Ленточный мелкозаглубленный фундамент отзывы: Мелкозаглубленый ленточный фундамент. Лишь бы не треснул!

Разное

Содержание

Мелкозаглубленый ленточный фундамент. Лишь бы не треснул!

   Мелкозаглубленный ленточный фундамент часто сооружается при строительстве домов из дерева (бревенчатые, брусовые, каркасно-щитовые), из различных ячеистых бетонов (пенобетон, газосиликатные блоки и т.п.) и при облегчённой кирпичной кладке. На таких фундаментах можно возводить дома высотой до 3-х этажей. Экономия при этом достигается очень ощутимая.

   По сути мелкозаглубленный фундамент — это тоже самое, что и ленточный, но только он располагается на не большой глубине (много выше глубины промерзания грунта). Основной принцип его работы  можно описать так: при морозном пучении грунта мелкозаглубленная лента, являясь как-бы жёсткой армированной рамой, равномерно поднимается и опускается вместе с домом со сменой времён года. Так как смещения равномерные, поэтому фундамент не разрушается.

    Для того чтобы мелкозаглубленный ленточный фундамент работал именно таким образом,  нужно строго соблюдать технологию его строительства. Отступления от технологии быстро приведут к растрескиванию ленты, а это чревато очень неприятными последствиями для Вашего дома.

    Информации, посвящённой строительству мелкозаглубленных ленточных фундаментов, сейчас можно найти очень много, особенно в интернете. Причём разные источники часто указывают разные конструктивные размеры ленты (глубина траншеи, толщина песчаной подушки, ширина и высота самой ленты т.д.). Аргументы у всех разные и можно просто растеряться.

   Сам я уже более семи лет при расчёте мелкозаглубленного фундамента пользуюсь небольшой книгой «Не зарывайте фундаменты в глубь» . Её автор — Владимир Степанович Сажин является доктором технических наук, профессором, Заслуженным строителем Российской Федерации, членом Российского национального и международного общества по механике грунтов и фундаментостроению — одним из ведущих специалистов страны в области фундаментостроения. Я думаю такому источнику полностью можно доверять, по крайней мере ни один из построенных нашей бригадой фундаментов трещин пока не дал.

    На какую глубину и какой ширины выкопать траншею? Какой толщины сделать песчаную подушку? Какой высоты заливать бетонную ленту? Сколько и каким диаметром нужно использовать арматуры для вязания каркаса? На все эти вопросы я сейчас отвечать не стану. Ответы Вы легко найдёте введя в поисковике название пособия — «Не зарывайте фундаменты в глубь«. Вся информация представлена в виде удобных таблиц и рисунков, любой сможет разобраться. Плагиатом заниматься я не стану, расскажу только о некоторых моментах, которые нужно учитывать при сооружении фундамента.

    В первую очередь нужно отметить, что мелкозаглубленные фундаменты очень важно защитить от воды (атмосферные осадки, талые воды). Обязательно надо сделать планировку участка застройки с уклоном от фундамента не менее 0,03 (т.е. 3 см на 1 метр). Если вы подсыпаете грунт обязательно его послойно уплотнять. Воду стекающую по водостокам с крыши необходимо также подальше отводить от фундамента. Желательно сразу после заливки фундамента сделать отмостку или хотябы так называемый «глиняный замок» (отмостка из перемятой глины).

    Песчаная подушка играет важную роль при работе мелкозаглубленного фундамента. Именно благодаря ей пучинистые нагрузки распределяются на всю ленту равномерно и фундамент из-за этого не работает на излом, а равномерно поднимается и опускается. Чтобы песок со временем не заиливался и не потерял свои свойства необходимо стенки и дно траншеи устилать гидроизоляцией (например, обычный рубероид).

    Для заливки фундамента мы по возможности стараемся использовать готовый бетон (привезённый с завода). Также для работы берём в аренду вибратор для бетона. Проштыковать весь фундамент в ручную — довольно трудоёмкая операция. Если всё же приходится мешать бетон самостоятельно, я просто собираю как можно больше людей, по возможности несколько бетономешалок или растворных банок, чтобы залить фундамент как можно быстрее и он не засыхал слоями.

    Так как лента имеет небольшие ширину и высоту, то следует уделять особое внимание качеству бетона. Легкомысленное отношение здесь чревато. После заливки фундамент накрываем плёнкой, для предотвращения появления трещин.

    Не допускается  мелкозаглубленный фундамент оставлять ненагруженным на зиму. То есть стопу и крышу необходимо постоить в этот же сезон, что и фундамент. Если по какой либо причине сделать это не удаётся надо на зиму защитить его от промерзания (например. укрыть соломой, шлаком, опилками и т.п.)

    И последний момент: в пособии «Не зарывайте фундаменты в глубь» описан ряд мер для уменьшения глубины промерзания грунта в зоне вокруг фундамента, что приводит к уменьшению пучинистости. Это такие мероприятия как: задернение участка и посадка кустарников, которые аккумулируют отложения снега, сооружение керамзитной подушки под отмосткой толщиной 20-30 см.

   Мы в последнее время для этих целей используем экструдированный пенополистирол. Этот материал мы закладываем под отмостку по всему периметру дома на ширину не менее 1 метра. Применять обычный пенопласт нет смысла. Со временем он набирает воду и теряет свои теплоизолирующие свойства. Небольшое видео по поводу этой процедуры смотрите ниже.

СМОТРИТЕ ДРУГИЕ СТАТЬИ НА ЭТУ ТЕМУ:
  • Рулонная гидроизоляция фундамента.

  • Монолитная бетонная плита как основание фундамента из блоков ФБС.

  • Разметка участка под строительство.

  • Как произвести утепление фундамента более эффективно.

  • Фундаменты. Основные типы, их применение и технология возведения.

Лучший способ выразить благодарность автору — поделиться ссылкой на статью с друзьями!


Паразиты живут внутри каждого! Совет врача — возьмите 120 мл кипятка и…
Читать далее

Смотрите, так можно «замедлить» Ваш электросчётчик в 2 раза! … Совершенно ЛЕГАЛЬНО! Нужно взять и в ближнюю к счётчику … Читать далее

Мелкозаглубленный фундамент ленточного типа для дома

 

При проектировании дома нужно много внимания уделить фундаменту, так как если основа не будет крепкой, то и все остальное не сможет простоять длительное время. Любое здание строится на долгосрочную перспективу, так что нужно учитывать все особенности местности и просчитывать, какие именно нужны параметры, чтобы можно было с уверенностью сказать, что объект простоит не менее 50 лет и при этом не потребует капитального ремонта.


Мелкозаглубленный ленточный фундамент идеально подходит для одноэтажных зданий, которые не требуют такой мощной основы, как высотки, так как они не будут оказывать огромного давления на почву, и менее подвержены воздействию различных боковых порывов ветра, которые гораздо опаснее для строения, чем думают многие люди. Так что для зданий, имеющих более двух этажей, такой подход абсолютно не применим.

Особенности эксплуатации


Все эксперты в один голос советуют, что планируя строительство невысокого домика на несколько комнат, не зарывайте фундаменты вглубь. В этом нет абсолютно никакого смысла, а придется только переплатить в несколько раз. Конечно, в строительстве всегда лучше перестраховываться, но это не тот случай.

 


Слишком глубокий фундамент может даже сыграть негативную роль, так как будет мешать нормальным процессам в почве, что может сказаться на рельефе местности. Это длительный процесс, но ведь и дома возводятся не на один год, а рассчитываются на многолетнюю эксплуатацию. Поэтому нужно учесть все факторы, которые будут влиять на здание и окружающую местность.

 

Мелкозаглубленный ленточный фундамент для дома имеет следующие преимущества:

 

  • •    чем выше будет начинаться фундамент, тем меньше риск его подтопления грунтовыми водами. Если получится не задевать слой глины, то это положительно скажется на всей дальнейшей эксплуатации, ведь именно глина лучше всего сдерживает воду и сможет увеличить гидроизоляционный эффект фундамента.
  • •    цена в некоторых случаях будет на 80% ниже, чем при строительстве обычного фундамента. Это колоссальная экономия, которой нельзя пренебрегать;
  • •    касательная площадь соприкосновения фундамента с почвой будет минимальной, так что и риск разрушения постройки уменьшается, ведь не только дом оказывает давление на грунт, но и земля тоже давит на фундамент с трех сторон.

 

 


Еще одним преимуществом является возможность возвести мелкозаглубленный ленточный фундамент своими руками. Не придется искать профессиональную бригаду, которая возьмется за работу и сможет выполнить поставленную задачу в указанный срок. Сама по себе операция займет не так много времени, но обязательно нужно дождаться, чтобы каждый технологический этап был завершен до конца. Бетон нужно идеально высушить, чтобы он набрался максимальной прочности перед проведением очередного этапа и закладкой первого этажа. Так что нужно будет ждать ровно столько, сколько потребуется.

Варианты мелкозаглубленного фундамента


Мелкозаглубленный фундамент ленточного типа не является единственной разновидностью подобных строений. Он используется гораздо чаще, так как проще в строительстве, требует меньших временных затрат и практически не нуждается в привлечении техники. Можно выкопать траншею под закладку вручную, так как работать нужно в мягких слоях грунта. Только в редких случаях на каменистых почвах лучше прибегнуть к услугам экскаватора, так как долбить почву вручную здесь будет крайне сложно. А с помощью специальной техники можно завершить эту операцию за одну-две смены и сразу же приступить к следующему этапу, так как работа не ждет.

 


Столбчато-ленточный мелкозаглубленный фундамент потребует наличия бура, которым будут проделываться технологические отверстия в почве. Они обязательно должны уходить ниже точки промерзания, иначе в них просто не будет смысла. Что же касается нужной глубины бурения, то ее можно определить при помощи математических расчетов, так что стоит заняться этим делом до начала операции. Конечно, можно работать и ручным буром, но он не всегда сможет справиться с поставленной задачей, да и уйдет на процедуру намного дольше, чем при использовании механизированного оборудования.

Порядок выполнения работ


Строительство мелкозаглубленного ленточного фундамента состоит из таких этапов:

 

 

  • 1.    На самом первом этапе, еще до начала любых работ, проводится расчет параметров мелкозаглубленного ленточного фундамента. С помощью полученных показателей можно будет определять необходимое количество материалов и перечень инструментов, которые будут использоваться при выполнении задачи.
  • 2.    Далее расчищается рабочая площадка, чтобы она была идеально ровной и позволяла приступить к непосредственной работе на местности. Нужно определить оптимальное положение дома, чтобы в нем всегда было комфортно находиться.
  • 3.    Затем выкапывается траншея по всему периметру здания, которая будет соответствовать выбранной форме. Глубина мелкозаглубленного ленточного фундамента не превышает одного метра, так что нужно позаботиться о его утеплении. Под фундамент кладут песчано-гравийную подушку, а изнутри утепляют стекловатой или другим материалом.
  • 4.    После этого ставят опалубку и заливают монолитный ленточный мелкозаглубленный фундамент.


По отзывам о мелкозаглубленном ленточном фундаменте можно судить, что он отлично подходит для решения задач локального строительства в частном секторе.

Цена ленточного мелкозаглубленного фундамента будет зависеть от масштабов здания.

🔨 расчёт, технология, возведение своими руками видео, отзывы.

Мелкозаглубленный ленточный фундамент — наиболее экономически выгодный и простой в обустройстве вариант фундамента под дома из кирпича, дерева либо газобетона, возводящиеся на нормальных, не склонных к пучению грунтах.

На странице приведена детальная информация по методике расчета и технологии строительства мелкозаглубленного ленточного основания. Также вы ознакомитесь с видео, в которых объяснены наиболее важные моменты создания ленточного фундамента своими руками.

Мелкозаглубленный ленточный фундамент — расчеты

Существует два вида расчетов, которые необходимо выполнить при проектировании мелкозаглубленного ленточного фундамента: первый — расчет его несущей способности и габаритов, второй — расчет материалов, необходимых для создания фундамента.

Расчет несущей способности — процесс сложный, тут необходимо учитывать очень большое количество факторов: глубину промерзания и сопротивление почвы, деформационные нагрузки, которые грунт будет оказывать на будущее основание, вес строения и множество других.

Важное! расчет несущей способности фундамента мы рекомендуем доверить нашим профессионалам. Услуги по проектированию мелкозаглубленного ленточного основания стоят не дорого (так как данный вид относится к категории простых фундаментов), однако в таком случае вы будете полностью уверены в том, что все сделано правильно, и если проект будет реализован по всем правилам технологии — ваш дом простоит сотню лет.

Рис. 1.1: Мелкозаглубленный ленточный фундамент

Расчет требуемых материалов от начала и до конца можно выполнить самостоятельно. Для этого вам необходимо знать габариты фундамента, на основании которых и будут выполняться дальнейшие расчеты по таким материалам как:

  • Бетон;
  • Арматура и проволока для вязки;
  • Щебень и песок;

В качестве примера приводим расчет материалов, необходимых для создания мелкозаглубленного ленточного фундамента шириною 40 см и глубиной заложения 60 см, под дом с периметром стен 54 м (длинна — 9 м, ширина — 6 м).

Чтобы произвести расчет материалов нам нужно определить объем фундамента: периметр ленты необходимо умножить на ее ширину и длину

54*0,4*0,6 = 12,96 м3;

Расчет материалов для уплотняющей подсыпки

Для создания уплотняющей подсыпки используется мелкофракционный щебень и песок. Уплотнение грунта необходимо для того, чтобы уменьшить деформационные и выталкивающие нагрузки, которые почва оказывает на фундамент.

Рис. 1.2: Схема уплотняющей подушки

Совет эксперта! Толщина уплотняющего слоя, в большинстве случаев, составляет 20 см: одна половина из которых — щебень, вторая- песок.

Чтобы рассчитать количество песка и щебня нам необходимо узнать объем каждого слоя и перемножить его на вес 1 м3 материала.

  • Рассчитываем объем слоев подсыпки (они будут одинаковыми, так как толщина слоев идентична): 56 (длина, аналогичная периметру основания)*0,4 (ш)*0,1 (т) = 2,24 м3.

Вес 1 м3 щебня и песка — данные, которые можно узнать в любом строительном справочнике: 1 м3 песка весит 1440 кг, щебня — 1600 кг. Теперь рассчитываем массу нужных нам материалов:

  • Масса песка: 2,24*1440 = 3225,6 кг;
  • Масса щебня: 2,24*1600 = 3584 кг.

Расчет массы бетона

Бетон — главная часть расходов сметы на возведение мелкозаглубленного ленточного основания. При наличии бетономешалки вы можете делать его непосредственно на рабочей площадке, либо же заказать машину уже готового бетона.

Совет эксперта! Более предпочтительной является одномоментная заливка, поскольку темпы работы при использовании бетономешалки невелики, а если новая порция бетона будет заливаться на уже подсохший слой — уменьшится итоговая прочность монолитной фундаментной ленты, тогда как большая партия готовой бетонной смеси позволяет залить срезу весь фундамент.

Для заливки мелкозаглубленного ленточного основания, согласно действующим СНиП, нужно применять бетон стандарта М300, так бетон меньшей плотности не обеспечит требуемой несущей способности прочности фундамента.

Рис. 1.3: Структура бетона М300 используемого для заливки фундаментов

Номинальная масса 1 м3 бетона М300 равна 2389 килограммам. Для определения общего веса нужного бетона нам необходимо умножить объем ленты фундамента (12,96 м3) на вес 1 м3 бетона:

12,96*2389 = 30 961,44 кг.

Поскольку бетон при отвердевании склонен к усадке, смесь необходимо брать с запасом в 3-4% от требуемого веса:

30961,44 * 0.03 = 928,9 кг;

Итого нам нужно 31,9 тонн бетона М300.

Расчет материалов для армирования основания

Любое ленточное основание требует обязательного укрепления армокаркасом из двух горизонтальных поясов, которые соединяются вертикальными перемычками.
Для создания горизонтального контура каркаса требуется горячекатаная арматура А3 (12 мм. в диаметре), и арматура А1 (8 мм). для перемычек. Соединение каркаса выполняется вязальной проволокой.

На основании общей продолжительности ленты фундамента можно рассчитать длину требуемой арматуры А3:

  • 54*4 (количество контуров каркаса) = 216 м;

В добавок нам потребуется дополнительные 10 м. арматуры для укрепления углов каркаса. Совокупная длина прутьев А3 — 226 метров.

Рис. 1.4: Армирование мелкозаглубленного ленточного фундамента

Теперь определяем количество арматуры А1 для перемычек. Учитывая, что каркас должен быть утоплен вглубь фундамента на десять сантиметров, а высота нашего основания составляет 60 см, высота вертикальной перемычки будет равняться 40 см.

Совет эксперта! в мелкозаглубленных ленточных фундаментах шаг перемычек армокаркаса должен составлять 20 см.

  • Рассчитываем общее количество вертикальных прутьев: (54/0,2)*2 = 540 шт;
  • Что позволяет определить требуемую длину арматуры: 540*0,4= 216 м.

На одно соединение каркаса уходит примерно 20 см. проволоки. Исходя из общего количества перемычек (540 шт) рассчитываем количество соединений и длину вязальной проволоки:

  • 540*2 = 1080 соединений;
  • 1080*0,2 = 216 м. проволоки для вязки.

Мелкозаглубленный ленточный фундамент — технология возведения

Строительство мелкозаглубленного ленточного фундамента начинается с разметки территории. Для этого используются колышки из обрезков арматуры и бичевка, посредством которых на земле размечается контур будущего основания согласно проекту.

Далее начинаются работы по рытью котлована, глубина которого определяется исходя из размеров самого основания и толщины уплотняющей подушки.

Земельные работы

Если стенки котлована в процессе рытья осыпаются, необходимо делать временные подпорки из досок. Также крайне важно следить за вертикальностью дна траншеи, поскольку любые уклоны будут увеличивать расход материалов для создания уплотняющей подушки.

По завершению рытья и выравнивания стенок котлована приступаем к обустройству подсыпки. Первым шаром идет песок. Высыпать его необходимо послойно, по 3-5 сантиметров, причем каждый слой необходимо проливать водой и утрамбовывать, чтобы песок получил максимальную плотность.

Рис. 1.4.1: Формирование песчаной подсыпки

Поверх песка насыпается слой щебня, который также нужно уплотнить посредством ручной трамбовки.

Монтаж опалубки

Для создания опалубки используются доски толщиною в 20 мм, которые скрепляются между собой с помощью брусков и саморезов либо металлического уголка.

Рис. 1.5: Опалубка под мелкозаглубленный ленточный фундамент

По внешнему контуру опалубки устанавливаются распорки из деревянного бруса, шаг распорок — 50 сантиметров, они необходимы для того, чтобы опалубка не деформировалась от веса бетона.

Совет эксперта! высота опалубки должна быть на несколько сантиметров выше высоты фундамента, чтобы избежать разбрызгивания бетона в процессе заливки.

Внутри опалубки доски необходимо оббить клеенкой, так как цементное молочко жидкого бетона может протекать в щели между ними. По завершению монтажа на опалубке отмечаем уровень, по которому будет выполнятся заливка.

Армирование

Технология армирования мелкозаглубленного основания согласно требованиям СНиП не требует обязательного укрепления средней части фундамента, поскольку она не испытывает критических нагрузок. Достаточно обустроить каркас по верхнему и нижнему контуру ленты.

Такой каркас состоит из двух вертикальных поясов арматуры А3 диаметром 13 мм, которые соединяются вертикальными перемычками из гладкой 8-ми миллиметровой арматуры. Фиксация каркаса выполняется вязальной проволокой.

Совет эксперта! Использование сварки для соединения элементов каркаса нежелательно, так как в таком случае конструкция потеряет эластичность.

Ручной вязку проволоки удобнее всего выполнять с помощью вязального крючка. На фиксацию одного узла требуется 20-25 см. перегнутой вдвое проволоки.

Рис. 1.6: Схема расположения арматуры в каркасе для укрепления ленточного фундамента

Каркас из арматуры вяжется в удобном для вас месте, а уже потом готовая часть конструкции размещается внутри опалубки. Крайне важно выполнить правильное соединение арматуры на углах фундамента, поскольку именно в этом месте несущие и деформационные нагрузки на фундамент максимальны.

В местах угловых соединений нужно устанавливать дополнительные Г-образные усиления из арматуры диаметром 13 мм. Не менее надежным являются П-образные соединения, увидеть которые вы можете на нижеприведенном изображении.

Рис. 1.7: Схема соединения углов армокаркаса

Заливка бетона

Для заливки фундамента бетоном рекомендуется заказывать готовую смесь в требуемом объеме, поскольку одномоментная заливка обеспечивает лучшую итоговую прочность основания.
Если вы лишены такой возможности и вынуждены готовить бетон самостоятельно, ориентируйтесь на приведенные на изображении пропорции цемента, песка и щебня.

Рис. 1.8: Заливка бетона в мелкозаглубленный ленточный фундамент

После заливки бетона в опалубку его необходимо обработать виброуплотнителем либо перфоратором с соответствующей насадкой. Уплотнение позволяет удалить из бетона пузырьки воздуха, которые негативно сказываются на итоговой прочности фундамента.

По завершению уплотнения бетон выравнивается с помощью правила и накрывается клеенкой либо брезентом. Если фундамент строится в жаркое время года, во избежание растрескивания бетон в процессе созревания необходимо регулярно увлажнять. Свою проектную прочность бетонный фундамент получает через 3-4 недели.

Мелкозаглубленный ленточный фундамент своими руками (видео)

Видео, в котором детально рассматривается технология создания опалубки под мелкозаглубленный ленточный фундамент.

Делаем армокаркас для ленточного фундамента правильно.

Разбираемся, как правильно вязать арматуру в каркас для укрепления ленточного фундамента.

Особенности заливки бетона в опалубку ленточного фундамента.

Отзывы о мелкозаглубленном ленточном фундаменте

Чтобы вы смогли составить исчерпывающее впечатление о целесообразности возведения мелкозаглубленного ленточного фундамента, предлагаем вашему вниманию отзывы людей, обладающих опытом строительства таких конструкций:

Олег, 28 лет, Москва:
«Являюсь прорабом бригады, занимающейся строительством частных домов из кирпича и пенобетона. За все время работы неоднократно убеждался в том, что мелкозаглубленные ленточные фундаменты — идеальный вариант оснований для частного строительства. Во-первых — они выгодны в финансовом плане, так как в сравнении с другими типами оснований требуют на порядок меньше материалов. Во-вторых — для строительства такого фундамента не требуется специальное строительное оборудование, зная технологию, всю работу без проблем можно выполнить своими руками»

Виктор, 32 года, Зеленоград:
«Недавно закончил строительство деревянной бани на загородном участке. Решил использовать мелкозаглубленный ленточный фундамент, так как бюджет строительства был ограничен, а друг, занимающийся проектированием фундаментом, сказал, что несущей способности такого основания для легкой бани будет более чем достаточно. Все работы выполнял самостоятельно, только лишь бетон покупал уже готовый»

Наши услуги

Мы базируемся на услугах: забивка свай, лидерное бурение, забивка шпунта, а так же статических и динамических испытаниях свай. В нашем распоряжении собственный автопарк бурильно-сваебойной техники и мы готовы поставлять сваи на объект с дальнейшим их погружением на строительной площадке. Цены на забивку свай представлены на странице: цены на забивку свай. Для заказа работ по забивке железобетонных свай, оставьте заявочку.

Фундамент мелкозаглубленный: плюсы и минусы, устройство

В дачном и коттеджном строительстве мелкозаглубленные фундаменты стали востребованными после появления легких строительных и отделочных материалов.

Специалисты объясняют повышение потребительского спроса высокой стоимостью, трудоемкостью монтажа, обслуживания монолитных и блочных фундаментов глубокого заложения.

Кроме этого, подобные фундаменты несложно сделать своими руками.

Посмотрите видео об особенностях мелкозаглубленного фундамента

Недостатки фундаментов глубокого заложения

• На широте московского региона грунт промерзает на глубину от одного до полутора метров. Заложение такой конструкции – процесс весьма длительный и трудоемкий.

• Помимо стоимости бетонного раствора требуются значительные средства на обустройство несущего каркаса, опалубки, эффективной тепло гидроизоляции и закрытого прифундаментного дренажа.

• Высокие фундаментные основания эксплуатируются в сложных условиях механических, пучинистых и гидростатических нагрузок. Даже в комбинированном варианте битумно-полимерные фундаментные гидробарьеры с большими затратами средств и рабочего времени приходится обновлять через каждые10-12 лет.

Мелкозаглубленный фундамент: плюсы и минусы

Фундаменты такого типа привлекают своей универсальностью, поскольку с одинаковым успехом могут использоваться при строительстве тяжелых кирпичных и легких пенно-газобетонных малоэтажных домов. По отзывам застройщиков, стоимость такой конструкции обойдется почти в 3 раза меньше.

При заложении основания экономится 60-70% бетонного раствора, более чем вдвое снижается трудоемкость монтажных работ.

Существенный минус таких технологий – это отсутствие подвальных помещений. В какой-то степени он компенсируется возведением пристроек и вспомогательных строений предназначенных для обустройства: саун, кочегарок, гаражей и других хозяйственных служб.

Устройство мелкозаглубленного фундамента

Стандартные основания закладываются на глубину 300-400 мм, для легких каркасных и не отапливаемых строений практикуется заложение фундамента непосредственно на поверхности грунта. В таком варианте полностью отсутствуют нагрузки от сезонных подвижек пучинистых грунтов.

• Популярный вариант незаглубленного основания – это плитный фундамент. Характерная особенность такой системы – низкое удельное давление на единицу площади. Армированная плита высотой до 40 см может стать надежным основанием для газоблочного дома повышенной этажности или кирпичного с мансардной крышей и цокольным этажом.

• На слабых песчаных грунтах по всем параметрам оправдан выбор жесткой монолитной конструкции, способной компенсировать и эффективно распределять эксплуатационные и усадочные напряжения. В качестве подошвы монолитного фундамента используется уплотненная песчано-щебневая подушка, высотой от 200 до 600 мм.

Ширина подошвы определяется глубиной заложения фундамента, уровнем воспринимаемых нагрузок, плотностью грунта. На пучинистых участках этот показатель варьируется на уровне от 40 до 1200 см. На плотных грунтах это значение можно уменьшить в два раза.

Пучение грунта надежно устраняется добавлением в грунтовую отсыпку 50% керамзитового отсева или крупного песка, другом варианте — созданием утепленной прифундаментной отмостки.

Малозаглубленное основание дома в меньшей степени подвержено разрушению грунтовой влагой. Тем не менее, не следует допускать его подтопления. Проблема решается созданием лоткового поверхностного отвода, особенно актуального на низинных участках сложного рельефа.

В зависимости от плотности застройки, дренируемая вода отводится за границу осушаемого участка или утилизируется в дренажных колодцах.

        Поделиться:

Ленточный мелкозаглубленный фундамент 👉 плюсы и минусы

Часто под одноэтажные постройки заливают фундамент ленточного типа. Используют в качестве опоры легкого сооружения, при строительстве подвала, цокольного помещения. Но не всегда требуется максимальное заглубление.

Как устроен МЗЛФ

Основание

Ленточная заливка — бетонная конструкция, которая частично находится под землей, частично формирует ростверк, по ширине немного толще стен будущего дома.

Заглубленный фундамент выполняется с погружением внутрь почвы немного ниже уровня протекания грунтовых вод от 1,5 до 2,5 м. Мелкозаглубленная заливка отличается тем, что бетонирование выполняется не так глубоко, но не менее 50-70 см.

Внутри залитого бетона — связанная арматура, которая будет принимать большую часть нагрузки, распределять ее, сохраняя целостность конструкции. На углах армирование усилено, что помогает существенно увеличить период эксплуатации сооружения.

Применение

Конструкция используется при строительстве малоэтажных зданий каркасного типа, из дерева. Это может быть дом из щитов, беседка, уличный туалет, ограждение. Подземные воды должны находиться ниже уровня заложения основания.

Мелкое заглубление предусматривает возможное содержание в почве глины, лессовидного суглинка, торфяника, пылеватого песка. Решающий критерий — несущая способность опоры для дома.

МЗЛФ на местности с перепадами высоты

Если планируется возведение цокольного, подвального пространства, монолит не подойдет, решение — лента. Сооружение подойдет под упрощенные строения, например, хозяйственного назначения.

Виды опоры

Виды конструкции в зависимости от физических параметров:

  • сборный монолит ленточной формы на глубину 40 см, серии 20;
  • просто сборно-монолитный вариант с заглублением на 80 см, серии 60;
  • ленточный монолит на 40, 80 см;
  • усиленный монолит (применяется на сложных грунтах).

Выбор зависит от климата, типа почвы, степени промерзания земли, материала дома, конечного веса, размера строительного бюджета.

Преимущества, недостатки

Плюс сооружения — самостоятельное возведение, земляных работ становится меньше в 2-3 раза.

Отмечается экономия, уходит меньше материалов, можно сделать погреб, цокольное углубление под хранение вещей, овощей, соленьев.

Фундамент стойко переносит движения грунта, связанные со сменой сезонов, сейсмической активностью.

Если ландшафт неровный, с перепадами, получится сделать ступенчатое, выравнивающее основание без сильного увеличения расходов.

Мелкозаглубленное сооружение подходит даже для сложных форм здания

Минус — невозможность сооружения дома из тяжелого материала, даже кирпичная кладка весит много для МЗЛФ.

Когда перепады высоты слишком большие, либо в почве содержится много глины, торфяников, мелкой копкой не обойтись, требуется заглубление.

Если выполняется заливка бетоном, потребуется переждать почти месяц до полного высыхания. Можно использовать разные виды блоков для сооружения МЗЛФ, но не всегда уместно.

При решении сформировать подвал, мелкозаглубленный фундамент не подойдет, можно сделать не очень глубокие ниши.

Монтаж МЗЛФ своими руками

Сооружение любого типа фундамента начинается с составления проекта. Нужно правильно рассчитать общую массу планируемого дома с учетом черновой, чистовой отделок, весом мебели, техники, количества проживающих людей.

Сразу размечаются точки прокладки труб коммуникаций, учитывается вес цоколя.

Чертеж помогает выявить точные размеры фундамента, рассчитать количество расходуемых материалов, запаса, учесть, какие инструменты понадобятся.

Подготовка к работе

Наиболее энергозатратная стадия подготовки — расчистка территории, удаление сорняков, выкорчевывание кустарников. Затем, грунт перекапывают, устраняя остатки крупных корневищ, либо оставляют нетронутым, если сильных сорняков не было.

Самый важный шаг — нанесение разметки, от которой зависит качество будущей конструкции, отсутствие перекосов, неровных стен здания.

Сначала, по плану находят, выставляют первую точку сооружения, вбивают колышек. Часто, удобнее отмерять начало по внутренней стороне запланированного основания.

Процесс копки траншеи под фундамент

Второй колышек вбивают после замера верного расстояния рулеткой.

Действия повторяют, пока не будет размечен полностью контур. Потом, во время разметки колышками, на них натягивают плотно веревку.

От линии натянутого шнура отмеряют ширину заливки, по тому же принципу размечают противолежащую грань заливки.

Этапы заложения основания

Процедура закладки мелкозаглубленного основания включает несколько этапов.

Для работы понадобятся штыковая лопата, сварочный аппарат, мягкая проволока, строительный вибратор, запасной пруток арматуры.

Из материалов нужно закупить для раствора цемент, марки не ниже М400, песок, мелкофракционный щебень, гравий. Щебенку с песком отдельно берут на насыпную подушку.

Потребуется много рулонной гидроизоляции, арматура, строительная полиэтиленовая пленка.

Если материалы нужно хранить, а не сразу после привоза использовать, формируют навес, землю покрывают полиэтиленом. Сухие компоненты лучше укрыть пленкой, но частично, чтобы не отсырели.

Копка траншеи

По разметке выполняется копка траншеи лопатой, которую ставят по одну сторону будущего рва. Выкопанный грунт можно не убирать далеко, по окончании работ, будет проводиться частичная обратная засыпка.

Стенки заравнивают, дно трамбуют. Нужно, чтобы основание подпирало каждую стену будущей постройки.

Выполняют настил геотекстиля, засыпку подушки. Дно покрывают слоем щебня, трамбуют, повторяют процедуру, пока не получится слой, толщиной 10 см. Засыпают послойно песок, периодически орошая водой, чтобы сделать структуру более плотной.

Поверх насыпи стелют гидроизоляцию – рекомендуется рубероид – чтобы были укрыты стенки, материал ложился внахлест.

Установка опалубки

Чтобы придать бетону форму, предотвратить распорку грунта, используют сборную форму для бетонирования – опалубку.

Конструкцию делают из деревянных досок, щитов, листового железа. Части опалубки скрепляют, особенно сильно сцепляя углы.

По периметру формы внутрь вставляют патрубки по принципу распорок в местах проведения коммуникаций, сверху монтируют поперечины, чтобы сооружение лучше удерживало форму под давлением раствора.

Иногда гидроизоляцию кладут после сборки опалубки, либо отдельно укрывают стенки полиэтиленом.

Вязка арматуры для укрепления

Существенно повысить несущие характеристики, сроки использования, прочность основания поможет усиление арматурным каркасом.

Формируют остов из прутьев, сечением 8 – 12 мм для продольного размещения, 6-8 мм для поперечного.

Наиболее крепкая конструкция получается, если участки скрепления приваривают, но часто достаточно вязальной проволоки.

Готовая к заливке бетоном траншея

Прутки нарезают на нужные размеры, проволока очень податлива, можно вязать голыми руками. Для более плотных узелков есть строительные крючки.

Готовый каркас вкладывают в опалубку, соединяют на углах.

Бетонирование траншеи

Строительный раствор для заливки фундамента должен получиться марки, не ниже М250.

Часто производители цемента сразу на упаковке пишут инструкцию с указанием пропорций, в которых вносятся составные компоненты.

Для смеси используют только очищенные сухие вещества без мусора, пыли, посторонних вкраплений, чистую воду, помутнение вызовет снижение адгезии.

Лучше раствор вымешивается в бетономешалке. Внутрь полости закладывают сразу сыпучие вещества, вымешивают до однородной массы, постепенно, в два или три подхода заливают воду.

При вымешивании лопатой, строительным миксером нужно тщательно следить, чтобы не осталось сухих, непромешанных участков. Тогда получится качественный раствор.

Бетон готовят порционно, заливают внутрь траншеи, сразу разравнивают, слегка усаживают вибратором, арматурой. Выйдет оставшийся воздух, бетон будет более прочным.

Когда заливка полностью завершена, опалубку сверху застилают полиэтиленом, прижимают, чтобы просыхание было наиболее равномерным.

Спустя 5-7 дней бетон наберет первичную прочность, которой будет достаточно, чтобы снять опалубку, но мало для продолжения строительства. Можно подождать несколько дней после демонтажа формы, либо сразу приступать к защите заливки.

Пошаговый алгоритм действий наглядно показан в нижеследующем видео:

Изоляция от влаги, утепление

Для гидроизоляции используются вертикальные, горизонтальные материалы. Настил рубероида защитит раствор от разрушительного воздействия влаги, но листы нужно укладывать внахлест, приклеивать друг к другу на мастику. Этой же мастикой обрабатывают стык снаружи.

Можно просто нанести горячую мастику, холодная смесь, как самостоятельное средство малоэффективна.

Есть самоклеящиеся материалы.

Для наружного утепления подходит пенополистирол, либо пеноплекс. Пенообразное вещество создает монолитную изоляцию от жары, холода, плитные не уступают по характеристикам.

Если используются плиты, их укладывают близко друг к другу, швы обрабатывают герметиком. Для монтажа материала можно сразу использовать гидроизоляцию – пеноплекс хорошо приклеивается на мастику.

Сверху наносят защитный слой штукатурки, выполняют облицовку, если требуется.

Вероятные ошибки

Наиболее частые ошибки, приводящие к закосам, разрушениям — неправильные расчеты, неверное исследование грунта.

Использовать мелкозаглубленную ленту можно не на всех почвах. Конструкция не предназначена для приема больших нагрузок.

Некоторые мастера советуют дать фундаменту отстояться зиму, однако, часто приходится переделывать. Отсутствие нагрузки сверху, пучинистость грунта зимой, отсутствие защитного укрытия часто становятся основными причинами приведения фундамента к непригодному состоянию.

Ленточное основание популярно, характеристики близки к монолиту, но это не относится к мелкозаглубленному формату. Здесь параметры снижены, отчего границы использования сооружения существенно сужаются. Нужно верно выполнить вычисления возможностей фундамента, почвы, чтобы получить качественную опору для дома.

Какие ошибки часто встречаются при заливке ленты, можно узнать в следующем видео:

Вконтакте

Facebook

Twitter

Google+

Средняя оценка

оценок более 0

Поделиться ссылкой

Всё про мелкозаглубленный фундамент

Мелкозаглубленный фундамент – это один из видов строительных фундаментов, который используется в основном там, где почва имеет хорошую допустимую нагрузку. Основные размеры ленточного фундамента для бетонной конструкции схожи с фундаментом для деревянного каркаса.

Основные характеристики

  • Размер и положение мелкозаглубленного фундамента связаны с габаритной шириной стены.
  • Принципиальные конструктивные особенности этого вида фундамента заключаются в том, что тяжесть передаётся на 45 градусов к основе – почве.
  • Глубина фундамента должна быть равной или больше, чем габаритная ширина стены.
  • Очень важно, что ленточный фундамент укрепляется за счёт включения стальной арматуры.
  • Уплотненная жесткая основа минимальных 150 мм установлена, чтобы сформировать платформу для подпола и последующих нагрузок и тяжестей помещений.
  • 150-миллиметровый бетонный подпол льют на жёсткую основу, чтобы обеспечить прочную и гладкую платформу для изоляции.
  • Установлен барьер радона, чтобы сформировать непрерывную печать на всем фундаменте дома.
  • Влагонепроницаемый курс установлен для того, чтобы отразить любой капиллярный подсос влаги. Очень важно, что уровень DPC идёт на кладки с образованием водонепроницаемого уплотнения по всей площади пола.
  • DPC должен проходить через кладки стен как минимум 150 мм над уровнем готового грунта.
  • 100 мм твёрдой изоляции установлены ниже готового фундамента, чтобы гарантировать, что тепло не проводится.
  • Затем 75мм бетонная стяжка обеспечивает готовый пол.

Стоит ли выбирать мелкозаглубленный ленточный фундамент для дома

В строительном бизнесе слово «фундамент» обозначает строительство определённой части, которая берёт на себя всю тяжесть дома или бани, например, и передаёт её к основе.  В нашем случае основа – это земля. С недавнего времени, мелкозаглубленный ленточный фундамент стал широко использоваться в строительстве. Этот вид строительного фундамента обычно размещается вокруг всего периметра помещения, включая каждую стену и постройки. Важно отметить, что в первую очередь он применяется на невысоких зданиях.

Специальные блоки и опорные элементы под фундаментом сделаны с целью, предотвратить повреждение. Эти составляющие бывают как заполненными, так и полностью пустыми. Например, один блок может быть сделан из бутобетона, а другой из силиката. Но чаще всего, конечно, встречаются блоки из обычного бетона. Железобетон также является распространённым материалом для производства блоков.

Когда можно использовать мелкозаглубленный ленточный фундамент

Строительные нормы и правила для строительства фундаментов привели чёткий список, по которому можно понять, стоит ли применять мелкозаглубленный фундамент.

  1. Убедитесь, что ваша почва не насыпная( привозная и т.д) , у вас нет сильного изменения прочности почвы в нагруженной области ( общая площадь строительства) или что ваша почва не рыхлая. Такими образом, вы сможете предотвратить неудачное строительство фундамента.
  2. Ширина фундамента совпадает со значениями в таблице. Вы можете найти её на сайте.
  3. Убедитесь, что в почве нет химикатов и что бетон отвечает британским стандартам, чтобы быть полезным в определённых условиях. Мы вернёмся к этому вопросу позже.
  4. Конкретная толщина фундамента равна или больше, чем проектирование от стенной поверхности, и не меньше чем 150 мм.
  5. Высота ступеньки не больше, чем толщина фундамента.

Что следует учесть при применении мелкозаглубленного фундамента

Фундаменты и их виды — Фундаменты мелкие и глубокие

Что означает фундамент?

Фундамент — это часть здания, которая находится в непосредственном контакте с землей, чтобы передавать и распределять нагрузки от здания на достаточной площади почвы с минимально допустимой осадкой.

Фундамент мелкого заложения:

Фундаменты неглубокого заложения: Фундаменты, в которых укладываемый слой ландшафта близок к поверхности земли и несет строительные нагрузки, на которых будет возводиться строительство.

Типы фундаментов мелкого заложения:
1. Ленточный фундамент

Это фундамент, полностью проходящий под стенами здания.

2. Изолированная опора

Это опоры, устанавливаемые отдельно под колоннами, каждая опора принимает сосредоточенную нагрузку колонны и распределяет ее по большей площади, так что нагрузки на грунт не превышают допустимую несущую способность грунта.

3. Комбинированный фундамент

Это опоры, устанавливаемые под каждыми двумя или более колоннами здания, каждая опора принимает на себя сосредоточенную нагрузку двух колонн и распределяет ее по большей площади, так что нагрузки на почву не превышают допустимую несущую способность почвы.

4. Плотный фундамент

Это тип фундамента, который размещается на всей поверхности земли под зданием и служит единой опорой, на которой строится здание.

Этот тип фундамента используется в случае слабого грунта, так что общая нагрузка на здание будет распределяться по большей площади, или там, где колонны расположены очень близко друг к другу, использование изолированного основания приведет к касанию основания, которое невозможно.

Типы плотного фундамента:

1. Плот из простого бетона большой толщины, на котором ставится изолированное основание.

2. Большая толщина железобетона, на который непосредственно опираются колонны.

3. Плот из армированных плит и балок (Перевернутая плита).

Фундамент глубокого заложения:

В случае, если конструкция с высокими нагрузками и поверхностные слои почвы не могут ее выдержать, необходимо прибегать к глубоким фундаментам, где нагрузки надстройки передаются на более глубокий слой почвы с большей способностью выдерживать нагрузки.

Типы фундаментов глубокого заложения:
1. Фундамент колодцев

Фундамент колодца — это фундамент из простого бетона с большой высотой, который впадает в колодец, который пробурен для достижения глубокого слоя почвы, а затем укрепленные основания конструкции помещаются над этими основаниями.

2. Сваи

Свая — это длинный цилиндр или квадрат из прочного материала (дерева, бетона или стали), который будет проталкиваться или заливаться в почву, чтобы конструкции могли поддерживаться наверху.

Сваи обычно используются в следующих случаях:

  1. Почва настолько непрочная, поэтому мы используем сваи под усиленным основанием надстройки, чтобы переносить их нагрузку на слой почвы на большой глубине с возможностью нести нагрузки надстройки.
  2. Когда здание подвергается массивным сосредоточенным нагрузкам, например, в многоэтажных зданиях.
Типы свай:

Сваи по материалу делятся на:

1- Деревянные сваи

2- Металлические сваи

3- Бетонные сваи

Сваи по способу передачи нагрузок делятся на:

  1. Концевые опорные сваи
  2. Сваи фрикционные
3.Кессоны

Это огромные глубокие фундаменты разной формы и размеров

Факторы, определяющие проектирование фундаментов:

Проектирование фундамента означает определение его типа (мелкий или глубокий фундамент) и его размеров, а также арматуры.

Факторы, влияющие на проектирование фундаментов:

1- Величина нагрузок, которые фундамент передает на грунт.

2- Несущая способность почвы.

3- Характеристики используемой железобетонной стали.

Факторы, определяющие выбор подходящего типа фундамента для здания:

1- Высота здания:

Чем выше высота здания, тем больше сосредоточены нагрузки на почву. Логично, что тип фундамента, подходящий для малоэтажных домов, не подходит для высоких.

2- Назначение здания (жилое, административное, складское):

Назначение здания определяет количество нагрузок в нем и, следовательно, нагрузки, передаваемые от него на фундамент. Например, складские здания и многоэтажные автостоянки считаются более загруженными, чем административные здания, которые, в свою очередь, считаются более загруженными, чем жилые дома.

3- Тип почвы:

Существует так много типов грунтов, которые могут выдерживать высокие нагрузки, такие как каменная или каменистая почва, и других типов, которые несут меньшие нагрузки, например, песчаные или глинистые почвы.Подходящий фундамент для здания различается в зависимости от типа почвы на участке.

Практическая модель грунт-мелкий фундамент для нелинейного структурного анализа

Модели взаимодействия грунт-неглубокий фундамент, которые включены в большинство программ структурного анализа, обычно не обладают точностью и эффективностью или игнорируют некоторые аспекты поведения фундамента.Например, системы грунт-неглубокий фундамент показывают как маленькие, так и большие петли при увеличении реверсирования амплитуды нагрузки. В данной статье представлена ​​практическая модель макроэлемента для системы грунт-мелкий фундамент и ее устойчивость при одновременных горизонтальных и вертикальных нагрузках. Модель состоит из трех пружинных элементов: нелинейных горизонтальных, нелинейных вращательных и линейных вертикальных пружин. Предложенная модель макроэлемента была проверена с использованием результатов экспериментальных испытаний на крупномасштабных модельных фундаментах, подверженных малым и большим циклическим нагрузкам.

1. Введение

Несколько исследователей (среди прочих [1–5]) широко исследовали вопрос взаимодействия грунта и конструкции (SSI). Rayhani et al. [6] показали, что взаимодействие грунта и конструкции может усиливать или ослаблять сдвиг основания за счет инерционных и кинематических взаимодействий. Стюарт и др. [7] пришли к выводу, что влияние SSI на жесткие конструкции, основанные на почве, более значимо по сравнению с гибкими конструкциями. Bobet et al. [8] показали, что система грунт-конструкция является функцией относительной жесткости конструкции по сравнению с землей.Показано, что SSI является значительным при наличии мягких грунтов или при очень большой структурной массе [9]. Как следствие, проблема SSI может быть исключена из расчетов, если грунт, на котором основано сооружение, очень жесткий. При рассмотрении влияния взаимодействия грунт-конструкция в фундаментных изолированных многоэтажных конструкциях на упруго-слоистый грунт Спайракос и др. [10] обнаружили, что эффекты SSI значительны для приземистых легких зданий на грунтовом слое с низкой жесткостью. Хотя их исследование касалось гармонических возбуждений, оно все же дает представление об опасности пренебрежения SSI при проектировании базовых изолированных зданий.

При проектировании сейсмостойких конструкций нас больше всего интересуют коэффициенты снижения прочности для учета нелинейного поведения, которое может испытывать конструкция при землетрясении. Немногие исследователи [11, 12] в последнее время пытались оценить влияние SSI на факторы снижения силы. Eser et al. [11] показали, что наличие мягких грунтов снижает коэффициенты снижения прочности, что в первую очередь контролируется изменениями периода конструкции и пластичности смещения.

Включение SSI требует адекватного явного моделирования системы грунт-фундамент. Например, было предложено несколько моделей в зависимости от типа фундамента, его заделки и жесткости (среди прочего [13–15]). Федеральное агентство по чрезвычайным ситуациям [16] потребовало, чтобы жесткость фундамента определялась одним из следующих трех методов: (i) модель несвязанной пружины, состоящая из трех пружинных элементов, для неглубоких фундаментов, которые жестче, чем поддерживающий грунт; (ii) a конечно-элементная формулировка линейного (или нелинейного) поведения фундамента с использованием моделей Винклера для неглубоких фундаментов, которые менее жесткие, чем поддерживающий грунт; (iii) несвязанная модель Винклера для неглубоких фундаментов, которые являются гибкими по отношению к поддерживающему грунту.Однако Эль Ганайни и Эль Наггар [17] продемонстрировали, что метод развязки (Луч на нелинейном основании Винклера, BNWF) не способен точно предсказать осадку, наблюдаемую в фундаментах на мягких грунтах. Хотя его можно использовать для прогнозирования общей деформации фундамента, для BNWF требуется большое количество нелинейных пружин, что считается основным недостатком [17].

Для решения некоторых из вышеупомянутых проблем были предложены рецептуры макроэлементов.Первая формулировка была разработана Nova и Montrasio [18], а затем модифицирована и / или расширена другими исследователями [19–22], а недавно формулировки, разработанные Gajan et al. [23] и Shirato et al. [3]. Основными преимуществами таких моделей являются их простота и способность отражать глобальную реакцию несущих фундаментов [22, 24, 25]. Однако, с одной стороны, калибровка параметров макроэлементов накладывает ограничения на их применение в практических приложениях. И с другой стороны, знание того, что большинство доступных моделей макроэлементов основано на заданных ограничивающих поверхностях, создает другую проблему для их способности покрывать широкий круг задач [17].

При совершенно ином подходе к моделированию Эль-Шами и Замани [26] предложили новую технику на основе трехмерных частиц с использованием метода дискретных элементов (ЦМР) для анализа сейсмических характеристик систем грунт-фундамент-конструкция. В их модели почва идеализирована как совокупность сферических частиц с использованием DEM; основание считается жестким блоком, тогда как конструкция моделируется с использованием ряда сферических частиц в форме колонны, которая может быть зажата для имитации жесткой конструкции или скреплена для имитации гибкой конструкции заданной жесткости.

Чтобы преодолеть трудности с выполнением полного нелинейного моделирования, Seylabi et al. [27] предложили эквивалентную линеаризацию нелинейных систем грунт-конструкция с учетом как влияния SSI, так и нелинейного поведения конструкции на эквивалентные линейные параметры. В их модели конструкция смоделирована как упругопластический монолитный

Фундаменты мелкого заложения Брайя М. Дас

Первое всеобъемлющее руководство по фундаментам мелкого заложения

За последние несколько десятилетий несущая способность фундаментов мелкого заложения изучалась более тщательно, чем какие-либо другие предметы в области геотехники.Однако до сих пор в большинстве ссылок на фундаментную инженерию этому предмету была посвящена только одна глава. Фундаменты неглубокого заложения: несущая способность и оседание Provid

Первое всеобъемлющее руководство по фундаментам мелкого заложения

За последние несколько десятилетий несущая способность фундаментов мелкого заложения изучалась более тщательно, чем любой другой предмет геотехнической инженерии. Однако до сих пор в большинстве ссылок на фундаментную инженерию этому предмету была посвящена только одна глава. Фундаменты мелкого заложения: несущая способность и осадки — это то, чего ждали многие инженеры — краткий, исчерпывающий справочник, содержащий все соответствующие материалы о поведении фундаментов мелкого заложения при статических и динамических нагрузках, связанных с их предельной несущей способностью, допустимой несущей способностью и осадкой.

Методы оценки, сейсмическая нагрузка и экспериментальные результаты

Автор — известный эксперт — представляет различные теории, разработанные за последние пятьдесят лет для оценки предельной несущей способности фундаментов мелкого заложения при различных типах нагрузки и условиях грунта. Он обсуждает принципы оценки осадки фундамента и оценки увеличения напряжения в массиве грунта, поддерживающем фундамент. Нагрузка от землетрясения и ее влияние на предельную несущую способность привлекли большое внимание в последние годы, и автор дает обзор этих событий.Он также предлагает подробности относительно осадки постоянного фундамента, вызванной циклическими и кратковременными нагрузками, полученные из лабораторных и полевых экспериментальных наблюдений.

Прогресс в укреплении грунта

Исследователи добились устойчивого прогресса в оценке потенциала усиления грунта для уменьшения осадки и увеличения предельной и допустимой несущей способности фундаментов мелкого заложения. Эта книга представляет собой целую главу по этому вопросу, включая обсуждение используемых материалов: стальных оцинкованных полос, геотекстиля и георешетки.

Изложение Shallow Foundations четкое, краткое и наполнено примерами и упражнениями, иллюстрирующими теорию. Эта книга представляет собой исчерпывающее авторитетное руководство по несущей способности фундаментов мелкого заложения и влиянию различных типов грунтов, уклонов, осадки, армирования и сейсмической активности. Исследователи, студенты и практикующие инженеры будут приветствовать его добавление на свои справочные полки.

ФОНД

Выбор типа фундамента

Выбор подходящего
тип фундамента определяется некоторыми важными факторами, такими как

  1. Характер конструкции
  2. Нагрузки от
    структура
  3. Характеристика недр
  4. Выделенная стоимость
    фундамент

Поэтому принять решение о
тип фундамента, необходимо провести разведку недр.Тогда почва
характеристики в зоне поражения под зданием должны быть
тщательно оценен. Допустимая несущая способность пораженного грунта
затем следует оценить слои.

После этого исследования можно было
затем решите, следует ли использовать фундамент неглубокий или глубокий.

Мелкие фундаменты, такие как
опоры и плоты дешевле и проще в исполнении. Их можно было бы использовать, если бы
следующие два условия выполняются;

  1. Наложенное напряжение (Dp)
    вызванная зданием, находится в пределах допустимой несущей способности
    различных слоев почвы, как показано на рис.1.

Это условие выполнено
когда на рисунке 1 меньше и меньше, меньше и меньше и так далее.

  1. Здание могло выдержать
    ожидаемая осадка для данного типа фундамента

Если один или оба из этих двух
условия не могут быть выполнены использование глубоких фундаментов должно быть
считается.

Глубокие фундаменты используются, когда
верхние слои почвы мягкие, имеется хороший несущий слой на
разумная глубина.Толщина грунта, лежащего под несущим слоем, должна быть
достаточная прочность, чтобы противостоять наложенным напряжениям (Dp)
из-за нагрузок, передаваемых на опорный слой, как показано на рисунке 2.

Глубокие фундаменты обычно
сваи или опоры, которые передают нагрузку здания на хорошую опору
страта. Обычно они стоят дороже и требуют хорошо обученных инженеров для
выполнить.

Если исследуемые слои почвы
мягкий на значительной глубине, и на разумных
глубины, можно использовать плавучие фундаменты.

построить
плавающий фундамент, масса грунта, примерно равная весу
предлагаемое здание будет демонтировано и заменено зданием. В
в этом случае несущее напряжение под зданием будет равно весу
удаленной земли
(γD)

что меньше

(q a = γD + 2C)

а также
Дп
будет равно нулю.Это означает, что несущая способность под
здания меньше, чем (q a ), и ожидаемое поселение теоретически равно
нуль.

Наконец, инженер должен
подготовить смету стоимости наиболее перспективного типа фундамента
что представляет собой наиболее приемлемый компромисс между производительностью и
Стоимость.

Фундамент мелкого заложения

Фундаменты неглубокие — это те
выполняется у поверхности земли или на небольшой глубине.Как упоминалось ранее
в предыдущей главе фундаменты мелкого заложения использовались при грунтовых
разведка доказывает, что все слои почвы, затронутые зданием, могут
выдерживать наложенные напряжения (Dp)
не вызывая чрезмерных заселений.

Мелкие фундаменты либо
опоры или плоты.

Опоры

Фундамент является одним из
старейший и самый популярный вид фундаментов мелкого заложения.Опора — это
увеличение основания колонны или стены с целью распределения
нагрузка на поддерживающий грунт при давлении, соответствующем его свойствам.

Типы опор

Есть разные виды
основания, соответствующие характеру конструкции. Опоры можно классифицировать
на три основных класса

Настенный или ленточный фундамент

Он проходит под стеной мимо
его полная длина, как показано на рис.3. обычно используется в несущей стене
типовые конструкции.

Изолированный фундамент колонны

Он действует как основание для колонны.
Обычно используется для железобетонных зданий типа Скелтон. Это может
принимать любую форму, например квадратную, прямоугольную или круглую, как показано на рисунке 4.


Рис.4 Типовые раздвижные опоры

Комбинированная опора колонны

Это
комбинированное основание для внешней и внутренней колонн здания, рис.5.
Он также используется
когда две соседние колонны здания расположены близко друг к другу другой,
их опоры перекрывают

Распределение напряжений под опорами

Распределение напряжений под опорами
считается линейным, хотя на самом деле это не так. Ошибка
участие в этом предположении невелико, и на него можно не обращать внимания.

Загрузить сборники

Нагрузки, влияющие на обычные типы
строений:

  1. Статическая нагрузка (D.L)
  2. Живая нагрузка (L.L)
  3. Ветровая нагрузка (W.L)
  4. Землетрясение (E.L)

Статическая нагрузка

Полная статическая нагрузка, действующая на элементы
конструкции следует учитывать при проектировании.

Живая нагрузка

Маловероятно, что полная интенсивность
динамической нагрузки будет действовать одновременно на всех этажах
многоэтажный дом.Следовательно, своды правил допускают определенные
снижение интенсивности динамической нагрузки. Согласно египетскому кодексу
На практике допускается следующее снижение временной нагрузки:

или .
перекрытий Снижение временной нагрузки%

Земля
нулевой этаж%

1 ул
нулевой этаж%

2 nd
этаж 10.0%

3 рд
этаж 20,0%

4
этаж 30,0%

5 эт и
более 40,0%

Временная нагрузка не должна снижаться в течение
склады и общественные здания, такие как школы, кинотеатры и больницы.

Ветровые и землетрясения нагрузки

Когда здания высокие и узкие,
Необходимо учитывать давление ветра и землетрясение.


Допущение, использованное при проектировании спреда
Опоры

Теория анализа эластичности указывает на
что распределение напряжений под опорами, нагруженными симметрично, не является
униформа. Фактическое распределение напряжений зависит от типа материала.
под опорой и жесткостью опоры. Для опор на рыхлых
не связный материал, зерна почвы имеют тенденцию смещаться вбок на
края из-под груза, тогда как в центре почва относительно
ограничен.Это приводит к диаграмме давления, примерно такой, как показано на рисунке 6.
Для общего случая жестких оснований на связных и несвязных
материалы, Рис.6 показывает вероятное теоретическое распределение давления.
Высокое краевое давление можно объяснить тем, что краевой сдвиг должен
иметь место до урегулирования.

Потому что давление
интенсивность под фундаментом зависит от жесткости основания,
тип почвы и состояние почвы, проблема в основном
неопределенный.Обычно используется линейное распределение давления.
под опорами, и в этом тексте будет следовать этой процедуре. В
в любом случае небольшая разница в результатах проектирования при использовании линейного давления
распределение

Допустимые опорные напряжения под опорами

Фактор безопасности при расчете
допустимая несущая способность под фундаментом должна быть не менее 3
если учитываемые в проекте нагрузки равны статической нагрузке +
пониженная живая нагрузка.Коэффициент запаса прочности не должен быть меньше 2, когда
рассматривается наиболее тяжелое состояние нагрузки, а именно: статическая нагрузка + полный рабочий
нагрузка + ветровая нагрузка или землетрясения.

Нагрузки на надстройку обычно
рассчитывается на уровне земли. Если указано допустимое допустимое давление на опору, его следует уменьшить на объем бетона.
под землей на единицу площади основания, умноженную на
разница между удельным весом бетона и грунта.Если принять равной среднюю плотность грунта и бетона рис.7,
тогда следует уменьшить на

Конструктивное исполнение раздвижных опор

Для опоры на ноги
следующие позиции следует учитывать

1 ножницы

Напряжения сдвига съедали обычно
контролировать глубину расставленных опор.Критическое сечение для широкой балки
сдвиг показан на рис.8-а. Находится на расстоянии d от колонны или стены.
лицо. Значения касательных напряжений приведены в таблице 1.
разрез для продавливания сдвига (двусторонний диагональный сдвиг) показан на рис.8-б.
Он находится на расстоянии d / 2 от лицевой стороны колонны. Это предположение
в соответствии с Кодексом Американского института бетона (A.CI).


Таблица 1):
допустимые напряжения в бетоне и арматуре: —


Виды напряжений


условное обозначение


Допустимые напряжения в кг / см 2

Куб прочности

ж у.е.

180

200

250

300

Осевой комп.

f co

45

50

60

70

Простые изгибающие и эксцентрические усилия с большим эксцентриситетом

ж в

70

80

95

105

Напряжения сдвига

Плиты и опоры без армирования.

Другие участники

Элементы с армированием

в 1

в 1

в 2

7

5

15

8

6

17

9

7

19

9

7

21

Пробивные ножницы

q cp

7

8

9

10

Армирование

Низкоуглеродистая сталь 240/350

Сталь 280/450

Сталь 360/520

Сталь 400/600

f с

1400

1600

2000

2200

1400

1600

2000

2200

1400

1600

2000

2200

1400

1600

2000

2200

Пробивные ножницы обычно
контролировать глубину разложенных опор.Из принципов статики Рис. 8-б
, сила на критическом участке сдвига равна силе на
опора за пределами секции сдвига, вызванная чистым давлением грунта f n .

где q p
= допустимое напряжение сдвига при штамповке

= 8 кг / см 2 (для куба
сила = 160)

f n = чистое давление на грунт

b = Сторона колонны

d = глубина продавливания

Можно предположить, что
критический участок для продавливания сдвига находится на торце колонны, и в этом случае
допустимое напряжение сдвига при штамповке можно принять равным 10.0 кг / см 2
(для прочности куба = 160).

Основание обычно проектируется
чтобы обеспечить достаточную глубину, чтобы выдержать сдвиг бетона
без армирования полотном ..

2- Облигация

Напряжение связи рассчитывается как

.

где поперечная сила Q равна
взятые в том же критическом сечении для изгибающего момента или при изменении
бетонное сечение или стальная арматура.Для опор
постоянное сечение, сечение для склеивания находится на лицевой стороне колонны или стены. В
арматурный стержень должен иметь достаточную длину
д г
, Рис.9, чтобы избежать выдергивания (разрыва соединения) или
раскалывание бетона. Значение
d d вычисляется следующим образом:

Для первого расчета возьмем
f s
равно допустимой рабочей
стресс.Если рассчитанный
d d есть
больше имеющихся d d

затем пересчитайте d d
взяв
f с
равно фактическому напряжению стали.

Допустимая стоимость облигации
напряжение q b
следующие

3- Изгибающий момент

Критические разделы для
изгибающий момент определяется по рис.10 следующим образом:

Для бетонной стены и колонны,
это сечение берется на лицевой стороне стены или колонны рис.10-а.

Для кладки стены этот участок
берется посередине между серединой и краем стены Рис.10-б.

Для стальной колонны этот раздел
находится на полпути между краем опорной плиты и перед лицом
столбец Рис.(10-с).

Глубина, необходимая для сопротивления
изгибающий момент

4- Опора на опору

Когда железобетон
колонна передает свою нагрузку на опору, сталь колонны, которая
несущий часть груза, не может быть остановлен на опоре, так как
это может вызвать перегрузку бетона в зоне контакта колонны.Поэтому это
необходимо передать часть нагрузки, которую несет стальная колонна, на
напряжение сцепления с фундаментом путем удлинения стальной колонны или
дюбеля. С Рис.11:

где

f s — фактическое напряжение стали

5- Обычная бетонная опора под R.C. Опора

Распространенной практикой является размещение
простой бетонный слой под железобетонным основанием. Этот слой
около 20 см. до 40 см. Проекция C плоского бетонного слоя
зависит от ее толщины t. Ссылаясь на Рис.12, максимальный изгибающий момент
на единицу длины в сечении a-a равно

куда
f n

= чистое давление почвы.

Максимальное растягивающее напряжение
внизу раздела а-а
это:

ДИЗАЙН R.C. СТЕНОВЫЕ ОПОРЫ:

Основание стены представляет собой полосу
железобетон шире стены. На Рис.13 показаны различные типы
стеновые опоры. Тип, показанный на Рис. 13-а, используется для опор, несущих легкие.
нагрузки и размещены на однородном грунте с хорошей несущей способностью.Тип, показанный в
Рис.13-б используется, когда грунт под фундаментом неоднородный и
разная несущая способность. Используется тип, показанный на рисунках 13-c и 13-d.
для тяжелых нагрузок.

Процедура проектирования:

Рассмотрим 1.0 метров длиной
стена.

1.
Найдите P на уровне земли.

2.
Найти, если дано, то оно сокращается или вычисляется P T .

3.
Вычислить площадь опоры

Если напряжение связи небезопасно,
либо увеличиваем за счет использования стальных стержней меньшего диаметра, либо
увеличение

О
глубина d.Сгибая вверх
стальная арматура по краям фундамента помогает противостоять сцеплению
стрессы. Диаметр основной стальной арматуры не должен быть меньше
более 12 мм. Для предотвращения растрескивания из-за неравномерного оседания под стеной
Само по себе дополнительное армирование используется, как показано на Рис. 13-c и d. это
принимается как 1,0% от поперечного сечения бетона под стеной и распределяется
одинаково сверху и снизу.

19.Проверить анкерный залог

Конструкция одностоечной опоры

одноколонный фундамент обычно квадратный в плане, прямоугольный фундамент —
используется, если есть ограничение в одном направлении или если поддерживаемые столбцы
слишком удлиненный.прямоугольное сечение. В простейшем виде они
состоят из единой плиты ФИг.15-а. На рис. 15-б изображена колонна на пьедестале.
опора, пьедестал обеспечивает глубину для более благоприятной передачи нагрузки
и во многих случаях

требуется
для обеспечения необходимой длины дюбелей. Наклонные опоры, такие как
те, что на Рис. 15-c

Методика расчета опор квадратной колонны

Американец
Кодексы практики
равно
момент около критического сечения y-y чистого напряжения, действующего на
вылупился.area abcd Рис. 16-a. Согласно континентальным кодексам практики M max .
равно любому; момент действия чистых напряжений
на заштрихованной области abgh, показанной на рис. 16-b, около критического сечения y-y
или 0,85 момент результирующих напряжений, действующих на площадь abcd на рис. 16-а.
о г-у.

8.Определите глубину, необходимую для сопротивления продавливанию d p .

9.

Рассчитайте d м , глубину сопротивления

b =
B, сторона опоры в соответствии с Американскими нормами практики

.

b = (b c + 20) см
где b c — сторона колонны согласно Continental
Кодексы практики.

Следует отметить, что d м
вычисленное континентальным методом больше, чем вычисленное американским кодом.
Большая глубина уменьшает количество стальной арматуры и обычно
соответствует глубине, необходимой для штамповки. Американский код дает меньший d м
с более высоким значением стальной арматуры, но с использованием высокопрочной стали,
площадь стальной арматуры можно уменьшить. В этом тексте
изгибающий момент рассчитывается в соответствии с Американскими нормами, а b
принимается равным b c + 20, когда используется обычная сталь, или
равно B, когда используется сталь с высоким пределом прочности.

Глубина основания d может быть
принимает любое значение между двумя значениями, вычисленными двумя вышеуказанными методами. Это
Следует отметить, что при одинаковом изгибающем моменте большая глубина будет
требуется меньшая площадь арматурной стали, которая может не удовлетворять требованиям
минимальный процент стали. Также небольшая глубина потребует большой площади стали.
особенно при использовании обычной мягкой стали.

10. Выберите большее из d m или d p

11.Проверить d d , глубину установки дюбеля колонны.

Методика расчета прямоугольной опоры

Процедура такая же, как и
квадратный фундамент. Глубина обычно контролируется пробивными ножницами, кроме случаев, когда
отношение длины к ширине велико, широкий сдвиг балки может контролировать
глубина. Критические участки сдвига находятся на расстоянии d по обе стороны от
столбец Рис.17-а. Изгибающий момент рассчитывается для обоих направлений, вокруг оси 1-1 и вокруг оси b-b, как показано на рис. 17.b и c.

Армирование в длинном
направление (сторона L) рассчитывается по изгибающему моменту и равномерно распределяется по ширине B.
армирование в коротком направлении (сторона B) рассчитывается по изгибу
момент
М 11 .При размещении стержней в коротком направлении один
необходимо учитывать, что опора, обеспечиваемая опорой колонны, является
сосредоточены около середины, следовательно, зона опоры, прилегающая к
столбец более эффективен в сопротивлении изгибу. По этой причине
произведена регулировка стали в коротком направлении. Эта регулировка помещает
процент стали в зоне с центром в колонне шириной, равной
к длине короткого направления опоры.Остальная часть
Арматура должна быть равномерно распределена в двух концевых зонах, рис.18.
По данным Американского института бетона, процент стали в
центральная зона присвоена:

где S = отношение длинной стороны к короткой
сторона, L / B.

SEMELLES

Одиночные опоры должны быть связаны
вместе пучками, известными как семеллы, как показано на рис.19.a. Их функция
нести стены первого этажа и переносить их нагрузки на опоры.
Семелла могут предотвратить относительное оседание, если они очень жесткие.
и сильно усиленный.

Семелле представляет собой неразрезную железобетонную балку прямоугольного сечения.
несущий вес стены. Ширина семели равна
ширина стены плюс 5 см и не должна быть меньше 25 см. Должно
сопротивляться усилиям сдвига и изгибающим моментам, которым он подвергается,
semelles должен

быть усиленным сверху и снизу
для противодействия дифференциальным расчетам.равным усилением A s .

Верх
уровень семелы должен быть на 20 см ниже уровня платформы.
окружающие здание. Если уровень первого этажа выше
уровень платформы, уровень внутренней полумесяца можно принять 20 см.
ниже уровня первого этажа

Опоры, подверженные воздействию момента

Введение

Многие основы сопротивляются
в дополнение к концентрической вертикальной нагрузке, момент вокруг одной или обеих осей
основания.Момент может возникнуть из-за нагрузки, приложенной к центру
основание. Примеры основ, которые должны противостоять моменту, — это основания для
подпорные стены, опоры, опоры мостов и колонны
фундаменты высотных зданий, где давление ветра вызывает заметный прогиб
моменты у основания колонн.

Результирующее давление почвы
под внецентренно нагруженным фундаментом считается совпадающим с осевым
нагрузка P, но не с центром тяжести фундамента, что приводит к линейному
неравномерное распределение давления.Максимальное давление не должно превышать
максимально допустимое давление на почву. Наклон опоры из-за
возможна более высокая интенсивность давления почвы на пятку. Это может
быть уменьшенным за счет использования большого запаса прочности при расчете допустимого грунта
давление. Глава 1, раздел «Опоры с эксцентрическими или наклонными нагрузками»
обеспечить снижение допустимого давления на грунт для внецентренно нагруженных
опоры.

Опоры с моментами или эксцентриситетом относительно
Одна ось

где P =
вертикальная нагрузка или равнодействующая сила

е =
Эксцентриситет вертикальной нагрузки или равнодействующей силы

q =
интенсивность давления грунта (+ = сжатие)

и не должно быть больше допустимого

давление почвы q a

c-Нагрузка P за пределами средней

Когда
нагрузка P находится за пределами средней трети, то есть
е
>
L / 6,
Уравнение7 означает, что под опорой возникнет напряжение. Однако нет
между почвой и основанием может возникнуть напряжение, поэтому напряжение
напряжения не принимаются во внимание, а площадь основания, которая находится в

натяжение не считается эффективным при несении нагрузки. Следовательно
диаграмма давления на почву должна всегда находиться в состоянии сжатия, как показано на

Рис.21-.c. За

то
эксцентриситет е

>
L / 6
с участием
относительно только одной оси, можно управлять уравнениями для максимальной почвы
давление q 1 , найдя диаграмму давления сжатия,
результирующая должна быть одинаковой и на одной линии действия нагрузки P.Этот
диаграмма примет форму треугольника со стороной = q 1 и основанием
=

Опоры с моментами или эксцентриситетом относительно
обе оси

Для опор с моментами или
эксцентриситет относительно обеих осей Рис. 22, давление может быть вычислено
следующее уравнение

a- Нейтральная ось за пределами базы:

Если нейтральная ось находится снаружи
основание, то все давление q находится в состоянии сжатия и уравнение (9) имеет вид
действительный.Расположение максимального и минимального давления на почву может быть
определяется быстро, наблюдая направления моментов. Максимум
давление q 1 находится в точке (1)

Рис.22-а и минимум
давление q 2 находится в точке (3). Давление q 1 и q 2
определяются из уравнения (9).

б- Нейтральная ось режет основание

Если нейтральная ось режет
основание, то некоторый участок основания подвергается растяжению рис.22. Поскольку
почва вряд ли захватит опору, чтобы удерживать ее на месте, поэтому
диаграмму, показанную на рис. 22-б, и уравнение (9) использовать нельзя. Расчет
Максимальное давление на почву должно основываться на фактически сжатой площади.
Диаграмма сжатия должна быть найдена таким образом, чтобы ее результирующая
должны быть равны и на одной линии действия силы P. Самый простой
способ получить эту диаграмму методом проб и ошибок:

1-
найти
давление почвы во всех углах, применяя уравнение.(9).

2-

Определите положение нейтральной оси N-A (линия нулевого давления).
Это не прямая линия, но предполагается, что это так.
Поэтому необходимо найти только две точки, по одной на каждой соседней стороне.
основания.

3-
Выбрать другой
нейтральная ось (N’-A ‘) параллельна (N-A), но несколько ближе к месту
результирующей нагрузки P, действующей на опору.

4-
Вычислить
момент инерции сжатой области по отношению к N’-A ‘. В
Самая простая процедура — нарисовать опору в масштабе и разделить площадь на
прямоугольники и треугольники

4.4 КОНСТРУКЦИЯ ИЗДАННЫХ ФУНТОВ
К МОМЕНТУ

Основная проблема в
конструкция эксцентрично нагруженных опор — это определение
распределение давления под опорами. Как только они будут определены,
процедура проектирования будет аналогична концентрически нагруженным опорам,
выбраны критические сечения и произведены расчеты напряжений от
момент и сдвиг сделаны.

Где
изгибающие моменты на колонне поступают с любого направления, например от
ветровые нагрузки, квадратный фундамент; предпочтительнее, если не хватает места
диктуют выбор прямоугольной опоры. Если изгибающие моменты действуют всегда
в том же направлении, что и в колоннах, поддерживающих жесткие каркасные конструкции,
опору можно удлинить в направлении эксцентриситета

Размеры фундамента B
и L пропорциональны таким образом, чтобы максимальное давление на носке
не превышает допустимого давления почвы.

Если
колонна несет постоянный изгибающий момент, например, кронштейн, несущий
длительной нагрузке, может оказаться преимуществом смещение колонны от центра на
основания так, чтобы эксцентриситет результирующей нагрузки был равен нулю.
В этом случае распределение давления на основание будет равномерным. Долго
носок опоры должен быть выполнен в виде консоли вокруг
сечение лицевой стороны колонны, Расчет глубины сопротивления
пробивные ножницы и ножницы для широкой балки такие же, как при опоре фундаментов
концентрические нагрузки

Поскольку изгибающий момент на
основание колонны, вероятно, будет большим для этого типа фундамента,
арматура колонны должна быть правильно привязана к фундаменту.,
Детали армирования для этого типа фундаментов показаны на рис.24.

Для квадратного фундамента это
как правило, удобнее всего сохранять одинаковый диаметр стержня и расстояние между ними
направления, чтобы избежать путаницы при креплении стали.

Комбинированные опоры

Введение

В предыдущем разделе были представлены элементы оформления разворота и стены.
опоры.В этом разделе рассматриваются некоторые из наиболее сложных
проблемы с мелким фундаментом. Среди них опоры, поддерживающие более
один столбец в ряд (комбинированные опоры), который может быть прямоугольным или
трапециевидной формы или две накладки, соединенные балкой, как ремешок
опора. Эксцентрично нагруженные опоры и опоры несимметричной формы
тоже будет рассмотрено.

Прямоугольные комбинированные опоры

когда
линии собственности, расположение оборудования, расстояние между колоннами или другие соображения
ограничить расстояние от фундамента в местах расположения колонн, возможное решение:
использование фундамента прямоугольной формы.Этот тип фундамента может поддерживать
два столбца, как показано на рисунках 25 и 26, или более двух столбцов с
только небольшая модификация процедуры расчета. Эти опоры
обычно проектируется, предполагая линейное распределение напряжения на дне
основания, и если равнодействующая давления почвы совпадает с
равнодействующая нагрузок (и центр тяжести опоры), грунт
предполагается, что давление равномерно распределено, линейное давление
Распределение подразумевает твердую опору на однородной почве.Настоящий
опора, как правило, не жесткая, и давление под ней не равномерное, но
Было обнаружено, что решения, использующие эту концепцию, являются адекватными. Этот
Концепция также приводит к довольно консервативному дизайну.

Конструкция жесткой прямоугольной опоры заключается в определении
расположение центра тяжести (cg) нагрузок на колонну и длина
и такие размеры ширины, чтобы центр тяжести основания и центр
силы тяжести колонны нагрузки совпадают.С размерами фундамента
установили, ножницы

можно подготовить диаграмму моментов, выбрать глубину сдвига (опять же
является обычным, чтобы сделать глубину достаточной для сдвига без использования сдвига
арматура для косвенного удовлетворения требований к жесткости), и армирование
сталь, выбранная для требований к гибке. Критические секции на сдвиг, оба
диагональное натяжение и широкая балка должны приниматься, как указано в предыдущем
раздел.Максимальные положительные и отрицательные моменты используются при проектировании
армирующей стали, и в результате получится сталь как в нижней, так и в верхней части
луч.

В коротком направлении очевидно, что вся длина не будет
эффективен в сопротивлении изгибу. Эта зона, ближайшая к колонне, будет наиболее
эффективен для изгиба, и рекомендуется использовать этот подход.
Это в основном то, что Кодекс ACI определяет в Ст.15.4.4 для прямоугольного
опоры

Если принято, что зона, включающая столбцы, является наиболее
эффективная, какой должна быть ширина этой зоны? Конечно, это должно быть что-то
больше ширины столбца. Наверное, не должно быть больше
ширина столбца плюс d до 1,5d, в зависимости от расположения столбца на основе
аналитическая работа автора, отсутствие руководства по Кодексу и признание того, что
дополнительная сталь «укрепит» зону и увеличит моменты в этой зоне
и уменьшить момент выхода из зоны.Эффективная ширина при использовании этого метода
проиллюстрирован на рис.27.
Для оставшейся части фундамента в коротком направлении Кодекс ACI
Должно использоваться требование для минимального процентного содержания стали (ст. 10.5 или 7.13).

При выборе размеров для комбинированного фундамента размер длины равен
несколько критично, если необходимо иметь диаграммы сдвига и момента
математически близко как проверка ошибок.Это означает, что если длина
точно вычисленное значение из местоположения cg столбцов,
Эксцентриситет будет внесен в основание, что приведет к нелинейному
диаграмма давления грунта. Однако фактическая длина в заводском состоянии должна быть
округляется до практической длины, скажем, с точностью до 0,25 или 0,5 фута (от 7,5 до 15
см).

Нагрузки на колонну могут быть приняты как сосредоточенные нагрузки для расчета сдвига и
диаграммы моментов.Для расчета значений сдвига и момента на краю (торце)
столбца следует использовать. Результирующая ошибка при использовании этого подхода:
незначительно Рис. (28)

Если фундамент загружен более чем двумя колоннами, проблема все еще
статически детерминированный; реакции (нагрузки на колонку) известны также как
распределенная нагрузка, то есть давление грунта.

Методика расчета прямоугольной комбинированной опоры: —

Ссылаясь на рис.29, этапы проектирования можно резюмировать следующим образом:

1-

Найдите направление применения полученного R. Это исправление L / 2, поскольку y равно
известные и ограниченные. Следует указать, что если длина L не равна
точно рассчитанное значение, эксцентриситет будет введен в
основания, в результате чего получается нелинейная диаграмма давления грунта.Фактическое исполнение
длину, однако, следует округлить до практической длины, например, до
ближайшие 5 см или 10 см.

максимальный + ve момент в точке K, где сила сдвига = ноль

6-

Определите глубину сдвига. Принято делать глубину адекватной
для сдвига без использования сдвига
армирование. Критический участок для сдвига находится на расстоянии d от грани.
столбца с максимальным

сдвиг, рис.30

7-Определить
глубина продавливания сдвига для обеих колонн. Согласно ACI,
критическое сечение это на d / 2 от грани колонны. Рис.30.

9-д
выбран наибольший из

т = д +
От 5 до 8 см.

11-
Проверьте напряжение связи и длину анкеровки d.

12-

Короткое направление:

Нагрузки на колонны распределяются поперечно поперечными балками (скрытыми), одна
под каждым столбцом.Длина балок равна ширине
опоры B. Эффективную ширину поперечной балки можно принять как минимум
из следующих:

а-

Ширина колонны a + 2 d или ширина колонны a + d + проекция фундамента
за столбцом y, рис.31.

б-

Ширина подошвы

Следует отметить, что код ACI считает, что эффективная ширина
поперечная балка равна ширине колонны a + d или ширине колонны a + d / 2 + y.
Поперечный изгибающий момент M T1 в колонне (1) равен

Поперечная арматура должна быть распределена по полезной ширине.
поперечной балки.Для остальной части фундамента минимум
следует использовать процентную сталь. Напряжения связи и длина анкеровки d d ,
следует проверить.

Стойка комбинированная трапециевидная: —

Комбинированная трапециевидная опора для двух колонн, используемая, когда колонна несет
самая большая нагрузка находится рядом с линией собственности, где проекция ограничена или
когда есть ограничение на общую длину фундамента.Ссылаясь на
Рис.32

,

Положение результирующей нагрузки на столбцы R определяет положение
центриод трапеции. Длина L определяется, а площадь A равна
вычислено из:

Процедура проектирования такая же, как и для прямоугольного комбинированного фундамента, за исключением того, что
диаграмма сдвига будет кривой второй степени, а изгибающий момент —
кривая третьей степени.

Конструкция ременных или консольных опор

Можно использовать ленточную опору.
где расстояние между колоннами настолько велико, что комбинированная или трапециевидная
опора становится довольно узкой, что приводит к высоким изгибающим моментам, или где, как в предыдущем разделе.

ремешок
основание состоит из двух опор колонн, соединенных элементом, называемым
ремень, балка или консоль, передающая момент извне
опора.Рис.33 иллюстрирует ленточную опору. Поскольку ремешок предназначен для

момент, либо это должно быть
образуются вне контакта с почвой или почву следует разрыхлить на
на несколько дюймов ниже ремешка, чтобы ремешок не оказывал давления на грунт
действуя по нему. Для простоты разбора, если ремешок есть. не очень долго,
весом ремешка можно пренебречь.

При разработке ленточной опоры
сначала необходимо выровнять опоры.Это делается при условии, что
равномерное давление грунта под основаниями; то есть 1 рандов и 2 рандов
(Рис.33) действуют в центре опоры.

Ремешок должен быть массивным
член, чтобы это решение было действительным. Развитие уравнения 1 подразумевает жесткую
вращение тела; таким образом, если ремень не может передать эксцентрик
момент из столбца 1 без вращения, решение не действует.Избегать
рекомендуется вращение внешней опоры.

I планка / I опора
> 2

Желательно пропорции
обе опоры так, чтобы B и q были как можно более равны для управления
дифференциальные расчеты.

Методика проектирования опор ремня

реакция под интерьер
фундамент будет уменьшен на то же значение, как показано на Рис.33

1-
Дизайн начинается с пробной стоимости

евро.

6-
Убедитесь, что центр тяжести площадей двух опор
совпадают с равнодействующей нагрузок на колонну.

7-
Рассчитайте моменты и сдвиг в различных частях ремня.
опора.

8-
Дизайн ремешка

Ремешок представляет собой
однопролетная балка нагружена вверх нагрузками, передаваемыми ей двумя
опор и поддерживаются нисходящими реакциями по центральным линиям двух
столбцы.Таким образом, нагрузка вверх по длине L равна R 1 / L.
т / м ‘. Местоположение максимального момента получается приравниванием сдвига
сила до нуля. Момент уменьшается к внутренней колонне и равен нулю.
по центральной линии этого столбца. Следовательно, половина армирования ремня составляет
прекращено там, где больше нет необходимости, а вторая половина продолжается до
внутренняя колонна. Проверьте напряжения сдвига и используйте хомуты и изогнутые стержни, если
необходимо.

9-
Конструкция наружной опоры

Внешняя опора действует
точно так же, как настенный фундамент длиной, равной L. Хотя колонна
расположен на краю, балансировка ремня такова, что
передавать реакцию R 1 равномерно по длине L 1
Таким образом достигается желаемое равномерное давление почвы. Дизайн выполнен
точно так же, как настенный фундамент.

10-
Дизайн межкомнатной опоры

Внутренняя опора может быть
спроектирован как простой одноколонный фундамент. Главное отличие в том, что
Пробивные ножницы следует проверять по периметру fghj, рис.33.

ФУНДАМЕНТЫ ПЛОТЫ

Введение

Фундамент плота
непрерывные опоры, которые покрывают всю площадь под конструкцией и
поддерживает все стены и колонны.Термин мат также используется для обозначения фундамента.
этого типа. Обычно используется на почвах с низкой несущей способностью и там, где
площадь, покрытая расстеленными опорами, составляет более половины площади, покрытой
структура. Плотный фундамент применяется и там, где в грунтовой массе содержится
сжимаемые линзы или почва достаточно неустойчива, так что дифференциал
урегулирование будет трудно контролировать. Плот имеет тенденцию преодолевать мост
неустойчивые отложения и снижает дифференциальную осадку.

Несущая способность плотов по песку

Биологическая способность
основания на песке увеличивается по мере увеличения ширины. Благодаря большой ширине
плота по сравнению с шириной обычной опоры, допустимая
вместимость под плотом будет намного больше, чем под опорой.

Было замечено на практике
что при допустимой несущей способности под плотом, равной удвоенной
допустимая несущая способность
определяется для обычной опоры.отдых на том же песке даст
разумная и приемлемая сумма урегулирования.

Если уровень грунтовых вод находится на
глубина равна или больше B, ширина плота, допустимая
Несущая способность, определенная для сухих условий, не должна уменьшаться. Если
есть вероятность, что уровень грунтовых вод поднимается, пока не затопит
площадка, допустимая несущая способность
следует уменьшить на 50%.Если
уровень грунтовых вод находится на промежуточной глубине между B и основанием
плот, следует сделать соответствующее уменьшение от нуля до 50%.

Несущая способность плотов по глине.

В глинах несущая способность
не влияет на ширину фундамента Следовательно, подшипник
вместимость под плотом будет такая же, как и под обычным основанием.

Если предполагаемый дифференциал
осадка под плотом более чем терпима или если вес
здание, разделенное на его площадь, дает несущее напряжение больше, чем
допустимая несущая способность, плавающий или частично плавающий фундамент должен
быть на рассмотрении.

Выполнить плавающий
фундамент, раскопки должны проводиться до глубины D, на которой
вес выкопанного
почва равна весу конструкции, рисунок 2.В этом случае
избыточное наложенное напряжение
Δp на уровне фундамента равна нулю и, следовательно,
здание не пострадает.

Если полный вес
building = Q

и вес удаленной почвы
= W с

и превышение нагрузки при
уровень фундамента = Q e

\ Q e = QW s

В случае плавающего фундамента
;

Q
= Ш с
и, следовательно, Q e
= Ноль

В случае частично плавающего
фундамент, Q e
имеет определенный
значение, которое при делении на площадь основания дает допустимый подшипник
емкость почвы;

Проектирование плотных фундаментов;

Плоты могут быть жесткими.
конструкции (так называемый традиционный анализ), при которых давление грунта действует
против плиты плота предполагается равномерно распределенным и равным
общий вес постройки, деленный на площадь плота.Это
правильно, если столбцы более или менее загружены и расположены на одинаковом расстоянии,
но это требование сложно выполнить на практике, поэтому допускается
что нагрузки на колонны и расстояния должны изменяться в пределах 20%. Однако если
нисходящие нагрузки на одних участках намного больше, чем на других, это
желательно разделить плот на разные зоны и оформить каждую зону на
соответствующее среднее давление. Непрерывность плиты между такими
области обычно предоставляются, хотя для областей с большими различиями в
давления рекомендуется выполнить вертикальный строительный шов через
перекрытие и надстройка для обеспечения дифференциальной осадки.

В гибком плотном фундаменте
дизайн не может быть основан только на требованиях к прочности, но это необходимо
подвергнуться из-за прогнозируемого заселения. Толщина и
количество усиления плота следует подбирать таким образом, чтобы
предотвратить развитие трещин в плите. Поскольку дифференциальный расчет
не учтено в конструктивном дизайне, принято усиливать
плот с вдвое большей теоретической арматурой.Количество
сталь можно принять как 1% площади поперечного сечения, разделенной сверху и
дно. Толщина плиты не должна быть больше 0,01 от
радиус кривизны. Толщина может быть увеличена около колонн до для предотвращения разрушения при сдвиге.

Есть два типа фундаментов:

1-
Плоская плита перекрытия, которая представляет собой перевернутую плоскую плиту Рис.34-а. Если
толщина плиты недостаточна, чтобы противостоять продавливанию под колонны,
пьедесталы могут использоваться над плитой Рис. 34-.b или, ниже плиты, с помощью
утолщение плоской плиты под колоннами, как показано на Рис. 34-c.

2-
Плита и балка на плоту, есть. перевернутый R.C. пол,
состоит из плит и балок, идущих вдоль колонны, рядами в обоих направлениях,
Рис.34-d, он также называется ребристым матом. Если желателен сплошной пол в
цоколь, ребра (балки) могут быть размещены под плитой, рис.34-е.

Конструкция плота плоской перекрытия

Плот, который
равномерной толщины, делится на полосы столбцов и средние полосы как
показано на рис. 35-а. Ширина полосы столбцов равна b + 2d, где b =
сторона колонки. Глубину плота d можно принять примерно равной 1/10
свободный промежуток между столбцами.Также ширину полосы столбца можно принять
равняется 3 б.

Планки колонн выполнены в виде
неразрезные балки, нагруженные треугольными нагрузками, как показано на рис. 35-b. Сеть
интенсивность равномерного восходящего давления f n под любой площадью, для
Например, площадь DEFG может быть принята равной одной четвертой общей нагрузки
на столбцах D, E, F и G, разделенных на площадь DEFG.

Суммарные нагрузки, действующие на
планка колонны BDEQ, рис.35-a приняты в виде треугольных диаграмм нагружения.
на рис. 35-б. Общая нагрузка на деталь DE, P DE , принимается равной
чистое давление, действующее на площадь DHEJ.

Конструкция жесткого плота (традиционный метод)

Размер плота
устанавливается равнодействующая всех нагрузок и определяется давление почвы.
вычисляется в различных местах под основанием по формуле.

Плот подразделяется на
ряд непрерывных полос (балок) с центром в рядах колонн, как показано на
Рис.37.

Диаграммы сдвига и момента
могут быть установлены с использованием либо комбинированного анализа фундамента, либо балочного момента
Коэффициент Коэффициенты момента балки. Коэффициент момента балки
PI 2 /10
для длинных направлений и
Для коротких направлений может быть принят PI 2 /8.Отрицательный и
положительные моменты примем равными. Глубина выбрана так, чтобы удовлетворить
требования к сдвигу без использования хомутов и растягивающей арматуры
выбрано. Глубина обычно будет постоянной, но требования к стали могут
варьироваться от полосы к полосе. Аналогично анализируется и перпендикулярное направление.

Расчет перекрытия и фермы (ребристый мат)

Если столбец загружается и
интервалы равны или варьируются в пределах 20%, чистое восходящее давление f n
действие на плот предполагается равномерным и равным Q / A.

где

Q = вес здания при
уровень земли, и

A = площадь плота (по
за пределами внешних колонн).

Если это давление больше
чем чистое допустимое давление на грунт, площадь плота должна быть
увеличена до площади, достаточно большой, чтобы снизить равномерное давление на сетку
допустимое значение. Этого можно добиться, выполнив выступ плиты за пределы
внешняя грань внешних колонн.

Ссылаясь на Рис. 38,
различные элементы плота могут иметь следующую конструкцию:

Конструкция плиты:

1-Расчет поперечных балок B 1 и B 2

Равномерно распределенная нагрузка / м ‘
на

Пусть R 1 и R 2
— центральная реакция балок B 1 и B 2 на
центральный дальний свет В 3 соответственно.Концевые балки B 1
несет только часть нагрузки, которую несет балка B 2 и, следовательно,
центральная реакция R 1 принимается равной

KR 2 где K —
коэффициент, основанный на сравнительной области, то

Также предполагается, что сумма
центральных реакций от поперечных балок B 1 и B 2
равно суммарным нагрузкам от центральных колонн, таким образом,

2R 1 + 8R 2
= 2-пол. 1 + 2-пол. 2
(2)

Решение уравнений.(1) и (2), R 1
и R 2 может быть определен.

Изгибающий момент и сдвиг
силовые диаграммы можно нарисовать, как показано на рис.39. Реакции R 1
и R 2 можно определить, приравняв сумму вертикальных сил
до нуля. Центральное сечение балок при положительном изгибающем моменте может быть
выполнен в виде Т-образной балки, поскольку плита находится на стороне сжатия. Разделы
балки под центральной балкой B 3 должны быть прямоугольными
раздел.

2- Конструкция центральной главной балки B 3

Нагрузка, усилие сдвига,
диаграммы и диаграммы изгибающего момента показаны на рис. 40-а. Раздел может быть
выполнен в виде Т-образной балки.

3-
Конструкция центральной главной балки В 4

Нагрузка, сила сдвига,
и диаграммы изгибающего момента показаны на рис.40-б Разрез может быть
выполнен в виде Т-образной балки

Несущая способность неглубокого фундамента

Несущая способность неглубокого фундамента

  • Несущая способность
    способность грунта выдерживать нагрузку от фундамента, не вызывая
    нарушение сдвига или чрезмерная осадка.

  • знак несущей способности (B.C) и единицы давления тонна / м 2 ,
    КН / м 2 , кг / см 2 , фунт / фут 2 и т. Д.
    Давление подшипника


Определения
:

1.

Окончательный B.C (q ult )

Это валовое давление в
основание фундамента, при котором грунт разрушается при сдвиге.Он не используется для
дизайн, потому что он имеет большую ценность

2.
Сеть
окончательная BC (q u net )

Это чистое увеличение давления
у основания фундамента причина отказа

q u net =
q ult

γ DF

Где:

γ DF
= Избыточное давление на уровне фундамента

q ult
= Окончательный B.C

q u
net
= Чистая окончательная

до н.э.

3.
Сеть
безопасная несущая способность (q н.с ):

Это давление, при котором
фундамент спроектирован.

q н.с =

Где:

F.S = коэффициент
безопасность равна от (2 до 5)

4.
Безопасно
Несущая способность (q s ):

Это означает полную безопасность
Несущая способность, использованная в конструкции.

q s
= Q гс = q нс + γD

знак равно
+ γD

5.
Сеть
безопасное расчетное давление q н.п.

Это чистое давление, которое
почву разносят без увеличения допустимой осадки.


6.
Сеть
допустимый BC q n.all

Это чистое давление, которое
могут использоваться для проектирования фундамента, что гарантирует отсутствие
разрушение при сдвиге или оседание в пределах предела, чтобы выбрать
допустимый Б.С (q , всего ).

Если чистый безопасный расчет
давление больше, чем нетто безопасное B.c

q н.п. >
q н.с.

q все
= Q н.с

Если чистый сейф B.C больше, чем
чистое безопасное расчетное давление допустимое значение B.C равно чистому безопасному
расчетное давление.

q н.с >
q п.п

q все
= Q н.п.

где:

q н.с
= Сетевой сейф

до н.э.

q н.п.
= Чистое расчетное давление

q все =
Допустимая чистая BC (Расчетная допустимая BC)


Разрушение при сдвиге
:

Провал почвы при
уровень фундамента из-за прочности на сдвиг произошел при увеличении фундамента
нагрузки или уменьшили сопротивление грунта сдвигу.

Произошел отказ сдвига
на многих этапах:

I)

I этап
:
Грунт в упругом корпусе и ведет себя как часть фундамента,
и за счет увеличения нагрузки выполнила область I, которая называется активной зоной.

II)

II этап
:
На этом этапе нагрузка на фундамент воздействует на активную зону и соседний грунт.
Так выполним область, которая называется дугой зоны логарифмической спирали.

III)

III этап
:
При увеличении нагрузки выполняется третья часть кривой, в которой почва
в пассивном случае это заставило противостоять неудаче.

Почва разваливается при нагрузке на
фундамент увеличился и стал больше, чем сопротивление почвы или B.C почвы. Увидеть
Рисунок 1).

В этом случае есть
трехкомпонентный, чтобы противостоять разрушению почвы.

Я)
п ) γ
= Компонент, произведенный по весу зоны сдвига II, III.

II)
п ) в
= Компонент, создаваемый когезионным напряжением.

III)
п ) q
= Компонент, произведенный за счет надбавки q.


Несущая способность Терзаги
Теория
:


Предположения Терзаги:

Провал для
Теория Терзаги, представленная на рис. (2):

1.
В
основание ступни шероховатое, чтобы предотвратить смещение при сдвиге.

2.
В
основание — неглубокий фундамент, т.е. глубина фундамента меньше ширины
ступней

D f ≤ B

3.
Сдвиг
сила выше уровня основания стопы незначительна. т.е. C = 0
выше (F.L).

4.

Рассмотрим только добавку, которая создается как равномерное давление q = γD F
на уровне фундамента.

5.
В
нагрузка на фундамент вертикальная и равномерная.

6.
В
стопа — длинная полоска стопы.

Как упоминалось ранее.


q ult = (P p ) γ + (P p ) c
+ (П п ) кв

(P p ) γ = Компонент, образованный когезионным напряжением.

п ) в
= Компонент, произведенный за счет доплаты q = γD F

п ) q
= Компонент, произведенный по весу почвы в зоне II, III.


q ult = C N c
+ q N q + 0,50 γ B N
γ

N c ,
N q , N γ
= Безразмерный коэффициент несущей способности зависит от угла сдвига
сопротивление φ.

N q =

а =


e

с
=

N γ
=

К п
= = Коэффициент пассивного давления грунта.


Несущая способность A.R.E
Уравнение
:

:

1.

.

2.

3.

4.

.

d

d

Я.
При сосредоточенной вертикальной центральной нагрузке

q ult
= CN c λ c + qN q λ q +
γ 2 BN γ λ γ

Где:

q ult =
Максимальная несущая способность.

C = когезионный
стресс.

q = Более
давление нагрузки выше (F-L)

= Γ 1 D F

γ 1 =
Удельный вес почвы над (F-L)

γ 2 =
Удельный вес грунта у основания фундамента

B = Ширина
фундамент

N c ,
N q , N γ = Несущая способность (B.C) коэффициенты зависят от φ (угол
внутреннего трения)

q
= e πtanφ . загар 2 (45 +
)

NC
= (Nq
— 1) кроватка φ


= (Nq
— 1) tanφ

Nc,
Nq, Nγ = F (φ
) См. Таблицу (1)

λ С ,
λ q , λ γ
=

факторы зависят от формы фундамента
Форма
размер [B, L].

Фонд λ С
— λ д
λ γ

Полоса

1.0

1.0

Прямоугольный

1 + 0.3 Б / Л

1 0,3 б / л

Площадь &
Круг
1.3 0,7

Таблица (2) Значение коэффициента формы

Д Ф
= Глубина фундамента, показать рис. (4)

Рис. (4), Варианты глубины фундамента

II.

Эксцентриковая вертикальная нагрузка:

1. Эксцентриситет в направлении L = e L

A = площадь =

Факторы формы становятся

λ C , λ q ,
λ γ
= F (B / L )

2.

Эксцентриситет в направлении B = e B , как указано ранее.

В = В 2e В

A = B .L

А коэффициент формы стал

λ C , λ q ,
λ γ = F (B / L)

qu = CN c λ C + qN q λ q
+ γB N γ
λ γ

3.
Эксцентриситет по направлению (B, L).

B = B 2e B

L = L 2e L

И коэффициент формы становится

λ С ,
λ q , λ γ
= F (B / L )

А = В .L

III.
Центральный наклонный

В футляре
наклонной нагрузки R, результат может быть проанализирован по двум компонентам H и V, где:

1.
От
с увеличением угла δ значение несущей способности уменьшалось, где δ = tan -1
H / V.

2.
ЧАС

Где A = Площадь фундамента

3.
ДО Н.Э
уравнение становится

q ult
= C N C
λ C i C + q N q λ q
i q +
γB N γ λ γ i γ

Где:

i C ,
i q , i γ = Факторы наклона

i q
=

и γ
=

я С
= i q

H =
Горизонтальная составляющая нагрузки

В =
Вертикальный компонент стопы

φ = угол
внутреннего трения



Особый случай
:

Когда φ = 0

cotφ = α

i q = i γ
= Я С = 1

Когда C = 0

я q =

знак равно

и γ
=

знак равно

i C = i q

IV.
Эксцентрик наклонный на ноге наклонный и
эксцентриситет, поэтому мы делаем это так, как упоминалось ранее во II и III.


V.
Влияние поверхности земли
наклон:

Несущая способность почвы
уменьшаются, когда ступня лежит близко от наклона поверхности земли. Увидеть
Рис. (4).

Из рис (5) обратите внимание, что

1.
В
уменьшение надбавки с q до q , так что значение Nq станет Nq .

2.
В
Поверхность, созданная для противодействия разрушению, L уменьшается и становится L
поэтому Nc уменьшится до Nc .


N γ = как и раньше

Где:

, = B.C множители в случае наклонной GS эта функция

F (b / B, D / B, β, φ).Увидеть
Таблица
(3) и уравнение B.C становится


q ult
= Cλ C + q
λ q +
γB N γ
λ γ

Таблица (3) Из кода

Стол (3)

Пример :

Рассчитайте допустимое значение B.C (q все )
за доплату фундамент 36 м колес.
глубина фундамента 1,5 м для грунта C φ, где φ = 10 o , C = 4 т / м 2
и удельный вес грунта 1,8 т / м 3 , и сравните результаты, если есть
уклоны засыпки при β = 60 o , b = 0.

Решить :

1.
φ = 10 o из таблицы ……………..
N c =
8.5

N q = 2,5

N γ
= 0,5

2.

3. q = γD F = 1,8
1,5 = 2,7 т / м 2

4.q ult = CN C λ C
+ qN к λ к +
γB N γ λ γ

знак равно
4 8,5
1,15 + 2,7
2,5
1.15+ 1.8 3
0,5
0,85

= 49,16 т / м 2

q n ult = 49,16 2,7 = 46,46 т / м 2

q все =
= 15.48 т / м 2

= 1,5 кг / см 2

Для наклона:

Φ = 10

β = 60 o

= = 0,5 ……………………….. Из таблицы

= 0

= 6,33

= 0.5

= 0,5

q ult = Cλ C + qλ q +
γBN γ λ γ

= 4 6,33
1,15 + 2,7
0,5
1,15 + 1,8
3
0,5 0,85

= 32,96 т / м 2

q net ult = 32,96 2,7 = 30,27

q все = 30.3/3
= 10,1 т / м 2

= 1 кг / см 2

% уменьшение
=

VI. Влияние уровня грунтовых вод (G. W. T):

q ult = CN C λ C
+ qN q λ q + γBN γ λ γ

1.) G.W.T под G.S
и выше базы

q = γDF =
γ сат . dw + γ переходник
. h2

γB = γ переходник
. В

2.) G.W.T под
уровень фундамента:

а.Если
dw>, это означает, что
вода далека от плана разрушения при сдвиге
и его эффект так

q
= γD F

γB

в случае сухого или насыпного грунта.

б.
Если
dw <и (G.W.T) лежит между основанием и планом разрушения при сдвиге.

q = γ 1 D F

γD = [γ sub + Fw (γ 1
— γ sub )]

где:

Fw = коэффициент
зависят от φ и, как показано на рис. (6).

Рис (6)

VII.

Эффект многослойности:

Чтобы вычислить B.C для Multi
слой почвы для стопы (Б. Л).

1.

Рассчитайте BC для первого слоя, используя свойства этого грунта (q 1all ).

2.

Рассчитайте B.C для второго слоя (q 2all ), используя
свойства второго слоя γ2, φ2, C2, где
B- становятся (B + h) и = DF + h2.После этого рассчитайте
равный до н.э.

q 2equ =

3.

Сравните значения q 1all и q 2equ

Если
q 1все > q 2equ

дизайн
q все = q 2equ

Если
q 1all 2equ

Дизайн q все = q 1 все


Пример
:

Как показано на рис.
B.C при F.L для слоя глины = 1,0 кг / см2 под глинистой почвой лежит
органическая глинистая почва на высоте 3,0 м под (F.L) пшеницей B.C = 0,2 кг / см2
определить допустимую до н. э., если стопа

а.

Полоска (В = 2).

б.

Квадратный фут (2 2) м


Решить
:

а.для лапки:

q экв =

знак равно
= 0,5 кг / см 2

q 1 все = 1
кг / см 2 q экв = 0,5 кг / см 2

q все конструкции = 0,5
кг / см 2

б. Для площади:

q экв =

знак равно
= 1.25 кг / см 2

q все = 1 кг / см 2
q экв = 1,25 кг / см 2

q все конструкции = 1
кг / см 2


Мелкий фундамент

Мелкий фундамент — это тип фундамента, который передает строительные нагрузки на землю очень близко к поверхности, а не на подповерхностный слой или диапазон глубин, как это происходит при глубоком фундаменте.Фундаменты неглубокого заложения включают в себя фундаментов с широким фундаментом , фундаментов с матовыми плитами и фундаментов с перекрытиями

Фундамент с опорными плитами

[
Австралия]

Фундаменты с раздельными опорами состоят из полос или подушек. бетон (или другие материалы), которые переносят нагрузки от стен и колонн на почву или коренные породы. Укладка основания регулируется несколькими факторами, включая развитие боковой способности, проникновение мягких приповерхностных слоев и проникновение через приповерхностные слои, которые могут изменить объем из-за морозного пучения или усадочного набухания.

Эти фундаменты распространены в жилом строительстве, включающем подвал, и во многих коммерческих зданиях.

Фундаменты из матовых плит

Фундаменты из матовых плит используются для распределения тяжелых нагрузок на колонны и стены по всей площади здания, чтобы снизить контактное давление по сравнению с обычными раздельными опорами. Фундаменты из матов и плит можно строить как у поверхности земли, так и у подвала. В многоэтажных зданиях фундаменты из матовых плит могут иметь толщину в несколько метров с большим армированием для обеспечения относительно равномерного распределения нагрузки.

лабораторный фундамент

[
Австралия.] Фундамент плиты на уровне грунта — это инженерная практика, при которой бетонная плита, которая должна служить фундаментом для конструкции, формируется из формы, установленной в земля. Затем бетон помещается в форму, не оставляя места между землей и конструкцией. Этот тип конструкции чаще всего встречается в более теплом климате, где замерзание и оттаивание грунта не представляет особой проблемы и где нет необходимости в прокладке теплопровода под полом.

Преимущество плиточной техники заключается в том, что она относительно дешевая и прочная, и считается менее уязвимой для заражения термитами, поскольку отсутствуют пустоты или деревянные каналы, ведущие от земли к конструкции (при условии, что деревянный сайдинг и т. не доводится до земли на внешних стенах).

Недостатками являются отсутствие доступа снизу для инженерных коммуникаций, возможность больших тепловых потерь, когда температура грунта значительно ниже внутренней температуры, и очень низкая высота, которая может привести к повреждению здания от наводнения даже при умеренных дождях.Ремоделирование или расширение такой структуры также может оказаться более трудным. В долгосрочной перспективе оседание (или проседание) грунта может стать проблемой, поскольку фундамент из плит не может быть легко поднят для компенсации; правильное уплотнение почвы перед заливкой может свести к минимуму это. Плита может быть отделена от температуры земли с помощью теплоизоляции, при этом бетон заливается непосредственно поверх изоляции (например, пенополистирольные панели), или в плиту могут быть встроены средства обогрева (например, водяное отопление) (дорогостоящая установка с соответствующими эксплуатационными расходами. ).

Фундаменты типа «плита на грунте» обычно используются в районах с обширной глинистой почвой, особенно в Калифорнии и Техасе. В то время как высокие структурные плиты на самом деле лучше работают с экспансивными глинами, инженерное сообщество в целом признает, что монолитные фундаменты предлагают наилучшее соотношение цены и качества для частных домов и домов, построенных по индивидуальному заказу. Поднятые структурные плиты, как правило, можно найти только в больших нестандартных домах или домах с подвалами.

Следует проявлять осторожность при оказании услуг через плиту.Медные трубы, обычно используемые для транспортировки природного газа и воды, вступают в реакцию с бетоном в течение длительного периода, медленно разрушаясь, пока труба не выходит из строя. Медные трубы должны иметь изоляцию, проходить через канал или прокладываться по водопроводу в здании над плитой. Электрические каналы, проходящие через плиту, должны быть водонепроницаемыми, поскольку они проходят ниже уровня земли и потенциально могут подвергать проводку воздействию грунтовых вод.

ee также

* Строительство
* Строительное проектирование
* Фибробетон
* Сборный бетон
* Предварительно напряженный бетон
* Строительное проектирование
* Анкерный стержень
* Арматура
* Стальной фиксатор
* Опалубка

Фонд Викимедиа.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *