Калькулятор нагрузка на деревянную балку: Расчет балки онлайн — Калькулятор балок перекрытия из дерева

Разное

Содержание

Калькулятор подбора деревянных двутавровых балок

SIA I-beams производит износоустойчивые деревянные двутавры. Такие балки показали себя как незаменимый стройматериал при строительстве зданий в Северной Америке, понемногу они начинают завоевывать и рынки Европы.

Чтобы правильно произвести расчет необходимого количества балок, мы создали расчетный калькулятор, который вам поможет быстро и удобно рассчитать шаг между балками и их тип в зависимости от расстояния между стенами и от нагрузок в конкретном случае.

Как пользоваться калькулятором:

  1. Вводим расчетную длину пролета. Для балок перекрытия — это наибольший пролет, т.е. наибольшее расстояние между соседними стенами, на которые опирается балка. Для стропил кровли – это горизонтальное расстояние (проекция мест опоры, обычно расстояние между осями) между местами опора балки (сама балка длиннее, чем эта проекция, т.е. чем больше угол, тем длиннее балка).
  2. Для стропил кровли вводим угол наклона. Угол наклона – наклон стропил к горизонтали.
  3. Вводим шаг – это межцентровое расстояние между соседними балками.
  4. 4. Можно изменить постоянную нагрузку. В соответствии с нормативом EN 1991, постоянную нагрузку рассчитывают по плотности конструкции пола/перекрытия/крыши, помноженной на коэффициент надежности. Согласно EN 1990, коэффициент надежности для постоянных нагрузок — 1,35, а для временных — 1,5.
  5. Можно изменить временную нагрузку. В соответствии с нормативом EN 1991, величины временной нагрузки принимаются в зависимости от предполагаемого использования перекрытия. Для перекрытий жилых помещений можно принимать временную нагрузку 200 kg/m2. При расчете стропильной системы нагрузки от снега принимаются согласно LBN-003-1, таблица 16.2. Для Риги это равняется 125 kg/m2.

    *В расчетном калькуляторе включено определение расчетной нагрузки при соответствующих коэффициентах надежности: согласно EN 1990 для постоянных нагрузок это — 1,35 а для временных нагрузок — 1,5. В калькулятор вводятся нагрузки без учета коэффициентов надежности. – это повторение из п.4.

    *Величина используемой расчетной нагрузки будет индивидуальной — в зависимости от конкретной ситуации.

  6. Когда все упомянутые данные введены в таблицу, можно ознакомиться с результатом. Внизу находится табличка с имеющимися в нашем ассортименте балками. Зеленым цветом закрашены все балки, которые можно использовать, а красным – несущая способность которых не соответствует заданным вами параметрам. Чтобы изменить результат, советуем изменить шаг балок.

Расчет нагрузки деревянной балки онлайн для минимальной прочности и прогиба перекрытия





Задача расчета балки для деревянного перекрытия по прогибу и прочности сводится к тому, чтобы найти поперечное сечение деревянных балок и определить их шаг, чтобы перекрытие было достаточно прочным и было способно выдерживать определенную нагрузку. И для того, чтобы не возникали чрезмерные прогибы, которые могут создавать существенный дискомфорт тем, кто будет ходить по такому
перекрытию.




Для этого мы сделали данный калькулятор деревянного перекрытия на прогиб и прочность для деревянной балки.

Порядок работы:

1. Укажите длину пролета балки

2. Укажите шаг балок

3. Укажите расчетную нагрузку на балку (посчитать можно здесь)

4. Укажите сорт дерева (для расчета по прочности)

5. Укажите либо отношение высоты к ширине (h/b), либо напрямую задать ширину с последующим расчетом высоты

6. Нажать на кнопку «Расчет»

В результате вы получите подбор минимального сечения по прочности и прогибу деревянной балки, и на основании этих значений подбор окончательного варианта сечения и площадь для рационального использования сечения балки.

Для информации:

— принято считать, что сопротивление дерева на изгиб: для 1-ого сорта — 9 МПа, для 2-ого сорта — 8.34 МПа и для 3-его сорта — 5.56 МПа. Это следует из СП 64.13330.2017 «Деревянные конструкции» при коэффициентах Mв=0.9 (нормальная эксплуатация), Mт=0.8 (температура до 50 градусов), Мсс=0.9 (срок службы 75 лет), Мдл=0.66 (совместное действие постоянной и кратковременной нагрузок).

Если онлайн калькулятор расчета деревянной балки на прочность и прогиб оказался Вам полезен – не забывайте делиться им с друзьями и коллегами ссылкой в соц.сети, а также посмотреть другие строительные калькуляторы онлайн, они простые но здорово облегчают жизнь строителям и тем кто решил сам строить свой дом с нуля.




Расчет деревянных балок перекрытий: онлайн калькулятор

Деревянные брусья для перекрытий в частном строительстве используют часто. Легкость, доступность по цене и возможность самостоятельного монтажа компенсируют способность к возгоранию, поражению грибком и гниению. В любом случае при возведению второго и более этажей просто необходимо произвести расчет деревянных балок перекрытия. Онлайн-калькулятор, который мы представляем в этом обзоре, поможет справиться с этой задачей просто и быстро.

Расчет деревянных балок перекрытий: онлайн калькуляторДеревянные брусья для перекрытия – только качественная древесина

Читайте в статье

Польза онлайн-калькулятора для расчета деревянных перекрытий

Самостоятельные расчеты утомительны и чреваты риском не учесть какой-либо важный параметр. Так, деревянные балки для перекрытий должны обладать определенным сечением, учитывающим возможную нагрузку на них от мебели и техники, находящихся в помещении людей. При таких расчетах крайне важно знать возможный прогиб балки и максимальное напряжение в опасном сечении.

Разное сечение брусаРазное сечение бруса

Преимущества калькулятора в следующем:

  • Точность. Формулы расчета учитывают множество параметров. В специальных полях задаются: тип поперечного сечения (круглое или прямоугольное), длину балки между опорами и шаг, параметры используемой древесины, предполагаемую постоянную нагрузку.
  • Сроки. Ввести готовые параметры и получить результат выйдет значительно быстрее, чем рассчитывать вручную требуемые значения.
  • Удобство. Онлайн-калькулятор расчета деревянных балок составлен таким образом, что после введения всех постоянных величин, вам остается просто подбирать сечение балки до тех пор, пока не будет обеспечена необходимая прочность.

Расчет деревянного бруса для перекрытия: на что обратить внимание

До расчетов и покупки рекомендовано обратить внимание на типы перекрытий. Брус для надежной связки строительных конструкций, бывает следующих видов:

  • Балки. Массив квадратного или прямоугольного сечения, уложенный с шагом от 60 см до 1 м. Стандартная длина – 6 м, на заказ изготавливаются балки до 15 м.
  • Ребра. Балки, напоминающие широкую (20 см) и толстую доску (7 см). Шаг укладки на ребро не более 60 см. Стандартная длина – 5 м, под заказ – 12 м.

Ребра перекрытия для одноэтажных построекРебра перекрытия для одноэтажных построек

  • Комбинация двух типов бруса. Наиболее надежные перекрытия, служащие опорой для пролетов, до 15 м.

Сначала определяется прогиб балки, максимальное напряжение в опасном сечении и коэффициент запаса прочности. Если значение коэффициента получается меньше 1, то это значит, что прочность не обеспечена. В этом случае необходимо изменить условия расчета (изменить сечение балки, увеличить или уменьшить шаг, выбрать другую породу древесины и т.д.)

Длина балок, м
Шаг укладки, м 2,0 3,0 4,0 5,0
0,6 75*100 75*200 100*200 150*225
1 75*150 100*175 150*200 175*250

Когда нужное сечение найдено требуется рассчитать его кубатуру. Это произведение длины, ширины и высоты. Далее по проекту находим количество балок перекрытия и умножаем на полученный результат.

Брус

Итог

Важно! Для строительства многоэтажных домов не рекомендовано приобретать балки недостаточной длины. Сращивание, даже качественное, снижает надежность конструкций.

Сращивание двух балок перекрытия = снижение надежностиСращивание двух балок перекрытия = снижение надежности

Для наглядности пользователю предоставлено видео расчета древесины для перекрытий.

Расчет деревянных балок перекрытий: онлайн-калькулятор, принципы расчетов

ПОНРАВИЛАСЬ СТАТЬЯ? Поддержите нас и поделитесь с друзьями

Калькулятор балок. Расчет нагрузки на балки перекрытия. Нагрузка на балку: нюансы

Калькулятор балок – это опция, которая поможет произвести необходимые расчеты для получения прочной системы. Максимально же точные данные смогут предоставить профи.

Калькулятор балок: на чем он основывается

При приближении к этапу возведения перекрытия возникает необходимость грамотно рассчитать допустимую нагрузку для уже построенной конструкции. При этом необходимо учесть, что правильно высчитанная длина и толщина балок позволяет установить максимально прочную и долговечную стропильную систему.

Нужно отметить, что таким стандартным проблемам, как частичное разрушение и проседание перекрытия способствуют следующие моменты:

  • Прогиб поперечин.
  • Дефекты дерева.
  • Чересчур большой шаг непосредственно между лагами и др.

Поэтому необходимо рассчитать нагрузку, которую будут создавать сами балки собственным весом. В целом на рассматриваемые системы давление оказывается на кручение, изгиб сечения, а также прогиб по длине.

При расчетах нужно учитывать также и климат местности, поскольку немалая нагрузка ложиться на стропила при сильном ветре, выпадении снега и т.д. Важным моментом является длина шага: малый увеличит вес конструкции, большой же станет причиной ослабевания конструкции в целом.

Рассчитываем нагрузку перекрытие из балок

Пролет – определенное расстояние между стенами. Если помещение не квадратное, то один пролет всегда короче второго. По правилам, перекрытие нужно делать по меньшему пролету. Это позволяет обустроить максимально прочную систему.

Сам брус, по стандарту должен иметь сечение 7 к 5 (высота к ширине). При таком подходе исключается деформация изделия. Прогиб же может быть максимум 2 см при длине балки 4м (то есть соотношение должно быть не больше 1 к 200).

Ниже приведены формулы, которые чаще всего используются при проведении необходимых расчетов. Прогиб можно найти, воспользовавшись такой формулой: f=L/200. Где f – нормальный прогиб, L – размер (длина) пролета, а 200 – это допустимое по нормам расстояние в см на 1 единицу проседания.

Площади поперечных сечений и масса баллок

Кроме этого, определяется момент сопротивления по формуле: W ≥ M/R. Где R представляет собой расчетное сопротивление, а М – максимальный изгибающий момент конкретной прилагаемой нагрузки. Для прямоугольных же балок можно воспользоваться формулой: W=b*h²/6/ Где h – высота, а b – ширина бруса.

Нагрузка на балку: нюансы

Особое внимание нужно уделять конструкциям, в которых перекрытие выполняет роль, как пола, так и потолка. В таких ситуациях не нужно пренебрегать лагами и точным расчетом подходящей длины шага.

Еще при корректном подходе учитывается масса утеплителя и других элементов. Стандартной полезной нагрузкой считается 150 кг/м². Для чердака этот показатель снижают до 75 кг/м².

Предложенный онлайн калькулятор позволит получить, максимально приближенные к точным, данные. В случае сомнений и вопросов обращайтесь к менеджерам компании «АртСтрой».

Понравилась статья? Расскажите друзьям!

Расчет несущей способности и прогиба деревянных балок

Чтобы построить деревянный дом необходимо провести расчёт несущей способности деревянной балки. Также особое значение в строительной терминологии имеет определение  прогиба.

Без качественного математического анализа всех параметров просто невозможно построить дом из бруса. Именно поэтому перед тем как начать строительство крайне важно правильно рассчитать прогиб деревянных балок. Данные расчёты послужат залогом вашей уверенности в качестве и надёжности постройки.

Что нужно для того чтобы сделать правильный расчёт

Расчёт несущей способности и прогиба деревянных балок не такая простая задача, как может показаться на первый взгляд. Чтобы определить, сколько досок вам нужно, а также, какой у них должен быть размер необходимо потратить немало времени, или же вы просто можете воспользоваться нашим калькулятором.

Во-первых, нужно замерить пролёт, который вы собираетесь перекрыть деревянными балками. Во-вторых, уделите повышенное внимание методу крепления. Крайне важно, насколько глубоко фиксирующие элементы будут заходить в стену. Только после этого вы сможете сделать расчёт несущей способности вместе с прогибом и ряда других не менее важных параметров.

Длина

Перед тем как рассчитать несущую способность и прогиб, нужно узнать длину каждой деревянной доски. Данный параметр определяется длиной пролёта. Тем не менее это не всё. Вы должны провести расчёт с некоторым запасом.

Важно! Если деревянные балки заделываться в стены — это напрямую влияет на их длину и все дальнейшие расчёты.

При подсчёте особое значение имеет материал, из которого сделан дом. Если это кирпич, доски будут монтироваться внутрь гнёзд. Приблизительная глубина около 100—150 мм.

Когда речь идёт о деревянных постройках параметры согласно СНиПам сильно меняются. Теперь достаточно глубины в 70—90 мм. Естественно, что из-за этого  также изменится конечная несущая способность.

Если в процессе монтажа применяются хомуты или кронштейны, то длина брёвен или досок соответствует проёму. Проще говоря, высчитайте расстояние от стены до стены и в итоге сможете узнать несущую способность всей конструкции.

Важно! При формировании ската крыши брёвна выносятся за стены на 30—50 сантиметров. Это нужно учесть при подсчёте способности конструкции противостоять нагрузкам.

К сожалению, далеко не всё зависит от фантазии архитектора, когда дело касается исключительно математики. Для обрезной доски максимальная длина шесть метров. В противном случае несущая способность уменьшается, а прогиб становится больше.

Само собой, что сейчас не редкость дома, у которых пролёт достигает 10—12 метров. В таком случае используется клееный брус. Он может быть двутавровым или же прямоугольным. Также для большей надёжности можно использовать опоры. В их качестве идеально подходят дополнительные стены или колоны.

Совет! Многие строители при необходимости перекрыть длинный пролёт используют фермы.

Общая информация по методологии расчёта

В большинстве случаев в малоэтажном строительстве применяются однопролётные балки. Они могут быть в виде брёвен, досок или брусьев. Длина элементов может варьироваться в большом диапазоне. В большинстве случаев она напрямую зависит от параметров строения, которые вы собираетесь возвести.

Внимание! Представленный в конце странички калькулятор расчета балок на прогиб позволит вам просчитать все значения с минимальными затратами времени. Чтобы воспользоваться программой, достаточно ввести базовые данные.

Роль несущих элементов в конструкции выполняют деревянные бруски, высота сечения которых составляет от 140 до 250 мм, толщина лежит в диапазоне 55—155 мм. Это наиболее часто используемые параметры при расчёте несущей способности деревянных балок.

Очень часто профессиональные строители для того чтобы усилить конструкцию используют перекрёстную схему монтажа балок. Именно эта методика даёт наилучший результат при минимальных затратах времени и материалов.

Если рассматривать длину оптимального пролёта при расчёте несущей способности деревянных балок, то лучше всего ограничить фантазию архитектора в диапазоне от двух с половиной до четырёх метров.

Внимание! Лучшим сечением для деревянных балок считается площадь, у которой высота и ширина соотносятся как 1,5 к 1.

Как рассчитать несущую способность и прогиб

Стоит признать, что за множество лет практики в строительном ремесле был выработан некий канон, который чаще всего используют для того, чтобы провести расчёт несущей способности:

M/W<=Rд

Расшифруем значение каждой переменной в формуле:

  • Буква М вначале формулы указывает на изгибающий момент. Он исчисляется в кгс*м.
  • W обозначает момент сопротивления. Единицы измерения см3.

Расчёт прогиба деревянной балки является частью, представленной выше формулы. Буква М указывает нам на данный показатель. Чтобы узнать параметр применяется следующая формула:

M=(ql2)/8

В формуле расчёта прогиба есть всего две переменных, но именно они в наибольшей степени определяют, какой в конечном итоге будет несущая способность деревянной балки:

  • Символ q показывает нагрузку, которую способна выдержать доска.
  • В свою очередь буква l — это длина одной деревянной балки.

Внимание! Результат расчёт несущей способности и прогиба зависит от материала из которого сделана балка, а также от способа его обработки.

Насколько важно правильно рассчитать прогиб

Этот параметр крайне важен для прочности всей конструкции. Дело в том, что одной стойкости бруса недостаточно для долгой и надёжной службы, ведь со временем его прогиб под нагрузкой может увеличиваться.

Прогиб не просто портит эстетичный вид перекрытия. Если данный параметр превысит показатель в 1/250 от общей длины элемента перекрытия, то вероятность возникновения аварийной ситуации возрастёт в десятки раз.

Так зачем нужен калькулятор

Представленный ниже калькулятор позволит вам моментально просчитать прогиб, несущую способность и многие другие параметры без использования формул и подсчётов. Всего несколько секунд и данные по вашему будущему дому будут готовы.

Программа расчета деревянных балок

Программа расчета деревянных балок

Программа расчета деревянных балок  перекрытия — небольшой и удобный инструмент, который упростит основные расчеты по определению сечения бруса и шага его установки при устройстве межэтажных перекрытий.

Инструкция по работе с программой

Рассмотренная программа небольшая и дополнительной установки не требует.

расчет однопролетных деревянных балок по распределенной и сосредоточенной нагрузкамИнтерфейс программы

Чтобы было понятнее, рассмотрим каждый пункт программы:

  • Материал — выбираем требуемый материал бруса или бревна.
  • Тип балки — брус или бревно.
  • Размеры — длина, высота, ширина.
  • Шаг балок — расстояние между балками. Изменяя данный параметр (как и размеры) можно добиться оптимального соотношения.
  • Нагрузка по площади. Как правило, расчет нагрузки на перекрытия производится на этапе проектирования специалистами, но выполнить его можно и самостоятельно. Прежде всего, учитывается вес материалов, из которых изготовлено перекрытие. Например, чердачное перекрытие, утепленное легким материалом (например, минеральной ватой), с легкой подшивкой выдерживает нагрузку от собственного веса в пределах 50 кг/м². Эксплуатационная нагрузка определяется в соответствии с нормативными документами. Для чердачного перекрытия из деревянных основных материалов и с легкими утеплителем и подшивкой эксплуатационная нагрузка в соответствии со СНиП 2.01.07-85 вычисляется таким путем: 70*1,3=90 кг/м². 70 кг/м².  В этом расчете берется нагрузка в соответствии с нормативами, а 1,3 – коэффициент запаса. Общая нагрузка вычисляется путем сложения: 50+90=140 кг/м². Для надежности цифру рекомендуется округлить немного в большую сторону. В данном случае можно принимать общую нагрузку за 150 кг/м². Если чердачное помещение планируется интенсивно эксплуатировать, то требуется увеличить в расчете нормативное значение нагрузки до 150. В этом случае расчет будет выглядеть следующим образом: 50+150*1,3=245 кг/м². После округления в большую сторону – 250 кг/м². Также следует проводить расчет таким образом, в случае если используются более тяжелые материалы: утеплители, подшивка для заполнения межбалочного пространства. Если на чердаке будет обустраиваться мансарда, то необходимо принимать во внимание вес пола и мебели. В этом случае общая нагрузка может составить до 400 кг/м².
  • При относительном прогибе.  Разрушение деревянной балки обычно происходит от поперечного изгиба, при котором в сечении балки возникают сжимающие и растягивающие напряжения. Вначале древесина работает упруго, затем возникают пластические деформации, при этом в сжатой зоне происходит смятие крайних волокон (складки), нейтральная ось опускается ниже центра тяжести. При дальнейшем росте изгибающего момента пластические деформации растут и происходит разрушение в результате разрыва крайних растянутых волокон. Максимальный относительный прогиб балок и прогонов покрытий не должен превышать 1/200.
  • Среднеточечная нагрузка (для ригелей) — это нагрузка, взятая с плиты (полная) плюс собственный вес ригеля.

подписка на дзен

Похожие записи по метке:

Древесина | Объем | Вес

Масса

— — —

Породы древесины — выбрать —Silver firPacific серебро firBalsam firWhite firGrand фирма firSubalpine firCalifornia красный firNoble firIncense cedarLebanon cedarNootka кипарис / Alaska CedarHura / Песочница treePort-Orford cedarAtlantic белый cedarCommon juniperEastern красный cedarEuropean larchTamarackKaramatsu / японская larchWestern larchCork-treeNorway spruceEngelmann spruceWhite spruceBlack spruceSerbian spruceBlue spruceRed spruceSitka spruceSwiss pineLodgepole pineShortleaf pineSlash pineSugar pineWestern белого pineCorsican pineOcote / Mexican желтого PineLongleaf pinePonderosa pineMonterey PineRed pinePitch pinePond pineJack pineScots pineLoblolly pineVirginia pineEastern белого pineDouglas ель / Oregon pineCoast RedwoodGiant sequoiaBaldcypressEnglish yewPacific yewJapanese YewChinese yewNorthern белый cedarWestern красного cedarSmall широколиственное limeLarge широколиственный limeSilver limeEuropean limeEastern hemlockWestern hemlockMountain hemlockField mapleBigleaf mapleAsh клен / Боксельдерский клен, черный клен, японский клен, полосатый д mapleNorway mapleSycamore mapleRed MAPLESOFT mapleHard mapleYellow buckeyeHorse chestnutRed buckeyeAilanthus / Дерево heavenEuropean alderGrey alderRed alderPacific madroneYellow birchSweet birchDwarf birchAlaska бумага birchRiver birchPaper birchEuropean birchDowny birchBoxwoodEuropean hornbeamPignut hickoryPecanShagbark hickoryMockernut hickoryShellbark hickoryAmerican chestnutSweet chestnutSouthern catalpaNorthern catalpaSpanish cedarHackberryFlowering dogwoodCommon dogwoodEuropean hazelnutHawthornEnglish hawthornAmerican persimmonRussian oliveQueensland walnutAmerican beechEuropean beechGlossy buckthornWhite ashNarrow листвой ЯсеньЕвропейский ясень Орегонский ясеньЧерный ясеньЗеленый ясеньСиний ясеньМедицикАмериканский падубБуттернГрецкий орехКлароВосточный черный орехАнглийский орехКрасная камедьЖелтый тополь / тюльпанное деревоМагнолия / огурцовое деревоЮжная магнолияСладко-луговая магнолияЯблокоДикие яблониБелая шелковицаБелая шелковица onwoodEastern cottonwoodBigtooth aspenLombardy poplarEuropean aspenQuaking aspenBlack cottonwoodCanadian PoplarWhite poplarGrey poplarSour cherryPlumMahaleb cherryBlack cherryWhite oakTurkey oakScarlet oakSouthern красный oakSand лавровый oakCalifornia Черный oakSwamp лавровый oakOvercup oakBur oakSwamp каштан oakWater oakPin oakSessile oakWillow oakChestnut oakEnglish oakNorthern красный oakPost oakBlack oakSouthern жить oakBlack locustWhite willowGoat willowLarge серый willowCrack willowBlack willowLaurel willowPurpleosier willowNetleaf willowDwarf willowCommon elderRed elderberrySassafrasWhitebeamMountain ashChequer дерево / Wild сервис treeLilacDutch elmWinged elmAmerican elmCedar elmWych elmEuropean белый elmSmooth листвой elmEnglish elmSiberian elmSlippery elmRock elmCalifornia laurelWayfaringtreeDoussie / Lingue / ApaPau MarfimMersawaParana pinePeroba RosaGaboonTatajubaSucupiraPau ферро / Боливийский rosewoodAlexandrian laurelDegameAndiroba / CrabwoodPiquia / JiguaFreijoTigerwoodTauari / Brazili oakJapanese CedarEast Индийский rosewoodBrazilian rosewoodCocobolo / PalisanderIndian rosewoodAngeliqueAngelim VermelhoMakassar EbonyGaboon Ebony Цейлон EbonyApitong / KeruingCumaru / Бразильский teakAyan / MovinguiJelutongSapeleSipo / UtileWallabaTali / SasswoodTasmanian Синий GumJarrahYellowheartGmelinaRaminAgba / TolaBenge / BubingaLogwood / CampecheHevea / Резина treePilon / SuradanJatoba / Бразильский cherryAngelim PedraGreenheartIroko / Африканский teakEast Индийский SatinwoodMerbauKhaya / Африканский mahoganyKempasAsian Сатинвуд / PyinmaMarishballiLignum Vitae / GuayacanAzobeBalata / MassarandubaZebrawoodWengeMora / NatoBilinga / BadiBalsaAmaranth / PurpleheartAfrormosia / KokroduaMacawoodSepetirSneezewoodPadaukPrimaveraDark красного merantiBangkirai / Желтый balauTanguilePacific побережья красного дерева / Гондурас mahoganyBig-лист mahoganyWest Indies mahoganyManniIpe / Лапий / Бразильский walnutTeakSuperb терминалий / LimbaKalantas / Филиппинское MahoganyAustralian красного cedarAbachi / Samba / WawaWater gumAnge Лим Амаргосо Западный Индийский Атлас
Влажность 10% — Сушка в печи 15% 20% — Сушка на воздухе 25% 30% 35% 40% 45% — Свежая пиленая 50% 60% 70% 80% 90% 100%
Объем м³

Рассчитать

Окончательное значение является приблизительным и в силу различных факторов может отличаться от фактического значения.

.

Бесплатный калькулятор луча | ClearCalcs

Как использовать бесплатный калькулятор балки

Калькулятор балки ClearCalcs позволяет пользователю ввести геометрию и загрузку балки для анализа за несколько простых шагов. Затем он определяет изгибающий момент, диаграммы сдвига и прогиба, а также максимальные требования, используя мощный механизм анализа методом конечных элементов.

Регистрация учетной записи ClearCalcs откроет дополнительные расширенные функции для проектирования и анализа балок и множества других структурных элементов.ClearCalcs позволяет проектировать из стали, бетона и дерева в соответствии со стандартами Австралии, США и ЕС.

Лист разделен на три основных раздела:

  1. «Ключевые свойства», где пользователь вводит геометрию выбранного сечения и опор балки.
  2. «Нагрузки», где можно ввести распределенные, точечные и приложенные моментные нагрузки,
  3. «Сводка», в котором отображаются основные выходные данные и диаграммы.

Раздел «Комментарии» также включен для того, чтобы пользователь мог оставить какие-либо конкретные примечания по дизайну.Щелчок по любой из меток ввода / свойства дает описательное справочное объяснение.

1. Свойства входных клавиш

Свойства балки и сечения задаются путем ввода непосредственно в поля ввода.

Длина балки — это общая длина балки, включая все пролеты балки, в мм или футах.

Модуль Юнга установлен на значение по умолчанию 200000 МПа или 29000 тысяч фунтов на квадратный дюйм для конструкционной стали, но его можно изменить с помощью пользователь.

Площадь поперечного сечения зависит от выбранного сечения балки и по умолчанию соответствует значениям для обычной стальной балки.

Второй момент площади (или момент инерции) также зависит от выбранного сечения балки и снова по умолчанию соответствует свойствам обычной стальной балки.

Свойства E, A и Ix для других секций балки можно получить из библиотеки свойств секций ClearCalcs. Кроме того, вы можете создать свой собственный раздел, используя наш бесплатный калькулятор момента инерции.

Положение опор слева позволяет пользователю ввести любое количество опор и указать их положение по длине балки.Тип опоры может быть закрепленным (фиксированный в перемещении, свободном вращении) или фиксированным (фиксированный как при перемещении, так и при повороте) и выбирается из раскрывающегося меню. Требуется минимум одна фиксированная опора или две штифтовые опоры.

Вычислитель балок также учитывает пролет консолей на каждом конце, поскольку положение первой опоры не обязательно должно быть равно 0 мм, а положение последней опоры не обязательно должно быть равно длине балки.

Реакции на каждой из опор автоматически обновляются при добавлении, изменении или удалении опор в зависимости от указанной нагрузки.

2. Входные нагрузки

Калькулятор поддерживает различные типы нагрузок, которые можно применять в комбинации. Каждой загрузке пользователь может присвоить имя.

Знаковое обозначение, используемое для нагружения (показаны положительные значения):

Распределенные нагрузки указываются в единицах силы на единицу длины, кН / м или PLF вдоль балки, и могут применяться между любыми двумя точками. В калькуляторе можно использовать два разных типа:

Равномерная нагрузка имеет постоянную величину по всей длине приложения.Следовательно, начальная и конечная величины, указанные пользователем, должны быть одинаковыми.

Линейные нагрузки имеют переменную величину по длине приложения. Различные начальные и конечные величины должны быть указаны пользователем, и они могут использоваться для представления треугольных или трапециевидных нагрузок.

Точечные нагрузки указываются в единицах силы, кН или тысячах фунтов, и площади, приложенной в дискретных точках вдоль балки. Например, они могут представлять реакции других элементов, соединенных с балкой.Пользователь вводит имя, величину и местоположение слева от луча.

На приведенной ниже диаграмме из сводного раздела показана двухпролетная неразрезная балка с линейно распределенной контактной нагрузкой и точечной нагрузкой.

3. Итоговые результаты вычислений

После задания нагрузки и геометрии калькулятор автоматически использует механизм конечно-элементного анализа ClearCalcs для определения моментов, поперечных сил и прогибов. Максимальные значения каждого из них выводятся как «Требование момента» , «Требование сдвига», и «Отклонение» , вместе с диаграммами по длине балки.

Положительные значения означают отклонение вниз, а отрицательные значения — отклонение вверх. Знаковое соглашение, используемое на диаграммах силы сдвига и изгибающего момента, следующее (показаны положительные значения):

Использование курсора для наведения курсора на любую точку на диаграммах изгибающего момента, силы сдвига или прогиба дает конкретные значения в этом месте вдоль балки. В приведенном ниже примере показаны выходные параметры для двухпролетной неразрезной балки с линейно распределенной коммутационной нагрузкой и точечной нагрузкой.

.Расчет луча

| MechaniCalc

Калькулятор балки позволяет анализировать напряжения и прогибы в прямых балках.

Опции

Пример загрузки

Очистить все данные


Входы

Введите данные балки, затем нажмите кнопку «Рассчитать результаты»:

Добавить ограничение

Удалить ограничение

Невозможно отобразить сюжет — браузер устарел.

Рассчитать результаты

Предупреждение — Перед решением необходимо исправить следующее:


Дисплейные блоки


Результаты

Результаты анализа пучка подробно описаны ниже. Задача решалась в виде конечно-элементной модели с использованием балочных элементов. Для получения дополнительной информации о том, как были получены эти результаты, обратитесь к справочнику по конечно-элементному анализу и справочнику по напряжению и прогибу балки.

Обзор результатов

Максимальный прогиб и наклон приведены ниже:

Значение Расположение
Максимальный прогиб:
Максимальный наклон:

Схема свободного тела (FBD) и деформированная сетка показаны ниже.

Невозможно отобразить сюжет — браузер устарел.

Невозможно отобразить сюжет — браузер устарел.


См. Полную информацию о результатах на других вкладках (выше).

Обзор модели

Модель с приложенными силами и ограничениями показана ниже:

Невозможно отобразить сюжет — браузер устарел.


Свойства материала

Материал:

Имущество Значение
Предел текучести
Максимальная прочность
Модуль упругости
Коэффициент Пуассона

Характеристики поперечного сечения

Поперечное сечение:

Имущество Значение
Высота (Y)
Ширина (X)
Толщина стенки
Толщина фланца
Площадь
Центроидное расстояние
(в направлении первичного изгиба)
Момент инерции, центроидный
(относительно оси первичного изгиба)

Диаграмма момента сдвига

Диаграммы сдвига и момента показаны ниже.Соблюдаются стандартные условные обозначения для диаграмм момента сдвига:

  • Сдвиг: положительный сдвиг вызывает вращение балки по часовой стрелке, отрицательный сдвиг вызывает вращение против часовой стрелки.
  • Момент: Положительный момент сжимает верхнюю часть балки и удлиняет нижнюю часть балки (т. Е. Заставляет балку «улыбаться»).

Невозможно отобразить сюжет — браузер устарел.

Невозможно отобразить сюжет — браузер устарел.

Невозможно отобразить сюжет — браузер устарел.

Графики напряжений

Графики напряжений показаны ниже.

Невозможно отобразить сюжет — браузер устарел.

Невозможно отобразить сюжет — браузер устарел.

Невозможно отобразить сюжет — браузер устарел.

Невозможно отобразить сюжет — браузер устарел.

Напряжения рассчитываются на основе следующих уравнений:

Осевое напряжение Напряжение сдвига Напряжение изгиба Напряжение по Мизесу

Графики прогиба

Графики прогиба показаны ниже.Условные обозначения прогибов:

.

  • X: положительный направо, отрицательный налево
  • Y: положительный вверх, отрицательный вниз
  • Наклон: линейка правой руки (положительное значение против часовой стрелки, отрицательное значение по часовой стрелке)

Невозможно отобразить сюжет — браузер устарел.

Невозможно отобразить сюжет — браузер устарел.

Невозможно отобразить сюжет — браузер устарел.

Невозможно отобразить сюжет — браузер устарел.

Эта проблема была решена в виде конечно-элементной модели. На этой вкладке представлены результаты для отдельных узлов и элементов модели.

На приведенном ниже графике показана сетка с номерами элементов , помеченными:

Невозможно отобразить сюжет — браузер устарел.


Узловые результаты

Ниже приведены результаты для каждого узла. Следует отметить несколько моментов:

  • Определенные узлы связаны с точками, и для этих узлов указан номер связанной точки.
  • Сначала перечислены все узлы, связанные с точками, за ними следуют узлы, которые были созданы как часть процесса построения сетки.
  • Для ограниченных степеней свободы могут существовать внешние реакции. Любые узлы, не имеющие ограничений, не будут иметь внешних реакций.


Элементарные результаты

Ниже приведены результаты для каждого элемента. Следует отметить несколько моментов:

  • Каждый элемент состоит из 2 узлов. В таблице эти узлы обозначаются как «Узел 1» и «Узел 2».
  • Внутренние реакции задаются в единицах глобальной системы координат (т.е. X и Y), а также в локальной системе координат (т.е. «осевой» вдоль оси элемента, «сдвиг» перпендикулярно элементу).

Загрузить результаты в Excel

Загрузите файл Excel на свой компьютер, содержащий узловые и элементарные результаты.

Скачать отчет

Сохраните отформатированный документ Word на свой компьютер с подробным описанием входных данных и результатов анализа.

Скачать файл ввода

Сохранить все входные данные в файл. Позже вы можете загрузить этот файл, чтобы продолжить с того места, где вы остановились.


Требуется больше функциональности?

Зарегистрируйте учетную запись, чтобы получить полный доступ ко всем калькуляторам и другому контенту. Типы подписки описаны ниже вместе с преимуществами каждого из них.

  • Цена
  • Доступ к калькуляторам
  • Логин
  • Создание материалов
  • Создание сечений
  • Сохранить файлы
  • Отчетность
  • Бесплатно
  • Ограниченное

    Ограниченный Доступ к калькуляторам

  • Предварительно определенные Поперечные сечения

  • Учить больше »
  • 39 долларов США.99 / месяц
    249,99 долларов США в год
  • Полный

    Полный Доступ к калькуляторам

  • Плавающие лицензии

    Плавающие лицензии

  • Учить больше »
  • Зарегистрироваться сейчас

.

Балки — поддерживаются с обеих сторон

Напряжение в изгибаемой балке можно выразить как

σ = y M / I (1)

, где

σ = напряжение (Па (Н / м ) 2 ), Н / мм 2 , psi)

y = расстояние до точки от нейтральной оси (м, мм, дюйм)

M = изгибающий момент (Нм, фунт-дюйм)

I = момент инерции (м 4 , мм 4 , в 4 )

Калькулятор ниже можно использовать для расчета максимального напряжения и прогиба балок с одной одиночной или равномерно распределенной нагрузкой.

Балка, поддерживаемая на обоих концах — равномерная непрерывная распределенная нагрузка

Beam - stress and deflection with uniform load

Момент в балке с равномерной нагрузкой, поддерживаемой на обоих концах в положении x, может быть выражен как

M x = qx (L — x) / 2 (2)

где

M x = момент в положении x (Нм, фунт дюйм)

x = расстояние от конца (м, мм, дюйм)

Максимум Момент находится в центре балки на расстоянии L / 2 и может быть выражен как

M max = q L 2 /8 (2a)

, где

M max = максимальный момент ( Нм, фунт-дюйм)

q = равномерная нагрузка на единицу длины балки (Н / м, Н / мм, фунт / дюйм)

9000 2 L = длина балки (м, мм, дюйм)

Максимальное напряжение

Flanged beam - maximum stress

Уравнения 1 и 2a могут быть объединены для выражения максимального напряжения в балке с равномерным нагрузка, поддерживаемая с обоих концов на расстоянии L / 2, как

σ max = y max q L 2 / (8 I) (2b)

где

σ max = максимальное напряжение (Па (Н / м 2 ), Н / мм 2 , psi)

y max = расстояние до крайней точки от нейтральной оси (м, мм, дюйм)

  • 1 Н / м 2 = 1×10 -6 Н / мм 2 = 1 Па = 1.4504×10 -4 фунтов на кв. Дюйм
  • 1 фунт / дюйм (фунт / дюйм 2 ) = 144 фунта на квадратный дюйм (фунт на / фут 2 ) = 6 894,8 Па (Н / м 2 ) = 6,895×10 — 3 Н / мм 2

Максимальный прогиб :

δ max = 5 q L 4 / (384 EI) (2c)

где

δ max = максимальный прогиб (м, мм, дюйм)

E = Модуль упругости (Па (Н / м 2 ), Н / мм 2 , psi)

Прогиб в положении x:

δ x = qx ( L 3 — 2 L x 2 + x 3 ) / (24 EI) (2d)

Примечание! — прогиб часто является ограничивающим фактором при проектировании балки.Для некоторых применений балки должны быть прочнее, чем требуется при максимальных нагрузках, чтобы избежать недопустимого прогиба.

Силы, действующие на концы:

R 1 = R 2

= q L / 2 (2e)

где

R = сила реакции (Н, фунт)

Пример — балка с равномерной нагрузкой, метрические единицы

Балка UB 305 x 127 x 42 длиной 5000 мм несет равномерную нагрузку 6 Н / мм .Момент инерции балки составляет 8196 см 4 (81960000 мм 4 ) , а модуль упругости стали, используемой в балке, составляет 200 ГПа (200000 Н / мм 2 ) . Высота балки 300 мм (расстояние от крайней точки до нейтральной оси 150 мм ).

Максимальное напряжение в балке можно рассчитать

σ max = (150 мм) (6 Н / мм) (5000 мм) 2 / (8 (81960000 мм 4 ))

= 34.3 Н / мм 2

= 34,3 10 6 Н / м 2 (Па)

= 34,3 МПа

Максимальный прогиб балки можно рассчитать

δ макс = 5 (6 Н / мм) (5000 мм) 4 / (( 200000 Н / мм) 2 ) ( 81960000 мм 4 ) 384)

= 2,98 мм

Расчет балки с равномерной нагрузкой — метрические единицы
  • 1 мм 4 = 10 -4 см 4 = 10 -12 м 4
  • 1 см 4 = 10 -8 м = 10 4 мм
  • 1 дюйм 4 = 4.16×10 5 мм 4 = 41,6 см 4
  • 1 Н / мм 2 = 10 6 Н / м 2 (Па)
Расчет балки с равномерной нагрузкой — Британские единицы
Пример — балка с равномерной нагрузкой, британские единицы

Максимальное напряжение в стальной широкополкой балке W 12 x 35 дюймов, длина 100 дюймов, длина , момент инерции 285 дюймов, 4 , модуль упругости 2

00 psi , при равномерной нагрузке 100 фунтов / дюйм можно рассчитать как

σ max = y max q L 2 / (8 I)

= (6.25 дюймов (100 фунтов / дюйм) (100 дюймов) 2 / (8 (285 дюймов 4 ))

= 2741 (фунт / дюйм 2 , psi)

Максимальное отклонение может можно рассчитать как

δ max = 5 q L 4 / (EI 384)

= 5 (100 фунтов / дюйм) (100 дюймов) 4 / ((2

00 фунтов / дюйм 2 ) (285 дюймов 4 ) 384)

= 0,016 дюйма

Балка, поддерживаемая на обоих концах — нагрузка в центре

Beam - stress and deflection with single load

Максимальный момент в балке с центральной нагрузкой, поддерживаемой с обеих сторон концов:

M max = FL / 4 (3a)

Максимальное напряжение

Максимальное напряжение в балке с одноцентровой нагрузкой, поддерживаемой с обоих концов:

σ max = y max FL / (4 I) ( 3b)

, где

F = нагрузка (Н, фунт)

Максимальный прогиб может быть выражен как

δ max = FL 3 / (48 EI) (3c)

Силы, действующие на концы:

R 1 = R 2

= F / 2 (3d)

Расчет балки с одним центром нагрузки — метрические единицы
Расчет балки с одним центром нагрузки — Имперские единицы
Пример — Балка с одинарной центральной нагрузкой

Максимальное напряжение в стальной широкополочной балке W 12 x 35 дюймов, длина 100 дюймов, длина , момент инерции 285 дюймов, 4 , модуль упругости эластичность 2

00 psi , с центральной нагрузкой 10000 фунтов можно рассчитать как

σ max = y max FL / (4 I)

= (6.25 дюймов) (10000 фунтов) (100 дюймов) / (4 (285 дюймов 4 ))

= 5482 (фунт / дюйм 2 , фунт / кв. Дюйм)

Максимальный прогиб можно рассчитать как

δ max = FL 3 / EI 48

= (10000 фунтов / дюйм) (100 дюймов) 3 / ((2

00 фунтов / дюйм 2 ) (285 дюймов 4 ) 48 )

= 0,025 дюйма

Некоторые типичные пределы отклонения по вертикали

  • Полное отклонение: пролет / 250
  • Прогиб при динамической нагрузке: пролет / 360
  • консоли: пролет / 180
  • балки деревянных перекрытий в домашних условиях: пролет / 330 (макс. 14 мм)
  • хрупкие элементы: пролет / 500
  • подкрановые балки: пролет / 600

Балка, поддерживаемая на обоих концах — эксцентричная нагрузка

Beam - stress and deflection with a single eccentric load

Максимальный момент в балке с одинарной эксцентричной нагрузкой при точка нагрузки:

M макс 900 50 = F ab / L (4a)

Максимальное напряжение

Максимальное напряжение в балке с одноцентровой нагрузкой, поддерживаемой с обоих концов:

σ max = y max F ab / (LI) (4b)

Максимальный прогиб в точке нагрузки может быть выражен как

δ F = F a 2 b 2 / (3 EIL) (4c)

Силы, действующие на концы:

R 1 = F b / L (4d)

R 2 = F a / L (4e)

Балка, поддерживаемая на обоих концах — две эксцентрические нагрузки

Beam - stress and deflection with two eccentric loads

Максимальный момент (между нагрузками) в балке с двумя эксцентрическими нагрузками:

M max = F a (5a)

Максимальное напряжение

Максимальное напряжение в балке с двумя эксцентрическими нагрузками, поддерживаемыми на обоих концах:

σ max = y max F a / I (5b)

Максимум прогиб в точке нагрузки можно выразить как

δ F = F a (3L 2 — 4 a 2 ) / (24 EI) (5c)

Силы, действующие на концы:

R 1 = R 2

= F (5d)

Вставьте балки в свою модель Sketchup с помощью Engineering ToolBox Sketchup Extension

Балка поддерживается на обоих концах — трехточечная нагрузка

Beam 3 point loads supported both ends moment shear diagram

Максимальный момент (между нагрузками) в балке с тремя точечными нагрузками:

M max = FL / 2 (6a)

Максимальное напряжение

Максимальное напряжение в балке с тремя точечными нагрузками, поддерживаемыми на обоих концах:

σ max = y max FL / ( 2 I) (6b)

Максимальное отклонение в центре луча может быть выражено как

δ F = FL 3 / (20.22 E I) (6c)

Силы, действующие на концы:

R 1 = R 2

= 1,5 F (6d)

.

0 0 vote
Article Rating
Подписаться
Уведомление о
guest
0 Комментарий
Inline Feedbacks
View all comments