомогательной -Цепь 2 = I = P / V = ​​4180/230 = 18,1 A

    Следовательно, Кабель, предлагаемый для вспомогательной цепи 1 = 3 / 0,029 ”( 13 А ) или 1 / 1,38 мм ( 13 А )

    Кабель, рекомендуемый для вспомогательной цепи 2 = 7 /.029 ”( 21 А, ) или 7 / 0,85 мм (24 А)

    Общий ток, потребляемый обеими вспомогательными цепями = 11,1 А + 18,1 А = 29,27 А

    Итак, кабель рекомендуется для основного -Схема = 7 / 0,044 дюйма (34 А) или 7 / 1,04 мм (31 А )

    Пример 4

    Трехфазный асинхронный двигатель с короткозамкнутым ротором мощностью 10 л.с. (7,46 кВт) постоянный номинальный ток с использованием пуска звезда-треугольник подключается к источнику питания 400 В тремя одножильными кабелями из ПВХ, проложенными в кабелепроводе на расстоянии 250 футов (76.2 м) от платы распределительных предохранителей. Его ток полной нагрузки составляет 19 А. Средняя летняя температура в электропроводке составляет 35 ° C (95 ° F). Рассчитать сечение кабеля двигателя?

    Решение: —

    • Нагрузка двигателя = 10H.P = 10 x 746 = 7460 Вт * (1H.P = 746 Вт)
    • Напряжение питания = 400 В (3 фазы)
    • Длина кабеля = 250 футов (76,2 м)
    • Ток при полной нагрузке двигателя = 19A
    • Температурный коэффициент для 35 ° C (95 ° F) = 0.97 (Из Таблицы 3)

    Теперь выберите размер кабеля для тока двигателя при полной нагрузке 19 А (из Таблицы 4), который составляет 7 / 0,36 дюйма (23 А) * (Помните, что это 3-фазная система, т.е. -жильный кабель), а падение напряжения составляет 5,3 В на 100 футов. Это означает, что мы можем использовать кабель 7 / 0,036 согласно таблице (4).

    Теперь проверьте выбранный кабель (7 / 0,036) с температурным коэффициентом в таблице (3), поэтому температурный коэффициент составляет 0,97 (в таблице 3) при 35 ° C (95 ° F) и допустимой нагрузке по току (7 / 0,036). ”) Составляет 23 А, следовательно, допустимая нагрузка по току этого кабеля при 40 ° C (104 ° F) будет:

    Номинальный ток для 40 ° C (104 ° F) = 23 x 0.97 = 22,31 ампер.

    Поскольку расчетное значение (22,31 А) при 35 ° C (95 ° F) меньше, чем допустимая токовая нагрузка (7 / 0,036) кабеля, которая составляет 23 А, поэтому данный размер кабеля (7 / 0,036) также подходит по температуре.

    Коэффициент нагрузки = 19/23 = 0,826

    Теперь найдите падение напряжения на 100 футов для этого (7 / 0,036) кабеля из таблицы (4), которое составляет 5,3 В, но в нашем случае длина кабеля составляет 250 ноги. Следовательно, падение напряжения для кабеля длиной 250 футов будет:

    Фактическое падение напряжения для 250 футов = (5.3 x 250/100) x 0,826 = 10,94 В

    И максимальное Допустимое падение напряжения = (2,5 / 100) x 400 В = 10 В

    Здесь фактическое падение напряжения (10,94 В) больше, чем у максимально допустимое падение напряжения 10В. Следовательно, этот размер кабеля не подходит для данной нагрузки. Итак, мы выберем следующий размер выбранного кабеля (7 / 0,036), который равен 7 / 0,044, и снова найдем падение напряжения. Согласно Таблице (4) номинальный ток 7 / 0,044 составляет 28 Ампер, а падение напряжения на 100 футов составляет 4.1В (см. Таблицу 4). Следовательно, фактическое падение напряжения для кабеля длиной 250 футов будет:

    Фактическое падение напряжения для 250 футов =

    = Падение напряжения на 100 футов x длина кабеля x коэффициент нагрузки

    (4,1 / 100) x 250 x 0,826 = 8,46 В

    И максимально допустимое падение напряжения = (2,5 / 100) x 400 В = 10 В

    Фактическое падение напряжения меньше, чем максимально допустимое падение напряжения. Таким образом, это наиболее подходящий и подходящий размер кабеля для установки электропроводки в данной ситуации.

    Похожие сообщения:

    Калькулятор размера кабеля AS / NZS 3008

    Калькулятор размера кабеля вычисляет номинальный ток, падение напряжения и номинальное значение короткого замыкания в соответствии со стандартом Австралии и Новой Зеландии AS / NZS 3008.

    См. Также

    Параметры калькулятора

    • Напряжение (В): Укажите напряжение и выберите расположение фаз: 1 фаза переменного тока, 3 фазы переменного тока или постоянного тока.
    • Нагрузка (кВт, кВА, А, л.с.): Укажите нагрузку в кВт, кВА, А или л.с.Укажите cosF (коэффициент мощности нагрузки), если нагрузка указывается в кВт или л.с.
    • Максимальное падение напряжения (%): Максимально допустимое падение напряжения.
    • Расстояние (м): Длина кабеля в метрах от источника до нагрузки. Длина возврата автоматически включается калькулятором.
    • Ток короткого замыкания (кА): Ток короткого замыкания.
      • В цепях низкого напряжения обычно используется сквозной ток, т.е.е. после защитного устройства (предохранитель, автоматический выключатель или автоматический выключатель).
      • В цепях высокого напряжения обычно используются предполагаемый ток короткого замыкания и время резервной защиты, то есть ток замыкания на первичной стороне автоматического выключателя, контактора или предохранителя.
    • Время отказа (кА, мс): Время отключения короткого замыкания для устройства защиты.
    • Количество кабелей на фазу: Обычно только один кабель на фазу, для одножильных или многожильных кабелей.Для сценариев с высокой нагрузкой можно выбрать более одного кабеля.
      Если тип кабеля одножильный, этот параметр означает устанавливает кабелей. То есть набор из двух для однофазных. Набор из трех на трехфазный.
    • Тип кабеля: Количество жил в кабеле. Не обращайте внимания на заземляющий провод в трехфазных кабелях.
    • Тип изоляции: Тип изоляции. Обычно «Термопласт (ПВХ), 75 ° C» или «Термореактивный (XLPE), 90 ° C». В особых случаях «Термореактивный (XLPE), 110 ° C».
    • Установка кабеля: Способ установки кабеля. Рассмотрим худший вариант установки кабеля.
    • Тип проводника: Медь или алюминий.
    • Размер проводника: Выберите размер кабеля или выберите Авто. Авто автоматически выберет кабель наименьшего диаметра, который соответствует трем критериям: номинальный ток, падение напряжения и номинальный ток повреждения.

    Допустимая нагрузка по току (номинальная)

    Текущие рейтинги выбраны из таблиц 4–21 в AS / NZS 3008 (2009).Он зависит от типа кабеля, типа изоляции и способа прокладки кабеля.

    Таблицы 4–21 основаны на температуре окружающей среды 40 ° C и температуре грунта 25 ° C.

    Калькулятор размеров кабеля поддерживает следующий провод:

    • Монолитная или многопроволочная медь.
    • Алюминий.

    Гибкие кабели пока не поддерживаются.

    Снижение номинального тока

    Текущий рейтинг от Tales 4 до 21 в AS / NZS 3008 не снижается.

    Во избежание снижения номинальных характеристик предполагается следующее:

    • Максимальная температура окружающей среды 40 ° C.
    • Максимальная температура грунта 25 ° C.
    • Кабель установлен в соответствии с рисунком 2 и таблицей 3 в AS / NZS 3008.
    • Схема только одна.

    Как использовать пониженные коэффициенты в калькуляторе:

    Для более высоких температур необходимо снизить номинальные параметры в соответствии с AS / NZ 3008, таблица 27.

    Для групп цепей необходимо уменьшить номинальные параметры кабеля в соответствии с таблицами 22–26.

    Чтобы применить снижение номинальных характеристик, разделите нагрузку на коэффициент снижения мощности из таблиц с 22 по 27 и введите новое значение нагрузки в калькулятор.

    Расчет падения напряжения:

    Падение напряжения однофазного переменного тока рассчитывается как:

    \ (V_ {d1 \ phi} = \ dfrac {I L (2 Z_c)} {1000} \)

    Где I — ток нагрузки, L — расстояние, а \ (Z_c \) — полное сопротивление кабеля в Ом / км.2) \).
    Этот метод рассчитывает импеданс для худшего случая коэффициента мощности, то есть когда коэффициент мощности кабеля и нагрузки одинаков.

    Калькулятор размеров кабеля использует сопротивление \ (R_c \) из Таблицы 35 в AS / NZS 3008 при 75 ° C.

    Реактивное сопротивление одножильных кабелей выбирается из плоского касающегося столбца таблицы 30 в AS / NZS 3008. Это худший сценарий.

    Реактивное сопротивление для многожильных кабелей выбирается из столбца с круглыми проводниками в таблице 30 в AS / NZS 3008.2 \)

    Где:

    • I — ток короткого замыкания в амперах,
    • t — продолжительность короткого замыкания в секундах.
    • S — площадь поперечного сечения проводника.
    • K — постоянная, выбранная из таблицы 52 в AS / NZS 3008.

    K В зависимости от материала изоляции, начальной и конечной температуры проводника.
    Значение 111 используется для кабелей из ПВХ, 143 используется для кабелей из сшитого полиэтилена под углом 90 градусов, а 132 используется для кабелей из сшитого полиэтилена под углом 110 градусов.В калькуляторе предполагается, что начальная температура жилы является максимально допустимой рабочей температурой для данного типа изоляции, т.е. 75 ° C для ПВХ, 90 ° C для XLPE 90 ° C и 110 ° C для XLPE 110 ° C.
    Максимально допустимая температура короткого замыкания из таблицы 53 в AS / NZS 3008 используется в качестве конечной температуры проводника, т.е. 160 ° C для ПВХ и 250 ° C для XLPE.

    Калькулятор свойств поперечного сечения

    О калькуляторе сечения

    Поперечные сечения

    Этот калькулятор включает решения в замкнутой форме для площади, центроида, момента инерции и полярных координат.
    момент инерции для множества общих поперечных сечений, используемых при проектировании конструкций.Двутавровая балка, С-образная форма, Т
    формы
    трубы, стержни и швеллеры — это обычные стальные и алюминиевые профили AISC. Используйте форму прямоугольника, чтобы
    вычислить
    момент инерции для обычных деревянных профилей.

    Характеристики поперечного сечения

    Используйте Ix и Iy (моменты инерции) для расчета сил и прогибов в обычных стальных и деревянных балках.

    Используйте площадь, чтобы определить вес балки на основе плотности материала..

    Калькулятор стальных, деревянных и бетонных балок

    Если у вас стальная, деревянная или бетонная балка со сложными граничными условиями и нагрузками
    вы можете использовать этот инструмент для расчета свойств поперечного сечения для использования в расчетах конструкции.
    Если вам нужно быстрое и простое программное обеспечение для расчета конструкций для проектирования стальных и деревянных балок,
    с полной проверкой конструкции через AISC 360, NDS, ASD и LRFD, попробуйте нашу бесплатную
    Инструмент Beam Design.Если вам не нужны проверки дизайна или вы планируете проектировать вручную, ознакомьтесь с нашими
    Калькулятор сдвига и момента
    чтобы ускорить расчет вашего дизайна.

    Стальная балка по стандарту AISC и деревянная балка NDS

    Наша цель с WebStructural — вернуть инженерное сообщество, предоставляя бесплатные,
    облачное приложение для проектирования стальных и деревянных балок. Нечего устанавливать, просто перейдите в наш
    Бесплатный конструктор стальных и деревянных балок и приступайте к проектированию! Если вам нравится
    инструмент
    и решите, что хотите сохранить и распечатать проекты, которые можно обновить за 19 долларов
    ежемесячно.Нет долгосрочного контракта. Отмените в любой момент, мы сохраним ваши проекты, и вы сможете повторно подписаться позже
    чтобы получить к ним доступ.

    Другие бесплатные онлайн-калькуляторы

    Мы создаем элегантное и мощное программное обеспечение для проектирования и расчета конструкций. Попробуйте некоторые из наших
    другие бесплатные инструменты:

    Заземление оболочки кабеля сверхвысокого / высокого напряжения | Электротехнические примечания и статьи

    Заземление оболочки кабеля сверхвысокого / высокого напряжения:

    Введение:

    • В городских районах подземные кабели высокого напряжения обычно используются для передачи и распределения электроэнергии.Такие высоковольтные кабели имеют металлические оболочки или экраны, окружающие проводники, и / или броню и металлические провода, окружающие кабели. Во время замыканий на землю, применяемых к напрямую заземленным системам, ожидается, что эти металлические пути несут значительную часть общего тока короткого замыкания, который в противном случае протекал бы через общую массу земли, возвращаясь к нейтрали системы. Эти альтернативные пути возврата необходимо учитывать при определении степени повышения потенциала сети на электростанции из-за замыканий на землю.
    • Для безопасности и надежной работы экраны и металлические оболочки силовых кабелей должны быть заземлены. Без заземления экраны работали бы при потенциале, значительно превышающем уровень земли. Таким образом, к ним было бы опасно прикасаться , и они могли бы вызвать быстрое разрушение оболочки или другого материала, находящегося между экраном и землей. Это вызвано емкостным зарядным током изоляции кабеля, который составляет порядка 1 мА / фут длины проводника.
    • Этот ток обычно течет на промышленной частоте между проводником и заземляющим электродом кабеля, обычно экраном.Кроме того, экран или металлическая оболочка обеспечивают путь возврата при повреждении в случае нарушения изоляции, обеспечивая быстрое срабатывание защитных устройств.
    • Чтобы уменьшить циркулирующий ток и разность электрических потенциалов между оболочками одножильных трехфазных кабелей, оболочка заземляется и закрепляется на одном или обоих концах кабелей. Если кабель длинный, необходимо выполнить двойное соединение, что приведет к возникновению циркулирующих токов и увеличению общих потерь мощности.Повышение сопротивления оболочки за счет уменьшения ее поперечного сечения и увеличения удельного сопротивления может снизить его почти до уровня потерь в сердечнике.
    • Однако в случае замыкания на землю значительная часть тока короткого замыкания протекает через повышенное сопротивление оболочки, создавая в оболочках гораздо более высокую мощность, чем в неисправном сердечнике. Простое решение: стержень проводника, закопанный в почву над или под кабелем, может отвести эту мощность от оплетки.

    Экран кабеля:

    (1) Назначение экрана кабеля:

    • Экран кабеля контролирует напряжение электрического поля в изоляции кабеля.
    • Экран кабеля Обеспечивает обратный путь для нейтрали кабеля и тока короткого замыкания.
    • Если экран заземлен с двух сторон, он обеспечивает защиту от электромагнитного излучения.
    • В целях безопасности объедините опасное высокое напряжение с потенциалом земли.

    (2) Назначение склеивания экранов кабелей на обоих концах:

    • Потери электроэнергии в кабельной цепи зависят от токов, протекающих в металлических оболочках кабелей, поэтому, уменьшая токи, протекающие в металлической оболочке с помощью различных методов соединения, мы можем увеличить допустимую нагрузку по току (допустимую нагрузку) кабель.
    • Он обеспечивает обратный путь тока короткого замыкания с низким импедансом и обеспечивает нейтральную точку для цепи.
    • Обеспечивает защиту от электромагнитного поля.

    (3) Наведенное напряжение и циркулирующий ток в экране кабеля:

    • Электромагнитная связь между сердечником и экраном Электромагнитный экран.
    • Если экран кабеля соединен в одной точке, электрическая цепь отсутствует, и ММФ генерирует напряжение.
    • Если экран кабеля соединен с обоих концов, МДС вызовет протекание циркулирующего тока, если есть электрическая непрерывность.
    • Циркулирующий ток создает противоположное магнитное поле.
    • Следует использовать подходящий метод соединения, чтобы соответствовать пределу постоянного напряжения и поддерживать циркулирующий ток на приемлемом уровне.

    Метод прокладки кабеля:

    • Три одножильных кабеля в трехфазной цепи могут быть размещены в различных формах.Типичные образования включают трилистники (треугольные) и плоские образования.

    (1) Трилистник:


    • Для минимизации электромеханических сил между кабелями в условиях короткого замыкания и предотвращения вихретокового нагрева в близлежащих стальных конструкциях из-за магнитных полей, создаваемых токами нагрузки, три одножильных кабеля, включающие три фазы трехфазного кабеля. Фазовая цепь всегда зажата в форме «трилистника».
    • Преимущество:
    1. Этот тип формирования минимизирует циркулирующие токи оболочки, индуцируемые магнитным потоком, соединяющим жилы кабеля и металлическую оболочку или экраны из медной проволоки.
    2. Эта конфигурация обычно используется для кабелей более низкого напряжения (от 33 до 132 кВ) и с проводниками меньшего диаметра.
    1. Форма трилистника не подходит для рассеивания тепла, потому что существует значительный эффект взаимного нагрева трех кабелей.
    2. Накопленное тепло в кабелях и кабельной траншее снижает номинальные характеристики кабеля и ускоряет его старение.

    (2) Плоская формация:

    • Это наиболее распространенный метод прокладки кабеля LT.
    • Это формирование подходит для отвода тепла и увеличения номинальных характеристик кабеля.
    • Выбор конструкции полностью зависит от нескольких факторов, таких как метод соединения экрана, площадь проводника и доступное пространство для установки.

    Тип сердечника и наведенное напряжение:

    (1) Трехжильный кабель:

    • Для низковольтного оборудования, обычно ниже 11 кВ.
    • Хорошо сбалансированное магнитное поле от трех фаз.
    • Сумма индуцированных напряжений от трех фаз по всей длине кабеля равна нулю.
    • Экран кабеля должен быть заземлен с обоих концов
    • Фактически нулевое наведенное напряжение или циркулирующий ток в установившемся режиме.

    (2) Одножильный кабель:

    • Для высоковольтного оборудования, обычно для напряжения 11 кВ и выше.
    • В одножильных кабелях не используется ферромагнитный материал для экрана, оболочки и брони.
    • Наведенное напряжение в основном создается токами сердечника в его собственной фазе и двух других фазах. Если кабели проложены компактно и симметрично, наведенное в экране напряжение может быть минимизировано.
    • Для одножильных кабелей следует использовать подходящий метод соединения экрана, чтобы предотвратить чрезмерный циркулирующий ток и высокое индуцированное постоянное напряжение.высокое напряжение.

    Принадлежности для приклеивания оболочки кабеля HT:

    (1) Функция Link Box?

    • Link Box электрически и механически является одним из неотъемлемых аксессуаров подземной системы кабельного соединения высокого напряжения над землей, связанной с системами силовых кабелей из сшитого полиэтилена высокого напряжения.
    • Соединительные коробки используются с кабельными соединениями и концевыми муфтами для обеспечения легкого доступа к разрывам экрана в целях тестирования и ограничения нарастания напряжения на оболочке.
    • Молния, токи короткого замыкания и операции переключения могут вызвать перенапряжение на оболочке кабеля.Соединительная коробка оптимизирует управление потерями в экране кабеля на кабелях, заземленных с обеих сторон.
    • В HT Cable система соединения спроектирована таким образом, что оболочки кабеля соединяются и заземляются или с помощью SVL таким образом, чтобы устранить или уменьшить циркулирующие токи в оболочке.
    • Соединительные коробки

    • используются с кабельными соединениями и концевыми заделками, чтобы обеспечить легкий доступ к разрывам экрана в целях тестирования и ограничить нарастание напряжения на оболочке. Соединительная коробка является частью системы соединения, которая необходима для повышения пропускной способности по току и защиты человека.

    (2) Ограничители напряжения оболочки (SVL) (ограничители перенапряжения):

    • SVL — это защитное устройство для ограничения наведенного напряжения, возникающего в системе соединенных кабелей из-за короткого замыкания.
    • Необходимо установить SVL между металлическим экраном и землей внутри соединительной коробки. Разделение экрана в соединении силового кабеля (изолированное соединение) будет защищено от возможных повреждений в результате наведенных напряжений, вызванных коротким замыканием / пробоем.

    Тип соединения оболочки для кабеля HT:

    Обычно существует три типа соединения экрана кабеля LT / HT.

    (1) Одноточечное соединение.

    1. Односторонняя одноточечная система склеивания.
    2. Сплит-система с одноточечным соединением.

    (2) Система склеивания на обоих концах

    (3) Кросс-бондовая система

    (1) Система с одноточечным соединением:

    (A) Односторонняя односторонняя система крепления:

    • Система является одноточечной, если она устроена так, что оболочки кабеля не обеспечивают пути прохождения циркулирующих токов или токов внешнего замыкания.
    • Это простейшая форма специального склеивания. Оболочки трех кабельных секций соединены и заземлены в одной точке только по их длине . Во всех остальных точках между оболочкой и землей и между экранами соседних фаз кабельной цепи будет напряжение, которое будет максимальным в самой дальней точке от заземления.
    • Это индуцированное напряжение пропорционально длине кабеля и току. Одноточечное соединение может использоваться только для ограниченной длины маршрута, но в целом принятый потенциал напряжения экрана ограничивает длину
    • Следовательно, оболочки должны быть должным образом изолированы от земли.Поскольку нет замкнутой цепи оболочки, за исключением ограничителя напряжения оболочки, ток обычно не течет в продольном направлении вдоль оболочки, и потери тока циркуляции оболочки не возникают.
    • Обрыв цепи в экране кабеля, отсутствие циркулирующего тока.
    • Нулевое напряжение на заземленном конце, постоянное напряжение на незаземленном конце.
    • Дополнительный провод заземления с изоляцией из ПВХ, необходимый для обеспечения пути тока короткого замыкания, если возвращение с земли нежелательно, например, в угольной шахте.
    • SVL устанавливается на незаземленном конце для защиты изоляции кабеля при возникновении неисправностей.
    • Наведенное напряжение, пропорциональное длине кабеля и току, протекающему в кабеле.
    • Нулевое напряжение относительно напряжения сети заземления на заземленном конце, постоянное напряжение на незаземленном конце.
    • Циркулирующий ток в проводе заземления не имеет значения, поскольку магнитные поля от фаз частично сбалансированы.
    • Величина постоянного напряжения зависит от величины тока, протекающего в сердечнике, намного выше, если есть замыкание на землю.
    • Высокое напряжение на незаземленном конце может вызвать искрение и повредить внешнюю оболочку из ПВХ.
    • Напряжение на экране во время повреждения также зависит от состояния заземления.

    Постоянное напряжение на незаземленном конце при замыкании на землю .

    • Во время замыкания на землю в энергосистеме ток нулевой последовательности, переносимый по проводникам кабеля, может вернуться через любые доступные внешние пути. Замыкание на землю в непосредственной близости от кабеля может вызвать большую разницу в повышении потенциала земли между двумя концами кабельной системы, создавая опасность для персонала и оборудования.
    • По этой причине для одноточечных кабельных установок требуется параллельный заземляющий провод , заземленный на обоих концах кабельной трассы и установленный очень близко к проводникам кабеля, чтобы проводить ток короткого замыкания во время замыканий на землю и ограничивать рост напряжения оболочки при замыканиях на землю до приемлемого уровня.
    • Параллельный провод заземления обычно изолирован во избежание коррозии и перекладывается, если кабели не перекладываются, чтобы избежать циркулирующих токов и потерь в нормальных условиях эксплуатации.
    • Напряжение на незаземленном конце при замыкании на землю состоит из двух составляющих напряжения. Наведенное напряжение из-за тока короткого замыкания в сердечнике.

    Преимущество:

    • Нет циркулирующего тока.
    • Нет нагрева экрана кабеля.
    • Экономичный.

    Недостаток:

    • Постоянное напряжение на незаземленном конце.
    • Требует SVL, если постоянное напряжение во время неисправности чрезмерно.
    • Требуется дополнительный провод заземления для тока короткого замыкания, если обратный ток на землю нежелателен.Более сильные магнитные поля вокруг кабеля по сравнению со сплошной системой.
    • Постоянное напряжение на экране кабеля пропорционально длине кабеля и величине тока в жиле.
    • Обычно подходит для участков кабеля менее 500 м или длины одного барабана .

    (B) Раздельная система с одноточечным соединением:

    • Также известна как система одинарного склеивания двойной длины .
    • Непрерывность экрана кабеля прерывается посередине, и необходимо установить SVL с каждой стороны изоляционного соединения.
    • Другие требования идентичны системам одноточечного соединения, например SVL, заземляющий проводник, перестановка заземляющего проводника.
    • Фактически две секции одноточечного склеивания.
    • Отсутствует циркулирующий ток и нулевое напряжение на заземленных концах, постоянное напряжение на соединении секционирования.

    Преимущества:

    • Нет циркулирующего тока на экране.
    • Нет эффекта нагрева экрана кабеля.
    • Подходит для более длинного сечения кабеля по сравнению с одноточечной системой соединения и одножильной системой с прочным соединением.
    • Экономичный.

    Недостатки:

    • Постоянное напряжение существует на стыке экрана и разделительной изоляции.
    • Требуется SVL для защиты незаземленного конца.
    • Требуется отдельный провод заземления для тока нулевой последовательности.
    • Не подходит для кабелей сечением более 1000 м.
    • Подходит для кабельных секций длиной 300 ~ 1000 м, что вдвое превышает длину системы одноточечного соединения.

    (2) Системы с двухсторонним сплошным соединением (одножильный кабель).

    • Самый простой и распространенный метод.
    • Экран кабеля соединен с сеткой заземления с обоих концов (через соединительную коробку).
    • Для устранения наведенных напряжений в экране кабеля необходимо заземлить оболочку на обоих концах цепи кабеля.
    • Это устраняет необходимость в параллельном проводе непрерывности, используемом в системах одиночного заземления.Это также устраняет необходимость обеспечения SVL, например, используемого на свободном конце цепей одноточечного соединительного кабеля
    • Значительный циркулирующий ток в экране. Пропорционально току в сердечнике и длине кабеля. Уменьшает параметры кабеля.
    • Кабель можно проложить в виде компактного трилистника, если это допустимо.
    • Подходит для трассы длиной более 500 метров .
    • Очень маленькое постоянное напряжение порядка нескольких вольт.

    Преимущества:

    • Минимум необходимого материала.
    • Самый экономичный, если отопление не является главной проблемой.
    • Обеспечивает путь для тока короткого замыкания, минимизируя ток возврата на землю и EGVR в месте назначения кабеля.
    • Не требует ограничителя напряжения экрана (SVL).
    • Меньше электромагнитного излучения.

    Недостатки:

    • Обеспечивает путь для циркулирующего тока.
    • Эффект нагрева в экране кабеля, большие потери. Следовательно, может потребоваться снижение номинала кабеля или кабель большего диаметра.
    • Передает напряжение между сайтами, когда на одном сайте есть EGVR.
    • Можно прокладывать кабели в виде трилистника для уменьшения потерь в экране.
    • Обычно применяется к короткому кабелю длиной в десятки метров. Циркулирующий ток пропорционален длине кабеля и величине тока нагрузки.

    (3) Система поперечных кабелей.

    • Система является перекрестно связанной, если схема такова, что цепь обеспечивает электрически непрерывную протяженность оболочки от заземленной клеммы до заземленной клеммы, но при этом оболочки секционированы и перекрестно соединены таким образом, чтобы уменьшить циркулирующие токи оболочки.
    • In Этот тип напряжения будет индуцироваться между экраном и землей, но значительного тока не будет.
    • Максимальное наведенное напряжение появится в соединительных коробках для перекрестного соединения. Этот метод позволяет обеспечить пропускную способность кабеля на уровне, равном одноточечному соединению, но при большей длине трассы, чем последний. Это требует разделения экрана и дополнительных полей ссылок.
    • Для поперечного соединения длина кабеля делится на три примерно равных участка.Каждое из трех переменных магнитных полей индуцирует напряжение с фазовым сдвигом 120 ° в экранах кабеля.
    • Перекрестное соединение происходит в ящиках звеньев. В идеале, векторное сложение индуцированных напряжений приводит к U (Rise) = 0. На практике длина кабеля и условия прокладки будут изменяться, что приведет к небольшому остаточному напряжению и незначительному току. Так как ток отсутствует, потерь в экране практически нет.
    • Сумма трех напряжений равна нулю, поэтому концы трех секций могут быть заземлены.
    • Суммирование индуцированного напряжения на секционном экране от каждой фазы, что приводит к нейтрализации наведенных напряжений в трех последовательных второстепенных секциях.
    • Обычно один барабан длиной (примерно 500 м) на вспомогательную секцию.
    • Положение секционирования и положение кабельного соединения должны совпадать.
    • Прочно заземлен в местах соединения основных секций.
    • Переставьте сердечник кабеля, чтобы сбалансировать величину суммируемых наведенных напряжений.
    • Соединительную коробку

    • следует использовать на каждом секционирующем соединении и сбалансировать полное сопротивление на всех фазах.
    • Профиль величины наведенного напряжения вдоль экрана основного участка кабельной системы с поперечным соединением.
    • Практически нулевой циркулирующий ток и напряжение на удаленной земле на глухозаземленных концах.
    • Для получения оптимального результата существует два «креста». Один из них — это перемещение жилы кабеля, пересекающего жилу кабеля, на каждой секции, а второй — перекрестное соединение экранов кабеля, фактически без перемещения экрана.
    • Перекрестное соединение экрана кабеля. : Подавляет индуцированное напряжение в экране на каждом стыке основной секции.
    • Перестановка кабелей: Это гарантирует, что суммируемые напряжения имеют одинаковую величину. Большее постоянное напряжение на экране внешнего кабеля.
    • На экране присутствуют постоянные напряжения, и большинство секционных соединений кабелей и соединений должны быть установлены как система изолированного экрана.

    Требование транспонирования для сердечника кабеля.

    • Если сердечник не переставлен, значит, он не нейтрализован, что приводит к появлению циркулирующих токов.
    • Кабель должен быть переставлен, а экран должен быть перекрестно скреплен в каждом месте соединения секционирования для оптимальной нейтрализации

    Преимущество:

    • Не требуется заземляющий провод.
    • Фактически нулевой циркулирующий ток на экране.
    • Постоянное напряжение в экране регулируется.
    • Технически лучше, чем другие методы.
    • Подходит для кабельной сети на большие расстояния.

    Недостаток:

    • Технически сложно.
    • Дороже.

    Сравнение методов склеивания:

    Метод заземления

    Постоянное напряжение на конце кабеля

    Требуется ограничитель напряжения оболочки

    Заявка

    Одностороннее соединение

    Есть

    Есть

    до 500 метров
    Двухстороннее соединение

    Короткие соединения до 1 км и подстанции, которые практически не применяются для высоковольтных кабелей, а скорее для кабелей среднего и низкого напряжения
    Перекрестное соединение

    Только в точках перекрестного соединения

    Есть

    Соединения на большие расстояния, если требуются стыки

    Потери в оболочке в зависимости от типа соединения:

    • Потери в оболочке — это потери, зависящие от тока, и возникают из-за индуцированных токов, когда ток нагрузки протекает по проводникам кабеля.
    • В одножильных кабелях токи в оболочке индуцируются эффектом «трансформатора»; то есть магнитным полем переменного тока, протекающего в проводнике кабеля, которое индуцирует напряжения в оболочке кабеля или других параллельных проводниках.
    • Электродвижущие силы, индуцированные оболочкой (ЭДС), создают два типа потерь: потери на циркулирующий ток (Y 1 ) и потери на вихревые токи (Y2), поэтому общие потери в металлической оболочке кабеля составляют: Y = Y1 + Y2
    • Вихревые токи, циркулирующие в радиальном и продольном направлениях по оболочкам кабеля, генерируются по схожим принципам эффекта скин-эффекта и близости, т.е.е. они индуцируются токами в проводниках, токами, циркулирующими в оболочке, и токами, протекающими в непосредственной близости проводников с током.
    • Они образуются в оболочке кабеля независимо от системы соединения одножильных кабелей или трехжильных кабелей.
    • Вихревые токи, как правило, имеют меньшую величину по сравнению с контурными (циркулирующими) токами сплошных кабельных оболочек, и ими можно пренебречь, за исключением больших сегментных проводников, и они рассчитываются в соответствии с формулами, приведенными в IEC60287.
    • Циркуляционные токи образуются в оболочке кабеля, если оболочки образуют замкнутую петлю при соединении вместе на удаленных концах или промежуточных точках вдоль трассы кабеля.
    • Эти потери называются потерями на циркулирующий ток оболочки и определяются величиной тока в проводнике кабеля, частотой, средним диаметром, сопротивлением оболочки кабеля и расстоянием между одножильными кабелями.

    Заключение:

    • Существует много разногласий относительно того, следует ли заземлять экран кабеля с обоих концов или только с одного конца.Если заземлено только на одном конце, любой возможный ток короткого замыкания должен пройти от места замыкания до заземленного конца, вызывая сильный ток в обычно очень легком проводе экрана. Такой ток может легко повредить или разрушить экран и потребовать замены всего кабеля, а не только поврежденного участка.
    • Если оба конца заземлены, ток короткого замыкания будет делиться и течь к обоим концам, что снижает нагрузку на экран и, следовательно, снижает вероятность повреждения.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *