Как увеличить теплоотдачу батарей отопления своими руками: Как можно повысить теплоотдачу батарей отопления?
повышаем температуру в отопительный сезон — Рамблер/новости
3 простых способа повысить теплоотдачу батареи
Часто в квартирах, особенно старой застройки, с каждым годом зимой становится всё холоднее. Людям приходится приобретать и использовать электрические отопительные приборы, что приводит к существенному повышению стоимости коммунальных услуг. Но зачем переплачивать за перерасход электроэнергии, если есть более дешёвые варианты исправления ситуации? Сегодня мы расскажем о простых способах увеличения теплоотдачи батарей отопления, которые не требуют значительных затрат, воплотить в жизнь которые вполне по силам любому домашнему мастеру. Стоит рассмотреть и причины, приводящие к снижению температуры в помещении.
Забитые каналы секций радиатора — частая причина снижения температуры в помещении
Содержание статьи
1 Частые причины уменьшения теплоотдачи батареи отопления
1.1 Используем экран-отражатель: применение вспененного полиэтилена
1. 2 Увеличение теплоотдачи при помощи дополнительных приспособлений и окраски
1.3 Улучшение конвекции, путём увеличения циркуляции воздуха
2 Общие правила улучшения теплоотдачи радиаторов отопления
3 Подведём итог
Частые причины уменьшения теплоотдачи батареи отопления
Чаще всего причиной уменьшения теплоотдачи радиаторов становится накипь и ржавчина, скапливающаяся внутри. Если сам радиатор промыть (что должны делать коммунальные службы ежегодно), то теплоотдача значительно увеличится. То же касается и стояков отопления. Однако, своими силами такую процедуру произвести не удастся по причине того, что при производстве подобных работ (даже летом) необходим слив воды из системы. Без помощи специалистов здесь не обойтись. Это же касается и замены радиаторов с чугунных на биметаллические — они имеют большую теплоотдачу. Поэтому на столь сложных и трудоёмких вариантах мы останавливаться не будем. Лучше рассмотрим более простые способы, выполнить которые сможет любой домашний мастер, даже не имеющий опыта работ в подобной области.
Теплоотдача биметаллических радиаторов выше, чем у чугуна
Используем экран-отражатель: применение вспененного полиэтилена
Использование отражающего экрана — довольно популярный метод увеличения теплоотдачи. Вспененный полиэтилен с фольгированным покрытием с одной стороны прекрасно подходит для этих целей. Такой экран (он должен быть больше самого радиатора) помещается за батареей фольгой в направлении комнаты и фиксируется на стене на двухсторонний скотч или жидкие гвозди. Вспененный полиэтилен обеспечивает дополнительное утепление, а фольга отражает тепло, которое до установки экрана прогревало стену, направляя его в помещение.
Важная информация! Лучше всего, когда такие моменты продумываются ещё на этапе монтажа батарей отопления. В этом случае за радиатором можно закрепить стальной ребристый щит, который будет накапливать тепло, после чего направлять его в комнату. Такие щиты удобны, если часто происходят отключения отопления.
Примерно так выглядит экран из фольгированного вспененного полиэтилена
Также в роли экрана неплохо себя зарекомендовали базальтовые плиты с алюминиевым покрытием.
Увеличение теплоотдачи при помощи дополнительных приспособлений и окраски
Для увеличения температуры воздуха в помещении используют специальные кожухи из алюминия, которые одеваются на радиатор. С их помощью увеличивается площадь батареи отопления и, как следствие, их теплоотдача. Стоимость подобных кожухов невелика, а эффект довольно значителен.
Цвет, в который окрашены батареи отопления, тоже имеет большое значение. Лучше для этих целей выбрать более тёмные оттенки. К примеру, радиатор, окрашенный в коричневый цвет имеет теплоотдачу больше, чем белые, на 20-25%.
Такой кожух улучшает внешний вид и увеличивает теплоотдачу
Улучшение конвекции, путём увеличения циркуляции воздуха
Каждый знает, что улучшение циркуляции воздуха способствует более быстрому прогреву помещения. Для этих целей можно использовать вентилятор, который устанавливается таким образом, чтобы достигнуть максимального потока тёплого воздуха в сторону помещения.
Полезная информация! Если дома имеются кулеры от компьютеров, которые не используются, можно их установить под радиатором, направив поток воздуха вверх. Это максимально увеличит конвекцию, в результате чего в комнате станет значительно теплее.
Увеличить конвекцию (если радиатор утоплен под подоконником) можно, прорезав в подоконнике отверстия и закрыв их экранами или декоративными крышками. Таким образом, тёплый воздух не будет задерживаться в нише, что улучшит циркуляцию.
Эту страну не победить! Самостоятельный монтаж вентиляторов для улучшения конвекции:
Общие правила улучшения теплоотдачи радиаторов отопления
Для того чтобы в будущем не сталкиваться с уменьшением теплоотдачи батарей, стоит об этом подумать ещё на этапе монтажа радиаторов. Основными правилами являются:
обязательное утепление стены за радиатором, возможная установка стального экрана;
установка биметаллических батарей взамен чугунных;
монтаж кранов на входе и выходе радиатора (это позволит при необходимости самостоятельно промыть секции или добавить дополнительные без отключения и слива всей системы).
Если соблюдать эти нехитрые правила при монтаже, впоследствии будет намного проще увеличить температуру в помещении без обращения за помощью к специалистам. А это дополнительная экономия семейного бюджета.
Не очень удачное решение:решётка перекрывает путь теплу, а подоконник добавляет проблем с конвекцией
Подведём итог
Способов увеличить теплоотдачу радиаторов отопления очень много. Сегодня мы рассмотрели лишь основные из них. Однако, следует помнить, что всегда проще всё продумать заранее, на стадии монтажа, чем прикладывать множество усилий впоследствии, без уверенности в том, что результат будет значительным. К сожалению, в России всё делается на «авось». Заключительным советом редакции Homius.ruбудет такая рекомендация: думайте о будущем и не жалейте средств при монтаже. Сэкономленные сегодня финансовые средства могут завтра обернуться затратами, которые в разы превысят Вашу экономию.
Наиболее оптимальный вариант — всё тепло поднимается вверх, благодаря чему создаётся нормальный теплообмен
Надеемся, что изложенная в сегодняшней статье информация была интересна и полезна нашему Уважаемому читателю. Несмотря на то, что мы постарались изложить всё достаточно подробно, возможно, у Вас остались вопросы по материалу. В этом случае задавайте их в обсуждениях ниже — редакция Homius.ru с удовольствием на них ответит в максимально сжатые сроки. Если вы знаете способ улучшить теплоотдачу радиаторов, который не нашёл отражения в сегодняшней статье, просим поделиться им с другими домашними мастерами — эта информация будет весьма полезна. А напоследок предлагаем посмотреть короткий, но достаточно информативный видеоролик по сегодняшней теме.
Читайте НАС ВКонтакте
повышаем температуру в отопительный сезон
Часто в квартирах, особенно старой застройки, с каждым годом зимой становится всё холоднее. Людям приходится приобретать и использовать электрические отопительные приборы, что приводит к существенному повышению стоимости коммунальных услуг. Но зачем переплачивать за перерасход электроэнергии, если есть более дешёвые варианты исправления ситуации? Сегодня мы расскажем о простых способах увеличения теплоотдачи батарей отопления, которые не требуют значительных затрат, воплотить в жизнь которые вполне по силам любому домашнему мастеру. Стоит рассмотреть и причины, приводящие к снижению температуры в помещении.
Забитые каналы секций радиатора – частая причина снижения температуры в помещении
Содержание статьи
Частые причины уменьшения теплоотдачи батареи отопления
Чаще всего причиной уменьшения теплоотдачи радиаторов становится накипь и ржавчина, скапливающаяся внутри. Если сам радиатор промыть (что должны делать коммунальные службы ежегодно), то теплоотдача значительно увеличится. То же касается и стояков отопления. Однако, своими силами такую процедуру произвести не удастся по причине того, что при производстве подобных работ (даже летом) необходим слив воды из системы. Без помощи специалистов здесь не обойтись. Это же касается и замены радиаторов с чугунных на биметаллические – они имеют большую теплоотдачу. Поэтому на столь сложных и трудоёмких вариантах мы останавливаться не будем. Лучше рассмотрим более простые способы, выполнить которые сможет любой домашний мастер, даже не имеющий опыта работ в подобной области.
Теплоотдача биметаллических радиаторов выше, чем у чугуна
Используем экран-отражатель: применение вспененного полиэтилена
Использование отражающего экрана – довольно популярный метод увеличения теплоотдачи. Вспененный полиэтилен с фольгированным покрытием с одной стороны прекрасно подходит для этих целей. Такой экран (он должен быть больше самого радиатора) помещается за батареей фольгой в направлении комнаты и фиксируется на стене на двухсторонний скотч или жидкие гвозди. Вспененный полиэтилен обеспечивает дополнительное утепление, а фольга отражает тепло, которое до установки экрана прогревало стену, направляя его в помещение.
Важная информация! Лучше всего, когда такие моменты продумываются ещё на этапе монтажа батарей отопления. В этом случае за радиатором можно закрепить стальной ребристый щит, который будет накапливать тепло, после чего направлять его в комнату. Такие щиты удобны, если часто происходят отключения отопления.
![]()
Примерно так выглядит экран из фольгированного вспененного полиэтилена
Также в роли экрана неплохо себя зарекомендовали базальтовые плиты с алюминиевым покрытием.
Увеличение теплоотдачи при помощи дополнительных приспособлений и окраски
Для увеличения температуры воздуха в помещении используют специальные кожухи из алюминия, которые одеваются на радиатор. С их помощью увеличивается площадь батареи отопления и, как следствие, их теплоотдача. Стоимость подобных кожухов невелика, а эффект довольно значителен.
Цвет, в который окрашены батареи отопления, тоже имеет большое значение. Лучше для этих целей выбрать более тёмные оттенки. К примеру, радиатор, окрашенный в коричневый цвет имеет теплоотдачу больше, чем белые, на 20-25%.
Такой кожух улучшает внешний вид и увеличивает теплоотдачу
Улучшение конвекции, путём увеличения циркуляции воздуха
Каждый знает, что улучшение циркуляции воздуха способствует более быстрому прогреву помещения. Для этих целей можно использовать вентилятор, который устанавливается таким образом, чтобы достигнуть максимального потока тёплого воздуха в сторону помещения.
Полезная информация! Если дома имеются кулеры от компьютеров, которые не используются, можно их установить под радиатором, направив поток воздуха вверх. Это максимально увеличит конвекцию, в результате чего в комнате станет значительно теплее.
Увеличить конвекцию (если радиатор утоплен под подоконником) можно, прорезав в подоконнике отверстия и закрыв их экранами или декоративными крышками. Таким образом, тёплый воздух не будет задерживаться в нише, что улучшит циркуляцию.
Эту страну не победить! Самостоятельный монтаж вентиляторов для улучшения конвекции:
Общие правила улучшения теплоотдачи радиаторов отопления
Для того чтобы в будущем не сталкиваться с уменьшением теплоотдачи батарей, стоит об этом подумать ещё на этапе монтажа радиаторов. Основными правилами являются:
- обязательное утепление стены за радиатором, возможная установка стального экрана;
- установка биметаллических батарей взамен чугунных;
- монтаж кранов на входе и выходе радиатора (это позволит при необходимости самостоятельно промыть секции или добавить дополнительные без отключения и слива всей системы).
Если соблюдать эти нехитрые правила при монтаже, впоследствии будет намного проще увеличить температуру в помещении без обращения за помощью к специалистам. А это дополнительная экономия семейного бюджета.
Не очень удачное решение:решётка перекрывает путь теплу, а подоконник добавляет проблем с конвекцией
Подведём итог
Способов увеличить теплоотдачу радиаторов отопления очень много. Сегодня мы рассмотрели лишь основные из них. Однако, следует помнить, что всегда проще всё продумать заранее, на стадии монтажа, чем прикладывать множество усилий впоследствии, без уверенности в том, что результат будет значительным. К сожалению, в России всё делается на «авось». Заключительным советом редакции Homius.ruбудет такая рекомендация: думайте о будущем и не жалейте средств при монтаже. Сэкономленные сегодня финансовые средства могут завтра обернуться затратами, которые в разы превысят Вашу экономию.
Наиболее оптимальный вариант – всё тепло поднимается вверх, благодаря чему создаётся нормальный теплообмен
Надеемся, что изложенная в сегодняшней статье информация была интересна и полезна нашему Уважаемому читателю. Несмотря на то, что мы постарались изложить всё достаточно подробно, возможно, у Вас остались вопросы по материалу. В этом случае задавайте их в обсуждениях ниже – редакция Homius.ru с удовольствием на них ответит в максимально сжатые сроки. Если вы знаете способ улучшить теплоотдачу радиаторов, который не нашёл отражения в сегодняшней статье, просим поделиться им с другими домашними мастерами – эта информация будет весьма полезна. А напоследок предлагаем посмотреть короткий, но достаточно информативный видеоролик по сегодняшней теме.
Предыдущая
Инженерия🔥 Невидимое тепло: гипсокартонное инфракрасное отопление
Следующая
Инженерия☀ Тепловая завеса на входную дверь: комфортная температура в помещении при любом морозе
Понравилась статья? Сохраните, чтобы не потерять!
ТОЖЕ ИНТЕРЕСНО:
ВОЗМОЖНО ВАМ ТАКЖЕ БУДЕТ ИНТЕРЕСНО:
Как увеличить теплоотдачу радиатора?
Как повысить теплоотдачу батареи парового отопления без существенных затрат?
Описание простого эксперимента, доказывающего эффективность предложенного малозатратного способа повышения температуры воздуха в жилых помещениях, оборудованных системами центрального отопления.
В статье приведены экспериментальные данные и иллюстрации.
Самые интересные ролики на Youtube
Близкие темы.
Самодельный воздушный мембранный клапан (вентиль) для квартирной вентиляции.
Собери простой регулятор мощности за час.
Как отремонтировать мягкую кровлю, не вылезая на крышу?
Пролог.
В этом году у нас свирепствуют небывалые морозы. В отдельных районах республики температура воздуха падала до -24ºС, что для тёплой Молдовы является аномальным явлением. У меня в комнате не висит термометр, но я почувствовал, что рука, лежащая на столе, стала мёрзнуть, и мне пришлось подложить под неё кусок поролона.
Мы, в общем-то, как Амундсены, уже привыкли к прохладе, но вчера председатель нашего кондоминиума, собирая подписи под обращением к поставщику тепла, спросил, какая у нас температура воздуха в квартире. Вряд ли поставщик тепла повысит температуру теплоносителя, но возможно председатель хочет под предлогом предоставления некачественных услуг потребовать неустойку.
Как бы там ни было, но меня это событие сначала подтолкнуло к измерению температуры воздуха в квартире, а потом и к проведению этого эксперимента.
Конечно, сказать, что этот эксперимент был нечистым, это не сказать ничего. Слишком уж много переменных, которые могли отразиться на точности результата, начиная от направления ветра за бортом и кончая активностью компьютера, работающего в тестируемой комнате.
Но, самый важный параметр, который в другое время не позволил бы вообще провести этот эксперимент, это стабильность температуры теплоносителя.
Дело в том, что в более теплые периоды времени, температуру теплоносителя активно регулируют в течение суток, для экономии расхода энергии. Когда же на улице аномальная температура, то все задвижки открывают настежь.
Цель эксперимента.
Подтвердить или опровергнуть предположение, что принудительное охлаждение батареи парового отопления, даже при температуре теплоносителя 42ºС, может значительно повысить теплоотдачу системы в условиях обычной городской квартиры.
Датчик температуры.
Чтобы определить эффективность того или иного способа обдува батареи, было решено измерить разницу температур теплоносителя до и после батареи центрального отопления.
На самом деле, начал я с промера температуры батареи в разных точках, но полученные данные обработать так и не удалось.
Для этого было изготовлено два одинаковых датчика температуры на основе полупроводниковых терморезисторов КМТ-17.
А вот так датчики были закреплены на трубах парового отопления. Для улучшения контакта с трубой, терморезистор был смазан теплопроводной пастой КПТ-8.
Чтобы снизить погрешность измерений, вносимых потоками воздуха, датчики пришлось дополнительно изолировать поролоновой лентой.
Выбор оптимального положения вентилятора.
Замеры температуры теплоносителя были произведены при разных положениях вентилятора относительно батареи. Мощность вентилятора, при этом, не менялась.
На протяжении эксперимента, температура теплоносителя была 43ºС, воздуха в помещении 20ºС.
Во всех случаях, расстояние от центра лопастей до центра батареи было равно 70см.
Разность показаний между температурой теплоносителя на входе и на выходе указана в условных единицах, так как откалибровать термометр с такой высокой точностью было просто нечем. При этом за начало отсчёта принят 0 (ноль) условных единиц, при котором батарея охлаждалась естественным путём.
Поток воздуха направлен сверху вниз, а угол наклона вала вентилятора относительно горизонта 50º. При этом, разность температур на входе и выходе батареи – 11 Условных Единиц (далее УЕ).
Поток воздуха направлен сверху вниз, вентилятор работает в режиме «подхалим» (поворачивается из стороны в сторону). Разность температур – 8 УЕ.
При обдуве батареи сбоку, разница температур между входом и выходом – 13 УЕ.
При направлении потока воздуха в центр батареи, удалось получить самую высокую разность температур – 15 УЕ.
Если направить поток воздуха в центр батареи, но при этом включить режим «подхалим», то разность температур снизится до – 12 УЕ.
Выводы.
Наиболее выгодным, с точки зрения теплоотдачи, оказалось направление потока воздуха от пола в сторону плоскости батареи.
Экспериментальные данные.
Первый день эксперимента.
Все графики показывают изменение температуры с 8.00 утра до 24.00 ночи.
Температура теплоносителя 42ºС.
По графику видно, что более эффективно система работала, пока разность температур воздуха и батареи была велика. Когда разница уменьшилась, система стабилизировалась.
Температура воздуха в центре комнаты на высоте 65см от пола поднялась с 15ºС до 20ºС за 9 часов.
В дальнейшем температура поднялась ещё на 0,5ºС.
Потребляемая мощность вентилятора при этом составила 35,2 Ватта.
Когда, во время эксперимента, я вышел из своей комнаты в коридор, то сразу почувствовал разницу температур, ведь к тому времени я уже снял тёплые вещи.
Сходил в сарай и принёс оттуда ещё один вентилятор. Этот вентилятор не был оборудован переключателем мощности, поэтому я его подключил через самодельный симисторный регулятор, конструкция которого подробно описана здесь.
Что ж, жить стало лучше, жить стало веселей!
Второй день эксперимента.
Утром я снова промерил температуру теплоносителя, а также температуру воздуха в комнате. Все значения остались неизменными, в том числе и температура за бортом.
В течение дня никаких изменений температуры замечено не было.
Третий день эксперимента.
Температура теплоносителя повысилась на один градус и составила 43ºС.
Температура на улице снижалась и достигла -15ºС.
При этом температура в комнате выросла ещё на 0,5ºС и достигла 21,5ºС.
Четвёртый день эксперимента.
Температура теплоносителя всё ещё 43ºС.
Температур за на улице с утра -15ºС.
Температура в комнате утром составила 21,5ºС.
Так как за прошедшие сутки никаких существенных изменений температуры не отмечено, решил увеличить поток воздуха и в 10.00 установил второй вентилятор.
Через 10-15 минут температура воздуха возросла сразу на один градус, а потом и ещё на полградуса и достигла 23ºС.
Гулять так гулять, подумал я, и в 19.00 включил оба вентилятора на полную мощность. Температура за два часа возросла ещё на один градус и достигла 24ºС.
Результаты и выводы.
- Мне удалось повысить температуру воздуха в комнате на целых 6ºС, а в экстремальном режиме работы вентиляторов даже на 9ºС, что подтвердило предположение о том, что повысить теплоотдачу батареи центрального отопления можно, даже при такой низкой температуре теплоносителя.
- При использовании обычного бытового вентилятора без регулятора оборотов, в комнате становится слишком шумно. Однако если использовать накопленное комнатой тепло, то, например, в спальне можно на ночь отключать вентилятор, а в столовой, наоборот, включать. Тогда, можно использовать вентилятор на полной мощности.
- Если находиться в той части комнаты, где наиболее ощутимо движение воздуха, генерируемого вентилятором, то создаётся ложное ощущения снижения температуры.
- Те, кто опасается, что вентилятор много «намотает», могут посчитать месячное потребление энергии.
35(Ватт) * 24(часа) * 30(дней) ≈ 25(кВт*час)
Мелкие подробности.
Чтобы быстрее и точнее замерить температуру батареи парового отопления, достаточно нанести на шарик датчика цифрового термометра небольшое количество теплопроводной пасты «КПТ-8». Место контакта на время измерения нужно прикрыть несколькими слоями ткани или слоем поролона.
Вышеописанный эксперимент заставил меня усомниться в точности моего цифрового термометра. Чтобы убедиться в правильности его показаний, я их сравнил с показаниями ртутного термометра. Для этого, погрузил оба термометра в горячую воду на одинаковую глубину и проследил за показаниями по мере остывания воды.
Продолжительная работа вентиляторов сразу выявила слабое место современных девайсов.
Если у вентилятора «Пингвин» 1973 года выпуска передний подшипник скольжения оборудован сальником (стрелкой отмечено отверстие для наполнения сальника маслом), что и позволило ему проработать уже почти 40 лет, то в современном вентиляторе такого сальника нет и в помине.
Кроме этого, у «Пингвина» есть пружина, предотвращающая возникновение продольных биений вала. Новый же вентилятор после двух суток работы начал тарахтеть, так как из-за продольного биения вала, вызванного эксцентриситетом пропеллера, быстро износилась одна из фторопластовых прокладок.
Для устранения продольного люфта, понадобилось несколько обычных и две тонкостенные шайбы, а также прокладка вырезанная из поролона.
Сначала я разобрал статор.
Потом надел тонкостенные шайбы и прокладку на вал двигателя, а остальными шайбами увеличил зазор между подшипниками.
Чтобы обеспечить сколь-нибудь продолжительную работу вентилятора, вырезал из войлока сальник, а из какой-то капроновой крышки заглушку сальника и запрессовал всё это в углубление вокруг вала. Естественно, масла тоже не пожалел.
Начал думать о покупке двух десятков компьютерных 120-ти миллиметровых вентиляторов. Думаю, если установить их прямо между секциями батарей, то при этом должен снизиться шум и повыситься эффективность теплоотдачи.
6 Февраль, 2012 (14:55) в
Энергосбережение
Самодельный радиатор отопления, как сделать батареи своими руками из профильных труб
Огромное разнообразие радиаторов отопления на современном рынке дает возможность подобрать именно тот вариант, который бы точно обеспечил дом или квартиру необходимым количеством тепла. Но ситуации в жизни случаются разные, иногда появляется необходимость приобретения дешевого варианта. А можно радиатор изготовить своими руками, тем самым решить проблему.
Что нужно для изготовления?
Самый простой в этом плане вариант – батарея из стальной трубы. В этом случае необязательно использовать новую трубу, можно купить б/у. Главное, чтобы она была в приличном состоянии. Что необходимо для того, чтобы собрать радиатор своими руками?
Из материалов:
- труба диаметром 100 мм;
- труба диаметром 25 мм;
- лист стальной толщиною 3 мм;
- два сгона диаметром 25 мм.
Из инструментов:
- сварочный аппарат;
- болгарка;
- рулетка;
- молоток;
- маркер.
Расчет размеров
Сделать самостоятельно трубный прибор отопления не очень сложно. Но здесь есть один важный момент – правильно провести расчет размеров прибора. Ведь именно от них будет зависеть такой показатель, как теплоотдача.
Необходимые показатели
Расчет непростой, потому что для его проведения требуются некоторые критерии самого помещения. К примеру: площадь остекления, количество входных дверей, какие окна установлены, проведена ли теплоизоляция пола, стен и потолка.
Все это учесть сложно, поэтому существует более простой вариант, в котором учитываются всего лишь два показателя:
- площадь комнаты.
- высота потолка.
Радиатор отопления выбирается из расчета теплоотдачи на 10 м² равным 1 кВт тепловой энергии. Высота потолка не должна превышать 2,8 м.
Как это может помочь при сборке самодельного прибора отопления? Для этого придется провести сравнение с обычным чугунным радиатором марки МС-140-500. Теплоотдача его одной секции – 160 Вт, объем – 1,45 л. Что это нам дает?
Можно точно определить, сколько секций будет необходимо, если использовать чугунный прибор. Из количества секций определяется общий объем теплоносителя, который будет помещаться в одной батарее. А зная это число, можно приблизительно установить объем трубного радиатора.
Все дело в том, что теплопроводность стали равна 54 Вт/м*К, а чугуна – 46 Вт/м*К. То есть, небольшая погрешность в меньшую сторону не окажет никакого влияния на качество отдачи тепла.
Пример расчета
Условно будем считать, что восьмисекционный чугунный отопительный прибор соответствует вышеописанному соотношению. Его объем – 8х1,45=11,6 л.
Теперь можно подсчитать длину трубы диаметром 100 мм, которую будем использовать для сборки самодельной батареи. Площадь сечения труб стандартная – 708,5 мм². Делим объем на сечение, получаем длину (литры переводим в мм³): 116000:708,5= 1640 мм. Или 1,64 м.
Небольшое отклонение в обе стороны не будет сильно влиять на теплоотдачу. Поэтому можно выбрать или 1,6 или 1,7 м.
Конструкция устройства
Можно использовать трубу такой длины, уложенную под окно, и считать это радиатором. Но лучше разделить ее на две половинки и установить их друг над другом. Конструкция становится компактной при тех же характеристиках теплоотдачи.
Самодельные радиаторы трехъярусной конструкции потребуют больших затрат и времени на изготовление. Поэтому установка труб в два ряда при такой длине – оптимальный вариант.
Процесс сборки
В первую очередь необходимо подготовиться, т.е. закупить все необходимые материалы. Трубу диаметром 100 мм разрезаем на две половинки длиною по 80 см, для этого можно использовать болгарку.
Далее из труб диаметром 25 мм нарезаем 2 куска длиною по 100 мм, а из стального листа вырезаются 4 блина под внешний диаметр труб 100 мм.
Затем в трубах 100 мм вырезаются по два отверстия диаметром 25 мм – их месторасположение от краев должно быть на расстоянии 50 мм с диаметрально противоположных сторон.
После этого можно собрать конструкцию. Сначала привариваются вырезанные из листового железа блины. Затем две трубы 100 мм соединяются между собой трубой 25 мм, точно по вырезанным отверстиям.
Второй кусок трубы 25 мм приваривается с противоположной стороны, она будет выполнять функции упрочняющего элемента, после чего привариваются два сгона: сверху и снизу.
Проверка прибора
Самодельный радиатор готов. Как видите, сделать его не очень сложно. Остается лишь провести его проверку на герметичность проваренных стыков. Для этого один из сгонов закрывается заглушкой, а через второй заливается внутрь батареи вода.
Теперь необходимо обследовать швы сварки. Если мокрых подтеков нет, то вся работа была проведена качественно. Если пятна все же появились, то придется места подтеков обозначить маркером, слить воду из батареи отопления и пропарить заново шов.
Полезные советы
Если система отопления дома была собрана с учетом использования принудительного движения теплоносителя, то есть в ней установлен циркуляционный насос, тогда самодельный прибор можно устанавливать как угодно (вертикально или горизонтально).
Если в отопительной системе теплоноситель движется по естественным законам, то батарею необходимо монтировать только горизонтально. При этом нет необходимости устанавливать на нее воздухоотводчик (кран Маевского).
Нельзя сделать качественный радиатор из труб, если вы владеете навыками работы сварочным аппаратом на уровне новичка. Проваривать швы надо хорошо, от этого зависит безопасность эксплуатации прибора и всей отопительной системы.
Толщина 100-миллиметровой трубы должна быть минимум 3,5 мм.
Два сгона можно приварить к торцам труб, где были приварены металлические блины. При этом отверстия в торцах делаются не посередине, а со смещением: входной сгон (верхний) ближе к верхнему краю трубы, выходной (нижний) ближе к нижнему краю. Отверстия в блинах лучше сделать заранее, до приварки их к трубам.
При расчете теплоотдачи нет необходимости обращать внимание на площадь отдачи. Понятно, что этот показатель у чугунного радиатора будет больше. Все это компенсируется высокой теплопроводностью стали.
Сварочные швы нужно очистить и придать им презентабельный внешний вид. Для этого молотком сбиваются окалины и подтеки, а болгаркой шлифуется вся поверхность швов.
Исправление ошибок
Иногда, неправильно произведенные замеры помещения, приводят к неверным расчетам. Установленный радиатор отопления работает неэффективно, в помещении прохладно. Не стоит сразу же бросаться и делать новый прибор, затрачивая и время, и деньги. Есть способ, как можно повысить тепловую отдачу.
Для этого необходимо увеличить площадь нагрева. Единственный в данном случае вариант – приварить к трубной конструкции ребра из металлического листа толщиною 1,0-2,0 мм. Форма ребер может быть разной, главное – их площадь.
Поэтому из листа железа вырезаются, к примеру, прямоугольные куски размерами по длине больше высоты радиатора, по ширине 100-150 мм. В них с одной стороны вырезаются полукруги диаметром 100 мм. На каждом куске листа по два полукруга, расстояние между которыми определяется промежутком между двумя трубами в батарее.
Готовые формы привариваются к отопительной конструкции. Чем их больше, тем выше теплоотдача прибора.
Как увеличить отдачу тепла от батареи?
Как увеличить теплоотдачу батареи
Как увеличить эффективность теплоотдачи радиаторов отопления
Ключевым показателем эффективности любого радиатора отопления является теплоотдача. Данный показатель является индивидуальным для каждой модели радиаторов, кроме того, на него влияет тип подключения прибора, особенности его размещения и другие факторы. Как подобрать оптимальный с точки зрения теплоотдачи радиатор, как подключить его максимально эффективно, как увеличить теплоотдачу?
Теплоотдача представляет собой показатель, обозначающий количество тепла, переданное радиатором в помещение за определенное время. Синонимами теплоотдачи являются такие термины как мощность радиатора, тепловая мощность, тепловой поток и т.д. Измеряется теплоотдача отопительных приборов в Ваттах (Вт). В некоторых источниках тепловая мощность радиатора приводится в калориях в час. Эту величину можно перевести в Ватты (1 Вт=859,8 кал/ч).
Теплопередача от радиатора отопления осуществляется в результате трех процессов:
— Теплообмена;
— Конвекции;
— Излучения (радиации).
Каждый радиатор отопления использует все три типа переноса тепла, однако их соотношение у разных типов отопительных устройств отличается. По большому счету, радиаторами могут называться только те приборы, у которых не менее 25% тепловой энергии передается в результате прямого излучения, однако сегодня значение этого термина значительно расширилось. Потому очень часто под называнием «радиатор» можно встретить устройства конвекторного типа.
Выбор радиаторов отопления для установки в дом или квартиру должен основываться на максимально точных расчетах необходимой мощности. С одной стороны, всем хочется сэкономить, потому покупать лишние батареи не следует, но с другой – если радиаторов будет недостаточно, то в квартире не получится поддерживать комфортную температуру.
Способов расчета необходимой тепловой мощности отопительных приборов несколько.
Самый простой способ основывается на количестве наружных стен и окон в них.
Расчет производится так:
— Если в помещение одна наружная стена и одно окно, то на каждые 10 м2 площади помещения необходимо 1 кВт тепловой мощности батарей отопления.
— Если в помещение две наружные стены, то на каждые 10 м2 площади помещения необходимо минимум 1,3 кВт тепловой мощности батарей отопления.
Второй способ более сложен, но он дает возможность получить максимально точное значение требуемой мощности.
Расчет производится по формуле:
S x h x41, где: S – площадь комнаты, для которой производится расчет. h – высота помещения. 41 – нормативный показатель минимальной мощности на 1 кубический метр объема помещения. Полученная величина и будет необходимой мощностью отопительных приборов. Далее следует эту мощность поделить на номинальную теплоотдачу одной секции радиатора (как правило, эту информацию содержит инструкция к отопительному прибору).
В результате мы получаем необходимое для эффективного отопления количество секций.
Если в результате деления у вас получилось дробное число – округляйте его в большую сторону, так как недостаток мощность отопления гораздо сильнее снижает уровень комфорта в помещении, чем его избыток.
Отопительные приборы из разных материалов отличаются по теплоотдаче. Поэтому, выбирая радиаторы для квартиры или дома, необходимо внимательно изучать характеристики каждой модели – очень часто даже близкие по форме и габаритам радиаторы имеют разную мощность.
Чугунные радиаторы – обладают относительно небольшой поверхностью теплоотдачи, отличаются низкой теплопроводностью материала. Теплоотдача происходит в основном за счет излучения, лишь около 20% приходится на долю конвекции. «Классический» чугунный радиатор Номинальная мощность одной секции чугунного радиатора МС-140 при температуре теплоносителя в 90 град. С составляет около 180 Вт, однако данные цифры справедливы лишь для лабораторных условий. На самом деле в системах централизованного отопления температура теплоносителя редко поднимается выше 80 градусов, при этом некоторая часть тепла теряется по пути к самой батарее. В итоге температура поверхности такого радиатора составляет около 60 град. С, а теплоотдача одной секции не превышает 50-60 Вт.
Стальные радиаторы сочетают в себе положительные качества секционных и конвекционных радиаторов. Как правило, стальной радиатор включает в себя одну или несколько панелей, внутри которых циркулирует теплоноситель. Для повышения тепловой мощности радиатора к панелям дополнительно привариваются стальные ребра, которые и работают как конвектор. Теплоотдача стальных радиаторов не намного больше, чем у чугунных – потому к преимуществам таких отопительных приборов можно причислить разве что относительно небольшую массу и более привлекательный дизайн. При снижении температуры теплоносителя теплоотдача стального радиатора снижается очень сильно. Поэтому, если в вашей системе отопления циркулирует вода с температурой 60-750, показатели теплоотдачи стального радиатора могут разительно отличаться от заявленных производителем.
Теплоотдача алюминиевых радиаторов существенно выше, чем у двух предыдущих разновидностей (одна секция – до 200 Вт), но существует фактор, который ограничивает применение алюминиевых отопительных приборов. Этот качество воды: при использовании чересчур загрязненного теплоносителя внутренняя поверхность алюминиевого радиатора постепенно подвергается коррозии. Вот почему, несмотря на хорошие показатели по мощности, алюминиевые радиаторыв основном устанавливают в частных домах с автономной системой отопления.
Биметаллические радиаторы по показателям теплоотдачи ничуть не уступают алюминиевым. Но за эффективность всегда приходится платить, а потому цена биметаллических радиаторов несколько выше, чему батарей из других материалов.
Как все же можно управлять теплоотдачей уже купленного радиатора в зависимости от подключения.
Теплоотдача радиатора зависит не только от температуры теплоносителя и материала, из которого радиатор изготовлен, но и от способа подключения радиатора к системе отопления:
Прямое односторонне подключение считается самым выгодным с точки зрения теплоотдачи. Именно поэтому номинальная мощность радиатора рассчитывается именно при прямом подключении (схема приведена на фото).
Диагональное подключение применяется в том случае, если подключается радиатор с числом секций боле 12. Такое подключение максимально снижает теплопотери.
Нижнее подключение радиатора используется для присоединения батареи к скрытой в стяжке пола системе отопления. Потери теплоотдачи при таком подключении составляют до 10%.
Однотрубное подключение является наименее выгодным с точки зрения мощности. Потери теплоотдачи при таком подключении могут составлять от 25 до 45%.
Каким бы мощным ни был ваш радиатор, часто хочется увеличить его теплоотдачу. Особенно актуальным это желание становится в зимний период, когда радиатор, даже работающий на полную мощность, не справляется с поддержанием температуры в помещении.
Есть несколько способов увеличения теплоотдачи радиаторов:
Первый способ – это регулярная влажная уборка и очистка поверхности радиатора. Чем чище радиатор, тем выше уровень его теплоотдачи. Также важно правильно окрашивать радиатор, особенно если вы используете чугунные секционные батареи. Толстый слой краски препятствует эффективному теплообмену, потому перед покраской батарей необходимо удалить с них слой старой краски.
Также эффективно будет использование специальных красок для труб и радиаторов, имеющих низкое сопротивление теплопередаче. Чтобы радиатор обеспечивал максимальную мощность, его нужно правильно смонтировать. Среди наиболее распространенных ошибок в монтаже радиаторов специалисты выделяют наклон батареи, установку слишком близко к полу или стене, перекрытие радиаторов неподходящими экранами или предметами интерьера
.
Правильный и неправильный монтаж Для повышения эффективности можно также провести ревизию внутренней полости радиатора. Часто при подключении батареи к системе остаются заусенцы, на которых со временем образуется засор, препятствующий движению теплоносителя. Еще одним способом обеспечения максимально отдачи является монтаж на стену за радиатором теплоотражающего экрана из фольгированного материала. Особенно эффективен данный способ при усовершенствовании радиаторов, установленных на наружных стенах здания.
Источник: https://ttnn.su/a178296-kak-uvelichit-effektivnost.html
Часто в квартирах, особенно старой застройки, с каждым годом зимой становится всё холоднее. Людям приходится приобретать и использовать электрические отопительные приборы, что приводит к существенному повышению стоимости коммунальных услуг. Но зачем переплачивать за перерасход электроэнергии, если есть более дешёвые варианты исправления ситуации? Сегодня мы расскажем о простых способах увеличения теплоотдачи батарей отопления, которые не требуют значительных затрат, воплотить в жизнь которые вполне по силам любому домашнему мастеру. Стоит рассмотреть и причины, приводящие к снижению температуры в помещении.
Забитые каналы секций радиатора – частая причина снижения температуры в помещении
Частые причины уменьшения теплоотдачи батареи отопления
Чаще всего причиной уменьшения теплоотдачи радиаторов становится накипь и ржавчина, скапливающаяся внутри. Если сам радиатор промыть (что должны делать коммунальные службы ежегодно), то теплоотдача значительно увеличится. То же касается и стояков отопления. Однако, своими силами такую процедуру произвести не удастся по причине того, что при производстве подобных работ (даже летом) необходим слив воды из системы. Без помощи специалистов здесь не обойтись. Это же касается и замены радиаторов с чугунных на биметаллические – они имеют большую теплоотдачу. Поэтому на столь сложных и трудоёмких вариантах мы останавливаться не будем. Лучше рассмотрим более простые способы, выполнить которые сможет любой домашний мастер, даже не имеющий опыта работ в подобной области.
Теплоотдача биметаллических радиаторов выше, чем у чугуна
Используем экран-отражатель: применение вспененного полиэтилена
Использование отражающего экрана – довольно популярный метод увеличения теплоотдачи. Вспененный полиэтилен с фольгированным покрытием с одной стороны прекрасно подходит для этих целей. Такой экран (он должен быть больше самого радиатора) помещается за батареей фольгой в направлении комнаты и фиксируется на стене на двухсторонний скотч или жидкие гвозди. Вспененный полиэтилен обеспечивает дополнительное утепление, а фольга отражает тепло, которое до установки экрана прогревало стену, направляя его в помещение.
Важная информация! Лучше всего, когда такие моменты продумываются ещё на этапе монтажа батарей отопления. В этом случае за радиатором можно закрепить стальной ребристый щит, который будет накапливать тепло, после чего направлять его в комнату. Такие щиты удобны, если часто происходят отключения отопления.
Примерно так выглядит экран из фольгированного вспененного полиэтилена
Также в роли экрана неплохо себя зарекомендовали базальтовые плиты с алюминиевым покрытием.
Увеличение теплоотдачи при помощи дополнительных приспособлений и окраски
Для увеличения температуры воздуха в помещении используют специальные кожухи из алюминия, которые одеваются на радиатор. С их помощью увеличивается площадь батареи отопления и, как следствие, их теплоотдача. Стоимость подобных кожухов невелика, а эффект довольно значителен.
Цвет, в который окрашены батареи отопления, тоже имеет большое значение. Лучше для этих целей выбрать более тёмные оттенки. К примеру, радиатор, окрашенный в коричневый цвет имеет теплоотдачу больше, чем белые, на 20-25%.
Такой кожух улучшает внешний вид и увеличивает теплоотдачу
Улучшение конвекции, путём увеличения циркуляции воздуха
Каждый знает, что улучшение циркуляции воздуха способствует более быстрому прогреву помещения. Для этих целей можно использовать вентилятор, который устанавливается таким образом, чтобы достигнуть максимального потока тёплого воздуха в сторону помещения.
Полезная информация! Если дома имеются кулеры от компьютеров, которые не используются, можно их установить под радиатором, направив поток воздуха вверх. Это максимально увеличит конвекцию, в результате чего в комнате станет значительно теплее.
Увеличить конвекцию (если радиатор утоплен под подоконником) можно, прорезав в подоконнике отверстия и закрыв их экранами или декоративными крышками. Таким образом, тёплый воздух не будет задерживаться в нише, что улучшит циркуляцию.
Эту страну не победить! Самостоятельный монтаж вентиляторов для улучшения конвекции:
Подведём итог
Способов увеличить теплоотдачу радиаторов отопления очень много. Сегодня мы рассмотрели лишь основные из них. Однако, следует помнить, что всегда проще всё продумать заранее, на стадии монтажа, чем прикладывать множество усилий впоследствии, без уверенности в том, что результат будет значительным. К сожалению, в России всё делается на «авось». Заключительным советом редакции Homius.ruбудет такая рекомендация: думайте о будущем и не жалейте средств при монтаже. Сэкономленные сегодня финансовые средства могут завтра обернуться затратами, которые в разы превысят Вашу экономию.
Наиболее оптимальный вариант – всё тепло поднимается вверх, благодаря чему создаётся нормальный теплообмен
Надеемся, что изложенная в сегодняшней статье информация была интересна и полезна нашему Уважаемому читателю. Несмотря на то, что мы постарались изложить всё достаточно подробно, возможно, у Вас остались вопросы по материалу. В этом случае задавайте их в обсуждениях ниже – редакция Homius.ru с удовольствием на них ответит в максимально сжатые сроки. Если вы знаете способ улучшить теплоотдачу радиаторов, который не нашёл отражения в сегодняшней статье, просим поделиться им с другими домашними мастерами – эта информация будет весьма полезна. А напоследок предлагаем посмотреть короткий, но достаточно информативный видеоролик по сегодняшней теме.
Источник: https://homius.ru/3-prostyih-sposoba-uvelichit-teplootdachu-batarei.html
Пришли холода, включили отопление, а дома всё равно холодно? Знакомая многим ситуация. Первое, что приходит на ум – как заставить работать батареи на 100%? В сегодняшнем обзоре мы решили разобрать, какие из способов, которые можно найти в сети, действительно способствуют повышению теплоотдачи радиаторов, а какие являются вымыслом с научной и практической точки зрения. А поможет нам в этом специально приглашённый специалист.
Вот такую картину можно иногда наблюдать при проверке радиатора тепловизором
Уменьшение теплопотерь
К сведению! Сразу оговоримся, что данный пункт относится к проблеме в целом, а не к радиаторам конкретно.
Начнём мы наш анализ с банальной вещи – снижение теплопотерь. Для большинства не секрет, что на различного рода ограждения приходится до 60% тепловых потерь. Посмотрите на калькулятор ниже.
Давайте оставим параметры по умолчанию, но попробуем «поиграться» с характеристиками стены, пола, потолка и проёмов. Сравним идеальный случай, когда внешние стены утеплены, сверху и снизу находится отапливаемое помещение, имеется одно окно с двухкамерным стеклопакетом. В этом случае понадобится всего 1,2 кВт на отопление такого помещения. А теперь посмотрим случай, когда стены не утеплены, сверху и снизу неотапливаемые помещения, а окно обычное деревянное. В этом случае понадобится аж 4,69 кВт! Значительная разница, не правда ли?
Примерные величины теплопотерь через ограждающие конструкции
Именно поэтому первым-наперво необходимо обеспечить уменьшение теплопотерь всеми доступными способами, после чего переходить непосредственно к радиаторам.
Комментарий Сергей Харитонов Ведущий инженер по отоплению, вентиляции и кондиционированию воздуха ООО «ГК «Спецстрой» Задать вопрос «В идеальном случае такие вещи предусматриваются ещё на этапе строительства дома или ремонта квартиры. В обязательном порядке должен быть выполнен теплотехнический расчёт всех помещений и подобрано оптимальное оборудование. В других случаях рекомендую произвести замену окон на современные стеклопакеты и выполнить качественное утепление помещения.»
Вывод: эффективно на 100%.
Использование экранов-отражателей за радиатором
Пожалуй, самый часто обсуждаемый и противоречивый способ. Из аргументов против чаще всего приводится:
- сдвиг точки росы или изотермы внутрь помещения;
- охлаждение стены за радиатором и, как следствие, уменьшение температуры в самом помещении;
Давайте попробуем разобраться.
Принцип работы экрана-отражателя
Сдвиг точки росы
Тут нужно понимать, что площадь экрана за радиатором значительно ниже площади стены. Именно поэтому оказать хоть сколько-таки сильное влияние на смещение точки росы экран просто не в состоянии. На неё оказывают влияние слишком много параметров. Это и коэффициент теплопроводности ограждающей конструкции (на простом языке – материал стены), и вид утеплителя, и способ его монтажа, и влажность снаружи/внутри и т.д.
Изменение точки росы в зависимости от способа утепления
Охлаждение стены за радиатором
Очень сомнительный довод, прямо вытекающий из пункта выше. Участок стены за радиатором слишком небольшой, чтобы его нагрев/охлаждение оказал сильное влияние на общую температуру в помещении.
Так что же тогда? Эффективен ли экран за батареей? В большинстве случаев он всего лишь препятствует расходу тепла на обогрев стены за прибором. Это тепло может быть расходовано более эффективно, но и тут возникает проблема – как его распределить? Если радиатор установлен в нише, да ещё и завешан шторами, то пользы от экрана не будет никакой.
Комментарий Сергей Харитонов Ведущий инженер по отоплению, вентиляции и кондиционированию воздуха ООО «ГК «Спецстрой» Задать вопрос «Самый главный эффект от подобного экрана – это сохранение максимально возможного количества тепла в помещении. А вот как вы распределите это сохранённое тепло – уже совсем другая задача.»
Вывод: эффективно, но требует идеальных условий эксплуатации.
Улучшение циркуляции воздуха
Как многие знают, в основе работы радиатора заложены процессы конвекции и излучения. Конвекция основана на простом законе физики: тёплый воздух имеет меньшую плотность и поднимается вверх. Теплообмен излучением осуществляется посредством электромагнитных волн в инфракрасном диапазоне. Соотношение этих двух видов теплообмена будет очень сильно зависеть от вида источника тепла. Но для простоты пояснения скажем, что в обычном водяном радиаторе преобладает конвекция.
Процессы теплообмена в водяном радиаторе
То есть теоретически, установив за радиатором средства принудительной циркуляции, можно добиться лучшего смешения конвективных потоков в помещении, тем самым используя выделяемое батареей тепло более эффективно. В сочетании с предыдущим пунктом (экран-отражатель) радиатор будет работать более «качественно».
Многие домашние мастера приспосабливают для этих целей обычные компьютерные кулеры Комментарий Сергей Харитонов Ведущий инженер по отоплению, вентиляции и кондиционированию воздуха ООО «ГК «Спецстрой» Задать вопрос «Данное действие имеет хоть сколько-таки значимый эффект при очень многих условиях. Система отопления дома должна работать исправно, температура теплоносителя должна быть приближена к проектным параметрам, радиаторы не должны быть заставлены мебелью, техникой и шторами и т.д. Кроме этого, стоит учитывать, что кулеры могут издавать значительный шум, да и выглядят подобные самоделки не слишком эстетично.»
Вывод: эффективно, но требует идеальных условий эксплуатации.
Окраска радиатора в тёмный цвет
Ещё одно мнение, которое блуждает в интернете, что покраска батареи в чёрный или коричневый цвет увеличивает теплообмен излучением. В большинстве случаев подобные суждения основаны на физическом понятии «абсолютно чёрного тела», которое сильнее всего поглощает и излучает. Всё это относится и к батарее отопления. Покрашенные светлой краской излучают меньше, чем покрашенные тёмной. Давайте прикинем, насколько.
Немного физики. По закону Стефана-Больцмана излучение абсолютно чёрного тела пропорционально абсолютной температуре в 4-й степени.
R(T) = σ × T4, где
σ = 5,67·10-8 Вт/(м2К4) — постоянная Стефана-Больцмана.
Реальные тела относятся к «серым». Для реального «серого» нужно учитывать его излучательную способность ε. Батарея и сама поглощает ИК-излучение из комнаты, и в учебниках приводится соответствующая формула, в которую входят температуры как батареи, так и комнаты (в кельвинах в 4-й степени). Легко показать, что если нагреть батарею от 20°С на 40 градусов, то её излучение увеличится в 81 раз. Расчёт (приблизительный, конечно) показывает следующее. Пусть батарея площадью 1 кв. м покрашена коричневой масляной краской (для нее ε ≈ 0,8). Температура воды в ней пусть будет 70°С, а комнаты — 20°С. Тогда мощность ИК-излучения такой батареи будет 300 Вт. Не так уж мало! Ещё сильнее будет греть батарея, покрашенная чёрной матовой (не глянцевой!) краской. А если краска будет белой, мощность излучения будет ниже. Но эстетические соображения обычно берут верх, и батареи (открытые) обычно красят светлыми красками.
Чёрные радиаторы также свободно можно найти в продаже Комментарий Сергей Харитонов Ведущий инженер по отоплению, вентиляции и кондиционированию воздуха ООО «ГК «Спецстрой» Задать вопрос «Физика прямо доказывает эффективность окраски радиатора в тёмные цвета, но всё это относится к идеальным условиям эксплуатации. Напомню, что в обычных водяных батареях преобладает конвективный теплообмен и на него цвет никак не влияет. Кроме этого, нужно быть уверенным в качестве работы всей системы отопления. Если вам в радиатор приходит 30°С, то крась не крась, толку не будет. Ну и не стоит забывать про эстетическую составляющую. Готовы ли вы каждый день созерцать чёрные «гробы» ради нескольких десятков лишних ватт?»
Вывод: эффективно, но требует идеальных условий эксплуатации.
Изменение способа подключения радиатора
Знакома ли вам ситуация, когда половина батареи имеет высокую температуру, а половина холодная? Чаще всего в этом случае виноват способ подключения. Взгляните как работает прибор при одностороннем подключении радиатора с подачей теплоносителя сверху.
Обратите внимание, насколько хуже работают дальние секции
Теперь взглянем на схему одностороннего подключения с подачей теплоносителя снизу.
Видим тот же самый эффект
А вот двухстороннее подключение с подачей сверху и снизу.
Видим тот же самый эффектВидим тот же самый эффект
Если вы обнаружили у себя одну из представленных выше схем, то вам не повезло. Самым рациональным с точки зрения эффективности работы является диагональное подключение с подачей сверху.
Вся теплообменная площадь радиатора прогревается равномерно, радиатор работает на полную мощность
И как же быть в том случае, когда разводку труб менять не хочется или же невозможно? В этом случае мы можем посоветовать приобрести радиаторы, имеющие в своей конструкции некоторую хитрость. Эта специальная перегородка между первой и второй секцией, меняющая направление движения теплоносителя.
Специальная заглушка превращает нижнее двухстороннее подключение в нужное нам диагональное с верхней подводкойА этот вариант подходит для верхнего двухстороннего подключения
В случае одностороннего подключения показали свою эффективность специальные удлинители потока.
Принцип работы удлинителя потока
Существуют устройства и для оптимизации одностороннего нижнего подключения, но думаем общий принцип вам теперь стал ясен.
Комментарий Сергей Харитонов Ведущий инженер по отоплению, вентиляции и кондиционированию воздуха ООО «ГК «Спецстрой» Задать вопрос «Способ подключения является одним из самых эффективных способов повысить теплоотдачу батареи или, если точнее выразиться, заставить радиатор работать так, как он должен. По понятным причинам такие вещи лучше всего предусматривать на этапе проектирования отопительной системы, чтобы не ломать голову потом. Ведь любая переделка потребует отключения стояка, навыков слесаря или денежных затрат, а в некоторых случаях и согласования с ЖЭКом.»
Вывод: эффективно на 100%.
Как увеличить кпд батареи отопления: варианты эффективного увеличения показателя
Основная задача любого вида батарей отопления – максимально возможный обогрев помещения. Параметром, определяющим, насколько прибор соответствует поставленным задачам, является их теплоотдача. Но не только это может повлиять на часто возникающую проблему, которая заключается в том, как увеличить кпд батареи отопления. Справиться с потерями тепла можно достаточно простыми средствами, но перед этим необходимо выяснить, что может повлиять на процесс передачи тепла в окружающее пространство. Рассмотрим основные факторы, влияющие на кпд отопительных приборов:
- Модель радиатора, количество секций и размер самой батареи;
- Тип подключения радиатора к сети теплоснабжения;
- Размещение батареи отопления в помещении;
- Материал, из которого изготовлена батарея.
Все эти факторы являются основополагающими в эффективности обогрева помещения с помощью радиаторов. Однако, указанный изготовителем кпд радиаторов отопления можно изменить в лучшую сторону, если использовать несколько хитростей при их выборе и установке. Для этого в первую очередь необходимо разобраться в том, что такое коэффициент полезного действия батарей отопления, как его рассчитать и какие показатели могут на него повлиять. (См. также: Схема водяного отопления частного дома)
Что такое кпд и как его рассчитать
Теплоотдача приборов отопления, к которым относятся батареи или радиаторы, складывается из количественного показателя тепла, которое передано батареей за определённый промежуток времени и измеряется в Ваттах. Процесс теплоотдачи батареями проходит в результате процессов, которые известны как конвекция, излучение и теплообмен. Любой радиатор использует эти три вида теплообмена. В процентном соотношении эти виды передачи тепла могут варьироваться у различных типов батарей.
Каким будет кпд обогревателей, в подавляющем большинстве случаев зависит от материала, из которого они изготовлены. Рассмотрим, какими преимуществами и недостатками обладают радиаторы, изготовленные из разных видов материала.
- Чугун обладает сравнительно низкой теплопроводностью, поэтому батареи из этого материала не являются лучшим вариантом. К тому же небольшая поверхность этих приборов отопления значительно снижает теплоотдачу и происходит за счёт излучения. В обычных условиях квартиры мощность батареи из чугуна составляет не более 60 Вт.
- Сталь несколько выше чугунных. Более активная теплоотдача происходит из-за наличия дополнительных рёбер, которые увеличивают площадь излучения тепла. Теплоотдача происходит в результате конвекции, мощность составляет примерно 100 Вт.
- Алюминий обладает наибольшей из всех предыдущих вариантов теплопроводностью, мощность их составляет около 200 Вт.
(См. также: Какой лучше выбрать радиатор отопления)
Кроме того, для наиболее эффективного обогрева необходимо учесть, какая мощность может потребоваться. При расчёте необходимой для помещения мощности обогревательных приборов используется количество стен, выходящих на улицу и окон. На каждые 10 м2 пола при наличии 1 наружной стены и окна требуется около 1 Квт тепловой мощности батареи. Если наружных стен 2, то требуемая мощность составляет уже 1,3 кВт. (См. также: Печи с водяным отоплением)
Немаловажную роль в увеличении кпд батарей отопления играет способ подключения, который должен соответствовать типу батареи и материалу, из которого она изготовлена. Прямое одностороннее подключение имеет самые высокие показатели по эффективности теплоотдачи и самые низкие по потере тепла. Диагональное подключение используется в случае наличия большого количества секций и существенно снижает возможные потери тепла.
Нижнее подключение используется в том случае, если теплопроводные трубы скрыты под стяжкой пола и не исключает потерю тепла в количестве до 10% от исходного значения. Наименее эффективным считается однотрубное подключение, так как потеря мощности обогревательного прибора при этом способе может достигать 45%.
5 способов увеличения кпд отопительной системы
Существует несколько простых способов, как повысить кпд батареи отопления без особых материальных и трудовых затрат. Рассмотрим их подробно. (См. также: Автономные системы отопления)
- Поддержание поверхности отопительных приборов в чистоте.
Каким бы невероятным не казалось это утверждение, но даже тонкий слой пыли на радиаторах ведёт к понижению теплоотдачи. Например, кпд алюминиевых радиаторов, загрязнённых слоем пыли, может понизиться на 20–25%. Кроме того, в регулярной очистке нуждается и внутренняя часть батареи. С первой проблемой можно справиться самостоятельно путём обычной влажной уборки, а вот для второго придётся обратиться к квалифицированному специалисту. Сантехники имеют на вооружении знания и навыки, которые помогут в короткие сроки очистить радиатор от накипи и других загрязнений, скопившихся в процессе эксплуатации.
- Окрашивание радиаторов соответствующей их назначению краской.
Во-первых, для окрашивания необходимо подбирать краску тёмных расцветок. Благодаря этому удастся добиться не только хорошего нагрева батарей, но и значительного повышения теплоотдачи. Во-вторых, необходимо выбрать для окрашивания подходящую краску. В качестве покрытия для чугунных радиаторов отопления лучше использовать известные всем эмали, а для алюминиевых и стальных батарей больше подойдут акриловые, алкидные и акрилатные эмали.
Почему вопрос с покраской стоит так, а не иначе, можно объяснить достаточно просто: чугунные радиаторы достаточно легко поддаются окраске любыми видами эмали ввиду своего строения. Тонкие пластины алюминиевых радиаторов могут быть забиты слишком толстым слоем краски. В заводских условиях радиаторы с тонким корпусом и множеством пластин окрашивают порошковыми красками, которые не представляют угрозы для качественных характеристик радиатора и не изменяют вид его теплоотдачи. Окраска батареи в тёмный цвет позволяет повысить кпд отопительных элементов до 15% от обычного значения. (См. также: Сравнение систем отопления)
- Использование отражающих экранов.
Тепло, которое излучает батарея, распространяется во все стороны. Поэтому как минимум половина полезного теплового излучения уходит в стену, расположенную за приборами отопления. Уменьшить напрасные потери тепла можно, расположив за радиатором экран, например, из обычной фольги или готовый, купленный в магазине. При использовании даже самодельного экрана из тонкого металлического листа не только прекращается нагрев стены, но и создаётся дополнительный источник тепла, так как, нагреваясь, экран сам начинает отдавать тепло в помещение. При использовании отражающего экрана, кпд чугунных батарей, да и многих других, можно повысить до 10–15%.
- Увеличение площади поверхности батарей.
Между площадью поверхности, которая излучает тепло, и количеством этого тепла есть самая прямая зависимость. Для увеличения теплоотдачи радиаторов можно использовать дополнительный кожух. Материал, из которого он будет изготовлен, необходимо тщательно выдирать. Например, наибольшей теплоотдачей обладают кожухи из алюминия. Их используют в качестве дополнения к чугунным радиаторам. При частых перебоях в работе отопительных систем стоит подумать о приобретении стальных кожухов, которые очень долго сохраняют полученное от радиаторов тепло. Соответственно, этот тип кожухов для батарей отдаёт тепло в окружающее пространство намного дольше других.
- Создать дополнительные потоки воздуха в помещении.
Если направить на приборы отопления поток воздуха, например, с помощью обычного бытового вентилятора, то нагрев воздуха в помещении будет происходить значительно быстрее. При этом стоит учитывать, что направление воздушного потока должно быть вертикальным и направленным снизу вверх. При таком способе повышение кпд радиаторов может достигать 5–10%.
Используя даже один способ улучшения теплоотдачи батарей, можно значительно повысить температуру в помещении и снизить затраты на дополнительный обогрев. Перед тем, как вы приступите к улучшению характеристик радиаторов, убедитесь в правильности их подключения к теплосети и в том, что регуляторы подачи тепла на приборах последнего поколения установлены на необходимое значение. Кроме того, при постоянной проблеме с теплоснабжением, нужно уделить внимание теплоизоляции стен и окон, через которые обычно и уходит тепло. Утеплять нужно не только наружные стены, но и те, которые выходят на лестничную клетку.
Как увеличить эффективность теплоотдачи радиаторов отопления
Вполне очевидно, что главной задачей радиатора отопления является максимально эффективный обогрев помещения. Основным параметром, который определяет, насколько отопительный прибор справляется с этой задачей, является теплоотдача радиатора…
Ключевым показателем эффективности любого радиатора отопления является теплоотдача. Данный показатель является индивидуальным для каждой модели радиаторов, кроме того, на него влияет тип подключения прибора, особенности его размещения и другие факторы. Как подобрать оптимальный с точки зрения теплоотдачи радиатор, как подключить его максимально эффективно, как увеличить теплоотдачу?
Теплоотдача представляет собой показатель, обозначающий количество тепла, переданное радиатором в помещение за определенное время. Синонимами теплоотдачи являются такие термины как мощность радиатора, тепловая мощность, тепловой поток и т.д. Измеряется теплоотдача отопительных приборов в Ваттах (Вт). В некоторых источниках тепловая мощность радиатора приводится в калориях в час. Эту величину можно перевести в Ватты (1 Вт=859,8 кал/ч).
Теплопередача от радиатора отопления осуществляется в результате трех процессов:
— Теплообмена;
— Конвекции;
— Излучения (радиации).
Каждый радиатор отопления использует все три типа переноса тепла, однако их соотношение у разных типов отопительных устройств отличается. По большому счету, радиаторами могут называться только те приборы, у которых не менее 25% тепловой энергии передается в результате прямого излучения, однако сегодня значение этого термина значительно расширилось. Потому очень часто под называнием «радиатор» можно встретить устройства конвекторного типа.
Выбор радиаторов отопления для установки в дом или квартиру должен основываться на максимально точных расчетах необходимой мощности. С одной стороны, всем хочется сэкономить, потому покупать лишние батареи не следует, но с другой – если радиаторов будет недостаточно, то в квартире не получится поддерживать комфортную температуру.
Способов расчета необходимой тепловой мощности отопительных приборов несколько.
Самый простой способ основывается на количестве наружных стен и окон в них.
Расчет производится так:
— Если в помещение одна наружная стена и одно окно, то на каждые 10 м2 площади помещения необходимо 1 кВт тепловой мощности батарей отопления.
— Если в помещение две наружные стены, то на каждые 10 м2 площади помещения необходимо минимум 1,3 кВт тепловой мощности батарей отопления.
Второй способ более сложен, но он дает возможность получить максимально точное значение требуемой мощности.
Расчет производится по формуле:
S x h x41, где: S – площадь комнаты, для которой производится расчет. h – высота помещения. 41 – нормативный показатель минимальной мощности на 1 кубический метр объема помещения. Полученная величина и будет необходимой мощностью отопительных приборов. Далее следует эту мощность поделить на номинальную теплоотдачу одной секции радиатора (как правило, эту информацию содержит инструкция к отопительному прибору).
В результате мы получаем необходимое для эффективного отопления количество секций.
Если в результате деления у вас получилось дробное число – округляйте его в большую сторону, так как недостаток мощность отопления гораздо сильнее снижает уровень комфорта в помещении, чем его избыток.
Отопительные приборы из разных материалов отличаются по теплоотдаче. Поэтому, выбирая радиаторы для квартиры или дома, необходимо внимательно изучать характеристики каждой модели – очень часто даже близкие по форме и габаритам радиаторы имеют разную мощность.
Чугунные радиаторы – обладают относительно небольшой поверхностью теплоотдачи, отличаются низкой теплопроводностью материала. Теплоотдача происходит в основном за счет излучения, лишь около 20% приходится на долю конвекции. «Классический» чугунный радиатор Номинальная мощность одной секции чугунного радиатора МС-140 при температуре теплоносителя в 90 град. С составляет около 180 Вт, однако данные цифры справедливы лишь для лабораторных условий. На самом деле в системах централизованного отопления температура теплоносителя редко поднимается выше 80 градусов, при этом некоторая часть тепла теряется по пути к самой батарее. В итоге температура поверхности такого радиатора составляет около 60 град. С, а теплоотдача одной секции не превышает 50-60 Вт.
Стальные радиаторы сочетают в себе положительные качества секционных и конвекционных радиаторов. Как правило, стальной радиатор включает в себя одну или несколько панелей, внутри которых циркулирует теплоноситель. Для повышения тепловой мощности радиатора к панелям дополнительно привариваются стальные ребра, которые и работают как конвектор. Теплоотдача стальных радиаторов не намного больше, чем у чугунных – потому к преимуществам таких отопительных приборов можно причислить разве что относительно небольшую массу и более привлекательный дизайн. При снижении температуры теплоносителя теплоотдача стального радиатора снижается очень сильно. Поэтому, если в вашей системе отопления циркулирует вода с температурой 60-750, показатели теплоотдачи стального радиатора могут разительно отличаться от заявленных производителем.
Теплоотдача алюминиевых радиаторов существенно выше, чем у двух предыдущих разновидностей (одна секция – до 200 Вт), но существует фактор, который ограничивает применение алюминиевых отопительных приборов. Этот качество воды: при использовании чересчур загрязненного теплоносителя внутренняя поверхность алюминиевого радиатора постепенно подвергается коррозии. Вот почему, несмотря на хорошие показатели по мощности, алюминиевые радиаторыв основном устанавливают в частных домах с автономной системой отопления.
Биметаллические радиаторы по показателям теплоотдачи ничуть не уступают алюминиевым. Но за эффективность всегда приходится платить, а потому цена биметаллических радиаторов несколько выше, чему батарей из других материалов.
Как все же можно управлять теплоотдачей уже купленного радиатора в зависимости от подключения.
Теплоотдача радиатора зависит не только от температуры теплоносителя и материала, из которого радиатор изготовлен, но и от способа подключения радиатора к системе отопления:
Прямое односторонне подключение считается самым выгодным с точки зрения теплоотдачи. Именно поэтому номинальная мощность радиатора рассчитывается именно при прямом подключении (схема приведена на фото).
Диагональное подключение применяется в том случае, если подключается радиатор с числом секций боле 12. Такое подключение максимально снижает теплопотери.
Нижнее подключение радиатора используется для присоединения батареи к скрытой в стяжке пола системе отопления. Потери теплоотдачи при таком подключении составляют до 10%.
Однотрубное подключение является наименее выгодным с точки зрения мощности. Потери теплоотдачи при таком подключении могут составлять от 25 до 45%.
Каким бы мощным ни был ваш радиатор, часто хочется увеличить его теплоотдачу. Особенно актуальным это желание становится в зимний период, когда радиатор, даже работающий на полную мощность, не справляется с поддержанием температуры в помещении.
Есть несколько способов увеличения теплоотдачи радиаторов:
Первый способ – это регулярная влажная уборка и очистка поверхности радиатора. Чем чище радиатор, тем выше уровень его теплоотдачи. Также важно правильно окрашивать радиатор, особенно если вы используете чугунные секционные батареи. Толстый слой краски препятствует эффективному теплообмену, потому перед покраской батарей необходимо удалить с них слой старой краски.
Также эффективно будет использование специальных красок для труб и радиаторов, имеющих низкое сопротивление теплопередаче. Чтобы радиатор обеспечивал максимальную мощность, его нужно правильно смонтировать. Среди наиболее распространенных ошибок в монтаже радиаторов специалисты выделяют наклон батареи, установку слишком близко к полу или стене, перекрытие радиаторов неподходящими экранами или предметами интерьера
.
Правильный и неправильный монтаж Для повышения эффективности можно также провести ревизию внутренней полости радиатора. Часто при подключении батареи к системе остаются заусенцы, на которых со временем образуется засор, препятствующий движению теплоносителя. Еще одним способом обеспечения максимально отдачи является монтаж на стену за радиатором теплоотражающего экрана из фольгированного материала. Особенно эффективен данный способ при усовершенствовании радиаторов, установленных на наружных стенах здания.
Как превратить разряженную батарею в грелку для рук «MacGyverisms :: WonderHowTo
Мой наименее любимый аспект зимнего сезона — это то, как мои пальцы всегда превращаются в жесткие, онемевшие пальцы, бесчувственные и, казалось бы, неспособные сделать даже малейшее движение. Да, это может показаться чрезмерным драматизмом, но если вы ненавидите носить перчатки, как я, вы, вероятно, знаете, о чем я.
Помещение рук в карманы помогает уберечь руки от ледяного холода, но если вы действительно хотите согреть их, подумайте о том, чтобы бросить туда пару разряженных батарей.Серьезно.
По словам пользователя Instructables Джейсона Поэла Смита, вместо того, чтобы покупать одноразовые грелки для рук или делать вязаные грелки для рук или подогреватели для микроволновой печи, все, что вам нужно, чтобы согреть руки, — это старые, разряженные батареи. В них еще осталось немного сока, поэтому, хотя его может не хватить для питания ваших гаджетов, его достаточно для выработки тепла.
Возьмите любую щелочную батарею, которая перестала работать, в вашем пульте дистанционного управления телевизором, игровом контроллере или любом электронном устройстве, которое питается от батареек.Затем используйте резистор 1 Ом (или провод аналогичной длины с сопротивлением 1 Ом), чтобы создать перемычку между положительной (+) и отрицательной (-) клеммами. (Другие в Интернете предлагают использовать алюминиевую фольгу вместо провода или резистора, но мы стараемся перестраховаться.)
По мере того, как через эту проводку выделяются последние остатки энергии, будет выделяться небольшое количество тепла, и вы » Получу несколько минут теплых, поджаренных рук. Если вы весь день проводите на морозе, вы можете в конце концов использовать эти одноразовые грелки для рук или сделать свои собственные версии «горячего льда», но если вам просто нужно несколько минут тепла, это хороший способ получить максимум от тех дорогих батарей, которые вы покупаете.
Предупреждение о безопасности
Конечно, соединение двух концов разряженной или умирающей батареи вместе требует некоторых мер безопасности. Всегда следите за тем, чтобы используемые вами батареи были щелочными, а не литиевыми; литиевые батареи имеют тенденцию взорваться при разряде, и даже более склонны к взрыву, если это делается быстро.
Делайте это только с почти разряженными батареями. Если вы используете новую батарею, она будет выделять намного больше тепла и может сжечь резистор и обжечь вам руку.По словам Смита, для новых батарей вам потребуется резистор на 10 Ом.
Хотите освоить Microsoft Excel и вывести свои перспективы работы на дому на новый уровень? Начните свою карьеру с нашего пакета обучения Microsoft Excel Premium A-to-Z из нового магазина гаджетов и получите пожизненный доступ к более чем 40 часам инструкций от базового до продвинутого по функциям, формулам, инструментам и многому другому.
Купить сейчас (97% скидка)>
Другие выгодные предложения, которые стоит приобрести:
Изображение обложки через Shutterstock; все остальные фотографии предоставлены Джейсоном Поэлом Смитом / Instructables
Управление температурным режимом батареи
Температурные эффекты
Пределы рабочих температур
Все батареи зависят от своего действия в электрохимическом процессе, будь то зарядка или разрядка, и мы знаем, что эти химические реакции в некотором роде зависят от температуры.Номинальная производительность батареи обычно указывается для рабочих температур где-то в диапазоне от + 20 ° C до + 30 ° C, однако фактическая производительность может существенно отличаться от этого, если батарея эксплуатируется при более высоких или более низких температурах. См. Температурные характеристики для получения типичных графиков производительности.
Закон Аррениуса говорит нам, что скорость, с которой протекает химическая реакция, увеличивается экспоненциально с повышением температуры (см. Срок службы батареи).Это позволяет получать больше мгновенной энергии от батареи при более высоких температурах. В то же время более высокие температуры улучшают подвижность электронов или ионов, уменьшая внутренний импеданс ячейки и увеличивая ее емкость.
В верхней части шкалы высокие температуры могут также вызвать нежелательные или необратимые химические реакции и / или потерю электролита, что может вызвать необратимое повреждение или полный выход батареи из строя. Это, в свою очередь, устанавливает верхний предел рабочей температуры для аккумулятора.
В нижней части шкалы электролит может замерзнуть, что приведет к ограничению низкотемпературных характеристик. Но значительно выше точки замерзания электролита производительность батареи начинает ухудшаться, поскольку скорость химической реакции снижается. Даже если батарея может работать при температурах до -20 ° C или -30 ° C, производительность при 0 ° C и ниже может быть серьезно снижена.
Также обратите внимание, что нижний рабочий предел температуры батареи может зависеть от ее состояния заряда.Например, в свинцово-кислотном аккумуляторе по мере разряда аккумулятора сернокислый электролит становится все более разбавленным водой, и его точка замерзания соответственно увеличивается.
Таким образом, аккумулятор необходимо поддерживать в ограниченном диапазоне рабочих температур, чтобы можно было оптимизировать как емкость заряда, так и срок службы. Поэтому для практической системы может потребоваться как нагрев, так и охлаждение, чтобы поддерживать ее не только в рабочих пределах, указанных производителем батареи, но и в более ограниченном диапазоне для достижения оптимальной производительности.
Управление температурным режимом заключается не только в соблюдении этих ограничений. Батарея подвержена нескольким одновременным внутренним и внешним тепловым воздействиям, которые необходимо контролировать.
Источники тепла и водоотводы
Электрический нагрев (Джоулев нагрев)
При работе любой батареи выделяется тепло из-за потерь I 2 R, поскольку ток течет через внутреннее сопротивление батареи, независимо от того, заряжается она или разряжается.Это также известно как Джоулев нагрев. В случае разряда общая энергия внутри системы фиксирована, а повышение температуры будет ограничено доступной энергией. Однако это все еще может вызвать очень высокие локальные температуры даже в батареях с низким энергопотреблением. Во время зарядки такое автоматическое ограничение не применяется, так как нет ничего, что могло бы помешать пользователю продолжать подавать электроэнергию в аккумулятор после того, как он полностью зарядился. Это может быть очень рискованная ситуация.
Разработчики аккумуляторов стремятся поддерживать внутреннее сопротивление ячеек как можно более низким, чтобы минимизировать тепловые потери или тепловыделение внутри батареи, но даже с сопротивлением элементов всего 1 миллиОм нагрев может быть значительным.См. Примеры в разделе «Влияние внутреннего импеданса».
Термохимический нагрев и охлаждение
Помимо джоулева нагрева, химические реакции, протекающие в ячейках, могут быть экзотермическими, добавляясь к выделяемому теплу, или они могут быть эндотермическими, поглощая тепло в процессе химического воздействия. Поэтому перегрев с большей вероятностью будет проблемой с экзотермическими реакциями, в которых химическая реакция усиливает тепло, выделяемое током, а не с эндотермическими реакциями, когда химическое воздействие ему противодействует.В аккумуляторных батареях, поскольку химические реакции обратимы, химические вещества, являющиеся экзотермическими во время зарядки, будут эндотермическими во время разряда и наоборот. Так что от проблемы никуда не деться. В большинстве ситуаций Джоулев нагрев будет превышать эффект эндотермического охлаждения, поэтому меры предосторожности все же необходимо принимать.
Свинцово-кислотные аккумуляторы экзотермичны во время зарядки, а аккумуляторы VRLA склонны к тепловому разгоне (см. Ниже). NiMH-элементы также являются экзотермическими во время зарядки, и по мере приближения к полной зарядке температура элемента может резко повыситься.Следовательно, зарядные устройства для никель-металлгидридных элементов должны быть спроектированы так, чтобы определять это повышение температуры и отключать зарядное устройство, чтобы предотвратить повреждение элементов. Напротив, никелевые батареи с щелочными электролитами (NiCad) и литиевые батареи эндотермичны во время зарядки. Тем не менее, при зарядке этих аккумуляторов возможен тепловой разгон, если они подвержены перезарядке.
Термохимия литиевых элементов немного сложнее, в зависимости от степени внедрения ионов лития в кристаллическую решетку.Во время зарядки реакция сначала является эндотермической, а затем переходит в слегка экзотермическую в течение большей части цикла зарядки. Во время разряда реакция обратная, сначала экзотермическая, затем переходящая в слегка эндотермическую на протяжении большей части цикла разряда. Как и в других химических реакциях, эффект джоулевого нагрева больше, чем термохимический эффект, пока ячейки остаются в пределах своих проектных ограничений.
Внешнее тепловое воздействие
Тепловое состояние аккумулятора также зависит от окружающей среды.Если его температура выше температуры окружающей среды, он будет терять тепло из-за теплопроводности, конвекции и излучения. Если окружающая температура выше, аккумулятор будет нагреваться от окружающей среды. Когда температура окружающей среды очень высока, система управления температурным режимом должна работать очень усердно, чтобы поддерживать температуру под контролем. Одиночный элемент может очень хорошо работать при комнатной температуре сам по себе, но если он является частью аккумуляторной батареи, окруженной одинаковыми ячейками, которые выделяют тепло, даже если он несет одинаковую нагрузку, он может значительно превысить свои температурные пределы.
Температура — ускоритель
Конечным результатом термоэлектрических и термохимических эффектов, возможно, усиленных условиями окружающей среды, обычно является повышение температуры, и, как мы отметили выше, это вызывает экспоненциальное увеличение скорости протекания химической реакции. Мы также знаем, что при чрезмерном повышении температуры может произойти много неприятностей
- Активные химические вещества расширяются, вызывая набухание клетки
- Механическое искажение компонентов ячейки может привести к короткому замыканию или разрыву цепи
- Могут происходить необратимые химические реакции, вызывающие необратимое снижение количества активных химикатов и, следовательно, емкости элемента
- Продолжительная работа при высоких температурах может вызвать растрескивание пластиковых частей ячейки
- Повышение температуры вызывает ускорение химической реакции, повышение температуры еще больше и может привести к тепловому разгоне
- Газы могут выделяться
- Давление внутри ячейки
- Ячейка может в конечном итоге разорваться или взорваться
- Могут выделяться токсичные или легковоспламеняющиеся химические вещества
- Судебные иски последуют за
Тепловая мощность — конфликт
По иронии судьбы, поскольку инженеры по аккумуляторным батареям стремятся втиснуть все больше и больше энергии во все меньшие объемы, разработчику приложений становится все труднее получить ее снова.К сожалению, большая сила батарей с новыми технологиями является также источником их наибольшей слабости.
Теплоемкость объекта определяет его способность поглощать тепло. Проще говоря, для заданного количества тепла, чем больше и тяжелее объект, тем меньше будет повышение температуры, вызванное теплом.
В течение многих лет свинцово-кислотные батареи были одними из немногих источников питания, доступных для приложений большой мощности.Из-за их большого размера и веса повышение температуры во время работы не было большой проблемой. Но в поисках меньших и легких батарей с большей мощностью и плотностью энергии неизбежным следствием является уменьшение тепловой емкости батареи. Это, в свою очередь, означает, что для данной выходной мощности повышение температуры будет выше.
(Это предполагает аналогичный внутренний импеданс и аналогичные термохимические свойства, что не обязательно так.В результате отвод тепла является серьезной инженерной проблемой для батарей с высокой плотностью энергии, используемых в приложениях с высокой мощностью. Разработчики ячеек разработали инновационные методы строительства ячеек, чтобы отводить тепло от ячейки. Разработчики аккумуляторных батарей должны найти столь же инновационные решения, чтобы избавить аккумулятор от тепла.
Температурные характеристики аккумуляторных батарей EV и HEV
Аналогичные конфликты возникают с аккумуляторами электромобилей и сверхвысокого напряжения.Аккумулятор электромобиля большой, с хорошими возможностями рассеивания тепла за счет конвекции и теплопроводности и подвержен небольшому повышению температуры из-за своей высокой теплоемкости. С другой стороны, батарея HEV с меньшим количеством ячеек, но каждая из которых имеет более высокий ток, должна выдерживать ту же мощность, что и батарея EV, менее чем на одну десятую размера. Благодаря более низкой теплоемкости и более низким характеристикам рассеивания тепла это означает, что аккумулятор HEV будет подвергаться гораздо более высокому повышению температуры.
Принимая во внимание необходимость поддерживать работу элементов в допустимом температурном диапазоне (см. Срок службы в разделе «Отказы литиевой батареи»), аккумулятор электромобиля с большей вероятностью столкнется с проблемами, связанными с поддержанием его тепла на нижнем конце диапазона температур, в то время как аккумулятор HEV с большей вероятностью будет иметь проблемы с перегревом в условиях высоких температур, даже если они оба рассеивают одинаковое количество тепла.
В случае электромобиля при очень низких температурах окружающей среды самонагрев (нагрев I 2 R) за счет протекания тока во время работы, скорее всего, будет недостаточным для повышения температуры до желаемых рабочих уровней из-за большого размера батареи и для повышения температуры могут потребоваться внешние нагреватели. Это может быть обеспечено за счет отвода части емкости батареи на обогрев. С другой стороны, такое же тепловыделение I 2 R в аккумуляторной батарее HEV, работающей в высокотемпературных средах, может привести к тепловому разгоном, и необходимо обеспечить принудительное охлаждение.
См. Также Технические характеристики EV, HEV и PHEV в разделе «Тяговые батареи»
.
Термический побег
Рабочая температура, достигаемая в батарее, является результатом увеличения температуры окружающей среды за счет тепла, выделяемого батареей. Если аккумулятор подвергается чрезмерному току, возникает возможность теплового разгона, что приводит к катастрофическому разрушению аккумулятора.Это происходит, когда скорость выделения тепла внутри батареи превышает ее способность рассеивания тепла. Это может произойти при нескольких условиях:
- Первоначально тепловые потери I 2 R зарядного тока, протекающего через элемент, нагревают электролит, но сопротивление электролита уменьшается с температурой, так что это, в свою очередь, приведет к более высокому току, вызывающему еще более высокую температуру, усиление реакции до достижения состояния выхода из-под контроля.
- Во время зарядки зарядный ток вызывает экзотермическую химическую реакцию химических веществ в элементе, которая усиливает тепло, выделяемое зарядным током.
- Или во время отвода тепла, возникающего в результате экзотермического химического воздействия, генерирующего ток, усиливает резистивный нагрев из-за протекания тока внутри элемента.
- Слишком высокая температура окружающей среды.
- Недостаточное охлаждение
Если не будут приняты некоторые защитные меры, последствия теплового разгона могут привести к расплавлению элемента или повышению давления, что приведет к взрыву или пожару в зависимости от химического состава и конструкции элемента. Более подробную информацию см. В разделе «Неисправности литиевых батарей».
Система терморегулирования должна держать все эти факторы под контролем.
Примечание
Температурный разгон может произойти во время зарядки свинцово-кислотных батарей с регулируемым клапаном, когда выделение газа запрещено, а рекомбинация способствует повышению температуры. Это не относится к залитым свинцово-кислотным аккумуляторным батареям, поскольку электролит выкипает.
Контроль температуры
Обогрев
Относительно легко справиться с низкотемпературными условиями эксплуатации.В простейшем случае в батарее обычно достаточно энергии для питания самонагревательных элементов, которые постепенно доводят батарею до более эффективной рабочей температуры, когда нагреватели могут быть отключены. В некоторых случаях достаточно, чтобы аккумулятор не перезаряжался, когда он не используется. В более сложных случаях, например, с высокотемпературными батареями, такими как батарея Zebra, работающая при температурах, значительно превышающих нормальные температуры окружающей среды, может потребоваться некоторый внешний обогрев, чтобы довести батарею до рабочей температуры при запуске, и может потребоваться специальная теплоизоляция для поддержания температуру как можно дольше после выключения.
Охлаждение
Для маломощных батарей достаточно обычных схем защиты, чтобы поддерживать батарею в рекомендуемых пределах рабочих температур. Однако цепи большой мощности требуют особого внимания к управлению температурным режимом.
Проектные цели
- Защита от перегрева —
В большинстве случаев это просто включает в себя мониторинг температуры и прерывание пути тока, если температура при достижении температурных пределов достигается с использованием обычных схем защиты.Хотя это предотвратит повреждение аккумулятора от перегрева, оно, тем не менее, может отключить аккумулятор до того, как будет достигнут предел допустимой нагрузки по току, что серьезно ограничит его производительность. - Рассеивание избыточного тепла —
Удаление тепла из батареи позволяет переносить более высокие токи до достижения температурных пределов. Тепло выходит из батареи за счет конвекции, теплопроводности и излучения, и задача разработчика блока состоит в том, чтобы максимизировать эти естественные потоки, поддерживая низкую температуру окружающей среды, обеспечивая прочный, хороший путь теплопроводности от батареи (используя металлические охлаждающие стержни или пластины между ячейки, если необходимо), максимально увеличив площадь его поверхности, обеспечив хороший естественный поток воздуха через или вокруг блока и установив его на проводящей поверхности. - Равномерное распределение тепла —
- Минимальная прибавка в весе —
Для приложений с очень высокой мощностью, таких как тяговые батареи, используемые в электромобилях и HEV, естественного охлаждения может быть недостаточно для поддержания безопасной рабочей температуры, и может потребоваться принудительное охлаждение. Это должно быть последним средством, поскольку это усложняет конструкцию батареи, увеличивает ее вес и потребляет электроэнергию.Однако, если принудительное охлаждение неизбежно, первым выбором будет принудительное воздушное охлаждение с помощью вентилятора или вентиляторов. Это относительно просто и недорого, но теплоемкость теплоносителя, воздуха, который предназначен для отвода тепла, относительно мала, что ограничивает его эффективность. В худшем случае может потребоваться жидкостное охлаждение.
Для очень высоких скоростей охлаждения требуются рабочие жидкости с более высокой теплоемкостью. Вода обычно является первым выбором, поскольку она недорогая, но можно использовать и другие жидкости, такие как этиленгликоль (антифриз), которые имеют лучшую теплоемкость.Вес хладагента, насосы для его циркуляции, рубашки охлаждения вокруг ячеек, трубопроводы и коллекторы для транспортировки и распределения хладагента, а также радиатор или теплообменник для его охлаждения — все это значительно увеличивает общий вес, сложность и стоимость. батареи. Эти штрафы вполне могут перевесить выгоды, которые, как ожидается, будут достигнуты за счет использования химического состава батарей с высокой плотностью энергии.
Даже несмотря на то, что тепловая конструкция батареи может быть более чем достаточной для рассеивания общего тепла, выделяемого батареей, внутри батареи все же могут быть локализованные горячие точки, которые могут превышать указанные температурные пределы. Это может быть проблемой для ячеек в середине многоячеечной упаковки, которая будет окружена теплыми или горячими ячейками по сравнению с внешними ячейками в упаковке, которые обращены к более прохладной среде.
Температурный градиент аккумулятора может серьезно повлиять на срок его службы. Закон Аррениуса указывает, что с увеличением температуры на каждые 10 ° C скорость химической реакции увеличивается примерно вдвое. Это создает несбалансированную нагрузку на элементы в батарее, а также усугубляет любой возрастной износ элементов. См. Также «Взаимодействие между ячейками и балансировка ячеек».
Разделение ячеек во избежание этой проблемы увеличивает объем упаковки.Для выявления потенциальных проблемных участков может потребоваться тепловидение.
Пассивное рассеяние можно еще больше улучшить, установив ячейки в блок из теплопроводящего материала, который действует как теплоотвод. Теплопередача от ячеек может быть максимизирована, если для этой цели используется материал с фазовым переходом (PCM), поскольку он также поглощает скрытую теплоту фазового перехода при переходе из твердого в жидкое состояние. Находясь в жидком состоянии, конвекция также вступает в игру, увеличивая потенциал теплового потока и выравнивая температуру в аккумуляторной батарее.Для этого применения доступны графитовые губчатые материалы с высокой проводимостью, пропитанные воском, который поглощает дополнительное тепло, когда температура достигает точки плавления.
Рекуперация тепла
В некоторых приложениях, таких как электромобили, как отмечалось выше, есть возможность использовать отработанное тепло для обогрева салона, и большинство автомобильных систем включают в себя некоторую форму интеграции управления температурным режимом аккумуляторной батареи с системами климат-контроля транспортного средства.Однако это полезно только в холодную погоду. В жарком климате высокая температура окружающей среды ложится дополнительным бременем на управление температурным режимом батареи.
Теплопередача, удельная теплоемкость и калориметрия — University Physics Volume 2
Цели обучения
К концу этого раздела вы сможете:
- Объясните явления с участием тепла как формы передачи энергии
- Решение проблем, связанных с теплопередачей
В предыдущих главах мы видели, что энергия — одно из фундаментальных понятий физики. Тепло — это тип передачи энергии, который вызывается разницей температур и может изменять температуру объекта. Как мы узнали ранее в этой главе, теплопередача — это движение энергии от одного места или материала к другому в результате разницы температур. Передача тепла имеет фундаментальное значение для таких повседневных действий, как отопление и приготовление пищи, а также для многих промышленных процессов. Он также составляет основу тем, которые будут рассмотрены в оставшейся части этой главы.
Мы также вводим понятие внутренней энергии, которая может быть увеличена или уменьшена за счет теплопередачи.Мы обсуждаем другой способ изменить внутреннюю энергию системы, а именно выполнение работы над ней. Таким образом, мы начинаем изучение взаимосвязи тепла и работы, которая является основой двигателей и холодильников и центральной темой (и источником названия) термодинамики.
Внутренняя энергия и тепло
Тепловая система имеет внутренней энергии (также называемой тепловой энергией ) , которая является суммой механических энергий ее молекул. Внутренняя энергия системы пропорциональна ее температуре.Как мы видели ранее в этой главе, если два объекта с разной температурой приводят в контакт друг с другом, энергия передается от более горячего объекта к более холодному, пока тела не достигнут теплового равновесия (то есть они имеют одинаковую температуру). Ни один из объектов не совершает никакой работы, потому что никакая сила не действует на расстоянии (как мы обсуждали в разделе Работа и кинетическая энергия). Эти наблюдения показывают, что тепло — это энергия, спонтанно передаваемая из-за разницы температур. (Рисунок) показывает пример теплопередачи.
(а) Здесь безалкогольный напиток имеет более высокую температуру, чем лед, поэтому они не находятся в тепловом равновесии. (b) Когда безалкогольный напиток и лед могут взаимодействовать, тепло передается от напитка ко льду из-за разницы температур, пока они не достигнут одинаковой температуры, что приводит к достижению равновесия. Фактически, поскольку безалкогольный напиток и лед находятся в контакте с окружающим воздухом и скамейкой, конечная равновесная температура будет такой же, как и температура окружающей среды.
Значение «тепла» в физике отличается от его обычного значения.Например, в разговоре мы можем сказать, что «жара была невыносимой», но в физике мы бы сказали, что температура была высокой. Тепло — это форма потока энергии, а температура — нет. Между прочим, люди чувствительны к тепловому потоку , а не к температуре.
Поскольку тепло — это форма энергии, в системе СИ единицей измерения является джоуль (Дж). Другой распространенной единицей энергии, часто используемой для получения тепла, является калория (кал), определяемая как энергия, необходимая для изменения температуры 1,00 г воды, в частности, между и, поскольку существует небольшая температурная зависимость.Также обычно используется килокалория (ккал), которая представляет собой энергию, необходимую для изменения температуры 1,00 кг воды на. Так как масса чаще всего указывается в килограммах, то килокалория удобна. Как ни странно, пищевые калории (иногда называемые «большими калориями», сокращенно Cal) на самом деле являются килокалориями, что нелегко определить по маркировке упаковки.
Механический эквивалент тепла
Также можно изменить температуру вещества, выполняя работу, которая передает энергию в систему или из нее.Это понимание помогло установить, что тепло — это форма энергии. Джеймс Прескотт Джоуль (1818–1889) провел множество экспериментов, чтобы установить механический эквивалент тепла — работа, необходимая для получения тех же эффектов, что и передача тепла . В единицах, используемых для этих двух величин, эквивалентность равна
.
Мы считаем, что это уравнение представляет преобразование между двумя единицами энергии. (Другие числа, которые вы можете увидеть, относятся к калориям, определенным для температурных диапазонов, отличных от до.)
(рисунок) показывает одну из самых известных экспериментальных установок Джоуля для демонстрации того, что работа и тепло могут производить одни и те же эффекты, и измерения механического эквивалента тепла. Это помогло установить принцип сохранения энергии. Гравитационная потенциальная энергия ( U ) была преобразована в кинетическую энергию ( K ), а затем рандомизирована по вязкости и турбулентности в увеличенную среднюю кинетическую энергию атомов и молекул в системе, что привело к увеличению температуры.Вклад Джоуля в термодинамику был настолько значительным, что в его честь была названа единица энергии в системе СИ.
Эксперимент Джоуля установил эквивалентность тепла и работы. По мере того, как массы спускались, они заставляли весла работать на воде. Результатом стало повышение температуры, измеренное термометром. Джоуль обнаружил, что он пропорционален W и, таким образом, определил механический эквивалент тепла.
Увеличение внутренней энергии за счет теплопередачи дает тот же результат, что и увеличение ее за счет выполнения работы.Следовательно, хотя система имеет четко определенную внутреннюю энергию, мы не можем сказать, что она имеет определенное «теплосодержание» или «рабочее содержание». Четко определенная величина, которая зависит только от текущего состояния системы, а не от истории этой системы, называется переменной состояния . Температура и внутренняя энергия являются переменными состояния. Подводя итог этому абзацу, тепло и работа не являются переменными состояния .
Между прочим, увеличение внутренней энергии системы не обязательно увеличивает ее температуру.Как мы увидим в следующем разделе, температура не меняется, когда вещество переходит из одной фазы в другую. Примером может служить таяние льда, которое может быть достигнуто путем добавления тепла или выполнения работы трения, например, когда кубик льда трется о шероховатую поверхность.
Изменение температуры и теплоемкость
Мы отметили, что теплопередача часто вызывает изменение температуры. Эксперименты показывают, что без фазового перехода и без какой-либо работы над системой или ею переданное тепло обычно прямо пропорционально изменению температуры и массы системы в хорошем приближении.(Ниже мы покажем, как действовать в ситуациях, когда приближение неверно.) Константа пропорциональности зависит от вещества и его фазы, которая может быть газом, жидкостью или твердым телом. Мы опускаем обсуждение четвертой фазы, плазмы, потому что, хотя это наиболее распространенная фаза во Вселенной, она редка и недолговечна на Земле.
Мы можем понять экспериментальные факты, заметив, что передаваемое тепло — это изменение внутренней энергии, которая представляет собой полную энергию молекул.В типичных условиях полная кинетическая энергия молекул составляет постоянную долю внутренней энергии (по причинам и за исключениями, которые мы увидим в следующей главе). Средняя кинетическая энергия молекулы пропорциональна абсолютной температуре. Следовательно, изменение внутренней энергии системы обычно пропорционально изменению температуры и количеству молекул, N . Математически зависимость от вещества в значительной степени обусловлена разной массой атомов и молекул.Мы рассматриваем его теплоемкость с точки зрения его массы, но, как мы увидим в следующей главе, в некоторых случаях теплоемкость на молекулу одинакова для разных веществ. Зависимость от вещества и фазы также является результатом различий в потенциальной энергии, связанной с взаимодействиями между атомами и молекулами.
Значения удельной теплоемкости обычно необходимо измерять, потому что нет простого способа их точно рассчитать. (Рисунок) показывает типичные значения теплоемкости для различных веществ.Из этой таблицы видно, что удельная теплоемкость воды в пять раз больше, чем у стекла и в 10 раз больше, чем у железа, что означает, что для повышения температуры воды на определенное количество тепла требуется в пять раз больше тепла, чем у стекла, и в 10 раз больше. столько, сколько по железу. Фактически, вода имеет одну из самых высоких удельной теплоемкости из всех материалов, что важно для поддержания жизни на Земле.
Удельная теплота газов зависит от того, что поддерживается постоянным во время нагрева — обычно от объема или давления.В таблице первое значение удельной теплоемкости для каждого газа измерено при постоянном объеме, а второе (в скобках) измерено при постоянном давлении. Мы вернемся к этой теме в главе, посвященной кинетической теории газов.
Как правило, удельная теплоемкость также зависит от температуры. Таким образом, точное определение c для вещества должно быть дано в терминах бесконечно малого изменения температуры. Для этого отметим это и заменим на d :
За исключением газов, температурная и объемная зависимость удельной теплоемкости большинства веществ слабая при нормальных температурах.Следовательно, мы обычно принимаем удельную теплоемкость постоянными и равными значениям, указанным в таблице.
(рисунок) иллюстрирует повышение температуры, вызванное работой. (Результат такой же, как если бы такое же количество энергии было добавлено с помощью паяльной лампы, а не механически.)
Расчет повышения температуры в результате работы, проделанной на грузовике с веществом. Тормоза, используемые для контроля скорости на спуске, выполняют свою работу, преобразуя гравитационную потенциальную энергию в повышенную внутреннюю энергию (более высокую температуру) тормозного материала ((рисунок)).Это преобразование предотвращает преобразование потенциальной гравитационной энергии в кинетическую энергию грузовика. Поскольку масса грузовика намного больше массы тормозного материала, поглощающего энергию, повышение температуры может происходить слишком быстро, чтобы тепло от тормозов передавалось в окружающую среду; Другими словами, тормоза могут перегреться.
Дымящиеся тормоза тормозной тележки — видимое свидетельство механического эквивалента тепла.
Рассчитайте повышение температуры 10 кг тормозного материала со средней удельной теплоемкостью, если материал удерживает 10% энергии от спускающегося грузовика массой 10 000 кг 75.0 м (при вертикальном перемещении) с постоянной скоростью.
Стратегия
Мы вычисляем гравитационную потенциальную энергию ( Mgh ), которую весь грузовик теряет при спуске, приравниваем ее к увеличению внутренней энергии тормозов, а затем находим повышение температуры, возникающее только в тормозном материале.
Решение Сначала мы рассчитаем изменение гравитационной потенциальной энергии при спуске грузовика:
Поскольку кинетическая энергия грузовика не изменяется, закон сохранения энергии говорит нам, что потерянная потенциальная энергия рассеивается, и мы предполагаем, что 10% ее передается внутренней энергии тормозов, так что возьмите.Затем мы рассчитываем изменение температуры от переданного тепла, используя
, где м, — масса тормозного материала. Вставьте указанные значения, чтобы найти
Значение Если бы грузовик ехал некоторое время, то непосредственно перед спуском температура тормозов, вероятно, была бы выше, чем температура окружающей среды. Повышение температуры при спуске, вероятно, приведет к очень сильному повышению температуры тормозного материала, поэтому этот метод непрактичен.Вместо этого грузовик использовал бы технику торможения двигателем. Другая идея лежит в основе новейшей технологии гибридных и электрических автомобилей, в которой механическая энергия (кинетическая и гравитационная потенциальная энергия) преобразуется тормозами в электрическую энергию в аккумуляторе. Этот процесс называется регенеративным торможением.
В задачах общего типа объекты с разными температурами контактируют друг с другом, но изолированы от всего остального, и им позволяют прийти в равновесие.Контейнер, который предотвращает передачу тепла внутрь или наружу, называется калориметром, а использование калориметра для измерения (обычно теплоемкости или удельной теплоемкости) называется калориметрией.
Мы будем использовать термин «проблема калориметрии» для обозначения любой проблемы, в которой рассматриваемые объекты термически изолированы от своего окружения. Важная идея при решении задач калориметрии заключается в том, что во время передачи тепла между объектами, изолированными от их окружения, тепло, полученное более холодным объектом, должно равняться теплу, теряемому более горячим объектом, из-за сохранения энергии:
Мы выражаем эту идею, записывая, что сумма тепла равна нулю, потому что полученное тепло обычно считается положительным; тепло потеряно, отрицательное.
Расчет конечной температуры в калориметрии. Предположим, вы наливаете 0,250 кг воды (примерно чашку) в алюминиевую кастрюлю весом 0,500 кг, снятую с плиты, с температурой 0 ° C. Предположим, что теплопередача не происходит ни к чему другому: кастрюлю кладут на изолирующую подкладку, а теплопередачу воздуху не учитывают в течение короткого времени, необходимого для достижения равновесия. Таким образом, это проблема калориметрии, даже если не указан изолирующий контейнер. Также предположим, что выкипает незначительное количество воды.Какова температура, при которой вода и поддон достигают теплового равновесия?
Стратегия Изначально кастрюля и вода не находятся в тепловом равновесии: кастрюля имеет более высокую температуру, чем вода. Теплопередача восстанавливает тепловое равновесие при соприкосновении воды и поддона; он останавливается, когда достигается тепловое равновесие между поддоном и водой. Тепло, теряемое сковородой, равно теплу, полученному водой — это основной принцип калориметрии.
Решение
- Используйте уравнение теплопередачи, чтобы выразить тепло, теряемое алюминиевой сковородой, через массу сковороды, удельную теплоемкость алюминия, начальную температуру сковороды и конечную температуру:
- Выразите тепло, полученное водой, через массу воды, удельную теплоемкость воды, начальную температуру воды и конечную температуру:
- Обратите внимание, что и и что, как указано выше, они должны быть в сумме равными нулю:
- Поместите все термины с левой стороны, а все остальные термины с правой стороны.Решение для
и введите числовые значения:
Значение Почему конечная температура намного ближе к, чем к? Причина в том, что вода имеет большую удельную теплоемкость, чем большинство обычных веществ, и, следовательно, претерпевает меньшее изменение температуры при данной теплопередаче. Большой водоем, например озеро, требует большого количества тепла для значительного повышения температуры. Это объясняет, почему температура в озере остается относительно постоянной в течение дня, даже когда изменение температуры воздуха велико.Однако температура воды действительно меняется в течение длительного времени (например, с лета на зиму).
Проверьте свое понимание Если для повышения температуры породы необходимо 25 кДж, от какого количества тепла необходимо нагреть камень?
В хорошем приближении теплопередача зависит только от разницы температур. Поскольку разница температур в обоих случаях одинакова, во втором случае необходимы те же 25 кДж. (Как мы увидим в следующем разделе, ответ был бы другим, если бы объект был сделан из некоторого вещества, которое меняет фазу где-то между и.)
Температурно-зависимая теплоемкость При низких температурах удельная теплоемкость твердых тел обычно пропорциональна. Первое понимание этого поведения было связано с голландским физиком Питером Дебаем, который в 1912 году рассмотрел атомные колебания с помощью квантовой теории, которую Макс Планк недавно использовал для излучения. Например, хорошее приближение для удельной теплоемкости соли NaCl: Константа 321 K называется температурой Дебая NaCl, и формула хорошо работает, когда Используя эту формулу, сколько тепла требуется для повышения температуры 24.0 г NaCl от 5 К до 15 К?
Решение Поскольку теплоемкость зависит от температуры, нам нужно использовать уравнение
Мы решаем это уравнение для Q путем интегрирования обеих частей:
Затем подставляем данные значения и вычисляем интеграл:
Значение Если бы мы использовали уравнение и удельную теплоемкость соли при комнатной температуре, мы получили бы совсем другое значение.
Предотвращение распространения теплового разгона от ячейки к ячейке в литий-ионных батареях
Предполагается, что тепло, выделяемое триггерной ячейкой при тепловом разгоне (TR) в многоэлементных литий-ионных батареях, передается соседним элементам в основном за счет конвекции выбрасываемого горячего вещества (и в меньшей степени за счет прямого контакта и радиационной теплопередачи. ).Следовательно, удаление находящихся под напряжением материалов (выброса) из аккумуляторного отсека должно предотвратить распространение TR от ячейки к ячейке. Однако технические решения по сбросу выбросов из TR отдельной ячейки не в состоянии предотвратить распространение TR, что впоследствии приводит к возгоранию батареи. ИК-Фурье-спектроскопия в реальном времени выброса из ячейки, введенной в TR, демонстрирует, что большое количество сложных эфиров карбоната уже удалено из ячейки, прежде чем она попадет в TR. Отводимые горячие газы охлаждаются и конденсируются на поверхности соседних ячеек.Впоследствии, когда триггерная ячейка достигает TR, этот конденсат воспламеняется, передавая тепло и потенциально переводя принимающие ячейки в TR. Вычислительная гидродинамика и тепловое моделирование этого пути подтверждают экспериментальные данные. Численные результаты показывают, что часть растворителя, выпущенного из триггерной ячейки, достаточна для эффективного распространения TR. Наши результаты проливают новый свет на распространение тепла в многоэлементных литий-ионных батареях и предлагают новые методы предотвращения распространения TR.
В многоэлементной литий-ионной (литий-ионной) батарее распространение теплового разгона (TR) от одного элемента к другому представляет наибольший риск для пользователей батареи и ее рабочей среды. Распространение TR может генерировать большое количество тепла и огня, а также токсичных и коррозионных материалов, даже если TR начинается только с одной («триггерной») ячейки. Каскадные отказы между несколькими ячейками также могут привести к образованию высокоэнергетической шрапнели. Наиболее яркими примерами таких неудач являются крупные (например.g., электромобиль) по сравнению с отказами одноячеечных мобильных телефонов (последнее из-за плохо спроектированных элементов). Возрастающий рыночный спрос на электромобили, электросамокаты, роботы, летательные аппараты, электросети и развлекательную электронику требует больших многоячеечных литий-ионных аккумуляторов в огромных количествах. По мере увеличения количества таких батарей возрастает вероятность более крупных отказов батарей, которые могут вызвать пожары и взрывы.
Большая часть экспериментальных работ и моделирования TR в больших батареях была сосредоточена на процессах, происходящих внутри отдельного литий-ионного элемента. 1–3 До сих пор процессы распространения TR от ячейки к ячейке обсуждались только с точки зрения прямого контакта и радиационной теплопередачи, а также одновременной или последующей конвекции выбрасываемых горячих газов и твердых тел. Таким образом, существующие в настоящее время меры по предотвращению распространения TR ограничиваются использованием теплоизоляторов и противопожарных перегородок между ячейками, 4–6 естественной конвекцией и принудительным охлаждением, которые циркулируют хладагенты вокруг ячеек, 5,6 химикатов с фазовым переходом, 7 и антипирены в смеси с электролитом. 8–11 Недавняя работа Lopez et al. предполагает, что увеличение расстояния между соседними ячейками может снизить риск распространения. 12 За исключением естественного и принудительного охлаждения, большинство других методов не получили распространения в аккумуляторной промышленности в качестве мер по предотвращению распространения TR.
Хотя цели таких исследований 3,4,12 заключались в предотвращении распространения тепла, соответствующие протоколы предполагают, что они лучше подходят для задержки генерируемого внутри TR.Основное допущение при распространении TR состоит в том, что и энергия, и материал от триггерной ячейки транспортируются к «принимающим» ячейкам — всем клеткам, взаимодействующим с триггерной ячейкой и / или затронутым ею. Такое распространение TR происходит в основном за счет тепловой конвекции (и в меньшей степени за счет теплопроводности и излучения, как указано Lamb et al., 13 , и эта теплопередача инициирует TR в приемных ячейках. Таким образом, утверждается, что 5,6 которые отводят тепло от батарейного отсека за счет естественной или принудительной конвекции (например,g., вентиляционные каналы) должны исключить распространение TR от клетки к клетке. Например, естественная или принудительная конвекция может способствовать охлаждению элементов за счет резистивного тепла, выделяемого во время нормальной зарядки и разрядки. 5,6 Однако методы конвективного транспорта, обычно используемые в электромобилях, не реализованы в других больших литий-ионных батареях, корпус которых герметичен. Герметичные кожухи батареи являются эффективными ловушками тепла от TR в одной ячейке, тем самым способствуя распространению TR на другие ячейки в батарее.
Большинство технологических подходов, описанных выше 4–7,12 , имеют ограниченное применение в производстве батарей. Например, противопожарные перегородки и теплоизоляторы могут помочь предотвратить распространение TR, но они также предотвратят рассеяние тепла во время нормального заряда и разряда, тем самым увеличивая вероятность повреждения элементов и TR, вызванного нагревом. Добавление антипиренов к электролиту увеличивает внутреннее сопротивление элемента, увеличивая джоулев нагрев (или нагрев 2 R). 8–11 Идеальные свойства антипиренов в электролитах, описанные более десяти лет назад, по-прежнему остаются недосягаемыми. 14 Химические вещества с фазовым переходом не получили широкого распространения, вероятно, из-за увеличения веса и объема, которые по своей сути уменьшают гравиметрическую и объемную плотности энергии батареи. Снижение вероятности распространения TR за счет увеличения расстояния между клетками, предложенное Lopez et al. 12 представляется наиболее практичным среди всех предложенных методов.Увеличение расстояния увеличит объем батареи при небольшом увеличении ее веса, что является достойным компромиссом для повышения безопасности от пожара и взрыва. Моделирование теплового распространения также показало, что соответствующие воздушные зазоры и слюдяная изоляция в сочетании с теплопроводящей матрицей могут снизить риски TR в литий-ионных батареях. 15 В качестве метода подавления распространения TR от ячейки к ячейке было предложено охлаждение через мини-каналы соответствующей конструкции. 16
Здесь мы сообщаем о другом физико-химическом пути, который направляет более половины тепловой энергии, передаваемой от триггера к приемным ячейкам, через режим, не связанный с тремя описанными в настоящее время режимами (проводимость, конвекция и излучение). 4 Мы обнаружили, что обычно наблюдаемое, но в большинстве случаев игнорируемое явление, а именно выброс газообразного вещества из триггерной ячейки по мере того, как она прогрессирует, но до того, как она подвергнется действительной TR, по-видимому, в первую очередь отвечает за распространение TR. Мы используем методы высокоскоростной гиперспектральной визуализации и инфракрасного преобразования Фурье (FTIR), автономный химический анализ газовой хроматографии-масс-спектрометрии (GC-MS) сброшенных газов и гравиметрию для определения температуры, химического состава и масса предварительно вентилируемого вещества.Фактически, перед переходом в TR триггерная клетка выделяет большое количество органических карбонатных эфиров, которые легко воспламеняются. На выходе из ячейки выпущенные горячие газы охлаждаются и конденсируются в виде жидкости поверх соседних приемных ячеек. Впоследствии, когда триггерная ячейка переходит в режим TR, пламя воспламеняет жидкий растворитель, который горит на поверхности принимающих ячеек, передавая им тепло и потенциально переводя их в TR. Вычислительная гидродинамика (CFD) и тепловое моделирование этого четырехступенчатого пути — удаление растворителей из триггерной ячейки до TR; конденсация растворителя на приемных ячейках; поток горячего выброса из ТР в приемные ячейки; и выжигание растворителя на поверхности приемных ячеек — дополняют экспериментальные исследования.Численные результаты показывают, что небольшая часть общего растворителя, выпущенного из триггерной ячейки, достаточна для успешного распространения TR. Наши результаты проливают новый свет на процессы распространения тепла в многоэлементных литий-ионных батареях и предлагают новые методы предотвращения распространения TR.
Элемент и аккумулятор
В наших экспериментах были охарактеризованы элементы модели LG HG2 18650 (LG Corp, Южная Корея). Содержимое элементов LG HG2, включая угольный анод, органические растворители на основе карбоната, соль LiPF 6 в электролите, плавильные сепараторы и катод NMC, является типичным представителем наиболее часто используемых материалов в большинстве литий-ионных аккумуляторов. ионные элементы, производимые сегодня.Существует ряд опубликованных исследований, в которых обсуждается поведение TR в ячейках с аналогичным содержанием. 17,18 Свежеприготовленные элементы LG HG2 были подвергнуты циклическому кондиционированию: сначала разрядили при 21 ° C, со скоростью C / 4 до 2,7 В, затем полностью зарядили с использованием постоянного тока (скорость C / 4) — постоянного напряжения (CC- CV) до 4,2 В. Принудительный тепловой разгон был инициирован с помощью тонкопленочного нагревателя мощностью 20 Вт, намотанного вокруг цилиндрической поверхности ячейки. Термопара K-типа, прочно закрепленная рядом с положительным выводом, контролировала температуру поверхности ячейки (T surf ).Никелевые вкладки, приваренные к клеммам ячейки, были подключены к анализатору частотной характеристики Solartron, SI 1250 (Франция) через электрохимический интерфейс, SI 1287 (Франция). Нагреватель и провода удерживались на месте, обматывая их каптоновой лентой. Напряжение ячейки, импеданс и T surf постоянно контролировались во время нагрева. Собранная ячейка плотно удерживалась внутри трубки FR4 длиной 10 см и диаметром 19,2 см, причем положительный конец был утоплен примерно на 0,5 см от одного конца трубки.В этой сборке ячеек, когда инициировался тепловой разгон, ячейка почти всегда разрывалась на положительном конце, а не на отрицательном конце, и боковая стенка клетки повреждалась редко. Разрыв положительного вывода обычно приводил к образованию отверстия диаметром 0,6 см в месте расположения положительного вывода без повреждения обжима. Рентгеновский компьютерный томограф высокого разрешения (North Starr X-50) с разрешением вокселей 12,8 мкм м × 12,8 мкм м × 12.8 мкм м был использован для сканирования внутренней части интактной клетки до и после вентиляции перед TR (дополнительный рисунок S1, доступный онлайн на stacks.iop.org/JES/167/020559/mmedia). Мы также измерили температуру сбрасываемого газа вдоль выпускного канала с помощью термопар К-типа, расположенных в разных местах от выпускного клапана ячейки. Ячейку взвешивали до и после вентиляции, чтобы определить количество вентилируемого материала.
ИК-Фурье-спектроскопия
Испытания теплового разгона проводились на открытом воздухе, что позволило провести спектральные измерения выбросов путем правильного размещения гиперспектральных формирователей изображений и инфракрасных изображений с преобразованием Фурье (FTIR).Гиперспектральный формирователь изображения представляет собой спектрограф Starlight Xpress, содержащий направляющую камеру Lodestar CCD для визуального выравнивания и прикрепленный к монохромной охлаждаемой астрономической камере QHYCCD (модель QHY163M), используемой для сбора спектрального света. Возможности измерения прибора включают диапазон длин волн от 350 до 900 нм (с шагом ~ 300 нм), спектральное разрешение 0,25 нм со скоростью захвата 400 кадров в секунду. Длину волны калибруют с помощью источника лампы низкого давления Hg-Ar. FTIR-прибор представляет собой FTIR-спектрорадиометр ABB Bomem (модель MR304), содержащий детекторы MCT и InSb для одновременного сбора средневолнового ИК-диапазона (3–5 мкм, м) и длинноволнового ИК-диапазона (8–12 мкм мкм). спектральное излучение и откалибровано с помощью источника черного тела, отслеживаемого NIST.Два формирователя изображения находились подальше от камеры, они были сфокусированы на пути выброса. Две высокоскоростные (1 кадр мс -1 ) видеокамеры (Photron, модель SA4) фиксировали события до TR и TR. ИК-спектры излучения и поглощения с временным разрешением записывались со скоростью 2,5 мс на кадр с расстояния 170 см от трубки FR4 (удерживающей сборку кювет) при фокусировке на 12 см × Площадь поперечного сечения 12 см перед трубкой, из которой вышел выброс.Узел ячейки, провода, ведущие к измерителю импеданса, высокоскоростной видеокамере, гиперспектральным и ИК-спектрометрам показаны на дополнительном рис. S2.
Анализ ГХ / МС
Растворители, выпущенные клеткой до того, как она испытала TR, были охарактеризованы с помощью газовой хроматографии-масс-спектрометрии (ГХ-МС). В качестве инструмента использовали газовый хроматограф 7890 Agilent Technologies, США, с масс-спектрометром 5977 A. Выпущенные растворители сначала собирали в стеклянную бутыль, экстрагировали и подвергали анализу ГХ-МС (дополнительный рис.S3).
Моделирование
Пакет CFD ++ (Metacomp Technologies Inc., Агура-Хиллз, Калифорния) использовался для проведения моделирования вычислительной гидродинамики (CFD) выброшенного газа и выброшенного вещества. ATLAS (Аэротепловые нагрузки и напряжения: программа моделирования, разработанная в Лаборатории прикладной физики Джона Хопкинса) использовалась для теплового моделирования для оценки теплопередачи от горячего выброса к приемным ячейкам. Чертеж САПР геометрии вентиляционного канала для моделируемой батареи 3С15П показан на дополнительном рис.S4. Входные параметры, используемые в CFD-моделировании потока эжекции после TR в триггерной ячейке, перечислены в дополнительной таблице I. Тепловые свойства материалов элементов и батарей, а также параметры, используемые в CFD-моделировании вентиляции диметилкарбоната перед TR ( DMC) перечислены в дополнительных таблицах II и III соответственно.
Pre-TR вентиляция и анализ событий TR
Химические компоненты литий-ионного элемента могут быть весьма реактивными, хотя они стабильны при температурах ниже 80 ° C. 3 Нестабильность начинается, когда ячейка нагревается выше 85 ° C, когда защитный слой твердого электролита-межфазного слоя (SEI) на угольном аноде начинает разрушаться. 19 Затем следует экзотермическая реакция между анодом и электролитом, а также испарение и разложение органических растворителей при температуре от 85 ° C до 125 ° C. Большинство ячеек имеют выпускные клапаны и разрывную мембрану, которая содержится в устройстве прерывания тока (CID). Повышение температуры выше 85 ° C сопровождается выделением газов и повышением внутреннего давления.Когда давление достигает заданного значения (около 1224 кПа в большинстве ячеек), клапаны и разрывная мембрана открываются, чтобы выпустить газы и снизить внутреннее давление ячейки (дополнительный рисунок S1). Удаление воздуха обычно происходит, когда T surf находится в диапазоне от 125 ° C до 145 ° C. Выбрасываемые газы часто содержат легковоспламеняющиеся органические химические вещества, температура кипения которых может быть ниже 125 ° C. Существует несколько способов запуска TR в литий-ионном элементе, 13 , но в каждом случае возникновению TR предшествует повышение температуры элемента и вентиляция ячейки.Если температура элемента поднимается только до 145 ° C, он может не испытывать TR, но, скорее всего, он будет вентилироваться. Если температура элемента превышает 170 ° C, элемент может перейти в режим теплового разгона и сгореть в диапазоне от 190 ° C до 200 ° C. Зависимость между температурой поверхности ячейки (T surf ), напряжением ячейки (E cv ) и последовательностью вентиляции и TR показана на рис. 1.
Приблизить
Уменьшить
Сбросить размер изображения
Рисунок 1. Напряжение элемента (E cv ) как функция температуры поверхности элемента (T surf ) при равномерном нагревании. При температуре около 130 ° C камера выделяет газообразные органические растворители (летучие и легковоспламеняющиеся эфиры карбоната). И E cv , и T surf не чувствительны к вентиляции клеток до TR. Следовательно, мониторы напряжения ячеек и устанавливаемые на поверхность термопары не обнаруживают это событие вентиляции. Спустя более 30 секунд после вентиляции E cv колеблется перед падением до 0 В, предположительно из-за активации устройства прерывания тока в ячейке.
Загрузить рисунок:
Стандартный образ
Изображение высокого разрешения
Все литий-ионные элементы содержат смеси коротких линейных алифатических карбонатов в качестве растворителей электролитов. 2,3,20,21 Элемент LG HG2 18650 содержит смесь диметилкарбоната (DMC), этиленкарбоната (EC) и пропиленкарбоната (PC). Температуры кипения ЭК и ПК при нормальной температуре и давлении практически идентичны (242 ° C). DMC кипит при 90 ° C. Нагревая переразряженную ячейку выше 200 o C в течение более 3 часов, мы выпарили и удалили все растворители и оценили общую массу трех растворителей примерно в 4.4 г. Нагрев ячейки вызывает разрыв вентиляционных клапанов (дополнительный рис. S1), обычно между 125 ° C и 145 ° C T surf . Предположительно, внутренняя температура ячейки ниже, чем T surf , но выше точки кипения DMC. Продолжительность предварительной вентиляции TR составляет около 300 мс (дополнительный рисунок S7b). Температура сбрасываемого газа по вентиляционному каналу быстро снижается. На расстоянии 0,25 см от клапана температура DMC составляла 95 ° C, что указывает на то, что это газ, а на расстоянии 8 см и 20 см — 64 ° C и 21 ° C (температура окружающей среды) соответственно, что указывает на быструю конденсацию на коротких расстояниях. .Мы охарактеризовали газ, выходящий ниже 145 ° C, с помощью двух различных методов: ИК-Фурье-спектроскопия с временным разрешением на месте и автономный ГХ-МС анализ материала, собранного во время продувки. Большая часть материала, выходящего при температуре ниже 145 ° C, представляет собой DMC (рис. 2), независимо от состояния заряда вентиляционной ячейки. Спектр излучения FTIR показывает, что DMC выходит наружу в виде газа. Спектры испускания FTIR с временным разрешением показывают, что концентрация газа DMC уменьшается, тогда как спектры поглощения FTIR предполагают, что впоследствии он конденсируется в виде жидкости.
Приблизить
Уменьшить
Сбросить размер изображения
Рис. 2. (a) Спектры испускания FTIR, собранные за 35 мс, 27 мс и непосредственно (0 мс) до вентиляции перед TR (б) Спектры поглощения FTIR, собранные во время вентиляции перед TR. Красные графики на (a) и (b) — это спектры излучения и поглощения отходящего газа и жидкости, соответственно. Сравнение пиков на (а) со стандартом спектра излучения показывает, что газ представляет собой DMC; уменьшение пиковой интенсивности со временем указывает на пониженную концентрацию газа, поскольку он конденсируется в жидкость ближе к вентиляции перед TR.Черный график на (b) — это спектр поглощения контрольного образца (жидкий ДМК). Сопоставление со спектром конденсирующейся жидкости подтверждает, что выпущенный газ является ДМК. Синий график на (b) — это спектр поглощения окружающей среды (фон), собранный примерно за 1 с до вентиляции перед TR.
Загрузить рисунок:
Стандартный образ
Изображение высокого разрешения
Мы также проанализировали газ, выделяющийся во время вентиляции ячейки, собирая все выпущенные газы в чистую стеклянную бутыль при нагревании ячейки до 141 ° C (дополнительный рис.S3). Через несколько минут после выпуска весь выпущенный газ конденсируется в виде жидкости. Мы также проанализировали конденсированную жидкость с помощью ГХ-МС, и результаты подтверждают присутствие DMC в качестве доминирующего компонента с EC и PC в качестве второстепенных компонентов (дополнительный рисунок S3). Гравиметрические измерения показывают, что DMC составляет приблизительно 2,1 г.
Во время нагревания существует двухминутный интервал между продувкой до TR и TR, что позволило нам очистить ячейку от растворителя DMC. Если DMC не удален до TR, то при воспламенении выпущенных газов в свободном пространстве возникает пламя на расстоянии более 5 футов от ячейки, продолжающееся от 250 до 900 мс, как следует из высокоскоростного видео (дополнительный рис.S7a). Вентиляция, связанная с TR, приводит к выбросу 30 граммов твердых веществ, жидкостей и газов из ячейки в течение 1 с или меньше. Если DMC был удален во время продувки перед TR, пламя во время TR намного меньше. Когда DMC воспламеняется искровым устройством, он горит в течение примерно 300 мс, что свидетельствует о недолговечности события выброса горючего растворителя перед TR. После TR выбросы не содержат трех органических растворителей (DMC, EC и PC). Присутствуют CO 2 , CO и H 2 O, скорее всего, в результате полного окисления (сжигания) DMC, EC и PC.В выброшенном веществе также присутствует газообразный HF, который может растворяться в H 2 O с образованием фтористоводородной кислоты, мощного коррозионного реагента. Начальная температура всех газов во время TR составляет примерно 1500 ° C, которая снижается менее чем за секунду до примерно 600 ° C.
Walker et al. измерил тепло, выделяемое элементом LG HG2 18650 во время TR, с помощью «теплового калориметра разгона». Выделяемое тепло составляет около 49,8 кДж. 18 В их установке не было вентиляционного канала для выхода выпущенных газов.Это также продемонстрировало, что окислители, необходимые для сгорания, поступали не из внешней среды, а полностью из ячейки. Наши тесты TR проводятся на открытом воздухе, обеспечивая достаточное количество кислорода для горения. Они предположили, что основным компонентом, способствующим возгоранию во время TR, является DMC. Во всех наших тестах при нагревании ячейки сначала испускались DMC около 130 ° C, а затем TR около 190 ° C. Что еще более важно, изображение , FTIR показывает, что выброшенное вещество содержит все катодно-активные материалы.Они химически не повреждены, хотя их физическое состояние изменилось. Испытание методом ИК-Фурье на месте (данные не показаны) также выявило присутствие оксида кобальта и оксида марганца в парообразном состоянии, а также оксида никеля, появляющегося в виде твердого вещества, когда элемент подвергается TR. Эти три оксида металлов могут полностью окислять все органические растворители без воздействия кислорода воздуха, как было хорошо установлено. 22 Основываясь на стехиометрии химической реакции, мы определили, что количество оксидов, присутствующих в каждой ячейке LG HG2, достаточно для воспламенения и поджигания органических растворителей внутри ячейки.
Трехмерный CFD вентиляции до TR
Наши первоначальные результаты CFD выделяют контуры, соответствующие давлению, температуре, скорости и числу Маха в вентиляционном канале батареи без явного моделирования типа удаляемого газа (дополнительный рис. S5 ). Эти результаты предполагают, что для выбранной геометрии вентиляционного канала распространения TR не должно происходить. На самом деле эксперименты показывают, что даже в этом случае происходит распространение ТИ. Таким образом, мы расширили наше моделирование CFD, чтобы включить явное выделение DMC перед TR-клетками и его распределение по каналу.Входные параметры, используемые в этом расширенном моделировании CFD, перечислены в дополнительной таблице III.
Поскольку длительность вентиляции перед TR составляет около 300 мс, мы использовали 10 μ с в качестве временного шага в моделировании. Как уже было установлено, температура в вентиляционном канале составляет <90 ° C, что ниже точки кипения DMC. Поэтому в моделировании предполагается, что ДМК внутри канала находится в жидкой фазе. На рисунке 3 показаны результаты моделирования через 300 мс. В верхнем левом квадранте показано распределение массы DMC (объемные доли) вдоль вентиляционного канала (соответствующие значения массы DMC, нанесенного на верхнюю часть каждой приемной ячейки, перечислены в дополнительной таблице IV).Приблизительно 300 мг DMC выходит через пространство между верхним открытым концом вентиляционного канала и стенкой аккумуляторного контейнера. Никакой DMC не ускользнет через другой конец канала. Большая часть DMC остается внутри канала в виде жидкости, оседая на поверхности принимающих ячеек. Большая часть DMC откладывается поверх первых четырех клеток, третья клетка получает приблизительно 391 мг. Количество DMC, нанесенного на участки после 9-й ячейки, незначительно. Распределение изолиний температуры и давления предполагает, что они падают ближе к температуре окружающей среды за 9-й ячейкой.Изолинии скорости указывают на неламинарное течение по каналу.
Приблизить
Уменьшить
Сбросить размер изображения
Рис. 3. Результаты моделирования CFD выхода диметилкарбоната (DMC) из триггерной ячейки. Распределение жидкости DMC, а также распределения температуры, давления и скорости вдоль вентиляционного канала строятся через 300 мс после вентиляции перед TR.
Загрузить рисунок:
Стандартный образ
Изображение высокого разрешения
Моделирование теплового воздействия DMC, предварительно вентилируемого до TR, на принимающие клетки
Результаты моделирования CFD показывают, что более 200 мг DMC может накапливаться на поверхности каждой из по крайней мере пяти принимающих клеток.Критически важным для наших обсуждений, касающихся вентилируемого ДМК и распространения тепла в приемных ячейках, является теплота сгорания из-за ДМК. DMC представляет собой легковоспламеняющееся органическое соединение с ΔH c около 1,37 МДж · моль -1 (молекулярная масса DMC: 90,04 г · моль -1 ). Для 2,1 грамма DMC, ΔH c составляет приблизительно 32 кДж, что составляет более 60% от 49,8 кДж тепла, выделяемого элементом во время TR без удаления DMC. 18 Масса DMC (M dmc ), отложившаяся на приемной ячейке, тепло (ΔH c ), выделяемое наверху ячейки во время горения DMC, и доля этого тепла (ΔH f ) перенесенный в ячейку будет определять повышение внутренней температуры (T int ) и возможность перехода этой ячейки в TR.Используя методы CFD и теплового моделирования, мы оцениваем M dmc , ΔH f и T int на принимающих ячейках, чтобы определить критическое количество M dmc , необходимое для перевода принимающей ячейки в TR. Мы оцениваем вероятность инициирования TR в приемной ячейке при двух различных рабочих условиях. Первая итерация моделирования предполагает, что DMC, нанесенный на принимающую ячейку, воспламеняется до того, как триггерная ячейка переходит в TR. В таком упрощенном сценарии сгорание осажденного растворителя является единственным источником тепла.Во втором, более реалистичном сценарии моделирования, DMC, нанесенный на принимающую ячейку, воспламеняется одновременно с горячим выбросом из потока триггерных ячеек поверх принимающих ячеек. Во втором случае тепло от горячего выброса может добавляться к теплу от горючего растворителя, уже осажденного на приемной ячейке, и часть теплоты сгорания может уноситься текущим выбросом. Первый случай, когда поток выброса отсутствует, представляет собой более простой сценарий, позволяющий обучать и оценивать производительность алгоритмов моделирования.
Для первого сценария (DMC, нанесенный на принимающую ячейку, зажигается до того, как триггерная ячейка переходит в TR), были сделаны следующие упрощающие предположения. Предполагается, что ДМК равномерно осаждается поверх ячейки, а толщина слоя определяется на основании данных в дополнительной таблице IV. Результаты теплового и массового потока при моделировании CFD канала выброса (рис. 3) , а не , накладываются на однонаправленный тепловой поток от горения ДМК в верхней части приемной ячейки.Выделяющие тепло химические взаимодействия между растворителями и слоем SEI на аноде и катоде представляют собой термические реакции неуправляемого нагрева. Значения тепловых свойств электродов с желейным валом, жидкого электролита, стенки стальной банки и реакций теплового разгона взяты из Hatchard et al. 23 Тепловой поток от горящего ДМК распространяется только в одном направлении — внутрь ячейки. Предполагается, что все реакции завершатся через 10 с от начала. Сетка теплового моделирования одиночной приемной ячейки LG HG2 18650 представлена на рис.4а. Результаты моделирования теплового потока через 10 с для двух крайних случаев осаждения ДМК (22 мг и 103 мг) показаны на рис. 4б и 4в соответственно. На рисунке 5 показано графическое изображение эволюции T surf в результате теплового потока и возможных экзотермических реакций внутри ячейки, инициированных тепловым потоком. Тепло от 103 мг DMC при горении может вызвать TR, о чем свидетельствует резкое повышение температуры, начиная примерно с 245 ° C. Тепло от 22 мг DMC увеличивает температуру примерно до 50 ° C, но этого недостаточно для инициирования экзотермических реакций, ведущих к TR.Тепло от 95 мг и менее также не вызывает TR. Однако, если T surf достигает 150 ° C, потенциально эти клетки могут начать вентилировать и добавлять DMC поверх других ячеек, способствуя большему тепловыделению и направляя больше ячеек в TR (этот сценарий здесь не моделировался).
Приблизить
Уменьшить
Сбросить размер изображения
Рис. 4. (a) Сетка теплового моделирования (20 мм × 20 мм × 65 мм призматической формы), представляющая одну цилиндрическую ячейку LG HG2 18650, окруженную воздухом.DMC — это отложения на верхней части ячейки, где он воспламеняется. (b) и (c): результаты моделирования теплового потока для 22 мг и 103 мг осажденного ДМК, соответственно, демонстрирующие распределение температуры через 10 с после воспламенения. Значения тепловых свойств ячейки: SEI анода = 257 Дж · г -1 ; массовая доля 0,15; Литированный анод графит = 1714 Дж г -1 ; массовая доля 0,75; Катод = 314 Дж г -1 ; массовая доля 0,04; Остаточная массовая доля = 0,12. 23
Загрузить рисунок:
Стандартное изображение
Изображение высокого разрешения
Приблизить
Уменьшить
Сбросить размер изображения
Рисунок 5. Изменение температуры поверхности клетки в зависимости от массы осажденного ДМК, горящего на поверхности клетки.
Загрузить рисунок:
Стандартный образ
Изображение высокого разрешения
В более реалистичном втором сценарии (комбинированный тепловой эффект выброса из триггерной ячейки и горения ДМК) мы предполагаем, что не все тепло от горящего ДМК передается в приемную ячейку. На самом деле тепло распространяется во многих направлениях; кроме того, тепло, исходящее от горячего выбрасываемого вещества, течет также через канал.Кроме того, DMC сгорает только тогда, когда триггерная ячейка достигает TR и оксиды металлов в выбросах (оксиды кобальта, никеля и марганца) доступны для поддержания горения. Следовательно, два источника тепла будут действовать одновременно, и оба должны учитываться при оценке теплового потока. Кроме того, направление теплового потока должно быть как к ячейке, так и от ячейки, например, по каналу выброса. При выполнении теплового моделирования с использованием вышеуказанных предположений генерируются данные, показанные на рис.6. Как видно из рис. 5, 103 мг горящего ДМК повышают температуру поверхности приемной ячейки примерно до 200 ° C. С другой стороны, результаты моделирования, показанные на рис. 6, предполагают, что даже несмотря на то, что выбрасываемое вещество намного горячее (1500 ° C), этому тепловому потоку, по-видимому, частично противодействует динамика газового потока. Тепло от сжигания всего 200 мг DMC вызывает распространение TR, о чем свидетельствует внезапное повышение температуры, начинающееся примерно через 2 с после запуска TR в триггерной ячейке. Следовательно, и в этом случае для инициирования TR в принимающей клетке будет достаточно приблизительно 200 мг депонированного DMC.Как уже отмечалось, моделирование CFD демонстрирует (рис. 3), что несколько клеток получают более 200 мг DMC во время вентиляции перед TR. Эти результаты предполагают, что функциональные каналы выброса не могут препятствовать распространению TR.
Приблизить
Уменьшить
Сбросить размер изображения
Рис. 6. Изменение температуры поверхности клетки в зависимости от массы осажденного ДМК, горящего на поверхности принимающей клетки. Тепловые потоки, генерируемые в TR, также включены в моделирование.
Загрузить рисунок:
Стандартный образ
Изображение высокого разрешения
Распространение TR — это многоступенчатое явление.
Распространение TR включает в себя несколько последовательных процессов, некоторые из которых фактически предшествуют TR в триггерной ячейке. Во-первых, триггерная ячейка выпускает газообразные органические растворители еще до того, как она подвергнется TR. Затем удаленные растворители конденсируются на внешней поверхности принимающих ячеек. После того, как триггерная ячейка переходит в TR, она генерирует тепло и обеспечивает окислители для воспламенения растворителя, нанесенного ранее на верхнюю часть принимающих ячеек.Пока горючий растворитель начинает нагревать приемные ячейки, горячие выбросы из триггерной ячейки продолжают проходить по ним. Часть тепла от этих двух независимых источников — горящего растворителя и горячего выброса — передается в приемные ячейки. Наши результаты показывают, что если количество растворителя, осажденного на принимающей ячейке, составляет порядка 200 мг, принимающая ячейка сама перейдет в TR, облегчая распространение TR внутри батареи.
Распространение TR, возможно, является основной причиной возгорания и возгорания в больших многоэлементных литий-ионных батареях.Хотя вероятность самопроизвольного TR в отдельном литий-ионном элементе мала — примерно один к десяткам миллионов, — такое событие TR, ведущее к возгоранию и взрыву аккумулятора, увеличивается с увеличением количества элементов в аккумуляторе, а также количества батареи развернуты по всему миру. Поэтому предотвращение распространения TR имеет первостепенное значение. Обычно считается, что горячий выброс из триггерной ячейки в TR при вентиляции через правильно спроектированные вентиляционные каналы будет препятствовать распространению TR. Наши эксперименты и результаты CFD и теплового моделирования показывают, что распространение TR в многоячеечной литий-ионной батарее является сложным процессом.В частности, органические растворители, выходящие наружу до того, как клетка испытает TR, играют важную роль в распространении TR от клетки к клетке. Наше открытие в конечном итоге имеет значение для инновационных технических решений, направленных на предотвращение пожаров и взрывов больших многоэлементных батарей.
Мы благодарим Агентство перспективных оборонных исследовательских проектов за финансовую поддержку по контракту номер HR0011–17-D-0001. RS выражает признательность за стипендию JHUAPL Janney, использованную для подготовки этой рукописи.
Упоминание коммерческих продуктов и / или товарных знаков в этом тексте не подразумевает рекомендации или одобрения и включено только в информационных целях.Выраженные взгляды принадлежат исключительно авторам и не обязательно отражают точку зрения каких-либо агентств правительства США.
Как управление нагревом аккумуляторной батареи улучшает характеристики электромобиля? | | Силиконы Elkem
В этой презентации мы кратко суммируем основные факторы, которые играют роль в , ограничивающем тепловые колебания в характеристиках аккумулятора : почему аккумуляторы являются важной технологией для всех типов электрических и гибридных транспортных средств, важность температуры аккумулятора ( как для безопасности, так и для производительности), краткое изложение соображений управления теплом в условиях высоких и низких температур, способы ограничения неравномерных температур в аккумуляторных блоках и краткое изложение доступных вариантов решения всех этих проблем управления теплом.
Управление нагревом аккумуляторной батареи
Аккумуляторы: важная технология для всех типов электрических и гибридных транспортных средств
В нашей первой статье о Thermal Management Systems (TMS) и выборе Thermal Interface Materials (TIM) мы рассмотрели общие вопросы, такие как термодинамика, передача тепла и энергии, изоляция, проводимость, конвекция, конденсация, излучение. пр.
На этот раз мы сосредоточимся на ограничении колебаний температуры батареи .Итак, для начала давайте повторим, почему батарея является ключевой технологией для всех EDV, HEV и PHEV. :
.
- Они обеспечивают эффективный ввод электроэнергии во все типы электромобилей
- Они также обеспечивают энергией все двигатели во время фаз разгона
- Они увеличивают автономность и дальность действия всех электромобилей
- Они помогают уменьшить размеры всех двигателей, включая двигатели, работающие на ископаемом топливе, в HEV
- Они улучшают регенерирующее торможение (тепло трения преобразуется в энергию)
- Они все еще нуждаются в улучшении, чтобы решить ключевые проблемы, ограничивающие использование электромобилей потребителями:
- Проблемы безопасности
- Добавленная стоимость, вес и объем
- Опасения по поводу надежности и долговечности аккумуляторов
- Снижение производительности с течением времени
Почему температура батареи так важна?
Прежде чем мы рассмотрим технические факторы, которые способствуют контролю колебаний температуры батареи, давайте очень четко определим, что является абсолютным приоритетом во всех системах зарядки и возврата батарей: БЕЗОПАСНОСТЬ! Причина этого очень ясна.Во-первых, дизайнеры и автопроизводители несут ответственность за защиту водителей и пассажиров от всех рисков, которые могут привести к травмам или смертельному исходу. Во-вторых, контроль температуры является ключевым фактором, который потенциально может вызвать проблемы, и поэтому он является основным фактором, на котором сосредоточены текущие исследования и разработки.
Вот соображения по обеспечению безопасности и производительности:
- Электрохимическая система батареи должна находиться в безупречном состоянии
- Аккумулятор должен быть безопасным и эффективным при перезарядке, особенно в режиме быстрой зарядки, когда выделяется тепло
- Температура аккумуляторной батареи должна быть ограничена безопасными параметрами в сложных условиях, таких как высокоскоростное вождение или городское использование с остановками и запуском.
- Электропитание и доступность энергии должны включать надежные и четкие предупреждающие сигналы, интегрированные в интерфейс водителя и информационную систему.
Как бороться с факторами, влияющими на температуру аккумулятора
В нашем первом блоге мы говорили о важности управления теплом, выделяемым не только при работе от батареи, но и внешними факторами, такими как температура окружающей среды, от арктических до тропических условий . Основные моменты, которые вам необходимо запомнить:
- Чтобы защитить вашу аккумуляторную систему от внешней среды, вам необходимо поработать над теплоизоляцией на этапе проектирования всего вашего аккумуляторного блока.С точки зрения материалов, регулирующих тепло, изоляционная пена — единственный способ достичь надлежащих результатов, поскольку все это примерно , изолирующее аккумуляторную батарею от того, что может повлиять на нее извне (сильная жара или холод).
- С другой стороны, для защиты и управления теплом, выделяемым внутри вашего аккумуляторного блока, у вас есть два разных варианта! Либо вы можете изолировать каждый компонент друг от друга , опять же, эластомерные пены (например, силиконы) являются лучшим вариантом из-за их внутренних термостойких свойств, а также их легкости (см. Сообщение в нашем блоге о важности легкие терморегулирующие материалы).Второй вариант — это отвод тепла , что немного сложнее, поскольку включает систему охлаждения (охлаждающая пластина + охлаждающая жидкость). Здесь цель состоит в том, чтобы передать тепло от элементов нагревательной батареи к охлаждающей пластине. Чтобы достичь этого, наличие надлежащего материала термоинтерфейса (TIM) между двумя элементами является ключевым, но вы должны знать, что это повлияет на легкость всей конструкции, потому что теплопроводящие материалы не могут иметь пенистую текстуру: они очень плотные.Основной элемент теплоизоляции или отвода тепла в значительной степени зависит от выбранных материалов Thermal Interface Materials (TIM) , которые могут быть изготовлены из различных материалов в виде подушек, смазок, заполнителей жидких зазоров, клеев и т. Д. Все чаще силикон используется используется в качестве предпочтительного материала либо отдельно в специально разработанных эластомерных силиконовых составах, либо в композитах, содержащих определенные наполнители.
Итак, какие основные параметры следует учитывать при управлении нагревом аккумуляторной батареи?
Основная цель управления теплом аккумуляторного блока — уменьшить неравномерное распределение температуры. , т.е.е. однородность температуры внутри аккумуляторной батареи в диапазоне от 3 ° C до 4 ° C, в условиях окружающей среды в диапазоне от -35 ° C до 50 ° C. Напоминаем, что аккумулятор электромобиля достигает своей оптимальной производительности при внутренней температуре от 15 ° C до 35 ° C. Чтобы справиться с этими очень жесткими спецификациями, один из способов добиться успеха — это создать систему, которая отводит тепло, выделяемое элементами батареи, за пределы блока . Для этого наиболее распространенным решением является использование теплопроводных материалов между аккумуляторными модулями и охлаждающей пластиной (с циркулирующей внутри охлаждающей жидкостью).Теплопроводящие материалы (например, силиконы, полиуретаны или эпоксидные технологии — см. Нашу электронную книгу, чтобы понять сильные и слабые стороны каждого решения) играют роль проводника тепла от самой внутренней части аккумуляторной батареи к системе охлаждения, которая регулирует среднюю температуру.
Вторая цель управления нагревом аккумуляторной батареи — это контролировать потенциальные опасности, связанные с экстремальным повышением температуры в любой данной части аккумуляторной батареи, называемой Thermal Runaway .Это означает предотвращение перегрева любой части массива батарей, поскольку она может загореться и / или передать тепло другим компонентам, вызывая цепную реакцию. Вот почему абсолютно необходимо, чтобы изолировал все аккумуляторные элементы и другие элементы друг от друга надлежащими огнезащитными материалами. Для теплоизоляции обычно используются пеноматериалы. Силиконовые пены, в этом отношении, следует рассматривать как предпочтительный материал из-за их внутренних изоляционных характеристик , а также потому, что они являются эффективными огнезащитными материалами или даже самозатухающими материалами.
Заливка каждого элемента батареи с производительностью задерживает распространение тепла от одного элемента к другому, тем самым давая водителю и пассажирам достаточно времени, чтобы покинуть транспортное средство в условиях полной безопасности до того, как начнется пожар.
Сводка
Аккумуляторный блок управления теплом является основным элементом общей системы управления температурой (TMS) , который обеспечивает надлежащее охлаждение всей системы, включая трубки и трубы, которые позволяют охлаждающим продуктам циркулировать и теплоизоляцию между различными частями.Конечно, эта общая защита имеет немного более высокую начальную цену по сравнению с другими материалами, такими как полиуретаны. Однако это в значительной степени компенсируется соображениями безопасности и долгосрочной производительности , так что в долгосрочной перспективе общая стоимость владения (TCO) ниже, а качество и срок службы значительно улучшены.
Все факторы, упомянутые в этом обзоре, могут быть интегрированы на начальном этапе в конструкцию вашего аккумуляторного блока и на последующем этапе производственного процесса.В любой момент вам может потребоваться определить конкретное решение TMS .
Гибридное управление температурой литий-ионных батарей с использованием наножидкости, металлической пены и материала с фазовым переходом: интегрированный численно-экспериментальный подход
Хансен Дж., Сато М., Руди Р., Ло К., Леа Д. В., Медина-Элизад М. • Глобальное изменение температуры. Proc Natl Acad Sci. 2006. 103 (39): 14288–93. https://doi.org/10.1073/pnas.06062
.
CAS
Статья
PubMed
Google ученый
Bistline JE, Rai V. Роль технологий улавливания углерода в моделях сокращения выбросов парниковых газов: параметрическое исследование для энергетического сектора США. Энергетическая политика. 2010. 38 (2): 1177–91. https://doi.org/10.1016/j.enpol.2009.11.008.
CAS
Статья
Google ученый
Источники выбросов парниковых газов. Агентство по охране окружающей среды США. 2019. https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions. По состоянию на 14 декабря 2019 г.
Герни К.Р., Разливанов И., Сонг Й., Чжоу Й., Бенес Б., Абдул-Массих М. Количественная оценка выбросов CO из ископаемого топлива 2 в масштабе здания / улицы для большого города США. Environ Sci Technol. 2012. 46 (21): 12194–202. https://doi.org/10.1021/es3011282.
CAS
Статья
PubMed
Google ученый
Герцке П., Мюллер Н., Шауфус П., Шенк С., Ву Т. Расширение внедрения электромобилей, несмотря на ранние проблемы роста.McKinsey & Company. 2019. https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/expanding-electric-vehicle-adoption-desITE-early-growing-pains. По состоянию на 14 декабря 2019 г.
Mehrabi-Kermani M, Houshfar E, Ashjaee M. Новый гибридный терморегулятор для литий-ионных аккумуляторов с использованием материалов с фазовым переходом, встроенных в пенопласт в сочетании с принудительной конвекцией воздуха. Int J Therm Sci. 2019; 141: 47–61. https://doi.org/10.1016/j.ijthermalsci.2019.03.026.
CAS
Статья
Google ученый
Панчал С., Мэтьюсон С., Фрейзер Р., Калхэм Р., Фаулер М. Терморегулирование литий-ионной аккумуляторной ячейки с непрямым жидкостным охлаждением с использованием подхода с двумя холодными пластинами. Варрендейл: SAE International; 2015.
Google ученый
Ханнан М.А., Хок М.М., Мохамед А., Айоб А. Обзор систем накопления энергии для электромобилей: проблемы и проблемы. Renew Sust Energy Rev.2017; 69: 771–89. https://doi.org/10.1016/j.rser.2016.11.171.
Артикул
Google ученый
Вяюринен А., Салминен Дж. Производство литий-ионных аккумуляторов. J Chem Thermodyn. 2012; 46: 80–5. https://doi.org/10.1016/j.jct.2011.09.005.
CAS
Статья
Google ученый
Чен В-К, Ли Дж-Д, Шу Ц-М, Ван И-В. Влияние термической опасности на литий-ионный аккумулятор 18650 при разном уровне заряда. J Therm Anal Calorim.2015; 121 (1): 525–31. https://doi.org/10.1007/s10973-015-4672-3.
CAS
Статья
Google ученый
Оуян Д., Хе Й, Чен М., Лю Дж., Ван Дж. Экспериментальное исследование теплового поведения литий-ионных батарей в условиях разряда и перезаряда. J Therm Anal Calorim. 2018; 132 (1): 65–75. https://doi.org/10.1007/s10973-017-6888-x.
CAS
Статья
Google ученый
Лу Л., Хань Х, Ли Дж., Хуа Дж., Оуян М. Обзор ключевых вопросов управления литий-ионными аккумуляторами в электромобилях. J Источники энергии. 2013; 226: 272–88. https://doi.org/10.1016/j.jpowsour.2012.10.060.
CAS
Статья
Google ученый
Ван Кью, Чжао Х, Йе Дж, Сан Кью, Пинг П, Сан Дж. Температурный отклик литий-ионного аккумулятора во время зарядки и разрядки в адиабатических условиях. J Therm Anal Calorim. 2016; 124 (1): 417–28.https://doi.org/10.1007/s10973-015-5100-4.
CAS
Статья
Google ученый
Песаран А.А., редактор. Управление температурным режимом аккумуляторной батареи в электромобилях и тяжелых электромобилях: проблемы и решения. В: Конференция по передовым автомобильным аккумуляторным батареям; 2001; Лас-Вегас, Невада, США.
Песаран AA, Vlahinos A, Burch SD. Тепловые характеристики аккумуляторных модулей и блоков EV и HEV. Голден, Колорадо, США, 1997. Номер отчета: NREL / CP-540-23527.
Саббах Р., Кизилел Р., Селман Дж. Р., Аль-Халладж С. Активное (с воздушным охлаждением) и пассивное (материал с фазовым переходом) тепловое управление мощными литий-ионными батареями: ограничение роста температуры и равномерность распределения температуры. J Источники энергии. 2008. 182 (2): 630–8. https://doi.org/10.1016/j.jpowsour.2008.03.082.
CAS
Статья
Google ученый
Махамуд Р., Парк С. Возвратно-поступательный воздушный поток для управления температурой литий-ионной батареи для улучшения однородности температуры.J Источники энергии. 2011. 196 (13): 5685–96. https://doi.org/10.1016/j.jpowsour.2011.02.076.
CAS
Статья
Google ученый
Парк Х. Конструкция конфигурации воздушного потока для охлаждения литий-ионной батареи в гибридных электромобилях. J Источники энергии. 2013; 239: 30–6. https://doi.org/10.1016/j.jpowsour.2013.03.102.
CAS
Статья
Google ученый
Ким Г.-Х, Песаран А. Моделирование теплового управления аккумуляторной батареей. World Electr Veh J. 2007; 1 (1): 126–33. https://doi.org/10.3390/wevj1010126.
Артикул
Google ученый
Тран Т. Х., Харманд С., Сахут Б. Экспериментальное исследование охлаждения тепловых трубок для гибридных электромобилей и литий-ионных аккумуляторов электромобилей. J Источники энергии. 2014; 265: 262–72. https://doi.org/10.1016/j.jpowsour.2014.04.130.
CAS
Статья
Google ученый
Рао З, Ван С., Ву М., Лин З, Ли Ф. Экспериментальное исследование терморегулирования аккумуляторной батареи электромобиля с тепловой трубкой. Energy Convers Manag. 2013; 65: 92–7. https://doi.org/10.1016/j.enconman.2012.08.014.
Артикул
Google ученый
Qian Z, Li Y, Rao Z. Тепловые характеристики системы терморегулирования литий-ионной батареи за счет использования мини-канального охлаждения. Energy Convers Manag. 2016; 126: 622–31. https://doi.org/10.1016 / j.enconman.2016.08.063.
CAS
Статья
Google ученый
Rao Z, Qian Z, Kuang Y, Li Y. Тепловые характеристики системы терморегулирования на основе жидкостного охлаждения для цилиндрического литий-ионного аккумуляторного модуля с изменяемой контактной поверхностью. Appl Therm Eng. 2017; 123: 1514–22. https://doi.org/10.1016/j.applthermaleng.2017.06.059.
Артикул
Google ученый
Fang G, Huang Y, Yuan W, Yang Y, Tang Y, Ju W и др. Управление температурой для литий-ионной аккумуляторной батареи с трубчатым корпусом с использованием испарения воды в сочетании с принудительным воздушным охлаждением. RSC Adv. 2019; 9 (18): 9951–61. https://doi.org/10.1039/C8RA10433F.
CAS
Статья
Google ученый
У М-С, Лю К. Х., Ван И-И, Ван Ц-С. Конструкция отвода тепла для литий-ионных аккумуляторов. J Источники энергии. 2002. 109 (1): 160–6. https://doi.org/10.1016/S0378-7753(02)00048-4.
CAS
Статья
Google ученый
Чжао Р., Гу Дж., Лю Дж. Экспериментальное исследование системы терморегулирования тепловых трубок с методом влажного охлаждения для литий-ионных батарей. J Источники энергии. 2015; 273: 1089–97. https://doi.org/10.1016/j.jpowsour.2014.10.007.
CAS
Статья
Google ученый
Panchal S, Khasow R, Dincer I, Agelin-Chaab M, Fraser R, Fowler M.Численное моделирование и экспериментальное исследование призматической батареи при водяном охлаждении. Numer Heat Transf A Appl. 2017; 71 (6): 626–37. https://doi.org/10.1080/10407782.2016.1277938.
CAS
Статья
Google ученый
Liang J, Gan Y, Li Y. Исследование тепловых характеристик системы терморегулирования батареи, использующей тепловую трубку, при различных температурах окружающей среды. Energy Convers Manag. 2018; 155: 1–9.https://doi.org/10.1016/j.enconman.2017.10.063.
Артикул
Google ученый
Махдави М., Тиари С., Павар В. Численное исследование комбинированного воздействия диспергированных наночастиц и встроенных тепловых трубок на плавление и затвердевание кожухотрубной системы хранения скрытой тепловой энергии. J Хранение энергии. 2020; 27: 101086. https://doi.org/10.1016/j.est.2019.101086.
Артикул
Google ученый
Sun Z, Fan R, Yan F, Zhou T, Zheng N. Терморегулирование литий-ионной батареи с помощью композитных структур PCM-Fin. Int J Heat Mass Transf. 2019; 145: 118739. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118739.
Артикул
Google ученый
Safdari M, Ahmadi R, Sadeghzadeh S. Численное исследование формы инкапсуляции PCM, используемой в пассивно-активном терморегулировании батареи. Энергия. 2020; 193: 116840.https://doi.org/10.1016/j.energy.2019.116840.
Артикул
Google ученый
Mancin S, Diani A, Doretti L, Hooman K, Rossetto L. Экспериментальный анализ явления фазового перехода парафиновых восков, внедренных в медную пену. Int J Therm Sci. 2015; 90: 79–89. https://doi.org/10.1016/j.ijthermalsci.2014.11.023.
CAS
Статья
Google ученый
Бэби Р., Баладжи К.Экспериментальные исследования ребристых радиаторов на основе материала с фазовым переходом для охлаждения электронного оборудования. Int J Heat Mass Transf. 2012; 55 (5): 1642–9. https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.020.
CAS
Статья
Google ученый
Ян Х, Го З., Лю И, Цзинь Л, Хэ И-Л. Влияние наклона на тепловой отклик композитных материалов с фазовым переходом для хранения тепловой энергии. Appl Energy. 2019; 238: 22–33.https://doi.org/10.1016/j.apenergy.2019.01.074.
CAS
Статья
Google ученый
Ян Х, Ю Дж, Го З, Цзинь Л, Хе И-Л. Роль пористой металлической пены в улучшении теплопередачи в трубке для аккумулирования тепловой энергии. Appl Energy. 2019; 239: 142–56. https://doi.org/10.1016/j.apenergy.2019.01.075.
Артикул
Google ученый
Ян Х, Вэй П, Цуй Х, Цзинь Л., Хэ И-Л.Температурный отклик колец, заполненных металлической пеной для хранения тепловой энергии: экспериментальное исследование. Appl Energy. 2019; 250: 1457–67. https://doi.org/10.1016/j.apenergy.2019.05.096.
CAS
Статья
Google ученый
Ян Х, Ю Дж, Сяо Т., Ху З., Хе И-Л. Конструкция и эксплуатационная оценка оребренного кожухотрубного накопителя тепловой энергии, заполненного металлической пеной. Appl Energy. 2020; 261: 114385. https://doi.org/10.1016/j.apenergy.2019.114385.
Артикул
Google ученый
Al Hallaj S, Selman JR. Новая система терморегулирования для аккумуляторных батарей электромобилей с использованием материала с фазовым переходом. J Electrochem Soc. 2000. 147 (9): 3231–6. https://doi.org/10.1149/1.1393888.
Артикул
Google ученый
Wang Z, Li X, Zhang G, Lv Y, Wang C, He F и др. Исследование терморегулирования для модуля литий-ионной батареи с различными материалами с фазовым переходом.RSC Adv. 2017; 7 (68): 42909–18. https://doi.org/10.1039/C7RA08181B.
CAS
Статья
Google ученый
Карими Г., Азизи М., Бабапур А. Экспериментальное исследование терморегулирования цилиндрической литий-ионной батареи с использованием композиционных материалов с фазовым переходом. J Хранение энергии. 2016; 8: 168–74. https://doi.org/10.1016/j.est.2016.08.005.
Артикул
Google ученый
Хуссейн А., Абиди И.Х., Цо Ц.Ю., Чан К.С., Ло З., Чао Ц.Ю. Терморегулирование литий-ионных аккумуляторов с помощью никелевой пены с графеновым покрытием, насыщенной материалами с фазовым переходом. Int J Therm Sci. 2018; 124: 23–35. https://doi.org/10.1016/j.ijthermalsci.2017.09.019.
CAS
Статья
Google ученый
Вилке С., Швейцер Б., Хатиб С., Аль-Халладж С. Предотвращение распространения теплового разгона в литий-ионных аккумуляторных батареях с использованием композитного материала с фазовым переходом: экспериментальное исследование.J Источники энергии. 2017; 340: 51–9. https://doi.org/10.1016/j.jpowsour.2016.11.018.
CAS
Статья
Google ученый
Магсуди П., Сиаваши М. Применение наножидкости и оптимизация размера пор гетерогенной пористой среды для усиления смешанной конвекции внутри двусторонней полости, управляемой крышкой. J Therm Anal Calorim. 2019; 135 (2): 947–61. https://doi.org/10.1007/s10973-018-7335-3.
CAS
Статья
Google ученый
Рамезанпур М., Сиаваши М. Применение наножидкости SiO 2 — воды для увеличения нефтеотдачи. J Therm Anal Calorim. 2019; 135 (1): 565–80. https://doi.org/10.1007/s10973-018-7156-4.
CAS
Статья
Google ученый
Rabbani P, Hamzehpour A, Ashjaee M, Najafi M, Houshfar E. Экспериментальное исследование теплопередачи наножидкости MgO в трубках, частично заполненных металлической пеной. Пудра Технол. 2019; 354: 734–42.https://doi.org/10.1016/j.powtec.2019.06.037.
CAS
Статья
Google ученый
Ранджбаран Ю.С., Хагпараст С.Дж., Шоджаифард М.Х., Молаейманеш Г.Р. Численная оценка системы терморегулирования, состоящей из ПКМ и пористой металлической пены для литий-ионных аккумуляторов. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08989-w.
Артикул
Google ученый
Zhang J, Li X, He F, He J, Zhong Z, Zhang G. Экспериментальное исследование терморегулирования аккумуляторного модуля электромобиля с использованием композитного материала с фазовым переходом парафин / расширенный графит. Int J Photoenergy. 2017; 2017: 8. https://doi.org/10.1155/2017/2929473.
CAS
Статья
Google ученый
Чжао Р., Чжан С., Лю Дж, Гу Дж. Обзор методов улучшения тепловых характеристик литий-ионной батареи: модификация электродов и система управления температурой.J Источники энергии. 2015; 299: 557–77. https://doi.org/10.1016/j.jpowsour.2015.09.001.
CAS
Статья
Google ученый
Ван И-В, Цзян Дж-М, Чунг И-Х, Чен В-К, Шу Ц-М. Система принудительного воздушного охлаждения для крупногабаритных литий-ионных аккумуляторных модулей во время процессов заряда и разряда. J Therm Anal Calorim. 2019; 135 (5): 2891–901. https://doi.org/10.1007/s10973-018-7646-4.
CAS
Статья
Google ученый
Ling Z, Wang F, Fang X, Gao X, Zhang Z. Гибридная система терморегулирования для литий-ионных батарей, сочетающая материалы с фазовым переходом и принудительное воздушное охлаждение. Appl Energy. 2015; 148: 403–9. https://doi.org/10.1016/j.apenergy.2015.03.080.
CAS
Статья
Google ученый
Zhao Y, Zou B, Li C, Ding Y. Управление тепловым режимом батареи на основе активного охлаждения с использованием композитных материалов с фазовым переходом. Energy Proc. 2019; 158: 4933–40.https://doi.org/10.1016/j.egypro.2019.01.697.
CAS
Статья
Google ученый
Mancin S, Zilio C, Diani A, Rossetto L. Принудительная конвекция воздуха через металлическую пену: экспериментальные результаты и моделирование. Int J Heat Mass Transf. 2013; 62: 112–23. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.050.
CAS
Статья
Google ученый
McKinney BL, Wierschem GL, Mrotek EN.Температурный менеджмент свинцово-кислотных аккумуляторов электромобилей. Варрендейл: Международный конгресс и выставка SAE, SAE International; 1983.
Google ученый
Лю Дж., Оуян М., Лу Л., Ли Дж., Хань Х. Анализ тепловыделения литий-ионного аккумулятора во время зарядки и разрядки с учетом различных факторов влияния. J Therm Anal Calorim. 2014; 116 (2): 1001–10. https://doi.org/10.1007/s10973-013-3599-9.
CAS
Статья
Google ученый
Галушкин Н.Е., Язвинская Н.Н., Галушкин Д.Н. Механизм теплового разгона в литий-ионных элементах. J Electrochem Soc. 2018; 165 (7): A1303–8. https://doi.org/10.1149/2.0611807jes.
CAS
Статья
Google ученый
Liu J, Wang Z, Gong J, Liu K, Wang H, Guo L. Экспериментальное исследование процесса теплового разгона литий-ионной батареи 18650. Материалы. 2017; 10 (3): 230. https://doi.org/10.3390/ma10030230.
CAS
Статья
PubMed Central
Google ученый
Adio SA, Sharifpur M, Meyer JP. Влияние энергии ультразвука на консистенцию дисперсии наножидкости Al 2 O 3 –глицерин на основе данных о вязкости и разработки модели для требуемой плотности энергии ультразвуковой обработки. J Exp Nanosci. 2016; 11 (8): 630–49. https://doi.org/10.1080/17458080.2015.1107194.
CAS
Статья
Google ученый
Osman S, Sharifpur M, Meyer JP. Экспериментальное исследование конвективного теплообмена в переходном режиме течения наножидкостей оксид алюминия – вода в прямоугольном канале.Int J Heat Mass Transf. 2019; 133: 895–902. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.169.
CAS
Статья
Google ученый
Минца Х.А., Рой Г., Нгуен К.Т., Дусет Д. Новые данные о температурно-зависимой теплопроводности для наножидкостей на водной основе. Int J Therm Sci. 2009. 48 (2): 363–71. https://doi.org/10.1016/j.ijthermalsci.2008.03.009.
CAS
Статья
Google ученый
Корчоне М. Эмпирические корреляционные уравнения для прогнозирования эффективной теплопроводности и динамической вязкости наножидкостей. Energy Convers Manag. 2011; 52 (1): 789–93. https://doi.org/10.1016/j.enconman.2010.06.072.
CAS
Статья
Google ученый
Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.
Настройка вашего браузера для приема файлов cookie
Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:
- В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить, хотите ли вы принимать файлы cookie.
- Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.
Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie. - Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
- Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г.,
браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере. - Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.
Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.
Почему этому сайту требуются файлы cookie?
Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie
потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.
Что сохраняется в файле cookie?
Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.
Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.
Добавить комментарий