Какой автомат ставить на 6 квт однофазный: Как подобрать автоматический выключатель для электрокотла

Разное

Содержание

Как подобрать автоматический выключатель для электрокотла

Назначение

Автоматический выключатель для электрического котла защищает питающий кабель от тепловой перегрузки. Причиной плавления изоляции является длительный перегрев проводов, вызванный избыточным током. Это может привести к короткому замыканию.

Как правило, предохранитель устанавливается на счетчике, на провод, ведущий к защищаемому оборудованию.

Чтобы правильно выбрать проходной выключатель с автоматом нужно подобрать сечение провода, рассчитать номинальный ток электрического котла и учесть характер использования подключаемого оборудования.

Провод

Для подключения электрического котла нужно проложить выделенный кабель. Даже, если котел мощностью до 3 кВт на 220 В, не стоит включать его в сеть через обычную розетку – вы нагрузите внутренние провода электрической разводки без особой на то надобности.

Электрическое оборудование и проборы мощностью свыше 1,5 кВт рекомендуется подключать через медный провод. Медные провода более долговечны, чем алюминиевые, и при одинаковой нагрузке вам потребуется меньший диаметр сечения.

Сечение токопроводящего провода подбирается на основании номинальной мощности подключаемого оборудования и напряжения сети. 

Сечение провода по мощности для 220 В будет более толстым, чем для напряжения 380 В с аналогичной мощностью электрического котла.

Расчет сечения провода можно сделать самостоятельно. Для упрощения задачи предлагаем итоговую таблицу сечения алюминиевых и медных жил.

Таблица сечения проводов 















Таблица сечений проводов для подключения электрического оборудования
 Площадь сечения жилы, мм2 Медный провод Алюминиевый провод
Однофазная сеть 220 В Трехфазная сеть 380 В Однофазная сеть 220 В Трехфазная сеть 380 В
Номинальный ток, А Мощность, кВт Номинальный ток, А Мощность, кВт Номинальный ток, А Мощность, кВт Номинальный ток, А Мощность, кВт

1,5

19 4,3 16 10,0
2,5 27 6,0 25 16,6 20 4,5 19 11,9
4 38 8,5 30 18,7 28 6,3 23 14,6
6 46 10,3 40 25,0 36 8,1 30 18,7
10 70 15,7 50 31,2 50 11,2 39 24,3
16 85 19,0 75 46,8 60 13,4 55 34,3
25 115 25,8 90 56,2 85 19,0 70 43,7
35 135 30,2 115 71,8 100 22,4 85 53,0
50 175 39,2 145 90,5 135 30,2 110 68,6
70 215 48,2 180 112,3 165 37,0 140 87,4
95 260 58,2 220 13,7 200 48,0 170 106,1
















Номинальный ток автоматического выключателя


Показатель номинального тока предохранителя характеризует граничное значение электрического тока в амперах, превышение которого приведет к срабатыванию выключателя. Существуют точные формулы расчета номинального тока, которые используют специалисты. Но, как правило, достаточно приближенных расчетов, чтобы выбрать нужный предохранитель.


Упрощенные формулы расчетов номинального тока


  • Для сети 220 В: I ном. = P/224 (A)
  • Для сети 380 В: I ном. = P/624 (A)

Получив значение номинального тока вашего контура, выберите ближайшее значение из стандартизированного рядя номиналов автоматических выключателей: 6, 10, 16, 20, 25, 32, 40, 50 или 63 А.


Таблица сечний проводов и тока предохранителя для электрокотлов по мощностям


Мощность электрического котла, кВт Питание 220 В Питание 380 В
Сечение медного провода, мм2 Номинальный ток, А Ток предохранителя, А Сечение медного провода, мм2 Номинальный ток, А Ток предохранителя, А
3,0 2 × 1,5 13,9 16 4 × 1,5 4,38 6
4,5 2 × 2,5 20,1 25 4 × 1,5 7,2 10
6,0 2 × 4,0 26,8 32 4 × 2,5 9,6 10
7,5 2 × 6,0 33,5 40 4 × 2,5 12,0 16
9,0 2 × 6,0 40,2 50 4 × 4,0 14,4 16
10,5 4 × 4,0 16,9 20
12,0 4 × 6,0 19,2 20
15,0 4 × 10 24,0 25
18,0 4 × 10 28,8 32
21,0 4 × 10 33,7 40
24,0 4 × 10 38,5 40
30,0 4 × 16 48,1 50
36,0 4 × 16 57,7 63

Времятоковая характеристика автоматических выключателей

В течение нескольких миллисекунд при запуске электрического котла пусковой ток превышает номинальный в 4,5 раза (для 220 В) или в 1,5 раза для сети 380 В. Этого времени недостаточно, чтобы повредить проводку контура, поэтому такое превышение не представляет угрозы. Чтобы в это время не срабатывал автомат, нужно подобрать нужную времятоковую характеристику.

Для защиты электрических котлов выбирают чаще всего времятоковую характеристику типа С (от 5 до 10 номиналов тока), реже типа В (от 3 до 5 номинальных значений).

Полюсность автоматических выключателей

Для сети номинальной мощностью 220 В устанавливаются однополюсные или двухполюсные конструкции.

 

Для трехфазной сети 380 В – трехполюсные или четырехполюсные автоматы.

 

В электрических сетях старого традиционного типа при меняют одно- и трехполюсные автоматы.

Двух- и четырехполюсные автоматы применяют в современных сетях с разделенными проводами для ноля (N) и заземления (PE).

Схемы подключения проводов к автоматическим выключателям с различным количеством полюсов

При покупке электрического котла в интернет-магазине “EcoСистема” мы проводим точные расчеты и даем рекомендации по подбору сопутствующего оборудования для правильной установки и подключения электрических котлов.

расчет потребляемой мощности 220В и 380В, таблица:

Где и как применяются автоматические выключатели

Автоматические выключатели предназначены для защиты электрических сетей от перегрузок и токов короткого замыкания. За счет надежности и простоты подключения они получили широкое распространение в бытовых электросетях.

Автоматы для защиты электросети

Автоматы присутствуют практически в каждом квартирном электрощите. Не реже они встречаются в щитах защиты промышленного оборудования, электрических двигателей и различных передвижных установках.

Маркировка автомата

Согласно ПУЭ каждый аппарат защиты должен иметь надпись, указывающую значение номинального тока. Чтобы узнать номинал автомата, достаточно посмотреть на его корпус. На данных устройствах защиты используется стандартная маркировка, состоящая из одной буквы (B, C или D) и числа.

Буква указывает на временную характеристику. Ее еще называют временем срабатывания. Об этом параметре речь пойдет ниже. Число обозначает номинальный ток прибора. Например:

  • C25 — временная характеристика C, номинальный ток 25 А;
  • B32 — характеристика B, 32 А.

В быту обычно применяют выключатели с временными характеристиками B и C. В промышленности встречаются защитные устройства из ряда L, Z и K.

Дополнительная информация. В маркировке скрыта и другая информация об устройстве. Например, номер серии, номинальное рабочее напряжение, отключающая способность и количество полюсов.

Автоматические выключатели для бытовых сетей

Электроснабжающие организации осуществляют подключение домов и квартир, выполняя работы по подведению кабеля к распредщиту. Все мероприятия по монтажу разводки в помещении выполняют его владельцы, либо нанятые специалисты.

Чтобы подобрать автомат для защиты каждой отдельной цепи необходимо знать его номинал, класс и некоторые другие характеристики.

Основные параметры и классификация

Бытовые автоматы устанавливают на входе в низковольтную электрическую цепь и предназначены они для решения следующих задач:

  • ручное или электронное включение или обесточивание электрической цепи;
  • защита цепи: отключение тока при незначительной длительной перегрузке;
  • защита цепи: мгновенное отключение тока при коротком замыкании.

Каждый выключатель имеет характеристику, выраженную в амперах, которую называют номинальная сила тока (In) или “номинал”.

Суть этого значения проще понять, используя коэффициент превышения номинала:

K = I / In,

где I – реальная сила тока.

  • K < 1.13: отключение (расцепление) не произойдет в течение 1 часа;
  • K > 1.45: отключение произойдет в течение 1 часа.

Эти параметры зафиксированы в п. 8.6.2. ГОСТ Р 50345-2010. Чтобы узнать за какое время произойдет отключение при K>1.45 нужно воспользоваться графиком, отражающим времятоковую характеристику конкретной модели автомата.

При длительном превышении током значения номинала выключателя в 2 раза, размыкание произойдет за период от 8 секунд до 4-х минут. Скорость срабатывания зависит от настройки модели и температуры среды

Также у каждого типа автоматического выключателя определен диапазон тока (Ia), при котором срабатывает механизм мгновенного расцепления:

  • класс “B”: Ia = (3 * In .. 5 * In];
  • класс “C”: Ia = (5 * In .. 10 * In];
  • класс “D”: Ia = (10 * In .. 20 * In].

Устройства типа “B” применяют в основном для линий, которые имеют значительную длину. В жилых и офисных помещениях используют автоматы класса “С”, а приборы с маркировкой “D” защищают цепи, где есть оборудование с большим пусковым коэффициентом тока.

Стандартная линейка бытовых автоматов включает в себя устройства с номиналами в 6, 8, 10, 16, 20, 25, 32, 40, 50 и 63 A.

Конструктивное устройство расцепителей

В современном автоматическом выключателе присутствуют два вида расцепителей: тепловой и электромагнитный.

Биметаллический расцепитель имеет форму пластины, созданной из двух токопроводящих металлов с различным тепловым расширением. Такая конструкция при длительном превышении номинала приводит к нагреву детали, ее изгибу и срабатыванию механизма размыкания цепи.

У некоторых автоматов с помощью регулировочного винта можно изменить параметры тока, при котором происходит отключение. Раньше этот прием часто применяли для “точной” настройки устройства, однако эта процедура требует углубленных специализированных знаний и проведения нескольких тестов.

Вращением регулировочного винта (выделен красным прямоугольником) против часовой стрелки можно добиться большего времени срабатывания теплового расцепителя

Сейчас на рынке можно найти множество моделей стандартных номиналов от разных производителей, у которых времятоковые характеристики немного отличаются (но при этом соответствуют нормативным требованиям). Поэтому есть возможность подобрать автомат с нужными “заводскими” настройками, что исключает риск неправильной калибровки.

Электромагнитный расцепитель предотвращает перегрев линии в результате короткого замыкания. Он реагирует практически мгновенно, но при этом значение силы тока должно в разы превышать номинал. Конструктивно эта деталь представляет собой соленоид. Сверхток генерирует магнитное поле, которое сдвигает сердечник, размыкающий цепь.

Соблюдение принципов селективности

При наличии разветвленной электрической цепи можно организовать защиту таким образом, чтобы при коротком замыкании произошло отключение только той ветви, на которой возникла аварийная ситуация. Для этого применяют принцип селективности выключателей.

Наглядная схема, показывающая принцип работы системы автоматических выключателей с реализованной функцией селективности (выборочности) срабатывания при возникновении короткого замыкания

Для обеспечения выборочного отключения на нижних ступенях устанавливают автоматы с мгновенной отсечкой, размыкающие цепь за 0.02 – 0.2 секунды. Выключатель, размещенный на вышестоящей ступени, или имеет выдержку по срабатыванию в 0.25 – 0.6 с или выполнен по специальной “селективной” схеме в соответствии со стандартом DIN VDE 0641-21.

Для гарантированного обеспечения селективной работы автоматов лучше использовать автоматы от одного производителя. Для выключателей единого модельного ряда существуют таблицы селективности, которые указывают возможные комбинации.

Простейшие правила установки

Участок цепи, который необходимо защитить выключателем может быть одно- или трехфазным, иметь нейтраль, а также провод PE (“земля”). Поэтому автоматы имеют от 1 до 4 полюсов, к которым подводят токопроводящую жилу. При создании условий для расцепления происходит одновременное отключение всех контактов.

Автоматы в щитке крепят на специально отведенную для этого DIN-рейку. Она обеспечивает компактность и безопасность подключения, а также удобный доступ к выключателю

Автоматы устанавливают следующим образом:

  • однополюсные на фазу;
  • двухполюсные на фазу и нейтраль;
  • трехполюсные на 3 фазы;
  • четырехполюсные на 3 фазы и нейтраль.

При этом запрещено делать следующее:

  • устанавливать однополюсные автоматы на нейтраль;
  • заводить в автомат провод PE;
  • устанавливать вместо одного трехполюсного автомата три однополюсных, если в цепь подключен хотя бы один трехфазный потребитель.

Все эти требования прописаны в ПУЭ и их необходимо соблюдать.

В каждом доме или помещении, к которому подведено электричество, устанавливают вводной автомат. Его номинал определяет поставщик и это значение прописано в договоре на подключение электроэнергии. Предназначение такого выключателя – защита участка от трансформатора до потребителя.

После вводного автомата к линии подключают счетчик (одно- или трехфазный) и устройство защитного отключения, функции которого отличаются от работы автоматического и дифференциального выключателя.

Если в помещении выполнена разводка на несколько контуров, то каждый из них защищают отдельным автоматом, мощность которого указана в маркировке. Их номиналы и классы определяет владелец помещения с учетом существующей проводки или мощности подключаемых приборов.

Счетчик электроэнергии и автоматические выключатели устанавливают в распределительном щите, который отвечает всем требованиям безопасности и легко может быть вписан в интерьер помещения

При выборе места для размещения распределительного щита необходимо помнить, что на свойства теплового расцепителя влияет температура воздуха. Поэтому желательно располагать рейку с автоматами внутри самого помещения.

Правила выбора номинала

Геометрия внутриквартирных и домовых электрических сетей индивидуальна, поэтому типовых решений по установке выключателей определенного номинала не существует. Общие правила расчета допустимых параметров автоматов достаточно сложны и зависят от многих факторов. Необходимо учесть их все, иначе возможно создание аварийной ситуации.

Принцип устройства внутриквартирной разводки

Внутренние электрические сети имеют разветвленную структуру в виде “дерева” – графа без циклов. Соблюдение такого принципа построения называется селективностью автоматов, согласно которой оснащаются защитными устройствами все виды электрических цепей.

Это улучшает устойчивость системы при возникновении аварийной ситуации и упрощает работы по ее устранению. Также гораздо легче происходит распределение нагрузки, подключение энергоемких приборов и изменение конфигурации проводки.

У основания графа находится вводной автомат, а сразу после разветвления для каждой отдельной электрической цепи размещают групповые выключатели. Это проверенная годами стандартная схема

В функции вводного автомата входит контроль общей перегрузки – недопущение превышения силой тока разрешенного значения для объекта. Если это произойдет, то существует риск повреждения наружной проводки. Кроме того, вероятно срабатывание защитных устройств за пределами квартиры, которые уже относится к общедомовой собственности или принадлежит местным энергосетям.

В функции групповых автоматов входит контроль силы тока по отдельным линиям. Они защищают от перегрузки кабель на выделенном участке и подключенную к нему группу потребителей электроэнергии. Если при коротком замыкании такое устройство не срабатывает, то его страхует вводной автомат.

Даже для квартир с небольшим количеством электропотребителей желательно выполнить отдельную линию на освещение. При отключении автомата другой цепи, свет не погаснет, что позволит в более комфортных условиях устранить возникшую проблему. Практически в каждом щитке значение номинала вводного автомата меньше чем сумма на групповых.

Суммарная мощность электроприборов

Максимальная нагрузка на цепь возникает при одновременном включении всех электроприборов. Поэтому обычно, суммарную мощность вычисляют простым сложением. Однако в ряде случаев этот показатель будет меньше.

Для некоторых линий, одновременная работа всех подключенных к ней электроприборов маловероятна, а порой и невозможна. В домах иногда специально устанавливают ограничения на работу мощных устройств. Для этого нужно помнить о недопущении их одновременного включения или использовать ограниченное число розеток.

Вероятность одновременной работы всей офисной оргтехники, освещения и вспомогательного оборудования (чайники, холодильники, вентиляторы, обогреватели и т.д.) очень низка, поэтому при расчете максимальной мощности используют поправочный коэффициент

При электрификации офисных зданий для расчетов часто используют эмпирический коэффициент одновременности, значение которого берут в диапазоне от 0,6 до 0,8. Максимальная нагрузка вычисляется умножением суммы мощностей всех электроприборов на коэффициент.

В расчетах существует одна тонкость – необходимо учитывать разницу между номинальной (полной) мощностью и потребляемой (активной), которые связаны коэффициентом (cos (f)).

Это означает, что для работы устройства необходим ток мощности равной потребляемой деленной на этот коэффициент:

Ip = I / cos (f)

Где:

  • Ip – сила номинального тока, которую применяют в расчетах нагрузки;
  • I – сила потребляемого прибором тока;
  • cos (f) <= 1.

Обычно номинальный ток сразу или через указание величины cos (f) указывают в техническом паспорте электрического прибора.

Так, например, значение коэффициента для люминесцентных источников света равно 0,9; для LED-ламп – около 0,6; для обыкновенных ламп накаливания – 1. Если документация утеряна, но известна потребляемая мощность бытовых устройств, то для гарантии берут cos (f) = 0,75.

Указанные в таблице рекомендуемые значения коэффициента мощности можно использовать при расчете электрических нагрузок, когда отсутствуют данные о номинальном токе

О том, как подобрать автоматический выключатель по мощности нагрузки, написано в следующей статье, с содержанием которой мы советуем ознакомиться.

Выбор сечения жил

Прежде чем прокладывать силовой кабель от распределительного щитка к группе потребителей, необходимо вычислить мощность электроприборов при их одновременной работе. Сечение любой ветви выбирают по таблицам расчета в зависимости от типа металла проводки: меди или алюминия.

Производители проводов сопровождают выпускаемую продукцию подобными справочными материалами. Если они отсутствуют, то ориентируются на данные из справочника “Правила устройства электрооборудования” или производят расчет сечения кабеля.

Однако часто потребители перестраховываются и выбирают не минимально допустимое сечение, а на шаг большее. Так, например, при покупке медного кабеля для линии 5 кВт, выбирают сечение жил 6 мм2, когда по таблице достаточно значения 4 мм2.

Справочная таблица, представленная в ПУЭ, позволяет выбрать необходимое сечение из стандартного ряда для различных условий эксплуатации медного кабеля

Это бывает оправдано по следующим причинам:

  • Более длительная эксплуатация толстого кабеля, который редко подвергается предельно допустимой для его сечения нагрузке. Заново выполнять прокладку электропроводки – непростая и дорогостоящая работа, особенно если в помещении сделан ремонт.
  • Запас пропускной способности позволяет беспроблемно подключать к ветви сети новые электроприборы. Так, в кухню можно добавить дополнительную морозильную камеру или переместить туда стиральную машину из ванной комнаты.
  • Начало работы устройств, содержащих электродвигатели, дает сильные стартовые токи. В этом случае наблюдается просадка напряжения, которая выражается не только в мигании ламп освещения, но и может привести к поломке электронной части компьютера, кондиционера или стиральной машины. Чем толще кабель, тем меньше будет скачок напряжения.

К сожалению, на рынке много кабелей, выполненных не по ГОСТу, а согласно требованиям различных ТУ.

Часто сечение их жил не соответствует требованиям или они выполнены из токопроводящего материала с большим сопротивлением, чем положено. Поэтому реальная предельная мощность, при которой происходит допустимый нагрев кабеля, бывает меньше чем в нормативных таблицах.

Эта фотография показывает отличия между кабелями, выполненными по ГОСТ (слева) и согласно ТУ (справа). Очевидна разница в сечении жил и плотности прилегания изоляционного материала

Расчет номинала выключателя для защиты кабеля

Устанавливаемый в щитке автомат должен обеспечить отключение линии при выходе мощности тока за пределы диапазона, разрешенного для электрического кабеля. Поэтому для выключателя необходимо провести расчет максимально допустимого номинала.

По ПУЭ допустимую длительную нагрузку проложенных в коробах или по воздуху (например, над натяжным потолком) медных кабелей, берут из приведенной выше таблицы. Эти значения предназначены для аварийных случаев, когда идет перегрузка по мощности.

Некоторые проблемы начинаются при соотнесении номинальной мощности выключателя длительному допустимому току, если это делать в соответствии с действующим ГОСТ Р 50571.4.43-2012.

Приведен фрагмент п. 433.1 ГОСТ Р 50571.4.43-2012. В формуле “2” допущена неточность, а для правильного понимания определения переменной In нужно учесть Приложение “1”

Во-первых, в заблуждение вводит расшифровка переменной In, как номинальной мощности, если не обратить внимания на Приложение “1” к этому пункту ГОСТа. Во-вторых, в формуле “2” существует опечатка: коэффициент 1,45 добавлен неправильно и этот факт констатируют многие специалисты.

Согласно п. 8.6.2.1. ГОСТ Р 50345-2010 для бытовых выключателей с номиналом до 63 A условное время равно 1 часу. Установленный ток расцепления равен значению номинала, умноженного на коэффициент 1,45.

Таким образом, согласно и первой и измененной второй формулам номинальная сила тока выключателя должна рассчитываться по следующей формуле:

In <= IZ / 1,45

Где:

  • In – номинальный ток автомата;
  • IZ – длительный допустимый ток кабеля.

Проведем расчет номиналов выключателей для стандартных сечений кабелей при однофазном подключении с двумя медными жилами (220 В). Для этого разделим длительный допустимый ток (при прокладке по воздуху) на коэффициент расцепления 1,45.

Выберем автомат таким образом, чтобы его номинал был меньше этого значения:

  • Сечение 1,5 мм2: 19 / 1,45 = 13,1. Номинал: 13 A;
  • Сечение 2,5 мм2: 27 / 1,45 = 18,6. Номинал: 16 A;
  • Сечение 4,0 мм2: 38 / 1,45 = 26,2. Номинал: 25 A;
  • Сечение 6,0 мм2: 50 / 1,45 = 34,5. Номинал: 32 A;
  • Сечение 10,0 мм2: 70 / 1,45 = 48,3. Номинал: 40 A;
  • Сечение 16,0 мм2: 90 / 1,45 = 62,1. Номинал: 50 A;
  • Сечение 25,0 мм2: 115 / 1,45 = 79,3. Номинал: 63 A.

Автоматические выключатели на 13A в продаже бывают редко, поэтому вместо них чаще используют устройства с номинальной мощностью 10A.

Кабели на основе алюминиевых жил сейчас редко используют при монтаже внутренней проводки. Для них тоже есть таблица, позволяющая выбрать сечение по нагрузке

Подобным способом для алюминиевых кабелей рассчитаем номиналы автоматов:

  • Сечение 2,5 мм2: 21 / 1,45 = 14,5. Номинал: 10 или 13 A;
  • Сечение 4,0 мм2: 29 / 1,45 = 20,0. Номинал: 16 или 20 A;
  • Сечение 6,0 мм2: 38 / 1,45 = 26,2. Номинал: 25 A;
  • Сечение 10,0 мм2: 55 / 1,45 = 37,9. Номинал: 32 A;
  • Сечение 16,0 мм2: 70 / 1,45 = 48,3. Номинал: 40 A;
  • Сечение 25,0 мм2: 90 / 1,45 = 62,1. Номинал: 50 A.
  • Сечение 35,0 мм2: 105 / 1,45 = 72,4. Номинал: 63 A.

Если производитель силовых кабелей заявляет иную зависимость допустимой мощности от площади сечения, то необходимо пересчитать значение для выключателей.

Формулы зависимости силы тока от мощности для однофазной и трехфазной сети отличаются. Многие люди, которые имеют приборы, рассчитанные на напряжения 380 Вольт, на этом этапе допускают ошибку

Как определить технические параметры автоматического выключателя по маркировке, подробно изложено здесь. Рекомендуем ознакомиться с познавательным материалом.

Какая стандартная линейка автоматических выключателей по току

По ПУЭ в каждом аппарате есть надпись, которая указывает на номинальное значение электрической энергии. Чтобы получить такую информацию, нужно просто рассмотреть корпус устройства. На нем есть буква и число. Всего для маркировки используются обычно три буквы — В, С и D. Числа обозначают количество заряда. Буква показывает временную характеристику или период, за который срабатывает прибор.

Маркировка оборудования

Для дома используются аппараты с первыми двумя буквами. В промышленности нужны защитные устройства D. Также применяются более мощные агрегаты, обозначенные буквами L, Z и K. У них номинальные значения выше, чем в бытовых, квартирных устройствах.

Стандартная линейка включает в себя мини-автоматы, воздушные автоматы, закрытые выключатели, устройства защитного отключения и дифференциальные автоматы.

Обратите внимание! В маркировке указываются также серия, рабочее напряжение, полюса и отключающая способность.

Таблица автоматических выключателей для однофазной сети 220 В

Номинальный ток автоматического выключателя, А. Мощность, кВт. Ток,1 фаза, 220В. Сечение жил кабеля, мм2

16

0-2,8 0-15,0 1,5

25

2,9-4,5 15,5-24,1 2,5

32

4,6-5,8 24,6-31,0 4

40

5,9-7,3 31,6-39,0 6

50

7,4-9,1 39,6-48,7 10

63

9,2-11,4 49,2-61,0 16

80

11,5-14,6 61,5-78,1 25

100

14,7-18,0 78,6-96,3 35

125

18,1-22,5 96,8-120,3 50

160

22,6-28,5 120,9-152,4 70

200

28,6-35,1 152,9-187,7 95

250

36,1-45,1 193,0-241,2 120

315

46,1-55,1 246,5-294,7 185

Таблица автоматических выключателей для трехфазной сети 380 В

Номинальный ток
автоматического
выключателя, А.
Мощность, кВт. Ток, 1 фаза 220В. Сечение жил
кабеля, мм2.

16

0-7,9 0-15 1,5

25

8,3-12,7 15,8-24,1 2,5

32

13,1-16,3 24,9-31,0 4

40

16,7-20,3 31,8-38,6 6

50

20,7-25,5 39,4-48,5 10

63

25,9-32,3 49,2-61,4 16

80

32,7-40,3 62,2-76,6 25

100

40,7-50,3 77,4-95,6 35

125

50,7-64,7 96,4-123,0 50

160

65,1-81,1 123,8-124,2 70

200

81,5-102,7 155,0-195,3 95

250

103,1-127,9 196,0-243,2 120

315

128,3-163,1 244,0-310,1 185

400

163,5-207,1 310,9-393,8 2х95*

500

207,5-259,1 394,5-492,7 2х120*

630

260,1-327,1 494,6-622,0 2х185*

800

328,1-416,1 623,9-791,2 3х150*

Выбираем отключающую способность

Выше описан выбор пакетника по максимально допустимому току нагрузки. Но автомат защиты сети также должен отключаться при возникновении с сети КЗ (короткого замыкания). Эту характеристику называют отключающей способностью. Она отображается в тысячах ампер — именного такого порядка могут достигать токи при коротком замыкании. Выбор автомата по отключающей способности не очень сложен.

Эта характеристика показывает, при каком максимальном значении тока КЗ автомат сохраняет свою работоспособность, то есть, он сможет не только отключится, но и будет работать после повторного включения. Эта характеристика зависит от многих факторов и для точного подбора необходимо определять токи КЗ. Но для проводки в доме или квартире такие расчеты делают очень редко, а ориентируются на удаленность от трансформаторной подстанции.

Отключающая способность автоматических защитных выключателей

Если подстанция находится недалеко от ввода в ваш дом/квартиру, берут автомат с отключающей способностью 10 000 А, для всех остальных городских квартир достаточно 6 000 А.

Если же дом находится в сельской местности иди вы выбираете автомат защиты электросети для дачи, вполне может хватить и отключающей способности в 4 500 А. Сети тут обычно старые и токи КЗ большими не бывают. А так как с возрастанием отключающей способности цена возрастает значительно, можно применить принцип разумной экономии.

Можно ли в городских квартирах ставить пакетики с более низкой отключающей способностью. В принципе, можно, но никто не гарантирует, что после первого же КЗ вам не придется его менять. Он может успеть отключить сеть, но окажется при этом неработоспособным. В худшем варианте контакты расплавятся и отключиться автомат не успеет. Тогда проводка расплавится и может возникнуть пожар.

Тип электромагнитного расцепителя

Автомат должен срабатывать при повышении тока выше определенной отметки. Но в сети периодически возникают кратковременные перегрузки. Обычно они связаны с пусковыми токами.

Например, такие перегрузки могут наблюдаться при включении компрессора холодильника, мотора стиральной машины и т.д. Автоматический выключатель при таких временных и краткосрочных перегрузках отключаться не должен, потому у них есть определенная задержка на срабатывание.

Но если ток возрос не из-за перегрузки а из-за КЗ, то за время, которое «выжидает» автоматический выключатель, контакты его расплавятся. Вот для этого и существует электромагнитный автоматический расцепитель. Он срабатывает при определенной величине тока, которая уже не может быть перегрузкой.

Этот показатель называют еще током отсечки, так как в этом случае автоматический выключатель отсекает линию от электропитания. Величина тока срабатывания может быть разной и отображается буквами, которые стоят перед цифрами, обозначающими номинал автомата.

Есть три самых ходовых типа:

С какой же характеристикой выбрать пакетник? В данном случае выбор автомата защиты также основывается на отдаленности вашего домовладения от подстанции и состояния электросетей выбор автомата защиты проводят ползуясь простыми правилами:

  • С буквой «B» на корпусе подходят для дач, домов селах и поселках, которые получают электропитание через воздушки. Также их можно ставить в квартиры старых домов, в которых реконструкция внутридомовой электросети не производилась. Эти защитные автоматы далеко не всегда есть в продаже, стоят немного дороже категории С, но могут доставляться под заказ.
  • Пакетники с «C» на корпусе — это наиболее широко распространенный вариант. Они ставятся в сетях с нормальным состоянием, подходят для квартир в новостройках или после капремонта, в частных домах недалеко от подстанции.
  • Класс D ставят на предприятиях, в мастерских с оборудованием, имеющим высокие пусковые токи.

То есть по сути выбор автомата защиты в этом случае прост — для большинства случаев подходит тип C. Он и есть в магазинах в большом ассортименте.

Каким производителям стоит доверять

И напоследок уделим внимание производителям. Выбор автомата нельзя считать завершенным, если вы не подумали о том, какой фирмы автоматические выключатели вы будете покупать. Точно не стоит брать неизвестные фирмы — электрика не та область, где можно ставить эксперименты. Подробно о выборе производителя в видео.

Источники

  • https://220.guru/elektrooborudovanie/avtomaty-uzo/nominaly-avtomatov.html
  • https://sovet-ingenera.com/elektrika/uzo-schet/vybor-avtomata-po-moshhnosti-nagruzki.html
  • https://sovet-ingenera.com/elektrika/uzo-schet/nominaly-avtomaticheskix-vyklyuchatelej-po-toku.html
  • https://rusenergetics.ru/oborudovanie/nominaly-avtomaticheskikh-vyklyuchateley-po-toku
  • https://www.calc.ru/Tablitsa-Dlya-Vybora-Avtomaticheskikh-Vyklyuchateley.html
  • https://stroychik.ru/elektrika/vybor-avtomata

[свернуть]

Как подобрать автоматический выключатель

Автоматический выключатель — устройство, обеспечивающее защиту Вашего дома, электроники и Ваших близких от поражения электрическим током. В нормальных условиях, когда работа всех приборов и проводки проходит в обычном режиме, выключатель проводит через себя электрический ток. Но в случае когда по тем или иным причинам сила тока превысила номинальные значения (подключена нагрузка больше рассчитанной, вследствие неисправности электроприборов или электроцепей возникло короткое замыкание), срабатывают расцепители автоматического выключателя и размыкают цепь.

В модульных автоматических выключателях обычно стоят два типа расцепителей:

  • Тепловой расцепитель — срабатывающий при токах перегрузки. Конструктивно представляет из себя биметаллическую пластину, которая при нагревании благодаря свойствам материала распрямляется. В зависимости от величины номинального тока регулируется нагреваемая часть пластины. Соответственно скорость срабатывания автомата прямо пропорциональна силе тока, проходящей через пластину.
  • Электромагнитный расцепитель устройство срабатывающее при токах короткого замыкания, которые кратно превышают номинальный ток автоматического выключателя.

Для выбора модульного автоматического выключателя

необходимо определиться со следующими параметрами:

Количество полюсов автомата

  • Однополюсные автоматические выключатели устанавливаются в однофазной цепи. При этом однополюсные автоматы устанавливаются непосредственно на фазу, и защищают отходящие линии, обычно розеточные или осветительные линии.  
  • Трёхполюсные выключатели устанавливаются в трехфазной сети обычно в качестве вводных автоматов или для защиты трехфазных потребителей.

Ток перегрузки автоматического выключателя

Обычно вводной автомат ставят на ток, согласно выделенной мощности на квартиру или до.

При однофазной сети 

I=P/U например, на квартиру выделено 10кВт, значит вводной автомат ставим 10000Вт/220В =45,5 округляем до ближайшего меньшего =берем автомат на 40А.

При трехфазной сети

I=P/U*1.7  где 1,7 корень из 3. Допустим на квартиру выделено 30кВт -30000Вт/380В*1,7= 45,5 округляем, и выбираем трехполюсный автомат на 40А)

 

Для подбора автоматов на отходящих линиях необходимо выбирать в зависимости от сечения провода, который установлен на защищаемой линии. (В случае если у Вас на данной линии находится несколько потребителей). 

В случае, если на защищаемой линии один потребитель (например водонагреватель) устанавливают автомат, исходя из мощности устройства.








Сечение токопроводящей жилы, мм

Ток *, А, для проводов и кабелей

 

одножильных

двухжильных

трехжильных

1,5

23

19

19

2,5

30

27

25

4

41

38

35

6

50

50

42

10

80

70

55

 

Тип характеристики срабатывания при КЗ

  • В 3-5 предназначены для защиты активных нагрузок и протяженных линий освещения с системами заземления TN и IT (розетки, освещение).
  • С 5-10 предназначены для защиты цепей с активной и индуктивной нагрузкой с низким импульсным током (для офисных и жилых помещений)
  • D 10-20 используется при нагрузках с высокими импульсными (пусковыми) токами и повышенном токе включения (низковольтные трансформаторы, ламы-разрядники, подъемные механизмы, насосы)
  • K 8-15 активно-индуктивная нагрузка, эл.двигатели, трансформаторы
  • Z 2-3 электроника

Обычно в квартиру ставят автоматические выключатели с характеристикой С.

Наибольшая отключающая способность (ПКС) автоматов

— максимальный электрический ток, который автоматический выключатель может расцепить. Здесь принцип следующий: ПКС рассчитывается из максимального тока, который может возникнуть при коротком замыкании отходящих проводов.  Вводной автомат в квартиру должен быть по Госту минимум на 6 кА, автоматические выключатели на розеточную группу и освещение могут быть на 4,5 кА. В Европе автоматические выключатели на 4,5 кА запрещены.

Количество автоматов.

Обычно в распределительном щите устанавливают вводный автомат, автомат на розеточные линии на 2-3 комнаты, автомат на осветительные линии (наверно лучше по одному автомату на комнату), отдельно по автомату на мощных потребителей электроэнергии, калорифер, стиральную машину и т.д.

При комплектации наших клиентов, мы обычно рекомендуем модульные автоматы производства ABB серии S200 (ПКС 6кА) или Sh300 (ПКС 4,5кА) или Acti9 Schneider Electric. Строители при возведении новых домов устанавливают обычно автоматы производства ИЭК. Поэтому если в Вашей новой квартире установлены автоматы фирмы ИЭК, то Вы можете предположить какая у Вас установлена проводка внутри стен, марку и качество бетона и т.д.

Как выбрать автомат по мощности нагрузки

Выбрать автомат по мощности нагрузки

Для выбора автомата по мощности нагрузки необходимо рассчитать ток нагрузки, и подобрать номинал автоматического выключателя больше или равному полученному значению. Значение тока, выраженное в амперах в однофазной сети 220 В., обычно превышает значение мощности нагрузки, выраженное в киловаттах в 5 раз, т.е. если мощность электроприемника (стиральной машины, лампочки, холодильника) равна 1,2 кВт., то ток, который будет протекать в проводе или кабеле равен 2,4 А(1,2 кВт*5=6,0 А). В расчете на 380 В., в трехфазных сетях, все аналогично, только величина тока превышает мощность нагрузки в 2 раза.

Можно посчитать точнее и посчитать ток по закону ома I=P/U —  I=1200 Вт/220В =5,45А. Для трех фаз напряжение будет 380В.
Можно посчитать еще точнее и учесть cos φ — I=P/U*cos φ.

Коэффициент мощности — безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.

Численно коэффициент мощности равен косинусу этого фазового сдвига или cos φ

Косинус фи возьмем из таблицы 6.12 нормативного документа СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий»

 Значение Cos φ в зависимости от типа электроприемника

Тип электроприемника cos φ
Холодильное  оборудование
предприятий торговли и
общественного питания,
насосов, вентиляторов и
кондиционеров воздуха
при мощности
электродвигателей, кВт:
до 1 0,65
от 1 до 4 0,75
свыше 4 0,85
Лифты и другое
подъемное оборудование
0,65
Вычислительные машины
(без технологического
кондиционирования воздуха)
0,65
Коэффициенты мощности
для расчета сетей освещения
следует принимать с лампами:
люминесцентными 0,92
накаливания 1,0
ДРЛ и ДРИ с компенсированными ПРА 0,85
то же, с некомпенсированными ПРА 0,3-0,5
газосветных рекламных установок 0,35-0,4

Примем наш электроприемник мощностью 1,2 кВт. как бытовой однофазный холодильник на 220В, cos φ примем из таблицы 0,75 как двигатель от 1 до 4 кВт.
Рассчитаем ток I=1200 Вт / 220В * 0,75 = 4,09 А.

Теперь самый правильный способ определения тока электроприемника — взять величину тока с шильдика, паспорта или инструкции по эксплуатации. Шильдик с характеристиками есть почти на всех электроприборах.

Общий ток в линии(к примеру розеточной сети) определяется суммированием тока всех электроприемников. По рассчитанному току выбираем ближайший  номинал автоматического автомата в большую сторону. В нашем примере для тока 4,09А это будет автомат на 6А.

Очень важно отметить, что выбирать автоматический выключатель только по мощности нагрузки является грубым нарушением требований пожарной безопасности и может привести к возгоранию изоляции кабеля или провода и как следствие к появлению пожара. Необходимо при покупке учитывать еще и сечение провода или кабеля.

По мощности нагрузки более правильно выбирать сечение проводника. Требования по выбору изложены в основном нормативном документе для электриков под названием Правила Устройства Электроустановок.В нашем случае, для домашней электросети, достаточно рассчитать ток нагрузки, как указано выше, и в таблице ниже выбрать сечение проводника, при условии что полученное значение ниже длительно допустимого тока соответствующего его сечению.

Выбор автомата по сечению кабеля

Рассмотрим проблему выбора автоматических выключателей для домашней электропроводки более подробно с учетом требований пожарной безопасности и.т.д. Необходимые требования изложены главе 3.1 «Защита электрических сетей до 1 кВ.», так как напряжение сети в частных домах, квартирах, дачах равно 220 или 380В.

Напряжение 220В. – однофазная сеть используется в основном для розеток и освещения.
380В. – это в основном сети распределительные – линии электропередач проходящие по улицам, от которых ответвлением подключаются дома.

Согласно требованиям вышеуказанной главы, внутренние сети жилых и общественных зданий должны быть защищены от токов КЗ и перегрузки. Для выполнения этих требований и были изобретены аппараты защиты под названием автоматические выключатели(автоматы).

Автоматический выключатель «автомат» — это механический коммутационный аппарат, способный включать, проводить токи при нормальном состоянии цепи, а также включать, проводить в течение заданного времени и автоматически отключать токи в указанном аномальном состоянии цепи, таких, как токи короткого замыкания и перегрузки.

Короткое замыкание (КЗ) — электрическое соединение двух точек электрической цепи с различными значениями потенциала, не предусмотренное конструкцией устройства и нарушающее его нормальную работу. Короткое замыкание может возникать в результате нарушения изоляции токоведущих элементов или механического соприкосновения неизолированных элементов. Также, коротким замыканием называют состояние, когда сопротивление нагрузки меньше внутреннего сопротивления источника питания.

Ток перегрузки – превышающий нормированное значение длительно допустимого тока и вызывающий перегрев проводника.Защита от токов КЗ и перегрева необходима для пожарной безопасности, для предотвращения возгорания проводов и кабелей, и как следствие пожара в доме.

Длительно допустимый ток – величина тока, постоянно протекающего по проводнику, и не вызывающего чрезмерного нагрева провода или кабеля.

Величина длительно допустимого тока для проводников разного сечения и материала представлена ниже.Таблица представляет собой совмещенный и упрощенный вариант применимый для бытовых сетей электроснабжения, таблиц № 1.3.6 и 1.3.7 ПУЭ.

Сечение
токо-
проводящей
жилы, мм
Длительно допустимый
ток, А, для проводов
и кабелей с медными жилами.
Длительно допустимый
ток, А, для проводов
и кабелей с алюминиевыми жилами.
1,5 19
2,5 25 19
4 35 27
6 42 32
10 55 42
16 75 60
25 95 75
35 120 90
50 145 110

Выбор автомата по току короткого замыкания КЗ

Выбор автоматического выключателя для защиты от КЗ (короткого замыкания) осуществляется на основании расчетного значения тока КЗ в конце линии. Расчет относительно сложен, величина зависит от мощности трансформаторной подстанции, сечении проводника и длинны проводника и т.п.

Из опыта проведения расчетов и проектирования электрических сетей, наиболее влияющим параметром является длинна линии, в нашем случае длинна кабеля от щитка до розетки или люстры.

Т.к. в квартирах и частных домах эта длинна минимальна, то такими расчетами обычно пренебрегают и выбирают автоматические выключатели с характеристикой «C», можно конечно использовать «В», но только для освещения внутри квартиры или дома, т.к. такие маломощные светильники не вызывают высокого значения пускового тока, а уже в сети для кухонной техники имеющей электродвигатели, использование автоматов с характеристикой В не рекомендуется, т.к. возможно срабатывание автомата при включении холодильника или блендера из-за скача пускового тока.

Выбор автомата по длительно допустимому току(ДДТ) проводника.

Выбор автоматического выключателя для защиты от перегрузки или от перегрева проводника осуществляется на основании величины ДДТ для защищаемого участка провода или кабеля. Номинал автомата должен быть меньше или равен величине ДДТ проводника, указанного в таблице выше. Этим обеспечивается автоматическое отключение автомата при превышении ДДТ в сети, т.е. часть проводки от автомата до последнего электроприемника защищена от перегрева, и как следствие от возникновения пожара.

Пример выбора автоматического выключателя

Имеем группу от щитка к которой планируется подключить посудомоечную машину -1,2 кВт, кофеварку – 0,6 кВт и электрочайник – 2,0 кВт.

Считаем общую нагрузку и вычисляем ток.

Нагрузка = 0,6+1,6+2,0=4,2 кВт. Ток = 4,2*5=21А.

Смотрим таблицу выше, под рассчитанный нами ток подходят все сечения проводников кроме 1,5мм2 для меди и 1,5 и 2,5 по алюминию.

Выбираем медный кабель с жилами сечением 2,5мм2, т.к. покупать кабель большего сечения по меди не имеет смысла, а алюминиевые проводники не рекомендуются к применению, а может и уже запрещены.

Смотрим шкалу номиналов выпускаемых автоматов — 0.5; 1.6; 2.5; 1; 2; 3; 4; 5; 6; 8; 10; 13; 16; 20; 25; 32; 40; 50; 63.

Автоматический выключатель для нашей сети подойдет на 25А, так как на 16А не подходит потому что рассчитанный ток (21А.) превышает номинал автомата 16А, что вызовет его срабатывание, при включении всех трех электроприемников сразу. Автомат на 32А не подойдет потому что превышает ДДТ выбранного нами кабеля 25А., что может вызвать, перегрев проводника и как следствие пожар.

Сводная таблица для выбора автоматического выключателя для однофазной сети 220 В.

Номинальный ток автоматического выключателя, А. Мощность, кВт. Ток,1 фаза, 220В. Сечение жил кабеля, мм2.
16 0-2,8 0-15,0 1,5
25 2,9-4,5 15,5-24,1 2,5
32 4,6-5,8 24,6-31,0 4
40 5,9-7,3 31,6-39,0 6
50 7,4-9,1 39,6-48,7 10
63 9,2-11,4 49,2-61,0 16
80 11,5-14,6 61,5-78,1 25
100 14,7-18,0 78,6-96,3 35
125 18,1-22,5 96,8-120,3 50
160 22,6-28,5 120,9-152,4 70
200 28,6-35,1 152,9-187,7 95
250 36,1-45,1 193,0-241,2 120
315 46,1-55,1 246,5-294,7 185

 

Сводная таблица для выбора автоматического выключателя для трехфазной сети 380 В.

Номинальный ток
автоматического
выключателя, А.
Мощность, кВт. Ток, 1 фаза 220В. Сечение жил
кабеля, мм2.
16 0-7,9 0-15 1,5
25 8,3-12,7 15,8-24,1 2,5
32 13,1-16,3 24,9-31,0 4
40 16,7-20,3 31,8-38,6 6
50 20,7-25,5 39,4-48,5 10
63 25,9-32,3 49,2-61,4 16
80 32,7-40,3 62,2-76,6 25
100 40,7-50,3 77,4-95,6 35
125 50,7-64,7 96,4-123,0 50
160 65,1-81,1 123,8-124,2 70
200 81,5-102,7 155,0-195,3 95
250 103,1-127,9 196,0-243,2 120
315 128,3-163,1 244,0-310,1 185
400 163,5-207,1 310,9-393,8 2х95*
500 207,5-259,1 394,5-492,7 2х120*
630 260,1-327,1 494,6-622,0 2х185*
800 328,1-416,1 623,9-791,2 3х150*

* — сдвоенный кабель, два кабеля соединенных паралельно, к примеру 2 кабеля ВВГнг 5х120

Какой автомат ставить на варочную панель и духовой шкаф: что это такое

При сборке электрощита и подключении мощной кухонной техники важно правильно выбрать автоматические защитные выключатели. Именно эти устройства отвечают за электрическую и пожарную безопасность. Ошибки при выборе приводят к порче техники, коротким замыканиям и даже пожарам. Рассмотрим, какой автомат лучше ставить на варочную панель и духовой шкаф.

Особенности подключения

Электрические духовые шкафы и варочные панели относятся к энергоемкой бытовой технике, поэтому к подключению этих приборов подходят со всей ответственностью.

Независимо от того, устанавливается духовой шкаф автономно или в связке с варочной панелью, подключение проводят только при соблюдении следующих условий:

  1. Хорошее состояние электропроводки. Предварительно оценивают состояние проводки. В идеале энергоемкую технику подключают к выделенным линиям питания.
  2. Достаточное сечение проводников. В большинстве случаев для питания плиты и духовки используют кабель с сечением жил: в однофазной сети — 3*6 мм² (состоит из 3 жил, каждая сечением 6 мм²), в трехфазной — 5*4 мм² (состоит из 5 жил, каждая сечением 4 мм²).
  3. Наличие автоматического выключателя на линии. Устройство важно для обесточивания техники при аварийной ситуации.

Если эти условия не соблюдены, прокладывают новую трассу от щитка до места установки техники с автоматическим выключателем подходящего номинала.

Предназначение автомата

Защитный автоматический выключатель (автомат) служит для предупреждения перегрева электропроводки.

Важно! Кабель рассчитан на прохождение определенного тока. Если он превышает допустимое значение, кабель перегревается, и проводка начинает плавиться, что приводит к короткому замыканию.

При возникновении короткого замыкания автоматика прекращает подачу тока, и питание в сети отключается. В результате и проводка, и техника остаются неповрежденными.

Выбор устройства

Чтобы защитный автомат работал, его выбирают с учетом вида сети (однофазной или трехфазной), типа помещения и вида техники.

Для однофазной сети (220 В) различают автоматы одно– и двухполюсные. К однополюсным подключается только 1 проводник — фазный, к двухполюсным — фаза и ноль. Однополюсные автоматы ставят на цепи 220 В внутреннего освещения, на розеточные группы в помещениях с обычными условиями эксплуатации.

Для трехфазных сетей (380 В) различают трех– и четырехполюсные устройства. Эти автоматические выключатели ставят на линии, к которым подводятся все 3 фазы: например, электроплита, трехфазная варочная панель, духовой шкаф.

Для прочей бытовой техники достаточно двухполюсных автоматов защиты. Они в обязательном порядке должны отключать и фазу, и нейтраль.

Внимание! Основное правило выбора защитного автомата: устройство должно сработать до момента, как ток превысит возможности электропроводки. Из этого следует, что токовый номинал автомата должен быть меньше, чем максимальный ток, который выдерживает проводка.

Выбор автоматики для духовки и варочной панели выглядит следующим образом. Допустим, электроплита имеет максимальную мощность подключения 7 кВт (эта цифра указана в технической документации к устройству). Мощность делят на вольтаж сети: 7000 Вт/220 В = 31,8 А. Добавляют 20% запаса: 31,8 А + 20% = 38,1 А.

Автоматический выключатель выбирают того номинала, который ближе всего к полученной цифре. В этом случае номинал — 32 ампер.

Это  интересно:

Какая силовая розетка нужна для варочной панели

Самостоятельная установка духовки и варочной панели

Как заменить варочную панель

Дифавтомат

В бытовых электросетях есть еще одна потенциальная угроза, с которой не справится автоматический выключатель. Это дифференциальные токи, которые способны привести к поражению человека электричеством или пожару. Такие риски предупреждает дифавтомат.

Справка. Дифавтомат сочетает защитные функции автомата и устройства защитного отключения (УЗО). Корпус прибора более компактен, что важно, если в электрощите мало места.

Дифавтомат для варочной панели и духовки выбирают следующим образом. Значение номинального тока берут на ступеньку выше, чем для автомата. Например, если для автомата это 32 А, то для дифа — 40 А. Еще один важный показатель — чувствительность срабатывания. Для варочной панели оптимален показатель 30 мА.

Самостоятельная установка

Для подключения автоматического защитного выключателя в электрощитке сначала на DIN-рейку устанавливают верхнюю часть выключателя. Отверткой оттягивают проушину и прижимают нижнюю часть. Нижний захват отпускают и защелкивают на свое место.

Затем подключают контакты. Если до этого были подведены многожильные проводники, обжатые наконечниками, их заводят обратно в верхние и нижние зажимы и затягивают винты. Если жила была без наконечника, старый конец лучше удалить и зачистить, после чего отверткой сделать свежий, недеформированный проводник.

После подключения проводов на автомат подают напряжение и проверяют его работу. Если все в порядке, подключают электроприборы и смотрят, чтобы на контактах выключателя не появлялось искр, треска, нагрева и других нежелательных эффектов. Нагрев проверяют пирометром.

Важно правильно выбирать номиналы защитных автоматов, диаметр медных жил и заводить фазы на разрыв, а не нулевой провод. В рабочее положение автоматы устанавливают, сдвинув вверх кнопки выключателя.

Это интересно:

Подключение варочной панели и духового шкафа к одной розетке и можно ли так делать

Подключение вилки к варочной панели

Заключение

Подключение духового шкафа и варочной панели — дело несложное. С этим вполне можно справиться самостоятельно, но только при условии, что на кухне уже проложена отдельная линия электропитания с автоматическим защитным устройством. Грамотная установка автомата на варочную панель — залог безопасного и длительного использования кухонной техники.

Автомат c6 a — характеристики, маркировка, производитель, цена

Автоматический выключатель – автомат c6 служит для защиты электрической линии от короткого замыкания и токов перегрузки. А также он является коммутационным аппаратом. То есть им можно включать и отключать нагрузку

Как правило, цена на автомат c6 складывается из его характеристик, количества полюсов и “раскручености” бренда. Как можно увидеть, цены на автоматы C6 одного бренда и с одинаковым количеством полюсов различаются. Безусловно, цена зависит от коммутационной отключающей способности автомата.

 

Модульный автомат C6

В этой статье рассматривается модульный автомат C6а. Несомненно, автомат называется  модульным потому, что каждый его полюс представляет собой отдельный стандартный модуль.  По существу, изготовление многополюсных автоматов осуществляется соединением нескольких однополюсных модулей друг с другом. Таким образом, модульный автомат отличаются от других видов автоматов методом изготовления корпуса и его сборкой. Например, автомат в литом корпусе представляет собой цельный монолитный прибор. Его нельзя разобрать на отдельные полюса. Соответственно, из нескольких однополюсных автоматов нельзя собрать автомат многополюсный.

Общие характеристики автоматического выключателя c6, их маркировка

При любом количестве полюсов автомат с6 имеет следующие характеристики. То есть номинальный ток, коммутационная способность, класс токоограничения. Значения этих характеристик промаркированы на автоматическом выключателе.

Номинальный ток автомата c6

Безусловно, номинальный ток In автомата c6 составляет 6 ампер. То есть автомат может длительное время не отключаясь  пропускать ток силой не более 6 ампер. При средней температуре 30°C. Теоретически автомат C6 может пропускать ток такой силы бесконечно долго. Однако, стоит учитывать температурные изменения. С одной стороны, при снижении температуры номинальный ток будет увеличиваться. С другой стороны, в случае увеличения температуры номинальный ток будет снижаться.

Коммутационная или отключающая способность автомата с6

Коммутационная или номинальная отключающая способность  обозначается аббревиатурой Icn. Icn – это возможность автомата отключатся при токе короткого замыкания (КЗ) определенной силы. Автоматический выключатель должен при отключении остаться работоспособным. Как правило, маркировка силы тока указана в прямоугольной рамке на корпусе автомата. Бытовые модульные автоматы обычно имеют коммутационную способность 4500A (4,5 kA), 6000A (6 kA). На промышленных сериях может указываться без рамки. Чем коммутационная способность больше, тем автомат качественней и дороже. Про отключающую способность более подробно.

Класс токоограничения автомата c6

Класс токоограничения автоматического выключателя показывает, за какое время происходит гашение дуги. По замыслу существует три класса токоограничения автоматических выключателей. Третий класс токоограничения означает, что дуга гасится за 3-5 миллисекунд (0,003-0,005 секунды). В свою очередь, при втором классе гашение дуги происходит за 5-10 миллисекунд (0,005-0,01 секунды). На первый класс ограничение не установлены и гашение происходит за 10 миллисекунд и более.

Маркировка класса токоограничения нанесена на автомат в виде квадратной  рамки с цифрами 3 или 2. По обыкновению, она расположена под прямоугольной рамкой коммутационной способности или рядом с ней. В частности, если маркировки нет, то это автомат с первым классом токоограничения. Про токоограничение более подробно.

Времятоковые характеристики срабатывания электромагнитного и теплового расцепителей  автомата C6

Каждый автомат имеет два расцепителя – тепловой (биметаллическая пластина) и электромагнитный (реле максимального тока). По сути, при помощи этих расцепителей происходит автоматическое отключение. По замыслу, тепловой расцепитель отключает автомат при длительном превышении мощности на участке сети. То есть на участке который защищен этим автоматом. С другой стороны, электромагнитный расцепитель отключает автомат при коротком замыкании. Однако, может быть и наоборот. Такое может произойти при установке автомата, с неверно подобранными характеристиками. Параметры силы тока, при котором происходит отключение, и времени, за которое отключение происходит, называются времятоковыми характеристиками автомата.

Времятоковые характеристики электромагнитного и теплового расцепителей автомата C6 промаркированы на автомате в виде буквы C. Соответственно, эта буква изображена перед числом, обозначающим  номинальный ток. Например, в данном случае перед числом 6.

Времятоковые характеристики отключения теплового расцепителя для автомата c6

Несомненно, чем больше мощность нагрузки подключенной к автомату, тем больше сила тока проходящая через автомат. Соответственно, слишком большая сила тока способна повредить кабель, идущий от автомата к  электроприбору. Значит, задача автомата отключить ток до того, как его сила достигнет величин, способных повредить кабель.

Времятоковые характеристики теплового расцепителя для автомата c6 составляют интервал от 1,13 In до 1,45 In. При прохождении через тепловой расцепитель автомата C6 тока, равному 1,13 от номинального, он выключится. Отключение произойдет за час или более. При прохождении тока силой 1,45 от номинального выключится менее чем за час.

Так или иначе, автомат c6 выключится тепловым расцепителем в течении часа или более. При условии что ток проходящий через автомат составит 6,78 Ампер (1,13×6A=6,78A). И выключится за время менее часа при токе 8,7 Ампер (1,45×6A=8,7A).

При повышении силы тока более 8,7 Ампер время отключения автомата будет уменьшаться. Если сила тока достигнет значений  достаточных для отключения электромагнитного расцепителя, отключение будет производить этот расцепитель.

Времятоковые характеристики срабатывания электромагнитного расцепителя автомата C6

Автомат C6 отключается электромагнитным расцепителем при определенных условиях. То есть когда ток, протекающий через автомат, станет в пять раз больше номинального тока. Время отключения составит более 0,1 секунды. При токе, превышающий номинальный в 10 (десять) раз, автомат отключится за 0,1 секунды или менее.

При силе тока (6×5=30) 30 Ампер автомат c6 отключится за время более 0,1 секунды. Когда сила тока достигнет (6×10=60) 60 Ампер – за 0,1 секунды или еще быстрее.

Сечение кабеля для автомата c6

Сечение кабеля для автомата c6 обусловлено времятоковыми характеристиками его теплового расцепителя. С одной стороны, через автомат c6 более, чем час времени может протекать ток 6,78 Ампер. С другой стороны, через него, примерно, в течении часа может протекать ток 8,7 Ампер. Образуется интервал длительного не отключения автомата примерно до 9 ампер. Значит, сечение проводника, подключаемого после автомата, должно быть примерно 1,5 мм² меди. Кабель с медными жилами сечением 1,5 мм² длительно выдерживает протекание тока силой около 19 Ампер. Понятное дело, что это зависит от количества жил, материала изоляции и условий прокладки кабеля. Соответственно, жилы кабеля с таким сечением не будут нагреваться при токе в 9 ампер.

Несомненно, при применении алюминиевого проводника сечение жил должно быть увеличено. До и после автомата c6 сечение его должно составлять 2,5 мм². Но применять в быту кабели с алюминиевыми жилами не нужно. Алюминий обладает большой текучестью. Поэтому требует частого осмотра и обслуживания.  Единственное исключение провод СИП от опоры до ввода в дом.

Другие характеристики для одно-1p(п) двух-2p(п) трех-3p(п) и четырехполюсного 4p(п) автомата c6a

Некоторые характеристики автомата c6 изменяются в зависимости от количества фаз сети, в которой используется автомат. Точнее, изменяется номинальная напряжение и мощность подключаемой к автомату нагрузки.

Безусловно, в однофазной сети используются однополюсные или двухполюсные автоматы C3. Потому их характеристики будут иметь свои определенные значения. Для трехфазной сети, где используются трехполюсные или четырехполюсные автоматы C6, эти характеристики будут другими. Разумеется, изменяется также схема подключения автомата.

Итак, однополюсные и двухполюсные автоматы применяются в однофазной сети. Трехполюсные и четырехполюсные используются в трехфазной сети.

Бывает, что двухполюсные автоматы используются в двухфазной сети. Однако, в быту двухфазные сети обычно отсутствуют. Исключением могут быть признаны не заземленные выходы однофазного генератора и разделительного трансформатора.

Однополюсные и трехполюсные автоматы отключают фазные проводники, а нулевой оставляют не разомкнутым. С другой стороны, двухполюсные и четырехполюсные автоматы размыкают и фазные и нулевой проводник одновременно.

По сути, существуют две разновидности двухполюсных автоматов – 2п и 1п+n. Двухполюсные 2п автоматы состоят из двух одинаковых однополюсных автоматов, соединенных механически. Стало быть, в этом случае оба полюса имеют защиту.

Двухполюсные 1п+n состоят из однополюсного автомата и однополюсного рубильника, также механически соединенных. Иначе говоря, полюс размыкающий нулевой проводник не содержит автоматических расцепителей, а только механизм, размыкающий контакты.  Контакты размыкаются с помощью механического привода при отключении автомата, размыкающего фазный проводник. То есть полюс n защиты не имеет. Соответственно, четырехполюсные автоматы 4п состоят из четырех полноценных однофазных автоматов. А к примеру, автоматы 3п+n из трех однополюсных автоматов и однополюсного рубильника.

Номинальное напряжение автоматического выключателя C6

Во-первых, для автомата C6 на корпусе промаркировано Ue номинальное напряжение. Иначе говоря, такое напряжение при котором автомат длительно может пропускать через себя номинальный ток. Так, для однополюсных и двухполюсных автоматов оно обычно составляет 230 – 400 вольт. В свою очередь, для трехполюсных и четырехполюсных 400 вольт. Во-вторых, может быть промаркировано максимальное Umax и минимальное Umin напряжение при котором автомат сохраняет работоспособность. В-третьих, Ui номинальное напряжение изоляции. То есть напряжение которое не может пробить сопротивление материала из которого изготовлен автомат. Другими словами, при данном напряжение, человеку который прикоснется к автоматическому выключателю, ни грозит поражение электротоком.

Чаще всего на автомате нанесена маркировка в виде волнистой линии ∼ или ≈ . Это означает, что он предназначен для использования в цепи переменного тока. Нанесена маркировка обычно перед обозначением номинального напряжения. С другой стороны, для цепей постоянного тока применяются автоматы с немного другим устройством. Такие автоматы имеют маркировку в виде прямой линии – .

Иногда на автомате указывается номинальное импульсное выдерживаемое напряжение Uimp в КилоВольтах. То есть, пиковое значение импульсного (чрезвычайно кратковременного) напряжения заданной формы и полярности. Безусловно, автомат должен выдерживать это напряжение без повреждений при определенных условиях.

Мощность нагрузки (На сколько киловатт автомат C6a)

Итак, мощность нагрузки автоматического выключателя c6 зависит от количества фаз сети. Очевидно, что в трехфазной сети к автомату можно подключить нагрузку большей мощности чем в однофазной.

Как полагается, однополюсный и двухполюсные автоматы c6а предназначены для однофазной сети. Напряжение в бытовой однофазной сети составляет 220-230 вольт. То есть, пользуясь простой формулой P=U×I, можно определить мощность нагрузки, которую можно подключить к автомату. P=220×6=1320 Ватт. P=230×6=1380 Ватт.

Мощность нагрузки для однополюсного и двухполюсного автоматов c6 равна 1320-1380 Ватт. Безусловно, лучше ограничить мощность подключенного к автомату c6 электроприбора в однофазной сети до 1,3 КилоВатт. Это позволит не перегревать кабель и не вызывать частое отключение автомата. Тем более, что ни говори, напряжение в сети обычно понижено. По новому госту напряжение однофазной сети должно быть 230 вольт ± 10%. Соответственно, в трехфазной сети 400 вольт ± 10%. Но обычно оно минус  10% или ниже и  намного реже плюс.

Трехполюсные и четырехполюсные автоматы предназначены для трехфазной сети. Напряжение бытовой трехфазной сети составляет 380-400 вольт. По формуле P=U×I выясняем мощность нагрузки. В результате для трех- и четырехполюсных автоматов c6 она составляет 2280 – 2400 Ватт. Определенно, как и для однофазной сети лучше взять нижний предел. Соответственно, ограничить мощность электроприемника, подключенного к автомату C6 в трехфазной сети, до 2,2 КилоВатт.

Где применяется автомат c6

Однополюсные и двухполюсные автоматы c6 примененяются для защиты линии на отдельный электроприбор мощностью 1300 Ватт. Трехполюсные и четырехполюсные автоматы c6 применяются для защиты сети на отдельный электроприемник мощностью 2200 Ватт.

Несомненно, однополюсный автомат c6 наиболее подходит для защиты цепей освещения. Для бытовых осветительных сетей применяется кабель с жилами на 1,5мм. Безусловно, это наиболее подходящее сечение кабеля для сетей освещения. Обычно применение большего или меньшего сечения для бытового освещения не рационально. Как можно видеть выше, автоматический выключатель C6 полностью защищает жилы кабеля данного сечения. Значит, автоматический выключатель C6 – один из вариантов оптимальной защиты для такого кабеля. 

Автомат c6 может быть установлен для защиты сети с активной, индуктивной или ёмкостной нагрузкой. То есть, применяется для защиты сети с подключенными осветительными и нагревательными приборами. С другой стороны может служить для защиты сети с двигателями, трансформаторами. А также различными электронными электроприборами. Однако, настоящее его применение – это сеть со смешанной нагрузкой.

По сути, автомат с характеристикой C предназначен для защиты сети, с подключением разных видов нагрузок.  Однако для более корректной защиты сети нередко приходится применять автоматы с другими характеристиками. К примеру, иногда в сеть подключен двигатель с большим пусковым током. В этом случае для защиты устанавливается автомат с характеристиками D.

Автомат c6 – схема подключения

Как подключить автомат, сверху или снизу? По определению, питающий проводник подключается к неподвижному контакту автомата. Скорее всего, это означает подключение сверху. Но могут быть и исключения. Так что нужно всегда смотреть схему подключения, нанесенную на корпус автомата.

Итак, цифра 1 на схеме показывает, куда подключается вход первого фазного проводника. Цифра 2 показывает выход первого фазного проводника. В то время как, 3 – вход, 4 – выход у двухполюсного автомата. Цифры 5 – вход, 6 – выход у трехполюсного; 7 – вход, 8 – выход у четырехполюсного.

Кроме цифр на схеме и (или) на контактах может быть обозначение буквы N. То есть на эти контакты подключается нулевой проводник. Когда обозначения буквы N нет, то нулевой проводник подключается на контакты, обозначенные наибольшими цифрами. Если фазные проводники подключаются сверху, то и нулевой проводник подключается сверху же. С другой стороны, если фазные проводники подключаются снизу, то нулевой, соответственно, снизу.

На данной схеме показано применение автомата c6 для отдельной цепи. Стоит обратить внимание, что вышестоящий автомат должен быть минимум на два номинала больше нижестоящего автомата. Это нужно для селективности по тепловому расцепителю. То есть чтобы нижестоящий автомат отключался первым при тепловой перегрузке сети.

Бренд – Компания производитель. Купить автоматический выключатель C6. Цена автомата c6

Наиболее известные зарубежные компании производящие модульные автоматические выключатели ABB, Schneider Electric, Legrand. Из отечественных КЭАЗ, IEK, EKF.

Безусловно, модульный автомат зарубежных брендов бытовой серии удовлетворяет нормам, предъявляемым к автоматам в быту. Но промышленные серии модульных автоматов, несомненно, качественнее, надежнее и удобнее для монтажа, чем бытовые.

Как водится, модульные автоматы отечественных компаний сделаны в Китае. К слову, это не признак их ненадежности.  Грубо говоря, по качеству они лишь немного хуже бытовых серий зарубежных компаний. Мало того, стоить они могут дешевле. И кроме того, тоже удовлетворяют нормам для бытовых автоматов. Жаль, но они обычно не имеют серий, похожих на промышленные серии зарубежных брендов.

Среди отечественных  производителей выделяется КЭАЗ. Факт, они действительно сами производят в России автоматы в литом корпусе. Модульные автоматы, как и все, заказывают в Китае. Но заказать производство товара и проконтролировать его качество тоже можно по разному. Их познание в практическом производстве автоматов дает надежду на более высокий уровень в этом плане.

УЗО и дополнительные приспособления для автомата C6

Выбирая автоматичекий выключатель, не стоит рассматривать его отдельно от других компонентов электрощита. Покупая автомат, надо иметь в виду то, что он будет монтироваться вместе с УЗО. Применять УЗО нужно одного производителя с автоматическим выключателем. А также одной серии с ним. Во всяком случае, при этом можно быть уверенным в наилучшем их взаимодействии друг с другом.

К слову сказать, у отечественных производителей УЗО по качеству уступают зарубежным. Бесспорно, часто они не имеют в серии электромеханических УЗО. Причем они имеют намного меньшее разнообразие в характеристиках.

Обычно минимальный номинал УЗО 16 ампер. Потому с автоматом C6  применяется УЗО на номинальный ток 16 ампер.

Применяя зарубежные автоматические выключатели промышленных серий, можно использовать различные вспомогательные приспособления. Это и разнообразные гребенки, дополнительные контакты и устройства автоматического включения. К огорчению, у отечественного производителя этих приспособлений или нет совсем, или ассортимент сильно ограничен. По чести говоря, зарубежные бытовые серии тоже не предназначены для совместного использования с дополнительными устройствами.

Автомат c6 Выбор производителя

Безусловно, среди зарубежных брендов рекомендовать к применению стоит компанию ABB. Как водится, все бренды стараются по возможности сэкономить и удешевить свою продукцию. Само собой, ABB не исключение. Однако, за выбор именно этой компании говорит то, что они наименее подвержены этой тенденции. Например, в сериях их продукции вообще нет электронных УЗО. А как известно, электромеханическое УЗО лучше электронного. Поскольку защищает от удара током даже при обрыве нуля и пониженном напряжении. Несомненно, автоматы и сопутствующие им аксессуары этой фирмы удобны для монтажа и отличаются разнообразием. Также у них неплохо развита логистика. Другими словами, если чего то нет на местном складе в данный момент, всегда можно заказать. И товар доставят с другого склада.

Несомненно, Schneider Electric и Legrand тоже имеют в ассортименте аппараты не уступающие по качеству ABB. Причем, многим людям удобнее использовать в монтаже продукцию этих компаний. Бесспорно, это дело личных предпочтений и привычки.

К сожалению, некоторые компании часто не представлены на отечественном рынке в своем полном ассортименте. Например, Siemens, Hager, GE. Вероятно, возможно купить какие-то автоматы этих производителей. Однако не найти в продаже УЗО. Тем более трудно приобрести различные дополнительные устройства для сборки щитов.

Без сомнения, речь идет только о промышленных сериях автоматов с коммутационной способностью от 6000 Ампер. В сущности, бытовые серии разных зарубежных производителей примерно схожи друг с другом. Пожалуй, они не представляют собой ничего выдающегося.

Автомат C6 – цена и где купить

Как правило, цена автомата c6 складывается из его характеристик, количества полюсов и “раскручености” бренда.

Узнать цену или купить автоматический выключатель c6 можно, перейдя по нижеприведенным ссылкам. Как можно увидеть, цены на автоматы C6 одного бренда и с одинаковым количеством полюсов различаются. В итоге цена зависит от коммутационной отключающей способности автомата.

Однополюсный автомат C6

Двухполюсный автомат C6

Трехполюсный автомат C6

Четырехполюсный автомат C6

Рекомендуем прочитать

Коммутационная или отключающая способность автоматического выключателя

Коммутационная или отключающая способность автомата – это возможность автомата отключатся определенное количество раз. Отключение происходит при токе короткого замыкания (КЗ) определенной силы.  Эта сила тока КЗ и является параметром отключающей способности   Читать далее…

 

Класс токоограничения автоматического выключателя

Класс токоограничения автоматического выключателя определяется скоростью гашения электрической дуги. Дуга возникает при отключении автомата в случае короткого замыкания. По определению, во время короткого замыкания автомат  разрывает контакты и соответственно, отключается. Факт, сила тока при коротком замыкании может достигать несколько тысяч ампер. Понятное дело, между размыкающимися контактами образуется электрическая дуга. Помимо всего прочего, дуга имеет высокую температуру. Следовательно, из-за данного обстоятельства автомат может выйти из строя. Значит, дуга должна быть как можно быстрее погашена. Гасится дуга с помощью дугогасительной камеры   Читать далее…

 

Характеристики автоматических выключателей – обозначения на корпусе

 Характеристики автоматических выключателей важный фактор при выборе защиты электроприборов в каждом конкретном случае.

Автоматический выключатель необходимо выбирать учитывая характеристики автоматических выключателей, обозначения которых нанесены на корпусе автомата   Читать далее…

 

Ваш Удобный дом

Однофазные асинхронные двигатели Вопросы и ответы

Назовите, пожалуйста, какие-нибудь однофазные асинхронные двигатели?

(i) тип с расщепленной фазой
(ii) тип конденсатора
(iii) тип с расщепленными полюсами

Назовите два типа репульсионных двигателей?

(i) Асинхронный двигатель с отталкиванием
(ii) Асинхронный двигатель с отталкиванием

Какие бывают типы однофазных синхронных двигателей?

(i) Электродвигатель сопротивления
(ii) Электродвигатель с гистерезисом

Чем однофазный двигатель похож на трехфазный?

Однофазный асинхронный двигатель очень похож на трехфазный асинхронный двигатель с короткозамкнутым ротором.Имеет

(i) короткозамкнутый ротор, идентичный трехфазному двигателю
(ii) однофазная обмотка на статоре

В чем основное различие между трехфазным асинхронным двигателем и однофазным асинхронным двигателем?

В отличие от трехфазного асинхронного двигателя, однофазный асинхронный двигатель не запускается автоматически, но требует некоторых средств запуска.

Почему однофазный асинхронный двигатель не запускается самостоятельно?

Однофазная обмотка статора создает магнитное поле, сила которого пульсирует синусоидальным образом.Полярность поля меняется после каждого полупериода, но поле не вращается. Следовательно, переменный поток не может производить вращение в неподвижном роторе с короткозамкнутым ротором.

Какой основной метод запуска однофазного асинхронного двигателя и почему он не является предпочтительным?

Если ротор однофазного двигателя вращается в одном направлении с помощью некоторых механических средств, он будет продолжать вращаться в направлении вращения. Фактически, ротор быстро ускоряется, пока не достигает скорости немного ниже синхронной скорости.Когда двигатель работает на этой скорости, он продолжает вращаться, даже если через обмотку статора протекает однофазный ток. Этот метод запуска обычно не подходит для больших двигателей. Его нельзя использовать и с двигателем, расположенным в недоступном месте.

Объясните, почему однофазный асинхронный двигатель не запускается в свете теории вращения двойного поля?

Теория вращения с двойным полем предлагается для объяснения этой дилеммы отсутствия крутящего момента при пуске и все же крутящего момента после вращения.Эта теория основана на том факте, что переменный синусоидальный поток может быть представлен двумя вращающимися потоками, каждый из которых равен половине максимального значения переменного потока (т. Е. М / 2), и каждый вращается с синхронной скоростью в противоположных направлениях.

Следовательно, переменное поле можно заменить двумя взаимосвязанными полями половинной амплитуды, вращающимися в противоположных направлениях с синхронной скоростью. Обратите внимание, что результирующий вектор двух вращающихся векторов потока является стационарным вектором, который со временем колеблется по оси X.

Какое положение ротора в состоянии покоя?

Рассмотрим случай, когда ротор неподвижен, а обмотка статора подключена к однофазной сети. Переменный поток, создаваемый обмоткой статора, можно представить как сумму двух вращающихся потоков 1 и 2, каждый из которых равен половине максимального значения переменного магнитного потока, и каждый вращается с синхронной скоростью (Ns = 120 f / P) в противоположных направлениях. направления.

В состоянии покоя эти два момента равны и противоположны, а результирующий крутящий момент равен нулю.Следовательно, однофазный асинхронный двигатель не запускается самостоятельно.

Какова величина пробуксовки при простое?

Обратите внимание, что каждое вращающееся поле имеет тенденцию приводить ротор в том направлении, в котором вращается поле. Таким образом, точка нулевого скольжения для одного поля соответствует 200% -ному скольжению для другого. Значение 100% скольжения (состояние покоя) одинаково для обоих полей.

Объяснить работу двигателя от состояния покоя до рабочего состояния?

В состоянии покоя s = 1, так что импедансы двух цепей равны.Следовательно, токи ротора равны, т.е. I2f = I2b. Однако, когда ротор вращается, импедансы двух цепей ротора не равны, и ток I2b ротора выше (а также при более низком коэффициенте мощности), чем ток I2f ротора. Их м.д.с., которые противостоят м.д.с. статора, приведут к уменьшению потока обратного вращения.

Следовательно, по мере увеличения скорости прямой поток увеличивается, увеличивая вращающий момент, в то время как обратный поток уменьшается, уменьшая противоположный крутящий момент.Мотор быстро разгоняется до конечной скорости.

Как заставить однофазный асинхронный двигатель самозапускаться?

Однофазный асинхронный двигатель не запускается автоматически, и нежелательно прибегать к механическому вращению вала или натягиванию ремня для его запуска. Чтобы однофазный асинхронный двигатель самозапускался, мы должны каким-то образом создать вращающееся магнитное поле статора.

Это может быть достигнуто путем преобразования однофазного источника питания в двухфазный за счет использования дополнительной обмотки.Когда двигатель набирает достаточную скорость, пусковое средство (то есть дополнительная обмотка) может быть удалено в зависимости от типа двигателя.

Назовите типы однофазных двигателей с учетом метода их самозапуска?

(i) Двухфазные двигатели, запускаемые двухфазным двигателем с использованием вспомогательной или пусковой обмотки.

(ii) Конденсаторные двигатели — запускаются двухфазным двигателем с помощью вспомогательной обмотки и конденсатора.

(iii) Двигатели с расщепленными полюсами — запускаются движением магнитного поля, создаваемого затеняющей катушкой вокруг части конструкции полюса.

Как создать вращающееся магнитное поле из двухфазного источника питания?

Как и в случае трехфазного источника питания, двухфазный сбалансированный источник питания также создает вращающееся магнитное поле постоянной величины. За исключением двигателя с расщепленными полюсами, все однофазные асинхронные двигатели запускаются как двухфазные машины. После запуска двигатель будет продолжать работать от однофазной сети.

Какая основная причина шумной работы однофазного асинхронного двигателя?

Если две обмотки электрически смещены на 90 °, но создают поля, которые не равны и не разнесены во времени на 90 °, результирующее поле все еще вращается, но не является постоянным по величине. Одним из следствий этого неравномерного вращающегося поля является создание неравномерного крутящего момента, который, следовательно, вызывает шумную работу двигателя. Поскольку двухфазный режим работы прекращается после запуска двигателя, работа двигателя становится плавной.

Опишите принцип работы асинхронного двигателя с расщепленной фазой?

Статор асинхронного двигателя с расщепленной фазой снабжен вспомогательной или пусковой обмоткой S в дополнение к основной или рабочей обмотке M. Пусковая обмотка расположена под углом 90 ° от основной обмотки и работает только в течение короткого периода, когда мотор запускается. Две обмотки смещены таким образом, что пусковая обмотка S имеет высокое сопротивление и относительно небольшое реактивное сопротивление, в то время как основная обмотка M имеет относительно низкое сопротивление и большое реактивное сопротивление, как показано на схематических соединениях на рис.Следовательно, токи, протекающие в двух обмотках, имеют разумную разность фаз c (от 25 ° до 30 °), как показано на векторной диаграмме на рис.

.

Когда две обмотки статора запитаны от однофазного источника питания, основная обмотка проводит ток Im, а пусковая обмотка — ток Is. Поскольку основная обмотка сделана высокоиндуктивной, а пусковая обмотка имеет большое сопротивление, токи Im и Is имеют разумный фазовый угол a (от 25 ° до 30 °) между ними, как показано на рис.Следовательно, создается слабое вращающееся поле, приближающееся к полю двухфазной машины, которое запускает двигатель. где k — постоянная величина, величина которой зависит от конструкции двигателя.

Когда двигатель достигает примерно 75% синхронной скорости, центробежный переключатель размыкает цепь пусковой обмотки. Затем двигатель работает как однофазный асинхронный двигатель и продолжает ускоряться, пока не достигнет нормальной скорости. Нормальная скорость двигателя ниже синхронной скорости и зависит от нагрузки на двигатель

.

Что такое пусковой момент и пусковой ток асинхронного двигателя с расщепленной фазой?

Вращающий момент в 15–2 раз превышает средний крутящий момент при полной нагрузке (текущий пусковой ток в 6–8 раз превышает ток полной нагрузки.

Почему асинхронные двигатели с расщепленной фазой являются наиболее популярными однофазными двигателями на рынке?

Из-за своей низкой стоимости асинхронные двигатели с расщепленной фазой являются наиболее популярными однофазными двигателями на рынке

Почему в асинхронном двигателе с расщепленной фазой необходимо встроенное тепловое реле и каково его назначение?

Поскольку пусковая обмотка сделана из тонкой проволоки, плотность тока высока, и обмотка быстро нагревается. Если время пуска превышает 5 секунд, обмотка может перегореть, если двигатель не защищен встроенным тепловым реле.Таким образом, этот двигатель подходит для нечастых периодов включения

Что такое изменение скорости асинхронного двигателя с расщепленной фазой от холостого хода до полной нагрузки?

Важной характеристикой этих двигателей является то, что они по сути являются двигателями с постоянной скоростью. Изменение скорости составляет 2-5% от холостого хода до полной нагрузки

Где обычно используются асинхронные двигатели с расщепленной фазой?

Эти двигатели подходят для случаев, когда требуется средний пусковой момент и периоды пуска нечасты. E.г., проехать:

(a) вентиляторы
(b) стиральные машины
(c) масляные горелки
(d) небольшие станки и т. Д.
Номинальная мощность таких двигателей обычно составляет от 60 до 250 Вт

Однофазные асинхронные двигатели различных типов

Однофазные асинхронные двигатели различных типов — MCQ с ответами

Q1. Асинхронный двигатель с косой фазой имеет

а. Низкий пусковой ток и высокий пусковой момент
б. Умеренный пусковой ток и умеренный пусковой момент
c.Низкий пусковой ток и умеренный пусковой момент
d. Умеренный пусковой ток и низкий пусковой крутящий момент

Посмотреть ответ / Скрыть ответ

ОТВЕТ: c. Низкий пусковой ток и средний пусковой момент

Q2. В стиральных машинах чаще всего используются моторы

a. Асинхронные двигатели с расщепленной фазой
b. Асинхронные двигатели с контактным кольцом
c. Асинхронные двигатели конденсаторного пуска
г. Асинхронные двигатели с экранированными полюсами

Посмотреть ответ / Скрыть ответ

ОТВЕТ: a.Асинхронные двигатели с разделением фаз

Q3. Асинхронные двигатели с расщепленной фазой доступны в диапазоне

a. От 1/2 до 1/10 кВт
b. От 1/20 до 1/2 кВт
c. От 1/10 до 1/20 кВт
d. Ни один из этих

Посмотреть ответ / Скрыть ответ

ОТВЕТ: b. От 1/20 до 1/2 кВт

Q4. В конденсаторном пусковом конденсаторе запускают асинхронный двигатель, конденсатор

А. Только на старте
б. Только в рабочем состоянии
c.При запуске, а также во время работы
d. Ни один из этих

Посмотреть ответ / Скрыть ответ

ОТВЕТ: c. При запуске, а также во время работы

Q5. Конденсатор постоянно подключен к конденсаторному двигателю

a. Повышает коэффициент мощности
б. Понижает коэффициент мощности
c. Не влияет на коэффициент мощности
d. Ни один из этих
Посмотреть ответ / Скрыть ответ

ОТВЕТ: a. Повышает коэффициент мощности

Q6.В холодильниках обычно используются двигатели

a. Асинхронные двигатели с расщепленной фазой
b. Конденсаторные асинхронные двигатели
c. Асинхронные двигатели с экранированными полюсами
d. Ни один из этих

Посмотреть ответ / Скрыть ответ

ОТВЕТ: b. Конденсаторные асинхронные двигатели

Q7. В асинхронном двигателе с экранированными полюсами направление вращения магнитного поля составляет от

a. От заштрихованной опоры к незатененной опоре
b. Незаштрихованный столб к затемненному столбу
c.Не зависит от полюсов
d. Ни один из этих

Посмотреть ответ / Скрыть ответ

ОТВЕТ: b. От незатененного полюса к затененному полюсу

Q8. Пусковой момент и коэффициент мощности асинхронного двигателя с экранированными полюсами

a. Высокая, низкая
б. Низкий, высокий
c. Низкий, низкий
d. Высокий, высокий

Посмотреть ответ / Скрыть ответ

Q9. В однофазном асинхронном двигателе скорость двигателя без нагрузки составляет

а. Почти равна его синхронной скорости
b.Меньше его синхронной скорости
c. Скорость выше синхронной
d. Ни один из этих

Посмотреть ответ / Скрыть ответ

ОТВЕТ: a. Почти равна его синхронной скорости

Q10. Уравнение крутящего момента однофазного асинхронного двигателя содержит постоянный член, на который наложен пульсирующий крутящий момент. Частота пульсации

а. Равно частоте питания
б. Удвоение частоты питания
c. Половина частоты питания
d.Ни один из этих

Посмотреть ответ / Скрыть ответ

ОТВЕТ: b. Удвоение частоты питания

Q11. Статор асинхронного двигателя с расщепленной фазой имеет две обмотки: основную и вспомогательную. Эти обмотки смещены в пространстве на

а. 30 электротехнических степеней
б. 90 электрических градусов
c. 120 электрических градусов
d. 180 электрических градусов

Посмотреть ответ / Скрыть ответ

ОТВЕТ: b.90 электрических градусов

Q12. Поток под незатененным полюсом асинхронного двигателя с экранированными полюсами

а. Находится в одинаковой фазе потока под заштрихованным полюсом
b. Отставляет поток под заштрихованным полюсом
c. Подводит флюс под заштрихованный полюс
d. Ни один из этих

Посмотреть ответ / Скрыть ответ

ОТВЕТ: c. Подводит поток под заштрихованный полюс

Q13. Двухфазный серводвигатель обычно используется в системе управления с обратной связью для управления нагрузками и в качестве датчиков для измерения

a.Скорость управляемого элемента
б. Положение управляемого элемента
c. Оба (а) и (б)
d. Ни один из этих

Посмотреть ответ / Скрыть ответ

ОТВЕТ: c. Оба (a) и (b)

Q14. Чтобы момент инерции в двухфазном серводвигателе был небольшим, отношение диаметра ротора к его длине должно составлять

a. Равно 1
б. малая
c. большой
г. Все эти

Посмотреть ответ / Скрыть ответ

Что такое асинхронный двигатель с расщепленной фазой? — его приложения

Электродвигатель с разделенной фазой также известен как электродвигатель для запуска с сопротивлением.Он имеет ротор с одной клеткой, а его статор имеет две обмотки, известные как основная обмотка и пусковая обмотка. Обе обмотки смещены в пространстве на 90 градусов. Основная обмотка имеет очень низкое сопротивление и высокое индуктивное сопротивление, тогда как пусковая обмотка имеет высокое сопротивление и низкое индуктивное сопротивление. Схема подключения двигателя показана ниже.

Резистор включен последовательно со вспомогательной обмоткой. Ток в двух обмотках не равен, в результате вращающееся поле неоднородно.Следовательно, пусковой крутящий момент небольшой, порядка 1,5–2-кратного пускового крутящего момента. При запуске двигателя обе обмотки включаются параллельно.

Как только двигатель достигает скорости примерно от 70 до 80% от синхронной скорости, пусковая обмотка автоматически отключается от сети питания. Если мощность двигателей составляет около 100 Вт или более, центробежный выключатель используется для отключения пусковой обмотки, а для двигателей с меньшей мощностью используется реле для отключения обмотки.

Реле подключено последовательно с основной обмоткой. При запуске в цепи протекает сильный ток, и контакт реле замыкается. Таким образом, пусковая обмотка находится в цепи, и по мере того, как двигатель достигает заданной скорости, ток в реле начинает уменьшаться. Таким образом, реле размыкает и отключает вспомогательную обмотку от источника питания, в результате чего двигатель работает только от основной обмотки.

Векторная диаграмма асинхронного двигателя с расщепленной фазой показана ниже.

Ток в основной обмотке (I M ) отстает от напряжения питания V почти на угол 90 градусов. Ток во вспомогательной обмотке I A примерно совпадает по фазе с линейным напряжением. Таким образом, существует разница во времени между токами двух обмоток. Разность фаз во времени ϕ составляет не 90 градусов, а порядка 30 градусов. Этой разности фаз достаточно для создания вращающегося магнитного поля.

Ниже показана характеристика крутящего момента и скорости вращения двигателя с расщепленной фазой .

Здесь n 0 — точка, в которой срабатывает центробежный переключатель. Пусковой момент двигателя с сопротивлением пуска примерно в 1,5 раза больше крутящего момента полной нагрузки. Максимальный крутящий момент примерно в 2,5 раза превышает крутящий момент при полной нагрузке примерно при 75% синхронной скорости. Пусковой ток двигателя примерно в 7-8 раз превышает значение полной нагрузки.

Направление электродвигателя с резистивным пуском можно изменить на обратное, поменяв местами линейное соединение основной или пусковой обмотки.Реверс двигателя возможен только в состоянии покоя.

Применение асинхронного двигателя с расщепленной фазой

Двигатели этого типа дешевы и подходят для легко запускаемых нагрузок, когда частота запуска ограничена. Этот тип двигателя не используется для приводов, требующих более 1 кВт из-за низкого пускового момента. Различные приложения следующие: —

  • Используется в стиральных машинах, вентиляторах кондиционеров.
  • Двигатели используются в миксерах-шлифовальных машинах, полировальных машинах.
  • Воздуходувки, центробежные насосы
  • Станок сверлильно-токарный.

Калькулятор преобразования

киловатт в лошадиные силы (л.с.)

киловатт (кВт) в лошадиные силы (л.с.)
преобразование мощности: калькулятор и как преобразовать.

Введите мощность в киловаттах и ​​нажмите кнопку Преобразовать :

* Для электродвигателей и кондиционеров используется электрическая мощность

Преобразование

л.с. в кВт ►

Как преобразовать киловатты в лошадиные силы

Киловатт в мощность для механика / гидравлики

Одна механическая или гидравлическая мощность равна 0.745699872 киловатт:

1 л.с. (I) = 745,699872 Вт = 0,745699872 кВт

Таким образом, преобразование мощности из киловатт в лошадиные силы определяется по формуле:

P (л.с.) = P (кВт) / 0,745699872

Пример

Преобразование 10 кВт в механическую мощность:

P (л.с.) = 10 кВт / 0,745699872 = 13,41 л.с.

Киловатт в электрические лошадиные силы

Одна электрическая лошадиная сила равна 0.746 киловатт:

1 л.с. (E) = 746 Вт = 0,746 кВт

Таким образом, преобразование мощности из киловатт в лошадиные силы определяется по формуле:

P (л.с.) = P (кВт) / 0,746

Пример

Преобразование 10 кВт в электрическую мощность:

P (л.с.) = 10 кВт / 0,746 = 13,405 л.с.

Киловатт в Метрическая мощность

Одна метрическая лошадиная сила равна 0,73549875 киловатт:

1 л.с. (М) = 735.49875 Вт = 0,73549875 кВт

Таким образом, преобразование мощности из киловатт в лошадиные силы определяется по формуле:

P (л.с.) = P (кВт) / 0,73549875

Пример

Преобразование 10 кВт в метрическую мощность:

P (л.с.) = 10 кВт / 0,73549875 = 13,596 л.с.

Таблица преобразования киловатт в лошадиные силы

килограмм-
Вт
(кВт)
л.с.
(л.с. (I) )
Электрическая мощность
(л.с. (E) )
Метрическая мощность
(л.с. (М) )
0.001 кВт 0.001341 л.с. 0.001340 л.с. 0.001360 л.с.
0,002 кВт 0.002682 л.с. 0.002681 л.с. 0.002719 л.с.
0,003 кВт 0.004023 л.с. 0.004021 л.с. 0.004079 л.с.
0,004 кВт 0.005364 л.с. 0.005362 л.с. 0.005438 л.с.
0,005 кВт 0.006705 л.с. 0.006702 л.с. 0.006798 л.с.
0,006 кВт 0.008046 л.с. 0.008043 л.с. 0.008158 л.с.
0,007 кВт 0.009387 л.с. 0.009383 л.с. 0.009517 л.с.
0,008 кВт 0,010728 л.с. 0,010724 л.с. 0,010877 л.с.
0,009 кВт 0,012069 л.с. 0.012064 л.с. 0.012237 л.с.
0.01 кВт 0,013 410 л.с. 0.013405 л.с. 0,013596 л.с.
0,02 кВт 0,026820 л.с. 0,026810 л.с. 0,027192 л.с.
0,03 кВт 0.040231 л.с. 0,040 214 л.с. 0,040789 л.с.
0,04 кВт 0.053641 л.с. 0,053619 л.с. 0,054385 л.с.
0,05 кВт 0,067051 л.с. 0.067024 л.с. 0.067981 л.с.
0,06 кВт 0.080461 л.с. 0,080429 л.с. 0,081577 л.с.
0,07 кВт 0,093871 л.с. 0,093834 л.с. 0.095174 л.с.
0,08 кВт 0.107282 л.с. 0.107239 л.с. 0.108770 л.с.
0,09 кВт 0.120692 л.с. 0.120643 л.с. 0,122366 л.с.
0.1 кВт 0.134022 л.с. 0.134048 л.с. 0.135962 л.с.
0,2 кВт 0.268204 л.с. 0.268097 л.с. 0,271924 л.с.
0,3 кВт 0,402 307 л.с. 0,402 145 л.с. 0,407886 л.с.
0,4 кВт 0,536409 л.с. 0,536193 л.с. 0,543849 л.с.
0,5 кВт 0,670511 л.с. 0,670241 л.с. 0.679811 л.с.
0,6 кВт 0.804613 л.с. 0.804290 л.с. 0.815773 л.с.
0,7 кВт 0.938715 л.с. 0.938338 л.с. 0.951735 л.с.
0,8 кВт 1.072817 л.с. 1.072386 л.с. 1.087697 л.с.
0,9 кВт 1.206920 л.с. 1.206434 л.с. 1.223659 л.с.
1 кВт 1.341022 л.с. 1.340483 л.с. 1.359622 л.с.
2 кВт 2.682044 л.с. 2.680965 л.с. 2.719243 л.с.
3 кВт 4.023066 л.с. 4.021448 л.с. 4.078865 л.с.
4 кВт 5.36 4088 л.с. 5.36 1930 л.с. 5.438486 л.с.
5 кВт 6.705110 л.с. 6.702413 л.с. 6.798108 л.с.

Преобразование

л.с. в кВт ►


См. Также

Цепь плавного пуска двигателя с ШИМ

для предотвращения высокого потребления при включении питания

В сообщении объясняется эффективная схема плавного пуска двигателя с ШИМ, которая может использоваться для включения тяжелых двигателей с плавным пуском и, таким образом, предотвращения потребления оборудования опасными высокими токами.

Почему плавный пуск

Двигатели высокой мощности, такие как двигатели насосов или другие виды двигателей тяжелой промышленности, как правило, потребляют большой ток во время их первоначального включения питания, что, в свою очередь, влияет на соответствующие предохранители и переключатели, вызывая их либо срабатывание, либо деградировать сверхурочно. Чтобы исправить ситуацию, крайне необходима схема плавного пуска.

В нескольких из моих предыдущих статей мы обсуждали связанную тему, которую вы можете подробно изучить в следующих сообщениях:

Схема плавного пуска для двигателей насосов

Схема плавного пуска для холодильников

Хотя приведенные выше конструкции весьма полезны , с их подходом их можно считать немного низкотехнологичными.

В этой статье мы увидим, как этот процесс может быть реализован с использованием очень сложной схемы контроллера плавного пуска двигателя на основе ШИМ.

Использование концепции ШИМ

Идея состоит в том, чтобы применять постепенно увеличивающуюся ШИМ к двигателю каждый раз, когда он включается. Это действие позволяет двигателю достигать линейно возрастающей скорости от нуля до максимума в течение установленного периода времени, что может быть регулируемым.

Примечание. Используйте конфигурацию Darlington BC547 на выводе № 5 IC2 вместо одного BC547.Это даст более эффективный отклик по сравнению с одним BC547

Пример схемы для регулируемого контроллера мотора 48 В с плавным пуском

## ПОЖАЛУЙСТА, ПОДКЛЮЧИТЕ 1К ОТ КОНТАКТА 5 IC2 К ЗАЗЕМЛЕНИЮ, КОТОРАЯ НЕПРАВИЛЬНО НЕ ПОКАЗАНА В ВЫШЕ ДИЗАЙНЕ ##

Как это работает

Как показано на рисунке выше, получение ШИМ с линейным приращением достигается с помощью двух ИС 555, настроенных в их стандартном режиме ШИМ.

Я уже подробно обсуждал эту концепцию в одной из своих предыдущих статей, объясняющих, как использовать IC 555 для генерации ШИМ.

Как видно из схемы, в конфигурации используются две микросхемы 555, причем IC1 подключен как нестабильный, а IC2 — как компаратор.

IC1 генерирует необходимые тактовые сигналы на заданной частоте (определяемой значениями R1 и C2), которые поступают на вывод № 2 IC2.

IC2 использует тактовый сигнал для генерации треугольных волн на своем выводе №7, чтобы их можно было сравнить с потенциалом, доступным на его выводе управляющего напряжения №5.

Контакт № 5 получает необходимое управляющее напряжение через каскад эмиттерного повторителя NPN, созданный с помощью T2 и связанных компонентов.

При включении питания на T2 подается линейно нарастающее или постепенно увеличивающееся напряжение на его базе через R9 и благодаря пропорциональной зарядке C5.

Этот линейный потенциал соответствующим образом дублируется на эмиттере T2 по отношению к напряжению питания на его коллекторе, что означает, что базовые данные преобразуются в постепенно увеличивающийся потенциал в диапазоне от нуля до почти уровня напряжения питания.

Это нарастающее напряжение на выводе № 5 IC 2 мгновенно сравнивается с имеющейся треугольной волной на выводе № 7 IC2, которая преобразуется в линейно нарастающий ШИМ на выводе № 3 IC2.

Процесс линейного увеличения ШИМ продолжается до тех пор, пока C5 не будет полностью заряжен и база T2 не достигнет стабильного уровня напряжения.

Вышеупомянутая конструкция обеспечивает генерацию ШИМ при каждом включении питания.

Видеоклип:

Следующее видео показывает практический результат тестирования указанной выше схемы ШИМ, реализованной на двигателе 24 В постоянного тока. На видео показан отклик регулировочного потенциометра PWM цепи на двигателе, а также реакция светодиода дополнительного индикатора батареи, когда двигатель включен и выключен.

Интеграция контроллера симистора с переходом через ноль

Для реализации эффекта схемы плавного пуска двигателя с ШИМ выходной сигнал от контакта № 3 IC2 должен быть подан на схему драйвера питания симистора, как показано ниже:

На изображении выше показано, как включение ШИМ-управления плавным пуском может быть реализовано на тяжелых двигателях по назначению.

На изображении выше мы видим, как изоляторы драйвера симистора с детектором пересечения нуля могут использоваться для управления двигателями с линейно увеличивающимися ШИМ для выполнения эффекта плавного пуска.

Вышеупомянутая концепция эффективно обеспечивает защиту от перегрузки по току при запуске однофазных двигателей.

Однако, если используется трехфазный двигатель, следующая идея может быть использована для реализации предлагаемого трехфазного плавного пуска двигателей.

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!

Республиканская партия утверждает, что программный сбой в Мичигане неправильно дал 6000 голосов Байдену

Республиканцы утверждают, что программный сбой в Мичигане неправильно отправил 6000 голосов Трампа Байдену до того, как местные сотрудники избирательных комиссий поймали ошибку

  • Ошибка была замечена и исправлена ​​местными избирательными органами в округе Антрим в среду
  • Неофициальные результаты теперь показывают, что Президент Трамп выиграл исторически красный графство всего за 2000 голосов.
  • Председатель Республиканской партии штата Мичиган Лаура Кокс поделилась во время пресс-конференции, что помимо округа Антрим программное обеспечение используют еще 47 округов
  • Байден лидирует в Мичигане более чем на 146 000 голосов

Мэтью Райт для Dailymail.com

Опубликовано: | Обновлено:

Республиканцы утверждают, что из-за сбоя программного обеспечения в Мичигане Байдену было неправильно отдано 6000 голосов, прежде чем окружные избирательные органы обнаружили ошибку и исправили ее, в результате чего Трамп получил преимущество в 2000 голосов в округе.

Сбой был замечен местными избирательными органами округа Антрим в среду после того, как результаты показали, что бывший вице-президент округа победил в президентской гонке.

После пересчета, неофициальные результаты показывают, что президент Трамп выиграл исторически красное графство всего за 2000 голосов, сообщает 9 и 10 News.

Вопросы были подняты после того, как округ впервые сообщил о локальном оползне для Бидени в районе, который обычно голосует за республиканцев. Должностные лица признали, что результаты казались «искаженными», и пообещали еще раз взглянуть на них. Было подано более 16 000 голосов.

«Это, безусловно, имеет больше смысла для людей, знакомых с округом Антрим», — сказал Джереми Скотт, заместитель окружного администратора.

Ошибка была замечена представителями местных избирательных комиссий округа Антрим в среду.

Это не было полным пересчетом всех бюллетеней. Скотт сказал, что результаты, выданные автоматами для голосования, снова были подсчитаны.

«Машина сама подсчитала бюллетени правильно», — сказал он.

Скотт сказал, что официальные лица работали с компанией, которая предоставляет программное и аппаратное обеспечение для выборов, чтобы определить, что произошло.

Председатель Республиканской партии штата Мичиган Лаура Кокс поделилась во время пресс-конференции, что помимо округа Антрим это программное обеспечение используют еще 47 округов.

Кокс рекомендовал округам «внимательно изучить» результаты выборов, чтобы увидеть, есть ли какие-либо другие расхождения.

Тактика Республиканской партии направлена ​​на дискредитацию легитимности выборов по всей стране и в штате, где Байден лидирует с более чем 146 000 голосов.

Бывший вице-президент в настоящее время обошел Трампа в штате, получив 50,6 процента голосов по сравнению с 47,9 процента голосов президента.

Республиканская партия штата Мичиган не смогла сказать, какая система обычно используется для подсчета бюллетеней, но официальный представитель Тони Заммит добавил, что система не использовалась во время пребывания в должности Кокса, который вступил в должность в начале 2019 года.

Председатель Республиканской партии штата Мичиган Лаура Кокс поделилась во время пресс-конференции, что, помимо округа Антрим, программное обеспечение также используют 47 других округов.

«Начинает казаться, что то, что произошло в округе Антрим, было человеческой ошибкой», — сказал Постумус Лайонс, Губернаторский билет Республиканской партии с Биллом Шюттом в 2018 году, пояснил Detroit News.

«Если бы это не было замечено общественностью или кем-то еще, эта ошибка была бы замечена в опросе графства», — сказала она.

В Мичигане судья Синтия Стивенс недавно вынесла решение против попытки кампании Трампа остановить подсчет голосов, чтобы получить дополнительный доступ для своих наблюдателей. «У меня нет оснований полагать, что существует значительная вероятность успеха по существу», — сказала она.

Победа Байдена с небольшим преимуществом в колеблющихся штатах Висконсин и Мичиган дала ему больше путей к Белому дому. Невада, Аризона, Пенсильвания, Джорджия и Северная Каролина еще не назывались.

В то время как некоторые штаты смогли продвинуться вперед, подсчитывая голоса по почте по мере их поступления за последние два месяца, официальным лицам в трех штатах поля битвы — Мичигане, Висконсине и Пенсильвании — не разрешили начать подсчет голосов по почте до тех пор, пока в день выборов или непосредственно перед ним.

Бывший вице-президент в настоящее время победил Трампа в штате, получив 50,6 процента голосов по сравнению с 47,9 процента голосов президента

Поделитесь или прокомментируйте эту статью:

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *