Катушка индуктивности как проверить: Как проверить дроссель (катушку индуктивности) при помощи мультиметра?

Разное

Содержание

Как проверить дроссель (катушку индуктивности) при помощи мультиметра?

Иногда, дроссель может перестать функционировать. Проявляется это по-разному, может появиться шум, лампа начинать мигать, лампа вовсе не зажигается и другие варианты. Как проверить дроссель, если подозреваете поломку – рассмотрим в статье далее.

Механическими поломками считаются – выход из строя сердечника, повреждение каркаса или креплений, обрыв на обмотке или пробой между ними. Любая проверка должна начинаться с внешнего осмотра. Здесь нужно внимательно осмотреть данной устройство. Так можно сразу выявить причину поломки и по возможности восстановить его. Если осмотр не дал результатов и внешне прибор выглядит идеально, нужно переходить к проверке его мультиметром. Для подробного изучения этого вопроса в статье предложен способ проверки дросселя мультиметром, а также добавлено видео и интересный файл с материалом по теме.

Проверка дросселя мультиметром

Проверка дросселя мультиметром.

Какое строение имеют источники светового потока

Дневное освещение является самым экономичным вариантом в плане освещения. При этом оно лучше всего подходит для глаз, благодаря чему служит отличной альтернативой всем существующим на сегодняшний день вариантам подсветки помещений.
Для создания дневного света сегодня используются различие виды люминесцентных ламп. Такие лампы могут классифицироваться по оттенку и яркости излучаемого света:

  • теплый белый;
  • холодный белый;
  • желтоватый тон.

Схема дросселя

Схема дросселя.

Дроссель

Но для повышения их безопасности во время работы принято использовать специальный прибор – дроссель. Им оснащены все лампы дневного света. Покупая светильник дневного света, обязательно поинтересуйтесь у продавца гарантией и другой сопроводительной документацией на приобретаемое изделие. Так вы точно купите качественный прибор для своих нужд. Что же представляет собой дроссель? Внешне дроссель имеет вид катушки индуктивности, у которой имеется специальный ферримагнитный сердечник. Это такая деталь, которая необходима для стабильной работы любой лампы при создании дневного света. По сути, дроссель входит в состав энергосберегающего источника света, установленного в светильнике. Частые поломки и способы их проверки мультимером указаны в таблице ниже:

Основные поломки дросселя и способы проверки мультимером

Таблица основных поломок дросселя и способы их проверки мультимером.

При его неисправности или падении работоспособности на концах лампы появляются почернения. В задачи данной детали входит контроль напряжения, создаваемого на выходных контактах энергосберегающего источника света. Очень часто дроссель входит в состав люминесцентных ламп. Для того чтобы источник дневного света не погас, создается балласт. Он способен поддерживать в контактах осветительного прибора ток на требуемом уровне.

Как проверить дроссель при помощи мультиметра

По существующим на сегодняшний день стандартам, такой балласт нужно подключать последовательно. Затем к нему параллельно подсоединяют стартер. Он ответственен за зажигание лампы.

Такое строение и способ подключения играет важную роль в работоспособности лампы, используемой для создания дневного света в помещении. Поэтому если имеются неисправности, то в первую очередь нужно проверить дроссель. О том, как это сделать мы расскажем несколько ниже. Чтобы понять, почему лампы дневного света перестали работать, необходимо быть знакомым с их конструкцией, а также принципом работы. Это нужно для того, чтобы по косвенным признакам проверить их работоспособность и определиться с вариантами починки. На данный момент в продаже существует несколько типов люминесцентных ламп. Но все они имеют одинаковое строение.

Тороидальный дроссель

Тороидальный дроссель.

Строение люминесцентной лампы

Такие источники дневного света в своей конструкции обязательно содержат стеклянную колбу различной формы. В ней находятся спиральные электроды и инертный газ (пары ртути).Сверху колба покрыта специальным слоем из люминофоров.

Принцип работы лампы таков:

  • при поступлении электрического тока на электроды (спирали) они нагреваются;
  • в результате нагревания спиралей происходит зажигание газа;
  • под действием него начинает светиться люминофор.

Из-за того, что электроды имеют ограниченные размеры, имеющегося в сети напряжения недостаточно для розжига электродов. Вот для этого и используют дроссель. А чтобы предотвратить чрезмерный перегрев спирали в лампы устанавливают стартер. Он после зажигания газа запускает процессы, приводящие к отключению накала электродов.

Проверка приборов низкой частоты

По конструкции и технологии изготовления силовые трансформаторы, трансформаторы и электрические дроссели НЧ имеют много общего. Те и другие состоят из обмоток, выполненных изолированным проводом, и сердечника. Неисправности трансформаторов и дросселей НЧ делятся на механические и электрические.

К механическим неисправностям относятся: поломка экрана, сердечника, выводов, каркаса и крепежной арматуры, к электрическим – обрывы обмоток; замыкания между витками обмоток; короткое замыкание обмотки на корпус, сердечник, экран или арматуру; пробой между обмотками, на корпус или между витками одной обмотки; уменьшение сопротивления изоляции; местные перегревы.

Проверку исправности трансформаторов и дросселей НЧ начинают с внешнего осмотра. В ходе его выявляют и устраняют все видимые механические дефекты. Проверка на короткое замыкание между обмотками, между обмотками и корпусом производится омметром. Прибор включают между выводами разных обмоток, а также между одним из выводов и корпусом. Так же проверяется и сопротивление изоляции, которое должно быть не менее 100 МОм для герметизированных трансформаторов и не менее десятков МОм для негерметизированных.

Интересный материал для ознакомления: что нужно знать об устройстве силового трансформатора.

Самая сложная проверка на межвитковые замыкания. Известно несколько способов проверки трансформаторов.

  • Измерение омического сопротивления обмотки и сравнение результатов с паспортными данными. (Способ простой, но не точный, особенно при малой величине омического сопротивления обмоток и малом числе короткозамкнутых витков.)
  • Проверка катушки с помощью специального прибора — анализатора короткозамкнутых витков.
  • Проверка коэффициентов трансформации на холостом ходу. Коэффициент трансформации определяется как отношение напряжений, показываемых двумя вольтметрами. При наличии межвитковых замыканий коэффициент трансформации будет меньше нормы.
  • Измерение индуктивности обмотки.
  • Измерение потребляемой мощности на холостом ходу. У силовых трансформаторов одним из признаков короткозамкнутых витков является чрезмерный нагрев обмотки.

Диагностика дросселя

Диагностика дросселя.

Стартер

При подаче напряжения в стартере возникает тлеющий разряд. Нагреваясь биметаллические пластины, из которых сделаны электроды стартера, замыкаются, в результате чего ток в цепи значительно увеличивается. Увеличившийся ток разогревает электроды люминесцентной лампы, и они начинают испускать электроны. Одновременно с этим электроды стартера остывают, биметаллическая пластина изгибается и цепь разрывается. Таким образом, стартер нужен только в момент запуска, в дальнейшей работе он не участвует и его электроды остаются разомкнутыми.

При этом на дросселе, благодаря самоиндукции, возникает кратковременный высоковольтный импульс, который приводит к газовому разряду и зажиганию лампы. Когда лампа горит, напряжение на её электродах ниже напряжения сети на величину эдс самоиндукции, возникающей в дросселе при зажигании лампы. Таким образом дроссель препятствует возрастанию тока в рабочем режиме лампы. Недостатками данной схемы являются продолжительное время включения светильника, по мере износа дроссель начинает издавать гул, низкая эффективность при отрицательных температурах.

Стартеры

Стартеры.

Неисправности светильников с ЭМПРА

Лампа не зажигается

  • Неисправность электросети — проверить наличие напряжения на контактах патрона.
  • Плохой контакт между лампой и контактами патрона или между стартером и контактами держателя — пошевелить лампу и стартер. Возможно надо подогнуть контакты патрона для лучшего прилегания.
  • Неисправность лампы — проверить целостность нитей накала или заменить на заведомо исправную. Для проверки нитей накала выставляем мультиметр на минимальное сопротивление или на прозвонку и поочередно прозваниваем выводы цоколя с одной стороны и с другой. При исправной лампе должно быть небольшое сопротивление. В случае обрыва мультиметр покажет бесконечное сопротивление.
  • Неисправность стартера — не замыкает цепь накала электродов лампы. Заменить стартер.
  • Неисправность дросселя — обрыв в обмотке дросселя или межвитковое замыкание. Обрыв дросселя можно определить с помощью мультиметра.

Лампа не зажигается. Свечение по краям лампы

  • Неисправность стартера. Если вынуть стартер из держателя, свечение прекратится. Заменить стартер.

Лампа мигает, но не зажигается

  • Неисправен стартер — заменить стартер.
  • Низкое напряжение сети — проверить мультиметром напряжение.
  • Потеря эмиссии электродов лампы — заменить лампу.

Стартер в лампе

Стартер в лампе.

На концах включенной лампы появляется и пропадает оранжевое свечение, лампа не зажигается

  • В лампу попал воздух — заменить лампу.

Лампа зажигается, но через некоторое время наблюдается потемнение на концах лампы

  • Замыкание на корпус светильника — проверить изоляцию.
  • Неисправен дроссель — несоответствие пускового и рабочего токов вольт-амперной характеристики. Амперметром проверить значение пускового и рабочего токов.

Лампа периодически зажигается и гаснет

  • Неисправна лампа — заменить лампу
  • Неисправен стартер — заменить стартер

Лампа зажигается, но на некоторых участках наблюдается свечение в виде оранжевой змейки

  • Неисправен дроссель — проверить значение пускового и рабочего токов.
  • Неисправна лампа — заменить лампу.

При включении лампы перегорают, потемнение на концах лампы

  • Пробой изоляции дросселя — заменить дроссель

При работе светильника слышно гудение

  • Колебание пластин дросселя — заменить дроссель

Изменение цвета свечения лампы – частичное выгорание люминофора вследствии длительного срока службы лампы — заменить лампу.

Материал в тему: Что такое кондесатор

Как проверить дроссель люминесцентного светильника?

Дроссель представляет собой катушку индуктивности, намотанную на ферромагнитном сердечнике с большой величиной магнитной проницаемости. Он является составной частью электромагнитной пускораспределительной аппаратуры (ЭмПРА). На этапе включения ЛДС он вместе со стартером обеспечивает разогрев катодов и затем создает высоковольтный импульс (до 1000 В) для создания тлеющего разряда в колбе за счет, свойственной ему электродвижущей силы (ЭДС) самоиндукции.

После выключения из работы стартера дроссель использует свое индуктивное сопротивление для поддержки тока разряда через ЛДС на уровне, необходимым для постоянной и стабильной ионизации газово-ртутной смеси, используемой в колбе. Величина индуктивности такова, что сопротивление дросселя для переменного тока защищает спирали электродов от перегрева и перегорания.

Как проверить дроссель при помощи мультиметра

Проверить исправность дросселя люминесцентной лампы можно путём измерения сопротивления с помощью омметра. Он входит в состав комбинированного прибора электрика.

Если проверить дроссель лампы дневного света мультиметром, можно обнаружить либо его исправное состояние, при котором измеренное активное сопротивление соответствует его паспортным данным, либо столкнуться с несоответствиями. Проанализировав их, можно сделать вывод о характере обнаруженного дефекта. Замыкания сопровождаются неприятным запахом и изменением цвета защитной изоляции. При любом внешнем проявлении или обнаруженном отклонении величины измеренного сопротивления от номинального его значения дроссель необходимо заменить.

Проверка дросселя люминесцентного светильника?

Проверка дросселя люминесцентного светильника.

Как проверить стартер

Это устройство входит в состав электромагнитной пускорегулирующей аппаратуры и при совместной работе с дросселем обеспечивает запуск процесса образования тлеющего разряда в колбе ЛДС при подаче переменного напряжения сети на контакты светильника. Конструктивно стартер выполнен в виде небольшой лампочки, внутренняя полость которой заполнена инертным газом.

Внутри колбы находятся два биметаллических контакта, один из которых имеет сложный профиль. В исходном состоянии контакты разомкнуты. При подаче на выводы стартера напряжения в газовой среде возникает дуговой разряд, который нагревает контакты. Они изменяют свою форму и происходит их короткое замыкание, в цепи начинает протекать электрический ток.

Схема из лампы и дросселя

Схема из лампы и дросселя.

Контакт имеет меньшее переходное сопротивление, чем существующая до этого «дуга» и температура в нем начинает уменьшаться. Это остывание приводит к повторному изменению формы контактов, в результате которого происходит их размыкание. Дроссель балласта в этот момент вырабатывает высоковольтный импульс, который приводит к появлению тлеющего разряда в ЛДС и протеканию в ней тока, ионизирующего газово-ртутную смесь. Стартер выполнил свое предназначение – произвел запуск. Если цикл прошел по описанному сценарию, то стартер прошел тестирование в составе ЭмПРА. Другим способом проверки его работоспособности может быть только его замена исправным и имеющим те же параметры, что и исследуемый.

Заключение

В данной статье были рассмотрены основные вопросы проверки стартеров и дросселей люминесцентных ламп. Подробнее можно узнать, прочитав статью Проверка дросселей.

В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию:

www.1000eletric.com

www.electricalschool.info

www.electric-blogger.ru

Предыдущая

ПрактикаКак проверить конденсатор при помощи мультиметра

Следующая

ПрактикаКак проверить резистор мультиметром

Как проверить дроссель с помощью мультиметра

Одним из компонентов схем различных электронных и электротехнических приборов является дроссель. Дросселем называют катушку индуктивности, которая при работе в электрических схемах ограничивает проводимость для переменного тока и беспрепятственно пропускает ток постоянный. Это свойство дросселя используется для сглаживания переменной составляющей токов. Проверка дросселя осуществляется мультиметром или специальным тестером.

Назначение и устройство

В некоторых приборах дроссели устанавливаются для того, что бы пропускать импульсные токи определенного диапазона частот. Диапазон этот зависит от конструктивного решения дросселя, то есть от применяемого в катушке провода, его сечения, количества витков, наличия сердечника и материала, из которого он изготовлен.

Конструктивно дроссель представляет собой намотанный на сердечник изолированный провод. Сердечник может быть металлическим, набранным из изолированных пластин или ферритовым. Иногда дроссель может выполняться без сердечника. В этом случае используется керамический или пластмассовый каркас для провода.

Дроссельная заслонка присутствует в карбюраторе. Она регулирует подачу горючей смеси, представляя собой потенциометр. Чтобы проверить датчик дроссельной заслонки в автомобиле, определяют соответствие входного напряжения устройства положению заслонки.

В мультиметре выставляют режим прозвонки. Контакты разъема датчика соединяют со щупами мультиметра и создают видимость движения заслонки (пальцами). При этом проверяют, как реагирует датчик в крайних положениях заслонки. Должен идти чистый сигнал без хрипов.

В светильниках

В светильниках, предусмотренных для использования ламп дневного света, помимо самих ламп, применяются такие компоненты, как стартер и дроссель.

Стартер, как следует из названия, запускает процесс свечения в лампе, и далее в процессе не участвует. Дроссель выполняет функции стабилизатора тока и напряжения в течение всего периода свечения лампы.

Если дроссель неисправен, лампа не горит, или горит не устойчиво, свечение ее неоднородно по всей длине, внутри могут появляться области с более ярким свечением, движущиеся от одного электрода лампы к другому. Иногда можно заметить эффект мерцания света.

Лампа при неисправном дросселе может не загореться с первого раза, и стартер будет многократно включаться, пока, наконец, процесс свечения не запустится. В результате, в местах установки спиралей, на колбе лампы появятся потемнения. Это связано с тем, что спирали работают более продолжительное время, чем установлено для нормального запуска.

Проверка в лампах

Проверку дросселя необходимо произвести, если наблюдается одно из вышеописанных явлений при работе лампы дневного света, а также, если замечено появление характерного запаха подгорающей изоляции, появление звуков, нехарактерных для работы прибора, а также в том случае, если лампа не включается.

До того, как проверить дроссель лампы, проверяются сама лампа и стартер.

Неисправность дросселя может заключаться в обрыве или перегорании провода катушки или межвитковом замыкании, вызванном пробоем или подгоранием изоляции.

Обе неисправности могут произойти либо вследствие длительного времени использования прибора, либо в результате какого-либо механического воздействия. Возможно перегорание провода катушки в результате подачи на нее тока большего, чем максимальный, на который рассчитан дроссель.

В случае обрыва или перегорания провода, можно выявить неисправность обычным тестером или мультиметром. В силу того, что дроссель пропускает постоянный ток, замкнув цепь тестера через катушку, по свечению контрольной лампы или его отсутствию можно понять, есть обрыв или нет.

Если при измерении мультиметром, сопротивление бесконечно, имеет место обрыв провода катушки.

Проверка межвиткового замыкания

В случае межвиткового замыкания, проверка тестером результата не даст. В этом случае необходимо знать, как проверять дроссель при помощи мультиметра.

Межвитковое замыкание имеет место при непосредственном гальваническом контакте двух витков или при контакте витков с металлическим сердечником. Очевидно, что в этом случае сопротивление катушки уменьшается.

Возможен редкий случай, когда измерение сопротивления катушки не даст достоверной картины ее состояния. Такое может случиться при обрыве и межвитковом замыкании одновременно.

В этом случае межвитковое замыкание может оказаться параллельным обрыву, и несколько витков просто не будут участвовать в измерении. Исправный, казалось бы, дроссель будет работать некорректно.

Для проверки катушки на наличие межвиткового замыкания, аналоговый мультиметр в режиме миллиамперметра необходимо использовать в составе прибора, собранного на двух транзисторах.

Схема прибора приведена на рисунке.

Сам прибор представляет собой генератор низкой частоты. При сборке схемы используются любые транзисторы из линейки МП39-МП42 (коэффициент усиления 40-50).

Диоды можно использовать типа Д1 или Д2 с любым индексом. Резисторы применяются любого типа, рассчитанные на мощность не менее 0,12 Вт. Питание прибора осуществляется от источника постоянного тока, напряжением 7-9 В.

Последовательность действия

Порядок проверки следующий:

  1. включается тумблер Вк. При этом стрелка мультиметра должна отклониться до середины шкалы;
  2. в зависимости от индуктивности катушки, устанавливается положение движка переменного резистора R5. Левое положение соответствует меньшей, а правое – большей индуктивности. При проверке катушек с индуктивностью менее 15 мГн, необходимо дополнительно нажать кнопку Кн2;
  3. к клеммам Lx подключаются выводы дросселя и замыкается кнопкой контакт Кн1. При этом, если в обмотке нет витков, короткозамкнутых между собой, стрелка мультиметра должна отклониться в сторону больших значений или же незначительно отклониться в сторону меньших. Если в обмотке есть хоть одно замыкание между витками, стрелка возвращается на нуль.

Иногда причиной неисправности катушки может стать разрушившийся или поврежденный сердечник. Материал, из которого выполнен сердечник, его размер и положение относительно катушки, влияют на индуктивность.

Проверка индуктивности

Наличие в арсенале мультиметра такой полезной функции, как измерение индуктивности катушек, будет полезным для проверки соответствия дросселя характеристикам, заявленным в справочной литературе. Функция присутствует только в некоторых моделях цифровых мультиметров.

Чтобы воспользоваться этой функцией, необходимо настроить мультиметр на измерение индуктивности. Контакты щупов присоединяются к выводам катушки. При первом измерении мультиметр устанавливается в наибольший диапазон измерений, и потом диапазон уменьшается для получения измерения достаточной точности.

При проведении всех измерений важно не допускать касания руками контактов, на которых измеряются те или иные параметры, иначе проводимость человеческого тела может изменить показания прибора.

Правила измерения индуктивности с помощью мультиметра, подключение приставки

При работе с любыми электроприборами или токопроводящими деталями, наличие измерительной аппаратуры является необходимым, будь то амперметр, вольтметр или омметр. Но для того чтобы не покупать все эти устройства, лучше обзавестись мультиметром.

Мультиметр является универсальным измерительным аппаратом, который позволяет измерить любую характеристику электричества. Мультиметры бывают аналоговые и цифровые.

Аналоговый мультиметр

Данный тип мультеметров отображает показания измерений при помощи стрелки, под которой установлено табло с различными шкалами значений. Каждая шкала отображает показания того или иного измерения, которые подписаны непосредственно на табло.

Но для новичков такой мультиметр будет не самым лучшим выбором, поскольку разобраться во всех обозначениях, которые находятся на табло довольно трудно. Это может привести к не правильному пониманию результатов измерения.

Цифровой мультиметр

В отличие от аналоговых, этот мультиметр позволяет с легкостью определять интересуемые величины, при этом его точность измерений гораздо выше по сравнению со стрелочными аппаратами.

Также наличие переключателя между различными характеристиками электричества исключает возможность перепутать то или иное значение, поскольку пользователю не нужно разбираться в градации шкалы показаний.

Результаты измерений отображаются на дисплее (в более ранних моделях – светодиодных, а в современных – жидкокристаллических). За счет этого цифровой мультиметр комфортен для профессионалов и прост и понятен в использовании для новичков.

Измеритель индуктивности для мультиметра

Несмотря на то, что определять индуктивность при работе с электроникой приходится редко, это все же иногда необходимо, а мультиметры с измерением индуктивности найти достаточно трудно. В данной ситуации поможет специальная приставка к мультиметру, позволяющая измерить индуктивность.

Зачастую для подобной приставки используется цифровой мультиметр установленный на измерение напряжения с порогом точности измерения в 200 мВ, который можно приобрести в любом магазине электро и радиоаппаратуры в готовом виде. Это позволит сделать простую приставку к цифровому мультиметру.

Сборка платы приставки

Собрать приставку-тестер к мультиметру для измерения индуктивности можно без особых проблем в домашних условиях, обладая базовыми знаниями и навыками в области радиотехники и пайки микросхем.

В схеме платы можно применять транзисторы КТ361Б, КТ361Г и КТ3701 с любыми буквенными маркерами, но для получения более точных измерений лучше использовать транзисторы с маркировкой КТ362Б и КТ363.

Эти транзисторы устанавливаются на плате в позициях VT1 и VT2. На позиции VT3 необходимо установить кремневый транзистор со структурой p-n-p, например, КТ209В с любой буквенной маркировкой. Позиции VT4 и VT5 предназначены для буферных усилителей.

Подойдет большинство высокочастотных транзисторов, с параметрами h31Э для одного не меньше 150, а для другого более 50.

Для позиций VD и VD2 подойдут любые высокочастотные кремневые диоды.

Резистор можно выбрать МЛТ 0,125 или аналогичный ему. Конденсатор С1 берется с номинальной емкостью 25330 пФ, поскольку он отвечает за точность измерений и ее значение стоит подбирать с отклонением не более 1%.

Такой конденсатор можно сделать объединив термостабильные конденсаторы разной емкости (например, 2 на 10000 пФ, 1 на 5100 пФ и 1 на 220 пФ). Для остальных позиций подойдут любые малогабаритные электролитические и керамические конденсаторы с допустимым разбросом в 1,5-2 раза.

Контактные провода к плате (позиция Х1) можно припаять или подключать при помощи пружинящих зажимов для «акустических» проводов. Разъем Х3 предназначен для подключения приставки к мультиметру (частотомеру).

Проводу к «бананам» и «крокодилам» лучше взять короче, что бы уменьшить влияние их собственной индуктивности на показания замеров. В месте припаивания проводов к плате, соединение стоит дополнительно зафиксировать каплей термоклея.

При необходимости регулирования диапазона измерений на плату можно добавить разъем для переключателя (например, на три диапазона).

Корпус приставки к мультиметру

Корпус можно сделать из уже готового короба подходящего размера или сделать короб самостоятельно. Материал можно выбрать любой, например, пластик или тонкий стеклотекстолит. Короб делается под размер платы, и в нем подготавливаются отверстия для ее крепления. Также делаются отверстия для подключения проводки. Все фиксируется небольшими шурупами.

Питание приставки осуществляется от сети при помощи блока питания с напряжением в 12 В.

Настройка измерителя индуктивности

Для того чтобы откалибровать приставку для измерения индуктивности понадобятся несколько индукционных катушек с известной индуктивность (например, 100 мкГн и 15 мкГн).

Катушки по очереди подключаются к приставке и, в зависимости от индуктивности, движком подстроечного резистора на экране мультиметра выставляется значение 100,0 для катушки на 100 мкГн и 15 для катушки на 15 мкГн с точностью 5%.

По такому же методу устройство настраивается и в других диапазонах. Важным фактором является то, что для точной калибровки приставки необходимы точные значение тестовых катушек индуктивности.

Альтернативным методом определения индуктивности является программа LIMP. Но этот способ требует некоторой подготовки и понимания работы программы.

Но как в первом, так и во втором случае точность подобных измерений индуктивности будет не очень высока. Для работы с высокоточным оборудованием данный измеритель индуктивности подходит плохо, а для домашних нужд или для радиолюбителей будет отличным помощником.

Проведение замеров индуктивности

После сборки приставку к мультиметру необходимо протестировать. Есть несколько способов, как проверить устройство:

  1. Определение индуктивности измерительной приставки. Для этого необходимо замкнуть два провода, предназначенных для подключения к индуктивной катушке. Например, при длине каждого провода и перемычки 3 см образуется один виток индукционной катушки. Этот виток обладает индуктивностью 0,1 – 0,2 мкГн. При определении индуктивности свыше 5 мкГн данная погрешность не учитывается в расчетах. В диапазоне 0,5 – 5 мкГн при измерении необходимо брать в расчет индуктивность устройства. Показания менее 0,5 мкГн являются примерными.
  2. Измерение неизвестной величины индуктивности. Зная частоту катушки, при помощи упрощенной формулы расчета индуктивности можно определить это значение.
  3. В случае, когда порог срабатывания кремниевых p-n переходов выше амплитуды измеряемой электрической цепи (от 70 до 80 мВ), можно измерить индуктивность катушек непосредственно в самой схеме (предварительно обесточив ее). Поскольку собственная емкость приставки имеет большое значение (25330 пФ), погрешность подобных измерений будет составлять не более 5% при условии, что емкость измеряемой цепи не превышает 1200 пФ.

При подключении приставки непосредственно к катушкам расположенным на плате применяется проводка длиной 30 сантиметров с зажимами для фиксации или щупами. Провода скручиваются с расчетом один виток на сантиметр длины. В таком случае образуется индуктивность приставки в диапазоне 0,5 – 0,6 мкГн, которую также необходимо учитывать при измерениях индуктивности.

Проверка катушек индуктивности |

Начинающим радиолюбителям не стоит полагаться на интуицию, и наедятся на добротность катушек индуктивности, а просто надо взять и проверить их работоспособность. Ничего особо сложного тут нет, и, не смотря на то, что увидеть магнитное поле своими глазами мы пока что не можем проверить работоспособность катушки индуктивности достаточно просто.  А как это сделать, вкратце и доступно, расскажет вам статья.

Процедура визуальной проверки катушки индуктивности:

Проверка исправности катушек индуктивности начинается с внешнего осмотра, в ходе которого убе­ждаются в исправности каркаса, экрана, выводов; в правильности и надежности соединений всех деталей катушки между собой; в отсут­ствии видимых обрывов проводов, замыканий, повреждения изоляции и покрытий. Особое внимание следует обращать на места обугливания изоляции, каркаса, почернение или оплавление заливки.

Процедура электрической проверки катушки индуктивности:

Электрическая проверка катушек индуктивности включает провер­ку на обрыв, обнаружение короткозамкнутых витков и определение состояния изоляции обмотки.

Проверка на обрыв выполняется пробником. Увеличение сопротив­ления означает обрыв или плохой контакт одной или нескольких жил литцендрата. Уменьшение сопротивления означает наличие межвиткового замыкания. При коротком замыкании выводов сопротивление рав­но нулю. Для более точного представления о неисправности катушки необходимо измерить индуктивность. В заключение рекомендуется про­верить работоспособность катушки в таком же заведомо исправном аппарате, для которого она предназначена.

P.S.: Я постарался наглядно показать и описать не хитрые советы. Надеюсь, что хоть что-то вам пригодятся. Но это далеко не всё что возможно выдумать, так что дерзайте, и штудируйте сайт https://bip-mip.com/ 

Проверка радиодеталей мультиметром

Серия статей известного автора множества радиолюбительских публикаций  Дригалкина В.В.  для начинающих радиолюбителей

Доброго дня уважаемые радиолюбители!
Приветствую вас на сайте “Радиолюбитель“

Проверка радиодеталей мультиметром

Проверка деталей аналоговым мультиметром.

Без измерительного прибора Вам не обойтись, т.к. придется проверять сопротивление резисторов, напряжения и тока в разных цепях конструкций. Измерительный прибор, в народе – омметр, авометр (ампер-вольт-омметр) , тестер или мультиметр (от английского multimeter – измерительный прибор, объединяющий в себе несколько функций) – должен иметь каждый. Сейчас большой популярностью пользуются цифровые приборы. Они многофункциональные и сравнительно не дорогие . Ранее в качестве измерительного прибора широко пользовались аналоговыми тестерами со стрелочным индикатором (см. Рис. 1).

Не все начинающие знают, что омметром можно проверять почти все радиоэлементы : резисторы, конденсаторы, катушки индуктивности, трансформаторы, диоды, тиристоры, транзисторы, некоторые микросхемы. В авометре омметр образован внутренним источником тока (сухим элементом или батареей), стрелочным прибором и набором резисторов, которые переключаются при изменении пределов измерения. Сопротивления резисторов подобраны таким образом, чтобы при коротком замыкании клемм омметра стрелка прибора отклонилась вправо до последнего деления шкалы. Это деление соответствует нулевому значению измеряемого сопротивления. Когда же клеммы омметра разомкнуты, стрелка прибора стоит напротив левого крайнего деления шкалы, которое обозначено значком бесконечно большого сопротивления. Если к клеммам омметра подключено какое-то сопротивление, стрелка показывает промежуточное значение между нулем и бесконечностью, и отсчет производится по оцифровке шкалы. В связи с тем, что шкалы омметров выполняются в логарифмическом масштабе, края шкалы получаются сжатыми. Поэтому наибольшая точность измерения соответствует положению стрелки в средней, растянутой части шкалы. Таким образом, если стрелка прибора оказывается у края шкалы, в сжатой ее части, для повышения точности отсчета следует переключить омметр на другой предел измерения.
Омметр производит измерение сопротивления, подключенного к его клеммам, путем измерения постоянного тока, протекающего в измерительной цепи. Поэтому к измеряемому сопротивлению прикладывается постоянное напряжение от встроенного в омметр источника. В связи с тем, что некоторые детали обладают разными сопротивлениями постоянному току в зависимости от полярности приложенного напряжения , для грамотного использования омметра необходимо знать, какая из клемм омметра соединена с плюсом источника тока, а какая – с минусом. В паспорте авометра эти сведения обычно не указаны, и их нужно определить самостоятельно . Это можно сделать либо по схеме авометра, либо экспериментально с помощью какого-либо дополнительного вольтметра или исправного диода любого типа. Щупы омметра подключают к вольтметру так, чтобы стрелка вольтметра отклонялась вправо от нуля. Тогда тот щуп, который подключен к плюсу вольтметра, будет также плюсовым, а второй – минусовым. При использовании в этих целях диода два раза измеряют его сопротивление; сначала произвольно подключая к диоду щупы, а второй раз – наоборот. За основу берется то измерение, при котором показания омметра получаются меньшими. При этом щуп, подключенный к аноду диода, будет плюсовым, а щуп, подключенный к катоду диода, – минусовым.
При проверке исправности того или иного радиоэлемента возможны две различные ситуации: либо проверке подлежит изолированный, отдельный элемент, либо элемент, впаянный в какое-то устройство. Нужно учесть, что, за редкими исключениями, проверка элемента, впаянного в схему, не получится полноценной, при такой проверке возможны грубые ошибки. Они связаны с тем, что параллельно контролируемому элементу в схеме могут оказаться подключены другие элементы, и омметр будет измерять не сопротивление проверяемого элемента, а сопротивление параллельного соединения его с другими элементами. Оценить возможность достоверной оценки исправности контролируемого элемента схемы можно путем изучения этой схемы, проверяя, какие другие элементы к нему подключены и как они могут повлиять на результат измерения. Если такую оценку произвести затруднительно или невозможно, следует отпаять от остальной схемы хотя бы один из двух выводов контролируемого элемента и только после этого производить его проверку. При этом также не следует забывать и о том, что тело человека также обладает некоторым сопротивлением, зависящим от влажности кожной поверхности и от других факторов. Поэтому при пользовании омметром во избежание появления ошибки измерения нельзя касаться пальцами обоих выводов проверяемого элемента.

Проверка резисторов
Проверка постоянных резисторов производится омметром путем измерения их сопротивления и сравнения с номинальным значением, которое указано на самом резисторе и на принципиальной схеме аппарата. При измерении сопротивления резистора полярность подключения к нему омметра не имеет значения. Необходимо помнить, что действительное сопротивление резистора может отличаться по сравнению с номинальным на величину допуска. Поэтому, например, если проверяется резистор с номинальным сопротивлением 100 кОм и допуском ±10%, действительное сопротивление такого резистора может лежать в пределах от 90 до 110 кОм. Кроме того, сам омметр обладает определенной погрешностью измерения (обычно порядка 10%) . Таким образом, при отклонении фактически измеренного сопротивления на 20% от номинального значения резистор следует считать исправным.

1. Вообще то, где какой щуп указано на корпусе любого авометра.
2. Если он не оборван, то исправен и всегда может пригодится.

При проверке переменных резисторов измеряется сопротивление между крайними выводами, которое должно соответствовать номинальному значению с учетом допуска и погрешности измерения, а также необходимо измерять сопротивление между каждым из крайних выводов и средним выводом. Эти сопротивления при вращении оси из одного крайнего положения в другое должны плавно, без скачков изменяться от нуля до номинального значения. При проверке переменного резистора, впаянного в схему, два из его трех выводов необходимо выпаивать. Если переменный резистор имеет дополнительные отводы, допустимо, чтобы только один вывод оставался припаянным к остальной части схемы.

Проверка конденсаторов
В принципе конденсаторы могут иметь следующие дефекты: обрыв, пробой и повышенная утечка. Пробой конденсатора характеризуется наличием между его выводами короткого замыкания, то есть нулевого сопротивления. Поэтому пробитый конденсатор любого типа легко обнаруживается омметром путем проверки сопротивления между его выводами. Конденсатор не пропускает постоянного тока, его сопротивление постоянному току, которое измеряется омметром, должно быть бесконечно велико. Однако это оказывается справедливо лишь для идеального конденсатора. В действительности между обкладками конденсатора всегда имеется какой-то диэлектрик, обладающий конечным значением сопротивления, которое называется сопротивлением утечки. Его-то и измеряют омметром. В зависимости от используемого в конденсаторе диэлектрика устанавливаются критерии исправности по величине сопротивления утечки. Слюдяные, керамические, пленочные, бумажные, стеклянные и воздушные конденсаторы имеют очень большое сопротивление утечки, и при их проверке омметр должен показывать бесконечно большое сопротивление . Однако имеется большая группа конденсаторов, сопротивление утечки которых сравнительно невелико. К ней относятся все полярные конденсаторы, которые рассчитаны на определенную полярность приложенного к ним напряжения, и эта полярность указывается на их корпусах. При измерении сопротивления утечки этой группы конденсаторов необходимо соблюдать полярность подключения омметра (плюсовой вывод омметра должен присоединяться к плюсовому выводу конденсатора), в противном случае результат измерения будет неверным. К этой группе конденсаторов в первую очередь относятся все электролитические конденсаторы и оксидно-полупроводниковые. Сопротивление утечки исправных конденсаторов этой группы должно быть не менее 100 кОм, остальных не менее 1 МОм. При проверке конденсаторов большой емкости нужно учесть, что при подключении омметра к конденсатору, если он не был заряжен, начинается его зарядка, и стрелка омметра делает бросок в сторону нулевого значения шкалы. По мере зарядки стрелка движется в сторону увеличения сопротивлений. Чем больше емкость конденсатора, тем медленнее движется стрелка. Отсчет сопротивления утечки следует производить только после того, как она практически остановится. При проверке конденсаторов емкостью порядка 1000 мкФ на это может потребоваться несколько минут. Внутренний обрыв или частичная потеря емкости конденсатором не могут быть обнаружены омметром, для этого необходим прибор, позволяющий измерять емкость конденсатора. Однако обрыв конденсатора емкостью более 0,2 мкФ может быть обнаружен омметром по отсутствию начального скачка стрелки во время зарядки . Следует заметить, что повторная проверка конденсатора на обрыв по отсутствию начального скачка стрелки может производиться только после снятия заряда, для чего выводы конденсатора нужно замкнуть на короткое время.
Конденсаторы переменной емкости проверяются омметром на отсутствие замыканий. Для этого омметр подключается к каждой секции агрегата и медленно поворачивается ось из одного крайнего положения в другое. Омметр должен показывать бесконечно большое сопротивление в любом положении оси.

Проверка катушек индуктивности
При проверке катушек индуктивности омметром контролируется только отсутствие в них обрыва. Сопротивление однослойных катушек должно быть равно нулю, сопротивление многослойных катушек близко к нулю. Иногда в паспортных данных аппарата указывается сопротивление многослойных катушек постоянному току и на его величину можно ориентироваться при их проверке. При обрыве катушки омметр показывает бесконечно большое сопротивление. Если катушка имеет отвод, нужно проверить обе секции катушки, подключая омметр сначала к одному из крайних выводов катушки и к ее отводу, а затем – ко второму крайнему выводу и отводу.

Проверка низкочастотных дросселей и трансформаторов
Как правило, в паспортных данных аппаратуры или в инструкциях по ее ремонту указываются значения сопротивлений обмоток постоянному току, которые можно использовать при проверке трансформаторов и дросселей. Обрыв обмотки фиксируется по бесконечно большому сопротивлению между ее выводами. Если же сопротивление значительно меньше номинального, это может указывать на наличие короткозамкнутых витков. Однако чаще всего короткозамкнутые витки возникают в небольшом количестве, когда происходит замыкание между соседними витками, и сопротивление обмотки изменяется незначительно. Для проверки отсутствия короткозамкнутых витков можно поступить следующим образом. У трансформатора выбирается обмотка с наибольшим количеством витков, к одному из выводов которой подключается омметр с помощью зажима “крокодил”. Ко второму выводу этой обмотки прикасаются слегка влажным пальцем левой руки. Держа металлический наконечник второго щупа омметра правой рукой, подключают его ко второму выводу обмотки, не отрывая от него пальца левой руки. Стрелка омметра отклоняется от своего начального положения, показывая сопротивление обмотки. Когда стрелка остановится, отводят правую руку с щупом от второго вывода обмотки. В момент разрыва цепи при исправном трансформаторе чувствуется легкий удар электрическим током, возникающей при разрыве цепи. В связи с тем, что энергия разряда мизерна, никакой опасности такая проверка не представляет. Омметр при этом нужно использовать на самом меньшем пределе измерения, который соответствует наибольшему току измерения.

Проверка диодов
Полупроводниковые диоды характеризуются резко нелинейной вольтамперной характеристикой. Поэтому их прямой и обратный токи при одинаковом приложенном напряжений различны. На этом основана проверка диодов омметром. Прямое сопротивление измеряется при подключении плюсового вывода омметра к аноду, а минусового вывода – к катоду диода. У пробитого диода прямое и обратное сопротивления равны нулю. Если диод оборван, оба сопротивления бесконечно велики.
Указать заранее значения прямого и обратного сопротивлений или их соотношение нельзя, так как они зависят от приложенного напряжения, а это напряжение у разных авометров и на разных пределах измерения различно. Тем не менее, у исправного диода обратное сопротивление должно быть больше прямого. Отношение обратного сопротивления к прямому у диодов, рассчитанных на низкие обратные напряжения, велико (может быть более 100). У диодов, рассчитанных на большие обратные напряжения, это отношение оказывается незначительным, так как обратное напряжение, приложенное к диоду омметром, мало по сравнению с тем обратным напряжением, на которое диод рассчитан. Методика проверки стабилитронов и варикапов не отличается от изложенной. Как известно, если к диоду приложено напряжение, равное нулю, ток диода также будет равен нулю. Для получения прямого тока необходимо приложить к диоду какое-то пороговое небольшое напряжение . Любой омметр обеспечивает приложение такого напряжения. Однако если соединено последовательно и согласно (в одну сторону) несколько диодов, пороговое напряжение, необходимое для отпирания всех диодов, увеличивается и может оказаться больше, чем напряжение на клеммах омметра. По этой причине измерить прямые напряжения диодных столбов или селеновых столбиков при помощи омметра оказывается невозможно.

Проверка тиристоров.
Неуправляемые тиристоры (динисторы) могут быть проверены таким же образом, как диоды, если напряжение отпирания динистора меньше напряжения на клеммах омметра. Если же оно больше, динистор при подключении омметра не отпирается и омметр в обоих направлениях показывает очень большое сопротивление. Тем не менее, если динистор пробит, омметр это регистрирует нулевыми показаниями прямого и обратного сопротивлений. Для проверки управляемых тиристоров (тринисторов) плюсовой вывод омметра подключается к аноду тринистора, а минусовой вывод – к катоду. Омметр при этом должен показывать очень большое сопротивление, почти равное бесконечному. Затем замыкают выводы анода и управляющего электрода тринистора, что должно приводить к резкому уменьшению сопротивления, так как тринистор отпирается. Если после этого отключить управляющий электрод от анода, не разрывая цепи, соединяющей анод тринистора с омметром, для многих типов тринисторов омметр будет продолжать показывать низкое сопротивление открытого тринистора. Это происходит в тех случаях, когда анодный ток тринистора оказывается больше так называемого тока удержания. Тринистор остается открытым обязательно, если анодный ток больше гарантированного тока удержания. Это требование является достаточным, но не необходимым. Отдельные экземпляры тринисторов одного и того же типа могут иметь значения тока удержания значительно меньше гарантированного. В этом случае тринистор при отключении управляющего электрода от анода остается открытым. Но если при этом тринистор запирается и омметр показывает большое сопротивление, нельзя считать , что тринистор неисправен.

Проверка транзисторов.
Эквивалентная схема биполярного транзистора представляет собой два диода, включенных навстречу один другому. Для p-n-р транзисторов эти эквивалентные диоды соединены катодами, а для n-p-п транзисторов – анодами. Таким образом, проверка транзистора омметром сводится к проверке обоих р-n переходов транзистора: коллектор-база и эмиттер-база. Для проверки прямого сопротивления переходов p-n-р транзистора минусовой вывод омметра подключается к базе, а плюсовой вывод омметра – поочередно к коллектору и эмиттеру. Для проверки обратного сопротивления переходов к базе подключается плюсовой вывод омметра. При проверке n-p-п транзисторов подключение производится наоборот: прямое сопротивление измеряется при соединении с базой плюсового вывода омметра, а обратное сопротивление – при соединении с базой минусового вывода. При пробое перехода его прямое и обратное сопротивления оказываются равными нулю. При обрыве перехода его прямое сопротивление бесконечно велико. У исправных маломощных транзисторов обратные сопротивления переходов во много раз больше их прямых сопротивлений. У мощных транзисторов это отношение не столь велико, тем не менее, омметр позволяет их различить. Из эквивалентной схемы биполярного транзистора вытекает, что с помощью омметра можно определить тип проводимости транзистора и назначение его выводов (цоколевку). Сначала определяют тип проводимости и находят вывод базы транзистора. Для этого один вывод омметра подключают к одному выводу транзистора, а другим выводом омметра
касаются поочередно двух других выводов транзистора. Затем первый вывод омметра подключают к другому выводу транзистора, а другим выводом омметра касаются свободных выводов транзистора. Затем первый вывод омметра подключают к третьему выводу транзистора, а другим выводом касаются остальных. После этого меняют местами выводы омметра и повторяют указанные измерения. Нужно найти такое подключение омметра, при котором подключение второго вывода омметра к каждому из двух выводов транзистора, не подключенных к первому выводу омметра, соответствует небольшому сопротивлению (оба перехода открыты). Тогда вывод транзистора, к которому подключен первый вывод омметра, является выводом базы. Если первый вывод омметра является плюсовым, значит, транзистор относится к n-p-п проводимости, если – минусовым, значит, – p-n-р проводимости. Теперь нужно определить, какой из двух оставшихся выводов транзистора является выводом коллектора. Для этого омметр подключается к этим двум выводам, база соединяется с плюсовым выводом омметра при n-p-п транзисторе или с минусовым выводом омметра при p-n-р транзисторе и замечается сопротивление, которое измеряется омметром. Затем выводы омметра меняются местами (база остается подключенной к тому же выводу омметра, что и ранее) и вновь замечается сопротивление по омметру. В том случае, когда сопротивление оказывается меньше, база была соединена с коллектором транзистора.


Проверка деталей цифровым мультиметром.

Главным отличием цифрового прибора от аналогового является то, что результаты измерения отображаются на жидкокристаллическом дисплее. К тому же цифровые мультиметры обладают более высокой точностью и отличаются простотой использования, т.к. не приходится разбираться во всех тонкостях градирования измерительной шкалы, как со стрелочными измерительными приборами.
Цифровой тестер (см. Рис. 1), как и аналоговый, имеет два щупа – черный и красный, и от двух до четырех гнезд. Черный вывод является общим (масса). Гнездо для общего вывода помечается как СОМ или просто “-” (минус), а сам вывод на конце часто имеет так называемый пкрокодильчикп, для того, чтобы при измерении можно было зацепить его за массу электронной схемы. Красный вывод вставляется в гнездо, помеченное символами напряжения – “V” или “+” (плюс).
Если Ваш прибор содержит более двух гнезд, например, как на Рис. 1, красный щуп вставляется в гнездо “VQmA”. Эта надпись говорит о том, что Вы можете измерять напряжение, сопротивление и небольшой ток – в миллиамперах. Гнездо, расположение немного выше, с маркировкой 10ADC говорит о том, что Вы можете измерять большой постоянный ток, но не выше 10А.
Переключатель мультиметра позволяет выбрать один из нескольких пределов для измерений.
Чтобы измерить постоянное напряжение выбираем режим DCV1, если переменное ACV, подключаем щупы и смотрим результат. При этом на шкале переключателя вы должны выбрать большее напряжение, чем измеряемое. Например, Вам необходимо измерить напряжение в электрической розетки. В вашем приборе шкала ACV состоит из двух параметров: 200 и 750 (это вольты). Значит, нужно установить стрелочку переключателя на параметр 750 и можно смело измерять напряжение.

1 DC – постоянный ток (Direct Current), AC – переменный ток (Alternating Current).

Ток измеряется последовательным включением мультиметра в электрическую цепь. Для примера можно взять обычную лампочку от карманного фонаря и подключить ее последовательно с прибором к адаптеру 5В. Корда по цепи пойдет ток и лампочка загорится, прибор покажет значение тока.
Сопротивление на приборе обозначается значком, немного похожим на наушники. Для измерения сопротивления резистор должен быть выпаян из электрической цепи хотя бы одним концом, чтобы быть уверенным в том, что никакие другие компоненты схемы не повлияют на результат. Подключаем щупы к двум концам резистора и сравниваем показания омметра со значением, которое указано на самом резисторе . Стоит учитывать и величину допуска (возможных отклонений от нормы), т.е. если по маркировке резистор на 200кОм и допуском ± 15%, его действительное сопротивление может быть в пределах 170-230кОм.
Проверяя переменные резисторы, измеряем сначала сопротивление между крайними выводами (должно соответствовать номиналу резистора), а затем подключив щуп мультиметра к среднему выводу, поочередно с каждым из крайних. При вращении оси переменного резистора, сопротивление должно изменяться плавно, от нуля до его максимального значения, в этом случае удобней использовать аналоговый мультиметр наблюдая за движением стрелки, чем за быстро меняющимися цифрами на жидкокристаллическом экране.
Для проверки диодов типовые приборы содержат специальный режим. В более дешевых тестерах можно воспользоваться режимом прозвонки. Тут все просто: в одну сторону диод звониться, а в другую – нет. Проверить диод можно и в режиме сопротивления. Для этого устанавливаем переключатель на 1к0м. При подключении красного вывода мультиметра к аноду диода, а черного к катоду, Вы увидите его прямое сопротивление, при обратном подключении сопротивление будет настолько высоко, что на данном пределе измерения вы не увидите ничего. Если диод пробит, его сопротивление в любую сторону будет равно нулю, если оборван, то в любую сторону сопротивление будет бесконечно большим.
Обычный биполярный транзистор представляет собой два диода, включенных навстречу один другому. Зная, как проверяются диоды, несложно проверить и такой транзистор. Стоит не забывать, что транзисторы бывают разных типов: у р-п-р условные диоды соединены катодами, у п-р-п – анодами. Для измерения прямого сопротивления транзисторных p-n-р переходов, минус мультиметра подключается к базе, а плюс поочередно к коллектору и эмиттеру. При измерении обратного опротивления меняем полярность. Для проверки транзисторов п-р-п типа делаем все наоборот. Если еще короче, то переходы база-коллектор и база-эмиттер в одну сторону должны прозваниваться, в другую – нет.
Для измерения у транзистора коэффициента усиления по току используем режим hEF, если он есть на Вашем приборе. Разъем, в который вставляют контакты транзистора для измерения hEF, не очень качественный практически во всех моделях тестеров и довольно глубоко посажен. То есть ножки транзистора до них иногда не достают. Как выход – вставьте одножильные провода и выводами транзистора касайтесь именно их.
На цифровых мультиметрах пределов измерений обычно больше, к тому же часто добавлены дополнительные функции, например, частотомер, измеритель емкости конденсаторов и даже датчик температуры. Но такими возможностями обладают более дорогие модели тестеров. Кроме того, в дорогих моделях отсутствует необходимость переключать шкалу измерения. Просто устанавливаете переключать на измерение емкости, сопротивления и т.д., и прибор показывает результат.

Для того, чтобы мультиметр не вышел из строя при измерениях напряжения или тока, особенно если их значение неизвестно, переключатель желательно установить на максимально возможный предел измерений, и только если показание при этом слишком мало, для получения более точного результата, переключайте мультиметр на предел ниже текущего.



Катушки индуктивности — проверка исправности и ремонт — Индуктивности — РАДИОДЕТАЛИ — Каталог статей

Катушки индуктивности –
представляют собой радиоэлемент, имеющий спиральную обмотку и способный
концентрировать в своём объёме или на плоскости магнитное поле.

Применяются в качестве элементов
колебательных контуров, дросселей, а так же для связи цепей между собой. Дроссель – катушка индуктивности,
служащая для разделения постоянного и переменного токов или токов разных
частот. Выполняет роль реактивного
сопротивления, величина которого зависит от величины частоты.

Индуктивное сопротивление XL (Ом) катушки определяется по формуле

XL = 2nfL,

где f – частота, Гц; L – индуктивность, Гц.

Для постоянного тока (f = 0) сопротивление любой
катушки очень мало.

Условное графическое обозначение
(УГО) катушек индуктивности на схемах:

L1 — L3 – катушки без сердечника

L4 — L7 – катушки с сердечником, дроссель с магнитопроводом

 

Основные параметры катушек
индуктивности

1. Номинальная
индуктивность катушки

Единицей измерения является Генри
(Гн). Индуктивность катушек указывается в милигенри (1мГн = 10-3
Гн), микрогенри (1мкГн = 10-6 Гн). 1мГн = 1000 нкГн

Номинальная индуктивность катушки
зависит в основном от её конструктивных особенностей (размеров, формы, числа
витков, расстояния между ними (шаг намотки) и др.) чем больше размеры катушки и
чем больше она содержит витков, тем больше её индуктивность. На индуктивность катушки
в достаточной степени влияет введение в неё сердечника.

Введение сердечника магнитного
материала увеличивает индуктивность катушки, из не магнитного – уменьшает.

2. Допустимое
отклонение

Зависти от конструкции катушки. У
серийно выпускаемых катушек допустимое отклонение обычно 1-2%

3. Температурный
коэффициент индуктивности (ТКИ)

Характеризует относительное
изменение значения индуктивности при изменении температуры. Это вызывает
изменения геометрических значений катушки. Вследствие чего изменяется её
индуктивность. С ростом температуры индуктивность увеличивается при снижении её
– уменьшается.

     Для уменьшения
ТКИ катушек каркасы их выполняют из керамики. В кабельных контурах для
улучшения стабильности ТКИ к катушке подключают термокомпенсирующий конденсатор
с отрицательным ТКЕ.

4.  Добротность катушки – характеризует
бесполезное рассеивание энергии из – за потерь в обмотке, каркасе, сердечнике и
экране.

     Добротность
катушки повышается при введении в неё сердечника из магнитного материала. В РТА
используется РЧ катушки добротностью от 40 до 200.

5.  Собственная ёмкость катушки складывается
из емкости между ветками и слоями обмотки, а так же емкости отдельных витков по
отношению к шасси или экрану.

      Поскольку эта
емкость является паразитной, стремятся катушки и дроссели с минимальной
собственной емкостью.

Неисправности катушек индуктивности

Катушки индуктивности могут иметь
следующие неисправности:

  • Обрыв
    провода в местах пайки к контактным лепесткам;
  • Внутренний
    обрыв обмоточного провода;
  • Короткое
    замыкание витков;
  • Изменение
    номинального значения индуктивности.

 

   Исправность
катушек проверяют омметром, подключенным параллельно выводным. Сопротивление
катушки должно быть мало (близко к нулю).

   Проверить наличие
короткого замыкания витков затруднительно, так как даже при нескольких
короткозамкнутых витках в катушке ее сопротивление, как правило, практически не
изменяются.

   При значительных
механических повреждениях катушку чаще всего перематывают или устанавливают
новую. При перемотке катушек нельзя допускать отклонения от числа витков или
диаметра провода. Новую катушку изготавливают по образцу с соблюдением всех параметров:
диаметра провода, количества витков, шага намотки (расстояния между соседними
витками)

    Изменение номинального значения
индуктивности может быть вызвано смещением подстроенного сердечника. Прилипший
сердечник удается извлечь из каркаса после заливки в него несколько капель
спирта или ацетона. Прилипшие диамагнитные сердечники свободно вывинчиваются,
после незначительного нагрева их электропаяльником. 

Хотите знать больше? Пожалуйста

Прибор для проверки катушек индуктивности

Всем доброго времени суток. Предлагаю вашему вниманию свой вариант изготовления довольно распространённой (судя по ее повторению и описаниям в интернете) и простой конструкции устройства для проверки обмоток трансформаторов, дросселей, электродвигателей, реле и других катушек индуктивностью от 200 мкГн до 2 Гн. Схема и подробное описание принципа ее работы были опубликованы в журнале «Радио» №7 за 1990г., стр. 68-69, автор И. Паздников.

Идея была собрать данное устройство из имевшихся после разборки разного электронного хлама деталей. Сделать приборчик относительно компактным и удобным в эксплуатации. Для возможности быстрого повторения конструкции, в качестве корпуса использовать дешёвое стандартное изделие из магазина.

Данным приборчиком можно определять целостность или разрыв обмоток, межвитковые замыкания катушек, исправность p-n переходов кремниевых полупроводников.

В данной конструкции использовано:
— Коробка соединительная 75х75х30мм «HEGEL».
— Монтажный провод.
— Фольгированный стеклотекстолит 68х68мм.
— Винты М3.
— Стойки для плат 10мм.
— Радиодетали согласно схеме.

Из инструментов использовалось:
— Дрель.
— Паяльник.
— Термо-клеевой пистолет.
— Отвертка, кусачки и т.д.

В схеме И. Паздникова некоторые детали были заменены на имевшиеся у меня в наличии. Добавлен резистор плавной подстройки. С целью экономии батареи лампочка заменена на светодиод. Для удобства проверки и настройки выведены дополнительные контакты на питание. Которые при необходимости можно вывести на разъем, для подключения сетевого адаптера (если отсутствует батарейка).


Принципиальная схема устройства, согласно использованных деталей.

Печатная плата изготовлена под корпус соединительной коробки, из стеклотекстолита 68х68мм. Сверловка под ножки транзисторов сделана симметричной, что позволяет беспроблемно устанавливать транзисторы как в корпусах КТ-13 так и ТО-92 (КТ-26). Светодиод установлен на пластиковой опоре. Разводка платы представлена со стороны радиодеталей.

На нижней части корпуса соединительной коробки установлены монтажные стойки. В верхней части вырезаны соответствующие отверстия (по трафарету печатной платы). Заводские крепежные отверстия залиты термоклеем.

Для защиты от пыли и мусора на бегунок переключателя наклеена «юбка», вырезанная из тонкого пластика.

Для удобства сборки конструкции переменные резисторы подключаются с помощью разъема. Для возможности простой замены, провода щупов подсоединяются через клемник.

Шкалы регулировки рассчитаны на импортные переменные резисторы с углом поворота вала 300 градусов.

Для щупов использован разноцветный монтажный провод, длинной около 30см и зажимы типа «крокодил».

Получившийся приборчик испытывался на имевшихся в наличии трансформаторах, диодах, транзисторах, дросселях, статорах и якоре электродвигателя. Для простоты использованной схемы он показал довольно неплохой результат.


Описание результатов проведенных испытаний данной «игрушки».

«Крокодилы» разомкнуты – светодиод не горит, вне зависимости от положения регуляторов.
«Крокодилы» замкнуты – светодиод постоянно горит, вне зависимости от положения регуляторов.

При подключении к обмотке статора подбирается положение регуляторов самое близкое к переходу от постоянного горения светодиода к началу его мигания (начало запуска генерации). При замыкании дополнительного витка на статоре, светодиод постоянно горит, показывая межвитковое замыкание (срыв генерации). При сильном уменьшении сопротивления R1 мигание светодиода может возобновляться, но с меньшей частотой.

Поэтому удобно сравнивать состояние обмоток между собой или по образцу при одинаковом положении регуляторов.

При проверке якоря щупы подключались непосредственно к щеткам коллектора. Далее выставляется режим начала мигания светодиода. Якорь проворачивается на полный оборот. Если мигание светодиода стабильно во всех положениях коллектора — то якорь, скорее всего живой. При замыкании даже соседних ламелей коллектора между собой светодиод начинает постоянно гореть, показывая замыкание. Реально убитых якорей у меня под рукой не было. Так, что результат, скорее всего весьма вероятный. Что связано с особенностями обмотки якоря.

При проверке трансформаторов прибор подключался к наиболее высоковольтной обмотке. Далее действия как при проверке статоров. При замыкании какой либо обмотки прибор показывает КЗ — светодиод горит постоянно. Аналогично проверялись и дросселя.

При проверке p-n переходов (+ к аноду – к катоду) индикатор показывает следующее:
— Светодиод горит вне зависимости от положения регуляторов: p-n переход пробит.
— Светодиод не горит вне зависимости от положения регуляторов: p-n переход перегорел.
— Светодиод мигает — p-n переход рабочий.

Если возникнет необходимость проверки часто попадающихся изделий, то благодаря удачно получившимся шкалам регуляторов можно будет составить удобную шпаргалку в виде таблицы. Отпадает необходимость иметь под рукой сравнительный образец. В общем, для использования в домашних условиях данный приборчик может оказаться достаточно полезным. Дальше время покажет.

Если что-то в описании упущено, надеюсь, эти нюансы можно рассмотреть на представленных фото. Заранее прошу прощения за возможные ошибки и опечатки.

Если нужна дополнительная информация, пишите на почту, постараюсь обязательно ответить. Отзывы, идеи, предложения по улучшению конструкции и комментарии очень приветствуются.

Декабрь 2019г.
Станислав Шурупкин.
Email: [email protected]

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Индуктор

RF | Особенности и как выбрать индукторы | РЧ индукторы

Murata RF индукторы

Как следует из названия, индукторы для высокочастотных цепей используются в высокочастотном диапазоне от 10 МГц до нескольких ГГц. Поскольку эти продукты требуют высокого значения Q (фактора качества), большинство из них имеют структуру немагнитного сердечника и в основном используются в высокочастотных цепях оборудования мобильной связи, такого как мобильные телефоны, беспроводные ЛВС и другие.

Таблица 1 Примеры применения индукторов в каждом блоке схемы мобильного телефона

Приложение Расположение Назначение
Соответствие Линии между компонентами в антенных блоках и блоках ПЧ и т. Д. Устранение рассогласования импеданса и минимизация отражений и потерь
Резонанс Синтезаторы и колебательные схемы Обеспечение необходимых частот
Дроссель Линии питания функциональных компонентов, используемых в блоках ВЧ и ПЧ Резка переменного тока, например высокочастотных компонентов

Мы предлагаем разнообразную линейку индукторов для высокочастотных цепей с тремя различными структурами: проволочные, многослойные и пленочные.
Характеристики и подходящие применения каждой структуры кратко описаны ниже.

Murata’s Technology

1. 3 Технологии производства

2. Технология индуктора с высокой добротностью

Реализация размера 0804

Миниатюризация была реализована за счет интеграции высокоточной технологии намотки проволоки и формования сердечника небольшого размера технология с общими технологиями высокочастотной проволочной намотки.

3.Технология индукторов пленочного типа

High Precision Multilayer

Достигнута высокая добротность с большим внутренним диаметром и более легкое прохождение магнитного потока за счет высокой многослойной точности!

Тонкий монтаж Поперечное сечение электрода
Добился мелкой разводки с малым шагом!
Выполнена разводка с высокой линейностью и размерной точностью!
Низкие потери на высоких частотах за счет прямоугольных электродов и электродов большого формата!

Различия в характеристиках по каждой конструкции

1.Особенности структуры проволочной намотки

Структура проволочной намотки формируется путем намотки медной проволоки в форме спирали вокруг сердечника из оксида алюминия. Катушка может быть сформирована из более толстой проволоки, чем многослойные и пленочные конструкции, что обеспечивает следующие характеристики:

  • Возможно низкое сопротивление постоянному току
  • Чрезвычайно высокое значение Q (коэффициент качества)
  • Поддерживаются большие токи

Эти особенности делают структуру с проволочной обмоткой подходящей для согласования в схемах антенн и PA, требующих чрезвычайно высокой добротности, а также в резонансных приложениях в схемах IF.

2. Особенности пленочной структуры

Чип-индукторы с пленочной структурой имеют многослойную структуру, но катушка сформирована с высокой точностью на керамических материалах с использованием оригинальной технологии микропроцессора Murata.
Можно формировать очень точные сердечники, обеспечивающие следующие характеристики:

  • Высокие электрические характеристики могут быть реализованы даже для компактных микросхем, таких как 0603 размер
  • Подготовлен точный ряд с близкими ступенями индуктивности и жестким допуском индуктивности.
  • Высокий добротность и высокий SRF

Это делает индукторы микросхемы с пленочной структурой подходящими для согласования радиочастотных цепей и резонансных приложений, которые требуют узких допусков и высокой добротности для поддержки тенденции к меньшему и более легкому оборудованию мобильной связи.

3. Особенности многослойной структуры

Многослойная структура образована наслоением керамических материалов и проводника катушки для создания интегрированного индуктора многослойного типа.Это обеспечивает меньший размер и меньшую стоимость по сравнению с проволочной структурой.
Хотя коэффициент добротности ниже, чем у структуры с проволочной обмоткой, многослойная структура обеспечивает хороший общий баланс между допуском значения L, номинальным током, размером, ценой и другими характеристиками, что позволяет использовать его в широком диапазоне приложений.
Многослойная структура подходит для различных приложений, таких как согласование радиочастотных цепей, дросселирование и резонанс для оборудования мобильной связи.

4.Различия в характеристиках на основе конструкций

Q Factor

Частотные характеристики Q показаны на графике структурой (проволочная намотка, многослойная) высокочастотной катушки Murata размером 1005. Как показано на Рисунке 1, особенностью проволочного типа является очень высокая добротность по сравнению с многослойным типом.
Особенностью пленочного типа является также более высокий коэффициент добротности, чем у многослойного метода, применяемого другими компаниями в той же отрасли.Murata предлагает тип пленки маленького размера 0603 и размера 0402. (Фигура 2)

Рисунок 1: Сравнение Q-характеристик между многослойной серией LQG15 и серией LQW15 с проволочной обмоткой (обе 2,7 нГн) Рисунок 2: Сравнение Q-характеристик между 0603 Size, LQP03TN и многослойными изделиями других компаний (обе 10 нГн)


Шаг и допуск индуктивности

Допуски между многослойной структурой Murata и пленочной структурой высокочастотных катушек и линейкой значений L показаны в следующей таблице.По сравнению с многослойным типом, точность позиционирования пленки более точна при формировании катушки. Таким образом, значение L меньше варьируется, что позволяет уменьшить допуск и более жесткие шаги.

5. Заключение

Проволока намотанного типа Тип пленки Многослойный тип
Структура
Характеристики Исключительно хорошие Q-характеристики
Low Rdc
Сверхминиатюрный размер
Высокое значение добротности и малый размер
Минимальный допуск по индуктивности, уровни индуктивности с мелкими градациями
Модельный ряд с широким диапазоном значений индуктивности
Области применения и применения В основном РЧ согласующие схемы, требующие характеристик добротности
дроссельных цепей, поддерживающих высокие уровни тока
Согласующие схемы антенн
Цепи согласования усилителей мощности
Цепи согласования ВЧ, требующие небольших размеров, минимальных допусков по индуктивности и высокой добротности
Цепи согласования блоков ВЧ
Дроссельные цепи

Эффективное использование индукторов

Высокочастотные катушки в основном используются в сотовых телефонах, беспроводных локальных сетях и других высокочастотных цепях.Некоторые типичные примеры их использования и применения описаны ниже.

1. Проволочная обмотка

Проволочные индукторы серии LQW обладают высоким значением добротности. Катушки индуктивности с высокими значениями добротности используются в схемах согласования радиочастотных блоков, поскольку их высокие значения добротности обеспечивают им превосходные характеристики затухания в полосе пропускания фильтров. Они также часто используются в приложениях согласования антенн для поддержания чувствительности приема и передачи антенн.Кроме того, поскольку они имеют низкие характеристики Rdc, они также используются в цепях дросселей, в которых протекают высокие уровни тока.

2. Пленочный тип

Пленочные индукторы серии LQP обладают другим набором функций, поскольку микрообработка рисунков катушек возможна за счет формирования электродов с использованием техники фотолитографии. Катушки индуктивности могут иметь меньшие размеры и высокую добротность, в то же время серия предлагает линейку катушек индуктивности со значениями индуктивности, которые отклоняются с минимальным отклонением и имеют точную градацию.Модельный ряд состоит из широкого диапазона катушек индуктивности размера 0603, который становится основным, и размера 0402, который является самым маленьким в отрасли, и оба размера поддерживают тенденцию к уменьшению размеров. Эти катушки индуктивности используются в согласующих и резонансных цепях радиочастотных устройств, для которых требуются миниатюрные размеры, минимальные допуски по индуктивности и точные уровни индуктивности. Они также используются в цепях дросселей, требующих миниатюрных размеров и низкого Rdc.

3.Многослойный тип

Многослойные индукторы имеют самое низкое значение добротности из трех структур. Они имеют хороший общий баланс с точки зрения линейки значений индуктивности, размера и стоимости и используются в согласующих и резонансных цепях ВЧ-блоков и во всех видах дроссельных цепей.

Щелкните здесь, чтобы увидеть составы участников.

.Индуктор

RF | Особенности и как выбрать индукторы | РЧ индукторы

Murata RF индукторы

Как следует из названия, индукторы для высокочастотных цепей используются в высокочастотном диапазоне от 10 МГц до нескольких ГГц. Поскольку эти продукты требуют высокого значения Q (фактора качества), большинство из них имеют структуру немагнитного сердечника и в основном используются в высокочастотных цепях оборудования мобильной связи, такого как мобильные телефоны, беспроводные ЛВС и другие.

Таблица 1 Примеры применения индукторов в каждом блоке схемы мобильного телефона

Приложение Расположение Назначение
Соответствие Линии между компонентами в антенных блоках и блоках ПЧ и т. Д. Устранение рассогласования импеданса и минимизация отражений и потерь
Резонанс Синтезаторы и колебательные схемы Обеспечение необходимых частот
Дроссель Линии питания функциональных компонентов, используемых в блоках ВЧ и ПЧ Резка переменного тока, например высокочастотных компонентов

Мы предлагаем разнообразную линейку индукторов для высокочастотных цепей с тремя различными структурами: проволочные, многослойные и пленочные.
Характеристики и подходящие применения каждой структуры кратко описаны ниже.

Murata’s Technology

1. 3 Технологии производства

2. Технология индуктора с высокой добротностью

Реализация размера 0804

Миниатюризация была реализована за счет интеграции высокоточной технологии намотки проволоки и формования сердечника небольшого размера технология с общими технологиями высокочастотной проволочной намотки.

3.Технология индукторов пленочного типа

High Precision Multilayer

Достигнута высокая добротность с большим внутренним диаметром и более легкое прохождение магнитного потока за счет высокой многослойной точности!

Тонкий монтаж Поперечное сечение электрода
Добился мелкой разводки с малым шагом!
Выполнена разводка с высокой линейностью и размерной точностью!
Низкие потери на высоких частотах за счет прямоугольных электродов и электродов большого формата!

Различия в характеристиках по каждой конструкции

1.Особенности структуры проволочной намотки

Структура проволочной намотки формируется путем намотки медной проволоки в форме спирали вокруг сердечника из оксида алюминия. Катушка может быть сформирована из более толстой проволоки, чем многослойные и пленочные конструкции, что обеспечивает следующие характеристики:

  • Возможно низкое сопротивление постоянному току
  • Чрезвычайно высокое значение Q (коэффициент качества)
  • Поддерживаются большие токи

Эти особенности делают структуру с проволочной обмоткой подходящей для согласования в схемах антенн и PA, требующих чрезвычайно высокой добротности, а также в резонансных приложениях в схемах IF.

2. Особенности пленочной структуры

Чип-индукторы с пленочной структурой имеют многослойную структуру, но катушка сформирована с высокой точностью на керамических материалах с использованием оригинальной технологии микропроцессора Murata.
Можно формировать очень точные сердечники, обеспечивающие следующие характеристики:

  • Высокие электрические характеристики могут быть реализованы даже для компактных микросхем, таких как 0603 размер
  • Подготовлен точный ряд с близкими ступенями индуктивности и жестким допуском индуктивности.
  • Высокий добротность и высокий SRF

Это делает индукторы микросхемы с пленочной структурой подходящими для согласования радиочастотных цепей и резонансных приложений, которые требуют узких допусков и высокой добротности для поддержки тенденции к меньшему и более легкому оборудованию мобильной связи.

3. Особенности многослойной структуры

Многослойная структура образована наслоением керамических материалов и проводника катушки для создания интегрированного индуктора многослойного типа.Это обеспечивает меньший размер и меньшую стоимость по сравнению с проволочной структурой.
Хотя коэффициент добротности ниже, чем у структуры с проволочной обмоткой, многослойная структура обеспечивает хороший общий баланс между допуском значения L, номинальным током, размером, ценой и другими характеристиками, что позволяет использовать его в широком диапазоне приложений.
Многослойная структура подходит для различных приложений, таких как согласование радиочастотных цепей, дросселирование и резонанс для оборудования мобильной связи.

4.Различия в характеристиках на основе конструкций

Q Factor

Частотные характеристики Q показаны на графике структурой (проволочная намотка, многослойная) высокочастотной катушки Murata размером 1005. Как показано на Рисунке 1, особенностью проволочного типа является очень высокая добротность по сравнению с многослойным типом.
Особенностью пленочного типа является также более высокий коэффициент добротности, чем у многослойного метода, применяемого другими компаниями в той же отрасли.Murata предлагает тип пленки маленького размера 0603 и размера 0402. (Фигура 2)

Рисунок 1: Сравнение Q-характеристик между многослойной серией LQG15 и серией LQW15 с проволочной обмоткой (обе 2,7 нГн) Рисунок 2: Сравнение Q-характеристик между 0603 Size, LQP03TN и многослойными изделиями других компаний (обе 10 нГн)


Шаг и допуск индуктивности

Допуски между многослойной структурой Murata и пленочной структурой высокочастотных катушек и линейкой значений L показаны в следующей таблице.По сравнению с многослойным типом, точность позиционирования пленки более точна при формировании катушки. Таким образом, значение L меньше варьируется, что позволяет уменьшить допуск и более жесткие шаги.

5. Заключение

Проволока намотанного типа Тип пленки Многослойный тип
Структура
Характеристики Исключительно хорошие Q-характеристики
Low Rdc
Сверхминиатюрный размер
Высокое значение добротности и малый размер
Минимальный допуск по индуктивности, уровни индуктивности с мелкими градациями
Модельный ряд с широким диапазоном значений индуктивности
Области применения и применения В основном РЧ согласующие схемы, требующие характеристик добротности
дроссельных цепей, поддерживающих высокие уровни тока
Согласующие схемы антенн
Цепи согласования усилителей мощности
Цепи согласования ВЧ, требующие небольших размеров, минимальных допусков по индуктивности и высокой добротности
Цепи согласования блоков ВЧ
Дроссельные цепи

Эффективное использование индукторов

Высокочастотные катушки в основном используются в сотовых телефонах, беспроводных локальных сетях и других высокочастотных цепях.Некоторые типичные примеры их использования и применения описаны ниже.

1. Проволочная обмотка

Проволочные индукторы серии LQW обладают высоким значением добротности. Катушки индуктивности с высокими значениями добротности используются в схемах согласования радиочастотных блоков, поскольку их высокие значения добротности обеспечивают им превосходные характеристики затухания в полосе пропускания фильтров. Они также часто используются в приложениях согласования антенн для поддержания чувствительности приема и передачи антенн.Кроме того, поскольку они имеют низкие характеристики Rdc, они также используются в цепях дросселей, в которых протекают высокие уровни тока.

2. Пленочный тип

Пленочные индукторы серии LQP обладают другим набором функций, поскольку микрообработка рисунков катушек возможна за счет формирования электродов с использованием техники фотолитографии. Катушки индуктивности могут иметь меньшие размеры и высокую добротность, в то же время серия предлагает линейку катушек индуктивности со значениями индуктивности, которые отклоняются с минимальным отклонением и имеют точную градацию.Модельный ряд состоит из широкого диапазона катушек индуктивности размера 0603, который становится основным, и размера 0402, который является самым маленьким в отрасли, и оба размера поддерживают тенденцию к уменьшению размеров. Эти катушки индуктивности используются в согласующих и резонансных цепях радиочастотных устройств, для которых требуются миниатюрные размеры, минимальные допуски по индуктивности и точные уровни индуктивности. Они также используются в цепях дросселей, требующих миниатюрных размеров и низкого Rdc.

3.Многослойный тип

Многослойные индукторы имеют самое низкое значение добротности из трех структур. Они имеют хороший общий баланс с точки зрения линейки значений индуктивности, размера и стоимости и используются в согласующих и резонансных цепях ВЧ-блоков и во всех видах дроссельных цепей.

Щелкните здесь, чтобы увидеть составы участников.

.

0 0 vote
Article Rating
Подписаться
Уведомление о
guest
0 Комментарий
Inline Feedbacks
View all comments