Мощность диода: Страница не найдена – Светодиодное освещение

Разное

Содержание

Характеристики диодов, конструкции и особенности применения

Вольтамперная характеристика (ВАХ) полупроводникового диода представляет собой зависимости между значениями напряжения (прямого и обратного) и токами (прямого и обратного). Типовая вольтамперная характеристика диода представлена на рисунке 1.

Рисунок 1.

Стоит отметить, что ВАХ для диодов различного типа отличаются. На рисунке 2 представлены характеристики германиевого (синим цветом) и кремниевого (черным цветом) диодов.

Рисунок 2.

Рассмотрим основные составляющие ВАХ диода.

Прямая ветвь ВАХ диода. Расположена в первом квадранте системы координат. Прямая ветвь ВАХ соответствует прямому включению диода. Увеличение приложенного напряжения в прямом направлении к диоду Uпр приводит к увеличению прямого тока Iпр. Прямая ветвь ВАХ характеризуется изломом – напряжение практически не увеличивается, при этом ток стремительно возрастает. Величина этого напряжения определяет прямое падение напряжения на диоде (около 0,5…2 В). Мощность диода (количество теплоты выделяемое при его работе) определяется произведением прямого напряжения на прямой ток. Для мощных диодов на их корпусе устанавливают дополнительные радиаторы.

Рисунок 3.

Мощность, рассеиваемая диодами, может достигать 30% полезной мощности всей установки. Для снижения прямого напряжения на диоде применяют специальные диоды Шоттки (по имени изобретателя немецкого физика Вальтера Шоттки). Падение напряжения на таких диодах составляет 0,2…0,4 В.

Обратная ветвь ВАХ диода. Расположена в третьем квадранте системы координат и соответствует обратному включению диода. Включение диода в обратном направлении приводит к протеканию через р-n переход обратного тока (до нескольких микроампер). Поэтому на диоде также выделяется определенная мощность, определяемая произведением обратного тока и обратного напряжения. Перегиб обратной ветви ВАХ диода соответствует пробою р-n перехода (диод превращается в резистор).

Применение полупроводниковых диодов в высокочастотных схемах приводит к необходимости учитывать паразитную емкость диода (электрическая емкость подобная емкости конденсатора). Однако эта емкость нашла и практическое применение в специальных диодах – варикапах.

Рисунок 4.

Конструктивно различают следующие типы диодов: плоскостные и точечные.

Точечные диоды (рисунок 5), как правило, применяются в высокочастотных схемах. Один их электродов точечного диода является металлической иглой (содержит примесь донора или акцептора), который вплавляется в кристалл полупроводника. Поэтому р-n переход в точечных диодах имеет малую площадь и, как следствие, малую паразитную емкость. Рабочая частота точечных диодов может достигать нескольких гигагерц, однако обратное напряжение для точечных диодов не превышает 5 В.

Рисунок 5.

Плоскостные диоды (рисунок 6) применяются в схемах выпрямителей. Размеры р-n перехода плоскостных диодов может достигать 100 кв. мм., поэтому величина прямого тока намного больше, чем у точечных диодов.

Рисунок 6.

Основные сферы применения полупроводниковых диодов:

1. Преобразователи напряжения (выпрямители), преобразователи частоты.
2. Детекторные приборы (фотодиоды).
3. Устройства нелинейной обработки аналоговых сигналов.
4. Стабилизированные источники питания.
5. Схемы ограничения сигналов.
6. Индикаторы (светодиоды).


Всего комментариев: 0


Общие свойства и параметры диодов

 

Система и перечень параметров, включаемые в технические описания и характеризующие свойства полупроводниковых диодов, выбираются с учетом их физико-технологических особенностей и области применения. В большинстве случаев важны сведения об их статических, динамических и предельных параметрах.

Статические параметры характеризуют поведение приборов при постоянном токе, динамические — их частотно-временные свойства, предельные параметры определяют область устойчивой и надежной работы.

В справочники, стандарты или технические описания включается необходимая для детального расчета схем информация о параметрах: нормы на значения параметров, режимы их измерений, вольт-амперные характеристики, зависимости параметров от режима и температуры, максимальные и максимально допустимые значения параметров, конструктивно-технологические особенности приборов, их основное назначение, специфические требования, методы измерения параметров, типовые схемы применения.

Постоянные (случайные) изменения технологических факторов оказывают существенное влияние на значения параметров изготавливаемых приборов. Поэтому значения параметров даже одного типа приборов являются случайными величинами, т.е. имеется отклонение от среднего (типового, номинального) уровня. Для некоторых параметров устанавливаются граничные значения и возможные отклонения (разброс). Нормы на разброс параметров устанавливаются на основе экспериментально-статистических данных при обеспечении надежной и устойчивой работы приборов в различных условиях и режимах применения, а также исходя из экономических соображений.

Необходимо отметить, что вследствие постоянного совершенствования конструкций и технологии изготовления полупроводниковых приборов происходят изменения средних значений параметров. Некоторые образцы приборов имеют параметры лучше, чем приведенные в технических описаниях и справочниках.

В разных странах существуют региональные унифицированные стандарты на параметры и характеристики полупроводниковых приборов, методики их измерений и контроля качества, которые могут существенно отличаться от международных стандартов.

Различают общие параметры, которыми характеризуется любой полупроводниковый диод, и специальные параметры, присущие только отдельным видам диодов. К общим параметрам диодов относят: параметры рассеиваемой мощности, тепловые параметры, пробивные максимальные и максимально допустимые токи и напряжения, параметры, определяемые по виду ВАХ прибора, параметры, характеризующие основные свойства \(p\)-\(n\)-перехода и т.п.

Рассеиваемая мощность (\(P_{пр}\), \(P_{обр}\), \(P_{ср}\), \(P_и\)). Когда через диод проходит ток, при заданном напряжении на диоде выделяется мощность \(P_д = I \cdot U\). При подаче на диод переменного напряжения общая мощность, рассеиваемая диодом, равна сумме мощностей рассеиваемых при прохождении тока в прямом (\(P_{пр}\)) и обратном (\(P_{обр}\)) направлениях \(P_д = P_{пр} + P_{обр}\). Средняя рассеиваемая мощность (\(P_{ср}\)) определяется как среднее за период значение мощности, рассеиваемой диодом при протекании прямого и обратного токов. Максимальное значение рассеиваемой мощности, при которой гарантируется долговременная и стабильная работа диода при заданных внешних условиях, называется максимальной допустимой мощностью рассеяния диода. Наибольшее мгновенное значение мощности, рассеиваемой диодом, называется импульсной рассеиваемой мощностью (\(P_и\)).

Температура (\(T\), \(T_п\), \(T_{кор}\)). Выделение мощности сопровождается нагреванием диода, что приводит к росту обратного тока и увеличению вероятности возникновения теплового пробоя \(p\)-\(n\)-перехода. Для исключения теплового пробоя температура \(p\)-\(n\)-перехода должна быть меньше максимальной допустимой температуры перехода (\(T_{п max}\)). Как правило, эта температура для германиевых диодов составляет 70 °C, а для кремниевых — 125 °C. Выделяемая теплота рассеивается диодом в окружающую среду. Учитывая конструктивные особенности диода и условия его эксплуатации, иногда нормируются максимальная температура корпуса диода (\(T_{к max}\)) и максимальная температура окружающей среды вблизи диода (\(T\)).

Тепловое сопротивление (\(R_т\), \(R_{т пер-окр}\), \(R_{т пер-кор}\)). Перепад температур между переходом и окружающей средой определяется выражением: \(T_п – T = R_т \cdot P_д\), где \(R_т\) — тепловое сопротивление, характеризующее условия отвода теплоты от диода (определяется конструкцией корпуса, наличием радиатора и т.д.). В зависимости от расположения контрольной точки, в которой производится измерение температуры, различают: тепловое сопротивление переход – окружающая среда (\(R_{т пер-окр}\)), тепловое сопротивление переход – корпус диода (\(R_{т пер-кор}\)). Тепловое сопротивление переход – среда (\(R_{т пер-окр}\)) необходимо знать для расчета допустимой рассеиваемой мощности маломощных диодов обычно работающих без теплоотвода, а тепловое сопротивление переход – корпус (\(R_{т пер-кор}\)) — для расчета режима работы мощных приборов при наличии внешнего радиатора. Обычно \(R_{т пер-окр} \gg R_{т пер-кор}\) (сопротивление \(R_{т пер-кор}\) остается постоянным только в случае малых плотностей тока). Тепло от кристалла с переходами к корпусу или радиатору отводится за счет теплопроводности, а от корпуса в окружающее пространство — конвекцией и излучением. Режим диода необходимо выбирать из условия \(\newcommand{\slfrac}[2]{\left.#1\right/#2}U \cdot I \leq P_{д max}= \slfrac{\left( T_{п max} – T \right)}{R_{т пер-окр}}\).

Переходное тепловое сопротивление (\(Z_т\), \(Z_{т пер-окр}\), \(Z_{т пер-кор}\)). При определении тепловых режимов в случае работы диодов при малых длительностях импульсов используются их переходные тепловые характеристики, а именно переходное тепловое сопротивление диода (\(Z_т\)), которое является отношением разности изменения температуры перехода и температуры в контрольной точке за заданный промежуток времени, когда происходит это изменение температуры, к приращению рассеиваемой мощности диода, скачкообразно увеличенной в начале этого интервала. Производными этого параметра являются: переходное тепловое сопротивление переход – окружающая среда (\(Z_{т пер-окр}\)) и переходное тепловое сопротивление переход – корпус диода (\(Z_{т пер‑кор}\)).

Прямой ток и напряжение (\(I_{пр}\), \(I_{пр}\) и, \(I_{пр ср}\), \(U_{пр}\), \(U_{пр и}\)). При приложении к диоду постоянного прямого напряжения \(U_{пр}\) его температура зависит от величины протекающего прямого тока \(I_{пр}\). Прямой ток, при котором температура \(p\)-\(n\)-перехода диода достигает максимального допустимого значения (\(T_{п max}\)), называют допустимым прямым током (\(I_{пр max}\)). Наибольшее допустимое мгновенное значение прямого тока диода называют максимальным импульсным прямым током (\(I_{пр и max}\)). Наибольшее мгновенное значение прямого напряжения на диоде, обусловленное заданным импульсным прямым током, называется максимальным импульсным прямым напряжением диода (\(U_{пр и max}\)). Средний прямой ток диода (\(I_{пр ср}\)) определяется при подаче на диод переменного напряжения как среднее за период значение прямого тока.

Обратный ток и напряжение (\(I_{обр}\), \(I_{обр и}\), \(U_{обр}\), \(U_{обр и}\)). При приложении к диоду постоянного заданного обратного напряжения \(U_{обр}\) через него протекает постоянный обратный ток \(I_{обр}\) определенной величины. Важным параметром диодов является максимальное допустимое обратное напряжение \(U_{обр max}\), при котором не происходит пробоя \(p\)-\(n\)-перехода. Обычно \(U_{обр max} \le {0,8}U_{проб}\), где \(U_{проб}\) — значение обратного напряжения, вызывающее пробой перехода диода, при котором обратный ток достигает заданного значения, оно называется пробивным напряжением диода. Максимально допустимое импульсное обратное напряжение (\(U_{обр и max}\)) определяет максимальное мгновенное значение для обратного напряжения на диоде, а максимально допустимый импульсный обратный ток (\(I_{обр и max}\)) характеризует предельное мгновенное значение обратного тока, обусловленного импульсным обратным напряжением.

Дифференциальное сопротивление (\(r_{диф}\)). Прямое (\(r_{пр}\)) и обратное (\(r_{обр}\)) сопротивления диода постоянному току выражаются соотношениями: \(\newcommand{\slfrac}[2]{\left.#1\right/#2}r_{пр} = \slfrac{U_{пр 0}}{I_{пр 0}}\), \(r_{обр} = \slfrac{U_{обр 0}}{I_{обр 0}}\) , где \(U_{пр 0}\), \(I_{пр 0}\), \(U_{обр 0}\), \(I_{обр 0}\) задают конкретные точки на ВАХ прибора, в которых производится вычисление сопротивления. Поскольку типичная ВАХ полупроводникового прибора имеет участки с повышенной линейностью (один на прямой ветви, один — на обратной), то вводится понятие дифференциального сопротивления (\(r_{диф}\)), которое вычисляется как отношение малого приращения напряжения диода к малому приращению тока в нем при заданном режиме (\(r_{диф пр} = \slfrac{\Delta U_{пр}}{\Delta I_{пр}}\), \(r_{диф обр} = \slfrac{\Delta U_{обр}}{\Delta I_{обр}}\)).

Емкость перехода (\(C_{пер}\)) и накопленный заряд (\(Q_{нк}\)). Изменение внешнего напряжения \(\operatorname{d}U\) на \(p\)-\(n\)-переходе приводит к изменению накопленного в нем заряда \(\operatorname{d}Q\). Поэтому \(p\)‑\(n\)‑переход ведет себя подобно конденсатору, емкость которого \(C = \operatorname{d}Q/\operatorname{d}U\). В зависимости от физической природы изменяющегося заряда различают зарядную (барьерную) и диффузионную емкости. Зарядная (барьерная) емкость определяется изменением нескомпенсированного заряда ионов при изменении ширины запирающего слоя под воздействием внешнего обратного напряжения. При увеличении же внешнего напряжения, приложенного к \(p\)-\(n\)-переходу в прямом направлении, растет концентрация инжектированных носителей вблизи границ перехода, что приводит к изменению количества заряда, обусловленного неосновными носителями в \(p\)- и \(n\)-областях. Это можно рассматривать как проявление некоторой емкости. Поскольку она зависит от изменения диффузионной составляющей тока, ее называют диффузионной емкостью. Заряд электронов или дырок, накопленный при протекании прямого тока в базе диода или \(i\)‑области \(p\)-\(i\)-\(n\)-диода, называется накопленным зарядом (\(Q_{нк}\)). Полная емкость \(p\)-\(n\)-перехода определяется суммой зарядной и диффузионной емкостей: \(C_{пер} = C_{зар} + C_{диф}\). При включении \(p\)‑\(n\)‑перехода в прямом направлении преобладает диффузионная емкость, а при включении в обратном направлении — зарядная (емкость \(C_{диф}\) при этом пренебрежимо мала).

Заряд восстановления (\(Q_{вос}\)) и время восстановления (\(t_{вос обр}\), \(t_{вос пр}\)). При переключении диода с прямого тока на обратный весь накопленный заряд вытекает во внешнюю цепь. При заданных прямом токе и итоговом обратном напряжении весь суммарный заряд (с учетом накопленного заряда и заряда емкости обедненного слоя для полных процессов запаздывания и восстановления), вытекающий во внешнюю цепь, называется зарядом восстановления (\(Q_{вос}\)), а время, истекшее от момента прохождения тока через нулевое значение до момента достижения обратным током заданной величины — временем восстановления обратного сопротивления или просто временем обратного восстановления диода (\(t_{вос обр}\)). Аналогично определяется время установления прямого напряжения или время прямого восстановления диода (\(t_{вос пр}\)), которое равно промежутку времени, в течение которого прямое напряжение на диоде устанавливается от нулевого значения до заданного уровня.

Полный список общих параметров диодов и их принятых обозначений приведен в таб. 2.2‑1. Помимо описанных выше параметров он включает также:

  • эффективное время жизни неравновесных носителей заряда (\(t_{эф}\)), характеризующее материал и некоторые конструктивные параметры кристалла полупроводника;
  • емкость корпуса диода (\(C_{кор}\)), определяемую его конструктивными особенностями;
  • общие емкость (\(C_д\)) и индуктивность (\(L_п\)) диода, измеряемые в установившемся режиме работы.

 

Таб. 2.2-1. Общие основные параметры диодов


 


 

< Предыдущая   Следующая >

Технические характеристики диодов

  1. Радиоэлектроника
  2. Схемотехника
  3. Основы электроники и схемотехники
  4. Том 3 – Полупроводниковые приборы
  1. Книги / руководства / серии статей
  2. Основы электроники и схемотехники. Том 3. Полупроводниковые приборы

Добавлено 4 февраля 2017 в 22:50

Сохранить или поделиться

В дополнение к прямому падению напряжения и максимальному обратному напряжению есть много других технических параметров диодов, важных при разработке схем и выборе компонентов. Производители полупроводниковых приборов предоставляют подробные спецификации своих продуктов (в том числе, и диодов) в публикациях, известных как технические описания (datasheets, «даташиты»). Технические описания для широкого спектра полупроводниковых приборов могут быть найдены в справочниках и интернете. В качестве источника спецификаций компонентов я предпочитаю интернет, так как данные, полученные от производителей, более актуальны.

Типовые технические описания диодов содержат данные для следующих параметров:

Максимальное повторяющееся (импульсное) обратное напряжение (Uобр.и.п.макс, VRRM)
Максимальное напряжение, которое диод может выдержать в режиме обратного смещения при повторяющихся импульсах. В идеале, эта величина была бы бесконечной.
Максимальное постоянное обратное напряжение (Uобр.макс, VR, VDC)
Максимальное напряжение, которое диод может выдержать в режиме обратного смещения на постоянной основе. В идеале, эта величина была бы бесконечной.
Максимальное прямое напряжение (Uпр, VF)
Обычно указывается при номинальном прямом токе диода. В идеале эта величина была бы равна нулю: диод не оказывает никакого сопротивления прямому току. В реальности прямое напряжение описывается уравнением Шокли для диода.
Максимальный (средний) прямой ток (Iпр.ср.макс, IF(AV))
Максимальная средняя величина тока, которую ток может проводить в режиме прямого смещения. Является принципиальным тепловым ограничением: насколько может нагреться PN переход, учитывая что рассеиваемая мощность равна току (I), умноженному на напряжение (U), а прямое напряжение зависит и от тока, и от температуры перехода. В идеале, эта величина была бы бесконечной
Максимальный (пиковый или импульсный) прямой ток (Iпр.и.макс, IFSM, if(surge))
Максимальная пиковая величина тока, которую диод может проводить в режиме прямого смещения. Опять же, этот параметр ограничивается рассеиваемой мощностью диода и, как правило, намного выше максимального среднего тока из-за тепловой инерции (дело в том, что диоду необходимо определенное количество времени, чтобы достигнуть максимальной температуры при заданном токе). В идеале, эта величина была бы бесконечной.
Максимальная общая рассеиваемая мощность(Pд, PD)
Величина мощности (в ваттах), допустимая для рассеивания диодом, учитывая рассеивание P = IU (ток через диод, умноженный на падение напряжения на диоде) и рассеивание P = I2R (ток в квадрате, умноженный на сопротивление). Фундаментально ограничивается тепловой емкостью диода (способностью выдерживать высокие температуры).
Рабочая температура перехода (Tп.макс, TJ)
Максимальная допустимая температура для PN-перехода диода, как правило, дается в градусах Цельсия (°C). Тепло является «ахиллесовой пятой» полупроводниковых приборов: они должны оставаться холодными как для правильного функционирования, так и для более долгого срока службы.
Диапазон температур хранения
Диапазон температур, допустимых для хранения диода (без подачи питания). Иногда дается в сочетании с рабочей температурой перехода (Tп.макс, TJ), так как значения максимальной температуры хранения и максимальной рабочей температуры часто одинаковы. Хотя, на самом деле, значение максимальной температуры хранения будет больше значения максимальной рабочей температуры.
Тепловое сопротивление (RT, R(Θ)), тепловое сопротивление для разности температур перехода и окружающего воздуха (RTпер–окр, RΘJA), тепловое сопротивление для разности температур перехода и выводов/корпуса (RTпер–кор, RΘJL) при определенной рассеиваемой мощности
Выражаются в единицах градусов Цельсия на ватт (°C/Вт). В идеале, этот показатель был бы равен нулю, что означало бы, что корпус диода был идеальным теплопроводником и радиатором, способным передать всю тепловую энергию от перехода в окружающий воздух (или к выводам) без разницы температур по всей толщине корпуса диода. Высокое тепловое сопротивление означает, что диод будет наращивать чрезмерную температуру в переходе (в своем самом критически важном месте), несмотря на все усилия по охлаждению с внешней стороны диода, и, таким образом, будет ограничиваться максимальная рассеиваемая мощность.
Максимальный обратный ток (Iобр.макс, IR)
Величина тока через диод в режиме обратного смещения с приложенным максимальным обратным напряжением (Uобр.макс, VR, VDC). Иногда называется током утечки. В идеале, этот показатель был бы равен нулю, так как идеальный диод при обратном смещении будет блокировать весь ток. В реальности, он очень мал по сравнению с максимальным прямым током.
Типовая емкость перехода (Cпер, CJ)
Типовая величина емкости, свойственной переходу из-за обедненной области, действующей как диэлектрик, разделяющий соединения анода и катода. Как правило, она очень мала и измеряется в диапазоне пикофарад (пФ).
Время восстановления (tвос.обр trr)
Количество времени, необходимое диоду «выключиться», когда напряжение на нем меняет полярность с прямого смещения на обратное. В идеале, этот показатель был бы равен нулю: диод останавливает проводимость сразу после изменения полярности. Для типовых выпрямительных диодов время восстановления находится в диапазоне десятков микросекунд; для «быстрых коммутирующих» диодов оно может составлять всего несколько наносекунд.

Большинство из этих параметров зависит от температуры и других условий эксплуатации, и поэтому одно значение не в полной мере описывает любой из этих показателей. Поэтому производители предоставляют графики показателей компонентов в зависимости от других переменных (например, температура), благодаря чему разработчик схем имеет лучшее представление о том, на что способно устройство.

Оригинал статьи:

Теги

Время восстановленияДиодЕмкость переходаОбратное напряжениеОбратный токОбучениеПрямое напряжениеПрямой токРассеиваемая мощностьТемпература переходаТепловое сопротивлениеТермическое сопротивлениеЭлектроника

Сохранить или поделиться

На сайте работает сервис комментирования DISQUS, который позволяет вам оставлять
комментарии на множестве сайтов, имея лишь один аккаунт на Disqus.com.

В случае комментирования в качестве гостя (без регистрации на disqus.com) для публикации
комментария требуется время на премодерацию.

Выпрямительные диоды малой, средней и большой и мощности, справочник

Приведены электрические характеристики выпрямительных диодов отечественного производства. Рассмотрены выпрямительные диоды малой, средней и большой мощности. Справочник по отечественным полупроводниковым диодам.

Используемые в таблицах сокращения:

  • Uобр.макс. — максимально-допустимое постоянное обратное напряжение диода;
  • Uобр.и.макс. — максимально-допустимое импульсное обратное напряжение диода;
  • Iпр.макс. — максимальный средний прямой ток за период;
  • Iпр.и.макс. — максимальный импульсный прямой ток за период;
  • Iпрг. — ток перегрузки выпрямительного диода;
  • fмакс. — максимально-допустимая частота переключения диода;
  • fраб. — рабочая частота переключения диода;
  • Uпр при Iпр — постоянное прямое напряжения диода при токе Iпр;
  • Iобр. — постоянный обратный ток диода;
  • Тк.макс. — максимально-допустимая температура корпуса диода;
  • Тп.макс. — максимально-допустимая температура перехода диода.

Диоды малой мощности

Рис. 1. Выпрямительные отечественные диоды малой мощности.

В таблице приведены справочные данные по отечественными выпрямительным диодам малой мощности.



























































































































































































Тип
прибора
Предельные значения
параметров при Т=25С
Значения параметров
при Т=25С
Тк.мах
(Тп.)

С

Uобр.макс.
(Uобр.и.мак.)
B
Iпр.макс.
(Iпр.и.мак.)
mA
Iпрг.

A

fраб.
(fмакс.)
мГц
Uпр.

B

при
Iпр.
mA
Iобр.

mkA

1 2 3 4 5 6 7 8 9
Д2Б 10 (30) 16 150 1,0 5,0 100 60
Д2В 30 (40) 25 150 1,0 9,0 250 60
Д2Г 50 (75) 16 150 1,0 2,0 250 60
Д2Д 50 (75) 16 150 1,0 4,5 250 60
Д2Е 100 (100) 16 150 1,0 4,5 250 60
Д2Ж 150 (150) 8 150 1,0 2,0 250 60
Д2И 100 (100) 16 150 1,0 2,0 250 60
МД3 15 12 (15) 1,0 5,0 100 70
Д7А (50) 300 1,0 0,5 300 100 70
Д7Б (100) 300 1,0 0,0024 0,5 300 100 70
Д7В (150) 300 1,0 0,0024 0,5 300 100 70
Д7Г (200) 300 1,0 0,0024 0,5 300 100 70
Д7Д (300) 300 1,0 0,0024 0,5 300 100 70
Д7Е (350) 300 1,0 0,0024 0,5 300 100 70
Д7Ж (400) 300 1,0 0,0024 0,5 300 100 70
Д9Б (10) 40 40 1,0 90 250 70
Д9В (30) 20 40 1,0 10 250 70
Д9Г (30) 30 40 1,0 30 250 70
Д9Д (30) 30 40 1,0 60 250 70
Д9Е (50) 20 40 1,0 30 250 70
Д9Ж (100) 15 40 1,0 10 250 70
Д9И (30) 30 40 1,0 30 120 70
Д9К (50) 30 40 1,0 60 60 70
Д9Л (100) 15 40 1,0 30 250 70
Д10 10 (10) 16 150 100 70
Д10А 10 (10) 16 150 200 70
Д10Б 10 (10) 16 150 200 70
Д11 30 (40) 20 150 1,0 100 250 70
Д12 50 (75) 20 150 1,0 50 250 70
Д12А 50 (75) 20 150 1,0 100 250 70
Д13 75 (100) 20 150 1,0 100 250 70
Д14 100 (125) 20 150 1,0 50 250 70
Д14А 100 (125) 20 150 1,0 100 250 70
Д101 75 (75) 30 200 2,0 2,0 10 125
Д101А 75 (75) 30 200 1,0 1,0 10 125
Д102 50 (50) 30 200 2,0 2,0 10 125
Д102А 50 (50) 30 200 1,0 1,0 10 125
Д103 30 (30) 30 200 2,0 2,0 30 125
Д103А 30 (30) 30 200 1,0 1,0 30 125
Д104 100 (100) 30 600 2,0 2,0 5,0 125
Д104А 100 (100) 30 600 1,0 1,0 5,0 125
Д105 75 (75) 30 600 2,0 2,0 5,0 125
Д105А 75 (75) 30 600 1,0 1,0 5,0 125
Д106 30 (30) 30 600 2,0 2,0 30 125
Д106А 30 (30) 30 600 1,0 1,0 30 125
Д202 (100) 400 1,0 400 500 125
Д203 (200) 400 1,0 400 500 125
Д204 (300) 400 1,0 400 500 85
Д205 (400) 400 1,0 400 500 85
Д206 (100) 100 0,6 1,0 100 50 125
Д207 (200) 100 0,6 1,0 100 50 125
Д208 (300) 100 0,6 1,0 100 50 125
Д209 (400) 100 1,0 100 50 125
Д210 (500) 100 1,0 100 50 125
Д211 (600) 100 1,0 100 50 125
Д217 (800) 100 1,0 100 50 125
Д218 (1000) 100 0,7 100 50 125
МД217 800 100 1,0 100 75 125
МД218 1000 100 1,0 100 75 125
МД218А 1200 100 1,1 100 50 125
Д223 50 50 0,5 20 1,0 50 1,0 120
Д223А 100 50 0,5 20 1,0 50 1,0 120
Д223Б 150 50 0,5 20 1,0 50 1,0 120
Д226 (400) 300 1,0 300 50 80
Д226А (300) 300 1,0 300 50 80
Д226Б (400) 300 1,0 300 100 80
Д226В (300) 300 1,0 300 100 80
Д226Г (200) 300 1,0 300 100 80
Д226Д (100) 300 1,0 300 100 80
Д226Е (200) 300 1,0 300 50 80
МД226 (400) 300 0,001 1,0 300 50 80
МД226А (300) 300 0,001 1,0 300 100 80
МД226Е (200) 300 0,001 1,0 300 50 80
Д229А 200 (200) 400 10 0,003 1,0 400 50 125
Д229Б 400 (400) 400 10 0,003 1,0 400 50 125
Д229В 100 (100) 400 10 0,003 1,0 400 200 125
Д229Г 200 (200) 400 10 0,003 1,0 400 200 125
Д229Д 300 (300) 400 10 0,003 1,0 400 200 125
Д229Е 400 (400) 400 10 0,003 1,0 400 200 125
Д229Ж 100 (100) 700 10 0,003 1,0 700 200 85
Д229И 200 (200) 700 10 0,003 1,0 700 200 85
Д229К 300 (300) 700 10 0,003 1,0 700 200 85
Д229Л 400 (400) 700 10 0,003 1,0 700 200 85
Д237А (200) 300 10 0,001 1,0 300 50 125
Д237Б (400) 300 10 0,001 1,0 300 50 125
Д237В (600) 100 10 0,001 1,0 100 50 125
Д237Е (200) 400 10 0,001 1,0 400 50 125
Д237Ж (400) 400 10 0,001 1,0 400 50 125
АД110А 30 (50) 10 0,005 1,1 10 0,005 85
АД112А 50 300 3,0 300 100 250
ГД107А 15 20 1,0 10 20 60
ГД107Б 20 20 0,4 10 100 60
ГД113А (115) 15 1,0 30 250 60
КД102А 250 100 1,0 50 0,1 100
КД102Б 300 100 1,0 50 1,0 100
КД103А 50 100 1,0 50 0,4 100
КД103Б 50 100 1,2 50 0,4 100
КД104А 300 (300) 10 1,0 1,0 10 3,0 70
КД105А (200) 300 15 1,0 300 100 85
КД105Б (400) 300 15 1,0 300 100 85
КД105В (600) 300 15 1,0 300 100 85
КД105Г (800) 300 15 1,0 300 100 85
КД116А-1 100 25 (170) 0,95 25 1,0 125
КД116Б-1 50 100 (170) 1,0 50 0,4 100
КД109А (100) 300 1,0 300 100 85
КД109Б (300) 300 1,0 300 50 85
КД109В (600) 300 1,0 300 100 85
КД109Г (600) 300 1,0 300 100 85
КД204А 400 (400) 400 10 1,4 600 150 85
КД204Б 200 (200) 600 10 0,05 1,4 600 100 85
КД204В 50 (50) 1000 10 0,05 1,4 600 50 85
КД205А 500 500 0,005 1,0 100 85
КД205Б 400 500 0,005 1,0 100 85
КД205В 300 500 0,005 1,0 100 85
КД205Г 200 500 0,005 1,0 100 85
КД205Д 100 500 0,005 1,0 100 85
КД205Е 500 300 0,005 1,0 100 85
КД205Ж 600 500 0,005 1,0 100 85
КД205И 700 300 0,005 1,0 100 85
КД205К 100 700 0,005 1,0 100 85
КД205Л 200 700 0,005 1,0 100 85
КД209А 400 (400) 700 15 1,0 700 100 85
КД209Б 600 (600) 500 15 1,0 500 100 85
КД209В 800 (800) 500 15 1,0 300 100 85
КД212А 200 (200) 1000 50 0,1 1,0 1000 50 85
КД212Б 200 (200) 1000 50 0,1 1,2 1000 100 85
КД212В 100 (100) 1000 50 0,1 1,0 1000 50 85
КД212Г 100 (100) 1000 50 0,1 1,2 1000 100 85
КД212А-6 200 (200) 1000 50 0,1 1,0 1000 50 85
КД212Б-6 200 (200) 1000 50 0,1 1,2 1000 100 85
КД212В-6 100 (100) 1000 50 0,1 1,0 1000 50 85
КД212Г-6 100 (100) 1000 50 0,1 1,2 1000 100 85
КД221А (100) 700 7 0,01 1,4 700 50 85
КД221Б (200) 500 5 0,01 1,4 500 50 85
КД221В (400) 300 3 0,01 1,4 300 100 85
КД221Г (600) 300 3 0,01 1,4 300 150 85
КД257А 200 (200) 3000 0,05 1,5 5000 2,0 155
КД257Б 400 (400) 3000 0,05 1,5 5000 2,0 155
КД257В 600 (600) 3000 0,05 1,5 5000 2,0 155
КД257Г 800 (800) 3000 0,05 1,5 5000 2,0 155
КД257Д 1000 (1000) 3000 0,05 1,5 5000 2,0 155
КД258А 200 (200) 1500 0,05 1,6 3000 2,0 155
КД258Б 400 (400) 1500 0,05 1,6 3000 2,0 155
КД258В 600 (600) 1500 0,05 1,6 3000 2,0 155
КД258Г 800 (800) 1500 0,05 1,6 3000 2,0 155
КД258Д 1000 (1000) 1500 0,05 1,6 3000 2,0 155
КД503А 30 20 (200) 350 10 85
КД503Б 30 20 (200) 350 10 85
2Д101А 30 (30) 20 (300) 1,0 100 5,0 85
2ДМ101А 30 20 (300) 1,0 100 5,0 100
2Д102А 250 100 1,0 50 0.1 125
2Д102Б 300 100 1,0 50 1,0 125
2Д103А 75 (100) 100 0,6 0,02 1,0 50 1,0 125
2Д104А 300 (300) 10 1,0 0,02 1,0 10 3,0 70
2Д106А 100 (100) 300 0,05 1,0 300 2,0 125
2Д108А (800) 100 3,0 1,5 100 150 125
2Д108Б (1000) 100 3,0 1,5 100 150 125
2Д115А 100 30 0,8 1,0 50 1,0 125
2Д118А-1 200 (200) 300 3,0 0,1 1,0 300 50 100
2Д120А 100 (100) 300 0,1 1,0 300 2,0 175
2Д120А-1 100 (100) 300 0,1 1,0 300 2,0 155
2Д123А-1 100 (100) 300 3,0 0,1 1,0 300 1,0 100
2Д125А-5 (600) 300 3,0 0,2 1,5 1000 50
2Д125Б-5 (800) 300 3,0 1,5 1000 50
2Д204А 400 (400) 400 10 0,05 1,4 600 150 125
2Д204Б 200 (200) 600 10 0,05 1,4 600 100 125
2Д204В 50 (50) 1000 10 0,05 1,4 600 50 125
2Д207А (600) 500 1,5 500 150 125
2Д212А 200 (200) 1000 50 0,1 1,0 1000 50 125
2Д212Б 100 (100) 1000 50 0,1 1,0 1000 50 125
2Д215А 400 (400) 1000 10 0,01 1,2 500 50 125
2Д215Б 600 (600) 1000 10 0,01 1,2 500 50 125
2Д215В 200 (200) 1000 10 0,01 1,1 1000 50 125
2Д235А 40 (40) 1000 0,9 300 800
2Д235Б 30 (30) 1000 0,9 300 800
2Д236А 600 (600) 1000 0,1 1,5 1000 5,0 155
2Д236Б 800 (800) 1000 0,1 1,5 1000 5,0 155
2Д236А-5 600 (600) 1000 0,1 1,5 1000 5,0 155
2Д236Б-5 800 (800) 1000 0,1 1,5 1000 5,0 155
2Д237А 100 (100) 1000 0,3 1,3 1000 5,0 155
2Д237Б 200 (200) 1000 0,3 1,3 1000 5,0 155
2Д237А-5 100 (100) 1000 0,3 1,3 1000 5,0 155
2Д237Б-5 200 (200) 1000 0,3 1,3 1000 5,0 155

Диоды средней мощности

Рис. 2. Выпрямительные отечественные диоды средней мощности.

В таблице приведены справочные данные по отечественными выпрямительным диодам средней мощности.















































































































































































Тип
прибора
Предельные значения
параметров при Т=25С
Значения параметров
при Т=25С


Тк.мах
(Тп.)
С

Uобр.макс.
(Uобр.и.мак.)
B
Iпр.макс.
(Iпр.и.мак.)
A
Iпрг.

A

fраб.
(fмакс.)
kГц
Uпр.

B

при
Iпр.
A
Iобр.

mA

1 2 3 4 5 6 7 8 9
Д214 (100) 10,0 100 1,1 1,2 10,0 3,0 130
Д214А (100) 10,0 100 1,1 1,0 10,0 3,0 130
Д214Б (100) 5,0 50 1,1 1,5 5,0 3,0 130
Д215 (200) 10,0 100 1,1 1,2 10,0 3,0 130
Д215А (200) 10,0 100 1,1 1,0 10,0 3,0 130
Д215Б (200) 5,0 50 1,1 1,5 5,0 3,0 130
Д231 (300) 10,0 100 1,1 1,0 10,0 3,0 130
Д231А (300) 10,0 100 1,1 1,0 10,0 3,0 130
Д231Б (300) 5,0 50 1,1 1,5 5,0 3,0 130
Д232 (400) 10,0 100 1,1 1,0 10,0 3,0 130
Д232А (400) 10,0 100 1,1 1,0 10,0 3,0 130
Д232Б (400) 5,0 50 1,1 1,5 5,0 3,0 130
Д233 (500) 10,0 100 1,1 1,0 10,0 3,0 130
Д233Б (500) 5,0 50 1,1 1,5 5,0 3,0 130
Д234Б (600) 5,0 50 1,1 1,5 5,0 3,0 130
Д242 (100) 10,0 2 (10) 1,25 10,0 3,0 130
Д242А (100) 10,0 2 (10) 1,0 10,0 3,0 130
Д242Б (100) 5,0 2 (10) 1,5 5,0 3,0 130
Д243 (200) 10,0 1,1 1,25 10,0 3,0 130
Д243А (200) 10,0 1,1 1,0 10,0 3,0 130
Д243Б (200) 5,0 1,1 1,5 5,0 3,0 130
Д244 (50) 10,0 1,1 1,25 10,0 3,0 130
Д244А (50) 10,0 1,1 1,0 10,0 3,0 130
Д244Б (50) 5,0 1,1 1,5 5,0 3,0 130
Д245 (300) 10,0 1,1 1,25 10,0 3,0 130
Д245А (300) 10,0 1,1 1,0 10,0 3,0 130
Д245Б (300) 5,0 1,1 1,5 5,0 3,0 130
Д246 (400) 10,0 1,1 1,25 10,0 3,0 130
Д246А (400) 10,0 1,1 1,0 10,0 3,0 130
Д246Б (400) 5,0 1,1 1,5 5,0 3,0 130
Д247 (500) 10,0 1,1 1,25 10,0 3,0 130
Д247Б (500) 5,0 1,1 1,5 5,0 3,0 130
Д248Б (600) 5,0 1,1 1,5 5,0 3,0 130
Д302 200 1,0 5,0 0,25 1,0 0,8 70
Д302А 200 1,0 5,0 0,3 1,0 1,2 55
Д303 (150) 3,0 4,5 5,0 0,3 3,0 1,0 80
Д303А (150) 3,0 5,0 0,35 3,0 1,2 55
Д304 (100) 5,0 12,5 5,0 0,25 5,0 2,0 80
Д305 (50) 10,0 40 5,0 0,3 10,0 2,5 80
Д332А 400 10,0 1,0 10,0 3,0 130
Д332Б 400 5,0 1,5 5,0 3,0 130
Д333 500 10,0 1,0 10,0 3,0 130
Д333Б 500 5,0 1,5 5,0 3,0 130
Д334Б 600 5,0 1,5 5,0 3,0 130
2Д201А (100) 5,0 15 1,1 1,0 5,0 3,0 130
2Д201Б (100) 10,0 100 1,1 1,0 10,0 3,0 130
2Д201В (200) 5,0 15 1,1 1,0 5,0 3,0 130
2Д201Г (200) 10,0 100 1,1 1,0 10,0 3,0 130
2Д202В 70 (100) 5,0 30 1,2 (5) 1,0 3,0 1,0 130
2Д202Д 120 (200) 5,0 30 1,2 (5) 1,0 3,0 1,0 130
2Д202Ж 210 (300) 5,0 30 1,2 (5) 1,0 3,0 1,0 130
2Д202К 200 (400) 5,0 30 1,2 (5) 1,0 3,0 1,0 130
2Д202М 350 (500) 5,0 30 1,2 (5) 1,0 3,0 1,0 130
2Д202Р 420 (600) 5,0 30 1,2 (5) 1,0 3,0 1,0 130
КД202А 35 (50) 5,0 9,0 1,2 (5) 0,9 5,0 0,8 130
КД202Б 35 (50) 3,5 9,0 1,2 (5) 0,9 3,5 0,8 130
КД202В 70 (100) 5,0 9,0 1,2 (5) 0,9 5,0 0,8 130
КД202Г 70 (100) 3,5 9,0 1,2 (5) 0,9 3,5 0,8 130
КД202Д 140 (200) 5,0 9,0 1,2 (5) 0,9 5,0 0,8 130
КД202Е 140 (200) 3,5 9,0 1,2 (5) 0,9 3,5 0,8 130
КД202Ж 210 (300) 5,0 9,0 1,2 (5) 0,9 5,0 0,8 130
КД202И 210 (300) 3,5 9,0 1,2 (5) 0,9 3,5 0,8 130
КД202К 280 (400) 5,0 9,0 1,2 (5) 0,9 5,0 0,8 130
КД202Л 280 (400) 3,5 9,0 1,2 (5) 0,9 3,5 0,8 130
КД202М 350 (500) 5,0 9,0 1,2 (5) 0,9 5,0 0,8 130
КД202Н 350 (500) 3,5 9,0 1,2 (5) 0,9 3,5 0,8 130
КД202Р 420 (600) 5,0 9,0 1,2 (5) 0,9 5,0 0,8 130
КД202С 480 (600) 3,5 9,0 1,2 (5) 0,9 3,5 0,8 130
2Д203А 420 (600) 10,0 100 1 (10) 1,0 10,0 1,5 140
2Д203Б 560 (800) 10,0 100 1 (10) 1,0 10,0 1,5 140
2Д203В 560 (800) 10,0 100 1 (10) 1,0 10,0 1,5 140
2Д203Г 700 (1000) 10,0 100 1 (10) 1,0 10,0 1,5 140
2Д203Д 700 (1000) 10,0 100 1 (10) 1,0 10,0 1,5 140
КД203А 420 (600) 10,0 30 1 (10) 1,0 10,0 1,5 140
КД203Б 560 (800) 10,0 30 1 (10) 1,0 10,0 1,5 140
КД203В 560 (800) 10,0 30 1 (10) 1,0 10,0 1,5 140
КД203Г 700 (1000) 10,0 30 1 (10) 1,0 10,0 1,5 140
КД203Д 700 (1000) 10,0 30 1 (10) 1,0 10,0 1,5 140
2Д204А 400 0,4 1,0 1,4 0,6 0,15 125
2Д204Б 200 0,6 5,0 1,4 0,6 0,1 125
2Д204В 50 1,0 2,0 5,0 1,4 0,6 0,05 125
КД204А 400 0,4 1,0 1,4 0,6 0,15 85
КД204Б 200 0,6 5,0 1,4 0,6 0,1 85
КД204В 50 1,0 2,0 5,0 1,4 0,6 0,05 85
2Д206А 400 (400) 5,0 100 1,0 1,2 1,0 0,7 125
2Д206Б 500 (500) 5,0 100 1,0 1,2 1,0 0,7 125
2Д206В 600 (600) 5,0 100 1,0 1,2 1,0 0,7 125
КД206А 400 (400) 10,0 100 1,0 1,2 1,0 0,7 125
КД206Б 500 (500) 10,0 100 1,0 1,2 1,0 0,7 125
КД206В 600 (600) 10,0 100 1,0 1,2 1,0 0,7 125
КД208A 100 (100) 1,5 1,0 1,0 1,0 0,1 85
КД208В 100 1,5 1,0 0,1 85
2Д210А 800 (800) 5,0 25 (5,0) 1,0 10,0 1,5 100
2Д210Б 800 (800) 10,0 50 (5,0) 1,0 10,0 1,5 100
2Д210В 1000 (1000) 5,0 25 (5,0) 1,0 10,0 1,5 100
2Д210Г 1000 (1000) 10,0 50 (5,0) 1,0 10,0 1,5 100
КД210А 800 (800) 5,0 25 (5,0) 1,0 10,0 1,5 100
КД210Б 800 (800) 10,0 50 (5,0) 1,0 10,0 1,5 100
КД210В 1000 (1000) 5,0 25 (5,0) 1,0 10,0 1,5 100
КД210Г 1000 (1000) 10,0 50 (5,0) 1,0 10,0 1,5 100
2Д212А 200 (200) 1,0 50 100 1,0 1,0 0,05 125
2Д212Б 100 (100) 1,0 50 100 1,0 1,0 0,1 125
КД212А 200 1,0 50 100 1,0 1,0 0,05 85
КД212Б 200 1,0 50 100 1,2 1,0 0,1 85
КД212В 100 1,0 50 100 1,0 1,0 0,05 85
КД212Г 100 1,0 50 100 1,2 1,0 0,1 85
2Д213А 200 (200) 10,0 100 (100) 1,0 10,0 0,2 150
2Д213А6 200 (200) 10,0 100 100 1,0 10,0 0,2 100
2Д213Б 200 (200) 10,0 100 (100) 1,2 10,0 0,2 150
2Д213Б6 200 (200) 10,0 100 100 1,2 10,0 0,2 100
2Д213В 100 (100) 10,0 100 (100) 1,0 10,0 0,2 125
2Д213Г 100 (100) 10,0 100 (100) 1,2 10,0 0,2 125
КД213А 200 (200) 10,0 100 (100) 1,0 10,0 0,2 140
КД213А6 200 (200) 10,0 100 (100) 1,0 10,0 0,2 100
КД213Б 200 (200) 10,0 100 (100) 1,2 10,0 0,2 130
КД213Б6 200 (200) 10,0 100 (100) 1,2 10,0 0,2 100
КД213В 100 (100) 10,0 100 (100) 1,0 10,0 0,2 130
КД213Г 100 (100) 10,0 100 (100) 1,2 10,0 0,2 130
2Д216А 100 (100) 10,0 100 1,4 10,0 0,05 175
2Д216Б 200 (200) 10,0 100 1,4 10,0 0,05 175
2Д217А 100 (100) 3,0 50 (100) 1,3 3,0 0,05 125
2Д217Б 200 (200) 3,0 50 (100) 1,3 3,0 0,05 125
2Д219А 15 (15) 10,0 250 200 0,55 10,0 10 115
2Д219Б 20 (20) 10,0 250 200 0,55 10,0 10 115
2Д219В 15 (15) 10,0 250 200 0,45 10,0 10 85
2Д219Г 20 (20) 10,0 250 200 0,45 10,0 10 85
2Д220А 400 (400) 3,0 60 10 (50) 1,5 3,0 0,045 155
2Д220Б 600 (600) 3,0 60 10 (50) 1,5 3,0 0,045 155
2Д220В 800 (800) 3,0 60 10 (50) 1,5 3,0 0,045 155
2Д220Г 1000(1000) 3,0 60 10 (50) 1,5 3,0 0,045 155
2Д220Д 400 (400) 3,0 60 10 (50) 1,3 3,0 0,045 155
2Д220Е 600 (600) 3,0 60 10 (50) 1,3 3,0 0,045 155
2Д220Ж 800 (800) 3,0 60 10 (50) 1,3 3,0 0,045 155
2Д220И 1000 (1000) 3,0 60 10 (50) 1,3 3,0 0,045 155
КД223А 200 (200) 2,0 35 1,3 6,0 10 150
КД226А 100 (100) 1,7 10 35 1,4 1,7 0,05 85
КД226Б 200 (200) 1,7 10 35 1,4 1,7 0,05 85
КД226В 400 (400) 1,7 10 35 1,4 1,7 0,05 85
КД226Г 600 (600) 1,7 10 35 1,4 1,7 0,05 85
КД226Д 800 (800) 1,7 10 35 1,4 1,7 0,05 85
КД227А 100 (150) 5,0 1,2 1,6 5,0 0,8 85
КД227Б 200 (300) 5,0 1,2 1,6 5,0 0,8 85
КД227В 300 (450) 5,0 1,2 1,6 5,0 0,8 85
КД227Г 400 (600) 5,0 1,2 1,6 5,0 0,8 85
КД227Д 500 (750) 5,0 1,2 1,6 5,0 0,8 85
КД227Е 600 (850) 5,0 1,2 1,6 5,0 0,8 85
КД227Ж 800 (1200) 5,0 1,2 1,6 5,0 0,8 85
2Д230А 400 (400) 3,0 60 10 (50) 1,5 3,0 0,045 125
2Д230Б 600 (600) 3,0 60 10 (20) 1,5 3,0 0,045 125
2Д230В 800 (800) 3,0 60 10 (20) 1,5 3,0 0,045 125
2Д230Г 1000(1000) 3,0 60 10 (20) 1,5 3,0 0,045 125
2Д230Д 400 (400) 3,0 60 10 (20) 1,3 3,0 0,045 125
2Д230Е 600 (600) 3,0 60 10 (50) 1,3 3,0 0,045 125
2Д230Ж 800 (800) 3,0 60 10 (20) 1,3 3,0 0,045 125
2Д230И 1000(1000) 3,0 60 10 (20) 1,3 3,0 0,045 125
2Д231А (150) 10,0 150 200 1,0 10,0 0,05 125
2Д231Б (200) 10,0 150 200 1,0 10,0 0,05 125
2Д231В (150) 10,0 150 200 1,0 10,0 0,05 125
2Д231Г (200) 10,0 150 200 1,0 10,0 0,05 125
2Д232А (15) 10,0 250 200(200) 0,6 10,0 7,5 100
2Д232Б (25) 10,0 250 200(200) 0,7 10,0 7,5 100
2Д232В (25) 10,0 250 200(200) 0,7 10,0 7,5 100
2Д234А 100 (100) 3,0 10 50 (50) 1,5 3,0 0,1 125
2Д234Б 200 (200) 3,0 10 50 (50) 1,5 3,0 0,1 125
2Д234В 400 (400) 3,0 10 50 (50) 1,5 3,0 0,1 125
2Д251А (50) 10,0 150 200 1,0 10,0 0,05 125
2Д251Б (70) 10,0 150 200 1,0 10,0 0,05 125
2Д251В (100) 10,0 150 200 1,0 10,0 0,05 125
2Д251Г (50) 10,0 150 200 1,0 10,0 0,05 125
2Д251Д (70) 10,0 150 200 1,0 10,0 0,05 125
2Д251Е (100) 10,0 150 200 1,0 10,0 0,05 125

Диоды большой мощности

Рис. 3. Выпрямительные отечественные диоды большой мощности.

В таблице приведены справочные данные по отечественными выпрямительным диодам большой мощности.




























Тип
прибора
Предельные значения
параметров при Т=25С
Значения параметров
при Т=25С
Тк.мах
(Тп.)
С
Uобр.макс.
(Uобр.и.мак.)
B
Iпр.макс.
(Iпр.и.мак.)
A
Iпрг.

A

fраб.
(fмакс.)
kГц
Uпр.

B

при
Iпр.
A
Iобр.

mA

1 2 3 4 5 6 7 8 9
2Д2990А 600 (600) 20 200 1,4 20 11 125
2Д2990Б 400 (400) 20 200 1,4 20 11 125
2Д2990В 200 (200) 20 200 1,4 20 11 125
КД2994А 100 (100) 20 200 1,4 20 0,2 125
КД2995А 50 (50) 20 200 1,1 20 0,01 150
КД2995Б 70 (70) 20 200 1,1 20 0,01 150
КД2995В 100 (100) 20 200 1,1 20 0,01 150
КД2995Г 50 (50) 20 200 1,1 20 0,01 150
КД2995Е 100 (100) 20 200 1,1 20 0,01 150
2Д2997А 200 (250) 30 (100) 100 1,0 30 25 125
2Д2997Б 100 (200) 30 (100) 100 1,0 30 25 125
2Д2997В 50 (100) 30 (100) 100 1,0 30 25 125
КД2997А 200 (250) 30 (100) 100 1,0 30 25 125
КД2997Б 100 (200) 30 (100) 100 1,0 30 25 125
КД2997В 50 (100) 30 (100) 100 1,0 30 25 125
2Д2998А 15 (15) 30 (100) 600 200 0,6 30 150 125
2Д2998Б 25 (25) 30 (100) 600 200 0,68 30 150 125
2Д2998В 25 (25) 30 (100) 600 200 0,68 30 150 125
2Д2999А 200 (250) 20 (100) 100 1,0 20 25 125
2Д2999Б 100 (200) 20 (100) 100 1,0 20 25 125
2Д2999В 50 (100) 20 (100) 100 1,0 20 25 125
КД2999А 200 (250) 20 (100) 100 1,0 20 25 125
КД2999Б 100 (200) 20 (100) 100 1,0 20 25 125
КД2999В 50 (100) 20 (100) 100 1,0 20 25 125

Справочник по диодам отечественного производства.

Диод Шоттки | Характеристики, особенности и применение

Что такое диод Шоттки

Диод Шоттки относится к семейству диодов. Выглядит он почти также, как и его собратья, но есть небольшие отличия.

Простой диод выглядит на схемах вот так:

обозначение диода на схеме

Стабилитрон уже обозначается, как диод с “кепочкой”

обозначение стабилитрона на схеме

Диод Шоттки имеет две “кепочки”

обозначение диода шоттки на схеме

Чтобы проще запомнить, можно добавить голову и ножки и представить себе человечка, танцующего ламбаду)

Обратное напряжение диода Шоттки

Итак, как вы помните, диод пропускает электрический ток только в одном направлении, а в другом направлении блокирует прохождение электрического тока до какого-то критического значения, называемым обратным напряжением диода.

Это значение можно найти в даташите

обратное напряжение диода

Для каждой марки диода оно разное

Если превысить это значение, то произойдет пробой, и диод выйдет из строя.

Падение напряжения на диоде Шоттки

Если же подать прямой ток на диод, то на диоде будет “оседать” напряжение. Это падение напряжения называется прямым падением напряжения на диоде. В даташитах обозначается как Vf , то есть Voltage drop.

прямое падение напряжения на диоде

Если пропустить через такой диод прямой ток, то мощность, которая будет на нем рассеиваться, будет определяться формулой:

где

P – мощность, Вт

Vf – прямое падение напряжение на диоде, В

I – сила тока через диод, А

Поэтому, одним из главных преимуществ диода Шоттки является то, что его прямое падение напряжения намного меньше, чем у простого диода. Следовательно, он будет меньше рассеивать тепло, или простым языком, меньше нагреваться.

Давайте рассмотрим один из примеров. Возьмем диод 1N4007. Его прямое падение напряжения составляет 0,83 Вольт, что типично для простого полупроводникового диода.

падение напряжение на диоде в прямом включении

В настоящий момент через него проходит сила тока, равная 0,5 А. Давайте рассчитаем его рассеиваемую мощность в данный момент. P=0,83 x 0,5 = 0,415 Вт.

Если рассмотреть этот случай через тепловизор, то можно увидеть, что его температура корпуса составила 54,4 градуса по Цельсию.

Теперь давайте проведем тот же самый эксперимент с диодом Шоттки 1N5817. Как вы видите, его прямое падение напряжения составило примерно 0,35 В.

падение напряжения на диоде Шоттки при прямом включении

При прохождении силы тока через диод Шоттки в 0,5 А, мы получим рассеиваемую мощность P=0,5 x 0,35 = 0,175 Вт. При этом тепловизор нам покажет, что температура корпуса уже будет 38,2 градуса.

Следовательно, Шоттки намного эффективнее, чем простой полупроводниковый диод в плане пропускания через себя прямого тока, так как он обладает меньшим падением напряжения, а следовательно, меньше рассеивает тепло в окружающее пространство и меньше нагревается.

Прямое падение напряжения можно также посмотреть и в даташитах. Например, прямое падение напряжения на диоде Шоттки 1N5817 можно найти из графика зависимости прямого тока от падения напряжения на диоде Шоттки

график зависимости прямого тока от напряжения

В нашем случае если следовать графо-аналитическому способу, то мы как раз получаем значение 0,35 В

Диод Шоттки в ВЧ цепях

Также диоды Шоттки обладают быстрой скоростью переключения. Это значит, что мы можем использовать их в высокочастотных (ВЧ) цепях.

Итак, возьмем генератор частоты и выставим синус частотой в 60 Гц

Возьмем диод 1N4007 и диод Шоттки 1N5817. Подключим их по простой схеме однополупериодного выпрямителя

и будем снимать с них показания

Как вы видите, оба они прекрасно справляются со своей задачей по выпрямлению сигнала на частоте в 60 Гц.

Но что будет, если мы увеличим частоту до 300 кГц?

Ого! Диод Шоттки более-менее справляется со своей задачей, что нельзя сказать о простом диоде 1N4007. Простой диод не может справиться со своей задачей не пропускать обратный ток, поэтому на осциллограмме мы видим отрицательный выброс

Отсюда можно сделать вывод: диоды Шоттки рекомендуется использовать в ВЧ цепях.

Обратный ток утечки

Но раз уж диоды Шоттки такие крутые, то почему бы их не использовать везде? Почему мы до сих пор используем простые диоды?

Если мы подключим диод в обратном направлении, то он будет блокировать прохождение электрического тока. Это верно, но не совсем. Очень маленький ток все равно будет проходить через диод. В некоторых случаях это не принимают во внимание. Этот маленький ток называется обратным током утечки. На английский манер это звучит как reverse leakage current.

Он очень мал, но имеет место быть.

Проведем простой опыт. Возьмем лабораторный блок питания, выставим на нем 19 В и подадим это напряжение на диод в обратном направлении

Замеряем ток утечки

обратный ток утечки диода

Как вы видите, его значение составляет 0,1 мкА.

Давайте теперь повторим этот же самый опыт с диодом Шоттки

обратный ток утечки диода Шоттки

Ого, уже почти 20 мкА! Ну да, в некоторых случаях это сущие копейки и ими можно пренебречь. Но есть схемы, где все-таки недопустим такой незначительный ток. Например, в схемах пикового детектора

схема пик детектора

В этом случае эти 20 мкА будут весьма значительны.

Но есть также еще один камень преткновения. С увеличением температуры обратный ток утечки возрастает в разы!

зависимость обратного тока утечки от температуры корпуса диода Шоттки

Поэтому, вы не можете использовать Шоттки везде в схемах.

Но и это еще не все. Обратное напряжение для диодов Шоттки в разы меньше, чем для простых выпрямительных диодов. Это можно также увидеть из даташита. Если для диода 1N4007 обратное напряжение составляет 1000 В

То для диода Шоттки 1N5817 это обратное напряжение уже будет составлять всего-то 20 В

Поэтому, если это напряжение превысит значение, которое описано в даташите, мы в итоге получим:

Применение диодов Шоттки

Диоды Шоттки находят достаточно широкое применение. Их можно найти везде, где требуется минимальное прямое падение напряжения, а также в цепях ВЧ. Чаще всего их можно увидеть в компьютерных блоках питания, а также в импульсных стабилизаторах напряжения.

Также эти диоды нашли применение в солнечных панелях, так как солнечные панели генерируют электрический ток только в светлое время суток. Чтобы в темное время суток не было обратного процесса потребления тока от аккумуляторов, в панели монтируют диоды Шоттки

Шоттки в солнечных панелях

В компьютерной технике чаще всего можно увидеть два диода в одном корпусе

Купить дешево можно на китайской площадке али по ссылке. 

При написании данной статьи использовался материал с этого видео

Как проверить диод? Всё, что необходимо об этом знать.

Проверка диода цифровым мультиметром

Чтобы определить исправность диода можно воспользоваться приведённой далее методикой его проверки цифровым мультиметром.

Но для начала вспомним, что представляет собой полупроводниковый диод.

Полупроводниковый диод – это электронный прибор, который обладает свойством однонаправленной проводимости.

У диода имеется два вывода. Один называется катодом, он является отрицательным. Другой вывод – анод. Он является положительным.

На физическом уровне диод представляет собой один p-n переход.

Напомню, что у полупроводниковых приборов p-n переходов может быть несколько. Например, у динистора их три! А полупроводниковый диод, по сути является самым простым электронным прибором на основе всего лишь одного p-n перехода.

Запомним, что рабочие свойства диода проявляются только при прямом включении. Что значит прямое включение? А это означает, что к выводу анода приложено положительное напряжение (+), а к катоду – отрицательное, т.е. (). В таком случае диод открывается и через его p-n переход начинает течь ток.

При обратном включении, когда к аноду приложено отрицательное напряжение (), а к катоду положительное (+), то диод закрыт и не пропускает ток.

Так будет продолжаться до тех пор, пока напряжение на обратно включённом диоде не достигнет критического, после которого происходит повреждение полупроводникового кристалла. В этом и заключается основное свойство диода – односторонняя проводимость.

У подавляющего большинства современных цифровых мультиметров (тестеров) в функционале присутствует возможность проверки диода. Эту функцию также можно использовать для проверки биполярных транзисторов. Обозначается она в виде условного обозначения диода рядом с разметкой переключателя режимов мультиметра.

Небольшое примечание! Стоит понимать, что при проверке диодов в прямом включении на дисплее показывается не сопротивление перехода, как многие думают, а его пороговое напряжение! Его ещё называют падением напряжения на p-n переходе. Это напряжение, при превышении которого p-n переход полностью открывается и начинает пропускать ток. Если проводить аналогию, то это величина усилия, направленного на то, чтобы открыть «дверь» для электронов. Это напряжение лежит в пределах 100 – 1000 милливольт (mV). Его то и показывает дисплей прибора.

В обратном включении, когда к аноду подключен минусовой () вывод тестера, а к катоду плюсовой (+), то на дисплее не должно показываться никаких значений. Это свидетельствует о том, что переход исправен и в обратном направлении ток не пропускает.

В документации (даташитах) на импортные диоды пороговое напряжение именуется как Forward Voltage Drop (сокращённо Vf), что дословно переводится как «падение напряжения в прямом включении«.

Само по себе падение напряжения на p-n переходе нежелательно. Если помножить протекающий через диод ток (прямой ток) на величину падения напряжения, то мы получим ни что иное, как мощность рассеивания – ту мощность, которая бесполезно расходуется на нагрев элемента.

Узнать подробнее о параметрах диода можно здесь.

Проверка диода.

Чтобы было более наглядно, проведём проверку выпрямительного диода 1N5819. Это диод Шоттки. В этом мы скоро убедимся.

Производить проверку будем мультитестером Victor VC9805+. Также для удобства применена беспаечная макетная плата.

Обращаю внимание на то, что во время измерения нельзя держать выводы проверяемого элемента и металлические щупы двумя руками. Это грубая ошибка. В таком случае мы измеряем не только параметры диода, но и сопротивление своего тела. Это может существенно повлиять на результат проверки.

Держать щупы и выводы элемента можно только одной рукой! В таком случае в измерительную цепь включен только сам измерительный прибор и проверяемый элемент. Данная рекомендация справедлива и при измерении сопротивления резисторов, а также при проверке конденсаторов. Не забывайте об этом важном правиле!

Итак, проверим диод в прямом включении. При этом плюсовой щуп (красный) мультиметра подключаем к аноду диода. Минусовой щуп (чёрный) подключаем к катоду. На фотографии, показанной ранее, видно, что на цилиндрическом корпусе диода нанесено белое кольцо с одного края. Именно с этой стороны у него вывод катода. Таким образом маркируется вывод катода у большинства диодов импортного производства.

Как видим, на дисплее цифрового мультиметра показалось значение порогового напряжения для 1N5819. Так как это диод Шоттки, то его значение невелико – всего 207 милливольт (mV).

Теперь проверим диод в обратном включении. Напоминаем, что в обратном включении диод ток не пропускает. Забегая вперёд, отметим, что и в обратном включении через p-n переход всё-таки протекает небольшой ток. Это так называемый обратный ток (Iобр). Но он настолько мал, что его обычно не учитывают.

Поменяем подключение диода к измерительным щупам мультиметра. Красный щуп подключаем к катоду, а чёрный к аноду.

На дисплее покажется «1» в старшем разряде дисплея. Это свидетельствует о том, что диод не пропускает ток и его сопротивление велико. Таким образом, мы проверили диод 1N5819 и он оказался полностью исправным.

Многие задаются вопросом: «Можно ли проверить диод не выпаивая его из платы?» Да, можно. Но в таком случае необходимо выпаять из платы хотя бы один его вывод. Это нужно сделать для того, чтобы исключить влияние других деталей, которые соединены с проверяемым диодом.

Если этого не сделать, то измерительный ток потечёт через все, в том числе, и через связанные с ним элементы. В результате тестирования показания мультиметра будут неверными!

В некоторых случаях данным правилом можно пренебречь, например, когда чётко видно, что на печатной плате нет таких деталей, которые могут повлиять на результат проверки.

Неисправности диода.

У диода есть две основные неисправности. Это пробой перехода и его обрыв.

  • Пробой. При пробое диод превращается в обычный проводник и свободно пропускает ток хоть в прямом направлении, хоть в обратном. При этом, как правило, пищит буззер мультиметра, а на дисплее показывается величина сопротивления перехода. Это сопротивление очень мало и составляет несколько ом, а то и вообще равно нулю.

  • Обрыв. При обрыве диод не пропускает ток ни в прямом, ни в обратном включении. В любом случае на дисплее прибора – «1«. При таком дефекте диод представляет собой изолятор. «Диагноз» — обрыв можно случайно поставить и исправному диоду. Особенно легко это сделать, когда щупы тестера порядком изношены и повреждены. Следите за исправностью измерительных щупов, провода у них ох какие «жиденькие» и при частом использовании легко рвутся.

А теперь пару слов о том, как по значению порогового напряжения (падению напряжения на переходе — Forward Voltage Drop (Vf)) можно ориентировочно судить о типе диода и материале из которого он изготовлен.

Вот небольшая подборка, составленная из конкретных диодов и соответствующих им величин Vf, которые были получены при их тестировании мультиметром. Все диоды были предварительно проверены на исправность.

Марка диода

Измеренное пороговое напряжение, мВ (mV)

Тип диода, материал полупроводника

1N5822

167

выпрямительный диод Шоттки

1N5819

200

выпрямительный диод Шоттки

RU4

419

быстрый выпрямительный диод

Д20

358

точечный германиевый диод

Д9

400

точечный германиевый диод

2Д106А

559

диффузионный кремниевый диод

Д104

717

точечный кремниевый диод

Как видим, наименьшее падение напряжения на переходе (Vf) у диодов Шоттки 1N5822 и 1N5819. Это отличительная черта всех диодов на основе перехода металл-полупроводник (барьера Шоттки).

При прямом протекании тока через их переход (барьер Шоттки), на нём падает очень малое напряжение. Сказать проще – диод практически не оказывает никакого сопротивления протекающему току и не расходует драгоценные ватты. Противоположенная ситуация у кремниевых диодов. Прямое падение напряжения у них, как правило, не меньше 0,5 вольт, а то и больше. Кремниевые диоды и диоды с барьером Шоттки очень активно используются для выпрямления переменного тока. Например, в составе диодного моста.

Германиевые диоды имеют прямое падение напряжения равное 300 – 400 милливольт. Например, проверенный нами точечный германиевый диод Д9, который ранее применялся в качестве детектора в радиоприёмниках, имеет пороговое напряжение около 400 милливольт.

  • Диоды Шоттки имеют Vf в районе 100 – 250 mV;

  • У германиевых диодов Vf, как правило, равно 300 – 400 mV;

  • Кремниевые диоды имеют самое большое падение напряжения на переходе равное 400 – 1000 mV.

Таким образом, с помощью описанной методики можно не только определить исправность диода, но и ориентировочно узнать, из какого материала и по какой технологии он изготовлен. Определить это можно по величине Vf.

Возможно, после прочтения данной методики у вас появится вопрос: «А как же проверить диодный мост?» На самом деле, очень просто. Об этом я уже рассказывал здесь.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Диод. Светодиод. Стабилитрон / Хабр

Не влезай. Убьет! (с)

Постараюсь объяснить работу с диодами, светодиодами, а также стабилитронами на пальцах. Опытные электронщики могут пропустить статью, поскольку ничего нового для себя не обнаружат. Не буду вдаваться в теорию электронно-дырочной проводимости pn-перехода. Я считаю, что такой подход обучения только запутает начинающих. Это голая теория, почти не имеющая отношения к практике. Впрочем, интересующимся теорией предлагаю

эту статью

. Всем желающим добро пожаловать под кат.

Это вторая статья из цикла электроники. Рекомендую к прочтению также

первую

, которая повествует о том, что такое электрический ток и напряжение.

Диод – полупроводниковый прибор, имеющий 2 вывода для подключения. Изготавливается, упрощенно говоря, путем соединения 2х полупроводников с разным типом примеси, их называют донорной и акцепторной, n и p соответственно, поэтому диод содержит внутри pn-переход. Выводы, обычно состоящие из луженой меди, называют анод (А) и катод (К). Эти термины пошли еще со времен электронных ламп и используются в письменном виде, для обозначения направленности диода. Гораздо проще графическое обозначение. Названия выводов диода запомнятся сами собой при применении на практике.

Как я уже писал, мы не будем использовать теорию электронно-дырочной проводимости диода. Просто инкапсулируем эту теорию до черного ящика с двумя зажимами для подключения. Примерно так же программисты инкапсулируют работу со сторонними библиотеками, не вдаваясь в е… подробности их работы. Или, например, когда, пользуясь пылесосом, мы не вдаёмся в подробности, как он устроен внутри, он просто работает и нам важно одно из свойств пылесоса – сосать пыль.

Рассмотрим свойства диода, самые очевидные:

  • От анода к катоду, такое направление называется прямым, диод пропускает ток.
  • От катода к аноду, в обратном направлении, диод ток не пропускает. (Вообще-то нет. Но об этом позже.)
  • При протекании тока, в прямом направлении, на диоде падает некоторое напряжение.

Возможно эти свойства вам и так хорошо известны. Но есть некоторые дополнения. Что же считать прямым, а что обратным направлением? Прямым называют такое включение, когда на аноде напряжение больше, чем на катоде. Обратное, наоборот. Прямое и обратное включение – это условность. В реальных схемах напряжение на одном и том же диоде может меняться с прямого на обратное и наоборот.

Кремниевый диод начинает пропускать хоть какой-либо значимый ток только тогда, когда на аноде напряжение будет больше примерно на 0,65 В, чем на катоде. Нет, не так. При протекании хоть какого-либо тока, на диоде образуется падение напряжения, примерно равное 0,65 В и выше.

Напряжение 0,65 В – называют прямым падением напряжения на pn-переходе. Это лишь примерная средняя величина, она зависит от тока, температуры кристалла и технологии изготовления диода. При изменении протекающего тока, она изменяется нелинейно. Чтобы как-то обозначить эту нелинейность графически, производители снимают вольтамперные характеристики диода. В мощных высоковольтных диодах падение напряжения может быть больше в 2, 3 и т.д. раза. Это означает, что внутри диода включено несколько pn-переходов последовательно.

Для определения падения напряжения можно использовать вольтамперную характеристику (ВАХ) диода в виде графика. Иногда эти графики приводятся в дата-листах (datasheets) на реальные модели диода, но чаще их нет. На первом мне попавшемся графике ниже приведены ВАХ КД243А, хотя это не важно, они все примерно похожи.

На графике Uпр – это прямое падение напряжения на диоде. Iпр – протекающий через диод ток. График показывает какое падение напряжения на диоде будет, при протекании n-го тока. Но чаще всего в даталистах не показываются реальные ВАХ, а приводится прямое падение напряжения, указанное при определенном токе. В английской литературе падение напряжения обозначается как forward voltage.

Как применять

Падение напряжения на диоде – для нас плохая характеристика, поскольку это напряжение не совершает полезной работы и рассеивается в виде тепла на корпусе диода. Чем меньше падение, тем лучше. Обычно падение напряжения на диоде определяют исходя из тока, протекающего через диод. Например, включим диод последовательно с нагрузкой. По сути это будет защита схемы от переплюсовки, на случай, если блок питания отсоединяемый. На рисунке ниже в качестве защищаемой схемы взят резистор 47 Ом, хотя в реальности это может быть все, что угодно, например, участок большой схемы. В качестве блока питания – батарея на 12 В.

Допустим, нагрузка без диода потребляет 255 мА. В данном случае это можно посчитать по закону Ома: I= U / R = 12 / 47 = 0,255 А или 255 мА. Хотя обычно потребление сферической схемы в вакууме уже известно, хотя бы по максимальным характеристикам блока питания. Найдем на графике ВАХ, указанный выше, падение напряжения для диода КД243А при 0,255 А протекающего тока, при 25 градусах. Оно равно примерно 0,75 В. Эти 0,75 В упадут на диоде, и для питания схемы останется 12 — 0,75 = 11,25 В — иногда может и не хватить. Как бонус, можно найти мощность, в виде тепла и потерь выделяющуюся на диоде по формуле P = I * U = 0,75 * 0,255 = 0,19 Вт, где I и U – ток через диод и падение напряжения на диоде.

Что же делать, когда график ВАХ недоступен? Например, для популярного диода 1n4007 указано только прямое напряжения forward voltage 1 В при токе 1 А. Нужно и использовать это значение, либо измерить реальное падение. А если для какого-либо диода это значение не указано, то сойдет среднее 0,65 В. В реальности проще это падение напряжения измерить вольтметром в схеме, чем выискивать в графиках. Думаю, не надо объяснять, что вольтметр должен быть включен на постоянное напряжение, если через диод течет постоянный ток, а щупы должны касаться анода и катода диода.

Немного про другие характеристики

В предыдущем примере, если перевернуть батарейку, я имею ввиду поменять полярность, см. нижний рисунок, ток не потечет и падение напряжения на диоде в худшем случае составит 12 В — напряжение батареи. Главное, чтобы это напряжение не превышало напряжение пробоя нашего диода, оно же обратное напряжение, оно же breakdown voltage. А также важно еще одно условие: ток в прямом направлении через диод не превышал номинальный ток диода, он же forward current. Это два основных параметра по которых выбирается диод: прямой ток и обратное напряжение.

Иногда в даталистах также указывается рассеиваемая мощность диодом или номинальная мощность (power dissipation). Если она указана, то ее нельзя превышать. Как ее посчитать, мы уже разобрались на предыдущем примере. Но если мощность не указана, тогда надо ориентироваться по току.

Говорят, что в обратном направлении ток через диод не течет, ну или почти не потечет. На самом деле через него протекает ток утечки, reverse current в английской литературе. Этот ток очень маленький, от нескольких наноампер у маломощных диодов до нескольких сот микроампер, у мощных. Также этот ток зависит от температуры и приложенного напряжения. В большинстве случаем ток утечки не играет никакой роли, например, в как в предыдущем примере, но, когда вы будете работать с наноамперами и поставите какой-либо защитный диод на входе операционного усилителя, тогда может случиться ой… Схема поведет себя совсем не так, как задумывалась.

У диодов так же есть некоторая маленькая паразитная емкость capacitance. Т.е., по сути, это конденсатор, параллельно включенный с диодом. Эту емкость надо учитывать при быстрых процессах при работе диода в схеме с десятками-сотнями мегагерц.

Также несколько слов по поводу термина «номинал». Обычно номинальные ток и напряжение обозначают, что при превышении этих параметров производитель не гарантирует работу изделия, если не сказано другое. И это для всех электронных компонентов, а не только для диода.

Что еще можно сделать

Применений диодов существует множество. Разработчики-радиоэлектронщики обычно выдумывают свои схемы из кусочков других схем, так называемых строительных кирпичиков. Вот несколько вариантов.

Например, схема защиты цифровых или аналоговых входов от перенапряжения:

Диоды в этой схеме при нормальной работе не пропускают ток. Только ток утечки. Но когда по входу возникает перенапряжение с положительной полуволной, т.е. напряжение входа становится больше чем Uпит плюс прямое падение напряжения на диоде, то верхний диод открывается и вход замыкается на шину питания. Если возникает отрицательная полуволна напряжения, то открывается нижний диод и вход замыкается на землю. В этой схеме, кстати, чем меньше утечки и емкость у диодов, тем лучше. Такие схемы защиты уже, как правило, стоят во всех современных цифровых микросхемах внутри кристалла. А внешними мощными сборками TVS-диодов защищают, например, USB порты на материнских платах.

Также из диодов можно собрать выпрямитель. Это очень распространённый тип схем и вряд ли кто-то из читателей про них не слышал. Выпрямители бывают однополупериодные, двухполупериодные и мостовые. С однополупериодным выпрямителем мы уже познакомились в нашем самом первом многострадальном примере, когда рассматривали защиту от переплюсовки. Никакими особыми плюсами не обладает, кроме плюса на батарейке. Один из самых важных минусов, который ограничивает применение схемы однополупериодного выпрямителя на практике: схема работает только с положительной полуволной напряжения. Отрицательное напряжение напрочь отсекает и ток при этом не течет. «Ну и что?», скажете вы, «Такой мощности мне будет достаточно!». Но нет, если такой выпрямитель стоит после трансформатора, то ток будет протекать только в одну сторону через обмотки трансформатора и, таким образом, трансформаторное железо будет дополнительно подмагничиваться. Трансформатор может войти в насыщение и греться намного больше положенного.

Двухполупериодные выпрямители этого недостатка лишены, но им необходим средний вывод обмотки трансформатора. Здесь при положительной полярности переменного напряжения открыт верхний диод, а при отрицательной – нижний. КПД трансформатора используется не полностью.

Мостовые схемы лишены обоих недостатков. Но теперь на пути тока включены два диода в любой момент времени: прямой диод и обратный. Падение напряжения на диодах удваивается и составляет не 0,65-1В, а в среднем 1,3-2В. С учетом этого падения считается выпрямленное напряжение.

Например, нам надо получить 18 вольт выпрямленного напряжения, какой трансформатор для этого выбрать? 18 вольт плюс падение на диодах, возьмем среднее 1,4 В, равно 19,4 В. Мы знаем из

предыдущей статьи

, что амплитудное значение переменного напряжения в корень из 2 раз больше его действующего значения. Поэтому во вторичной цепи трансформатора переменное действующее напряжение равно 19,4 / 1,41 = 13,75В. С учетом того, что напряжение в сети может гулять на 10%, а также под нагрузкой напряжение немного просядет, выберем трансформатор 230/15 В.

Мощность требуемого нам трансформатора можно посчитать от тока нагрузки. Например, мы собираемся подключать к трансформатору нагрузку в один ампер. Это если с запасом. Всегда оставляйте небольшой запас, в 20-40%. Просто по формуле мощности можно найти P = U * I = 15 * 1 = 15 ВА, где U и I – напряжение и ток вторичной обмотки. Если вторичных обмоток несколько, то их мощности складываются. Плюс потери на трансформацию, плюс запас, поэтому выберем трансформатор 20-40 ВА. Хотя часто трансформаторы продаются с указанием тока вторичных обмоток, но проверить по габаритной мощности не помешает.

После выпрямительного моста необходим сглаживающий конденсатор, на рисунке не показан. Не забывайте про него! Есть умные формулы по расчету этого конденсатора в зависимости от количества пульсаций, но порекомендую такое правило: ставить конденсатор 10000мкФ на один ампер потребления тока. Вольтаж конденсатора не меньше, чем выпрямленное без нагрузки напряжение. В данном примере можно взять конденсатор с номиналом 25В.

Диоды в этой схеме выберем на ток >=1А и обратное напряжение, с запасом, больше 19,4 В, например, 50-1000 В. Можно применить диоды Шоттки. Это те же диоды, только с очень маленьким падением напряжения, которое часто составляет десятки милливольт. Но недостаток диодов Шоттки – их не выпускают на более-менее высокие напряжения, больше 100В. Точнее с недавнего времени выпускают, но их стоимость заоблачная, а плюсы уже не так очевидны.

Светодиод

Внутри устроен совсем по другому, чем диод, но имеет те же самые свойства. Только еще и светится при протекании тока в прямом направлении.

Все отличие от диода в некоторых характеристиках. Самое важное – прямое падение напряжения. Оно гораздо больше, чем 0,65 В у обычного диода и зависит в основном от цвета светодиода. Начиная от красного, падение напряжения которого составляет в среднем 1,8 В, и заканчивая белым или синим светодиодом, падение у которых около 3,5 В. Впрочем, у невидимого спектра эти значения шире.

По сути падение напряжения здесь – минимальное напряжение зажигания диода. При меньшем напряжении, у источника питания, тока не будет и диод просто не загорится. У мощных осветительных светодиодов падение напряжения может составлять десятки вольт, но это значит лишь, что внутри кристалла много последовательно-параллельных сборок диодов.

Но сейчас поговорим об индикаторных светодиодах, как наиболее простых. Их выпускают в различных корпусах, наиболее часто в полуокруглых, диаметром 3, 5, 10 мм.

Любой диод светится в зависимости от протекающего тока. По сути это токовый прибор. Падение напряжения получается автоматически. Ток мы задаем сами. Современные индикаторные диоды более-менее начинают светиться при токе 1 мА, а при 10 мА уже выжигают глаза. Для мощных осветительных диодов надо смотреть документацию.

Применение светодиода

Имея лишь соответствующий резистор можно задать нужный ток через диод. Конечно, понадобится еще и блок питания постоянного напряжения, например, батарейка 4,5 В или любой другой БП.

Например, зададим ток 1мА через красный светодиод с падением напряжения 1,8 В.

На схеме показаны узловые потенциалы, т.е. напряжения относительно нуля. В каком направлении включать светодиод нам подскажет лучше всего мультиметр в режиме прозвонки, поскольку иногда попадаются напрочь китайские светодиоды с перепутанными ногами. При касании щупов мультиметра, в правильном направлении, светодиод должен слабо светиться.

Поскольку применен красный светодиод, то на резисторе упадет 4,5 — 1,8 = 2,7В. Это известно по второму закону Кирхгофа: сумма падений напряжения на последовательных участках схемы равно ЭДС батарейки, т.е. 2,7 + 1,8 = 4,5В. Чтобы ограничить ток в 1мА, резистор по закону Ома должен обладать сопротивлением R = U / I = 2,7 / 0,001 = 2700 Ом, где U и I – напряжение на резисторе и необходимый нам ток. Не забываем переводить величины в единицы СИ, в амперы и вольты. Поскольку выпускаемые номиналы сопротивлений стандартизованы выберем ближайший стандартный номинал 3,3кОм. Конечно, при этом ток изменится и его можно пересчитать по закону Ома I = U / R. Но зачастую это не принципиально.

В этом примере ток, отдаваемый батарейкой, мал, так что внутренним сопротивлением батареи можно пренебречь.

С осветительными светодиодами все тоже самое, только токи и напряжения выше. Но иногда им уже не требуется резистор, надо смотреть документацию.

Что-то еще про светодиод

По сути, светить – это основное назначение светодиода. Но есть и другое применение. Например, светодиод может выступать в качестве источника опорного напряжения. Они необходимы, например, для получения источников тока. В качестве источников опорного напряжения, как менее шумные, применяют красные светодиоды. Их включают в схему так же, как и в предыдущем примере. Поскольку напряжение батарейки относительно постоянное, ток через резистор и светодиод тоже постоянный, поэтому падение напряжения остается постоянным. От анода светодиода, где 1,8В, делается отвод и используется это опорное напряжение в других участках схемы.

Для более надежной стабилизации тока на светодиоде, при пульсирующем напряжении источника питания, вместо резистора в схему ставят источник тока. Но источники тока и источники опорного напряжения – это тема еще одной статьи. Возможно, когда-нибудь я ее напишу.

Стабилитрон

В английской литературе стабилитрон называется Zener diode. Все тоже самое, что и диод, в прямом включении. Но сейчас поговорим только про обратное включение. В обратном включении под действием определенного напряжения на стабилитроне возникает обратимый пробой, т.е. начинает течь ток. Этот пробой полностью штатный и рабочий режим стабилитрона, в отличие от диода, где при достижении номинального обратного напряжения диод просто выходил из строя. При этом, ток через стабилитрон в режиме пробоя может меняться, а падение напряжение на стабилитроне остается практически неизменным.

Что нам это дает? По сути это маломощный стабилизатор напряжения. Стабилитрон имеет все те же характеристики, что и диод, плюс добавляется так же напряжение стабилизации Uст или nominal zener voltage. Оно указывается при определенном токе стабилизации Iст или test current. Также в документации на стабилитроны указываются минимальный и максимальный ток стабилизации. При изменении тока от минимального до максимального, напряжение стабилизации несколько плавает, но незначительно. См. вольт-амперные характеристики.

Рабочая зона стабилитрона обозначена зеленым цветом. На рисунке видно, что напряжение на рабочей зоне практически неизменно, при широком диапазоне изменения тока через стабилитрон.

Чтобы выйти на рабочую зону, нам надо установить ток стабилитрона между [Iст. min – Iст. max] с помощью резистора точно так же, как это делалось в примере со светодиодом (кстати, можно также с помощью источника тока). Только, в отличие от светодиода, стабилитрон включен в обратном направлении.

При меньшем токе, чем Iст. min стабилитрон не откроется, а при большем, чем Iст. max – возникнет необратимый тепловой пробой, т.е. стабилитрон просто сгорит.

Расчёт стабилитрона

Рассмотрим на примере нашего рассчитанного трансформаторного БП. У нас есть блок питания, выдающий минимум 18 В (по сути там больше, из-за трансформатора 230/15 В, лучше мерить в реальной схеме, но суть сейчас не в этом), способный отдавать ток 1 А. Нужно запитать нагрузку с максимальным потреблением 50 мА стабилизированным напряжением 15 В (например, пусть это будет какой-нибудь абстрактный операционный усилитель – ОУ, у них примерно такое потребление).

Такая слабая нагрузка выбрана неспроста. Стабилитроны довольно маломощные стабилизаторы. Они должны проектироваться так, чтобы через них мог проходить без перегрева весь ток нагрузки плюс минимальный ток стабилизации Iст. min. Это необходимо, потому что ток после резистора R1 делится между стабилитроном и нагрузкой. В нагрузке ток может быть непостоянным, либо нагрузка может выключаться из схемы совсем. По сути это параллельный стабилизатор, т.е. весь ток, который не уйдет в нагрузку, примет на себя стабилитрон. Это как первый закон Кирхгофа I = I1 + I2, только здесь I = Iнагр + Iст. min.

Итак, выберем стабилитрон с напряжением стабилизации 15 В. Для установки тока через стабилитрон всегда необходим резистор (или источник тока). На резисторе R1 упадет 18 – 15 = 3 В. Через резистор R1 будет протекать ток Iнагр. + Iст. min. Примем Iст. min = 5 мА, это примерно достаточный ток для всех стабилитронов с напряжением стабилизации до 100 В. Выше 100 В можно принимать 1мА и меньше. Можно взять Iст. min и больше, но это только будет бесполезно греть стабилитрон.

Итак, через R1 течет Ir1 = Iнагр. + Iст. min = 50 + 5 = 55 мА. По закону Ома находим сопротивление R1 = U / I = 3 / 0,055 = 54,5 Ом, где U и I – напряжение на резисторе и ток через резистор. Выберем из ближайшего стандартного ряда сопротивление 47 Ом, будет чуть больше ток через стабилитрон, но ничего страшного. Его даже можно посчитать, общий ток: Ir1 = U / R = 3 / 47 = 0,063А, далее минимальный ток стабилитрона: 63 — 50 = 13 мА. Мощность резистора R1: P = U * I = 3 * 0,063 = 0,189 Вт. Выберем стандартный резистор на 0,5 Вт. Советую, кстати, не превышать мощность резисторов примерно Pmax/2, дольше проживут.

На стабилитроне тоже рассеивается мощность в виде тепла, при этом в самом худшем случае она будет равна P = Uст * (Iнагр + Iст.) = 15 * (0,050 + 0,013) = 0,945 Вт. Стабилитроны выпускают на разную мощность, ближайшая 1Вт, но тогда температура корпуса при потреблении около 1Вт будет где-то 125 градусов С, лучше взять с запасом, на 3 Вт. Стабилитроны выпускают на 0,25, 0,5, 1, 3, 5 Вт и т.д.

Первый же запрос в гугле «стабилитрон 3Вт 15В» выдал 1N5929BG. Далее ищем «datasheet 1N5929BG». По даташиту у него минимальный ток стабилизации 0,25 мА, что меньше 13 мА, а максимальный ток 100 мА, что больше 63 мА, т.е. укладывается в его рабочий режим, поэтому он нам подходит.

В общем-то, это весь расчёт. Да, стабилизатор это неидеальный, внутреннее сопротивление у него не нулевое, но он простой и дешевый и работает гарантировано в указанном диапазоне токов. А также поскольку это параллельный стабилизатор, то ток блока питания будет постоянным. Более мощные стабилизаторы можно получить, умощнив стабилитрон транзистором, но это уже тема следующей статьи, про транзисторы.

Проверить стабилитрон на пробой обычным мультиметром, как правило, нельзя. При более-менее высоковольтном стабилитроне просто не хватит напряжения на щупах. Единственное, что удастся сделать, это прозвонить его на наличие обычной диодной проводимости в прямом направлении. Но это косвенно гарантирует работоспособность прибора.

Еще стабилитроны можно использовать как источники опорного напряжения, но они шумные. Для этих целей выпускают специальные малошумящие стабилитроны, но их цена в моем понимании зашкаливает за кусочек кремния, лучше немного добавить и купить интегральный источник с лучшими параметрами.

Также существует много полупроводниковых приборов, похожих на диод: тиристор (управляемый диод), симистор (симметричный тиристор), динистор (открываемый импульсно только по достижении определенного напряжения), варикап (с изменяемой емкостью), что-то еще. Первые вам понадобятся в силовой электронике при постройки управляемых выпрямителей или регуляторов активной нагрузки. А с последними я уже лет 10 не сталкивался, поэтому оставляю эту тему для самостоятельного чтения в вики, хотя бы про тиристор.

Классификация диодов | Полупроводник | ШИНДЭНГЕН ЭЛЕКТРИК MFG.CO., LTD

Классификация диодов

Диоды

можно классифицировать по материалам и характеристикам, а также по форме, внутренней проводке и т. Д. Диоды
можно классифицировать следующим образом, если сосредоточить внимание на материалах и характеристиках.

Диоды

бывают разных форм в зависимости от области применения, функциональности и других переменных, но в целом их можно классифицировать как типа со сквозным отверстием и типа для поверхностного монтажа.
Кроме того, основная классификация диодов, классифицируемых в соответствии с характеристиками внутренней проводки, — это Мостовые диоды .

【Дискретный】
Общее название транзисторов, диодов, тиристоров и других однофункциональных элементов, которые служат компонентами полупроводниковой продукции.

【Силовой модуль】
Компонент, который формирует силовую цепь за счет комбинации нескольких силовых полупроводников, таких как транзисторы, диоды, тиристоры и т. Д.
Shindengen предлагает силовые модули с 4 или 6 диодами.

Общие выпрямительные диоды

Диоды, в которых используются кремниевые переходы pn и которые производятся для выпрямления переменного тока промышленной частоты (50/60 Гц).

Первоначально все кремниевые диоды относились к этому типу, однако расширение областей применения и повышение рыночного спроса на с более высокой скоростью и с малым рассеиванием привело к разработке диодов с быстрым восстановлением, диодов с барьером Шоттки и т. Д.

【Полупроводник P-типа】
Его можно просто описать как полупроводник, который имеет положительные электрические свойства.

【Полупроводник N-типа】
Его можно описать просто как полупроводник с отрицательными электрическими свойствами.

【pn переход】
Относится к сечению, где площадь полупроводника P-типа и область полупроводника N-типа контактируют друг с другом.
pn-переходы не «соединяют» полупроводник P-типа и полупроводник N-типа вместе, а скорее формируются путем создания P-области и N-области на одной кремниевой пластине.

Диоды быстрого восстановления

Это диод с pn переходом (общий выпрямительный диод), который был ускорен.

Когда диод изменяется с прямого смещения на обратного смещения , ток проходит в обратном направлении в течение фиксированного периода времени.
Этот ток называется током восстановления , а период времени, в течение которого протекает этот ток, называется временем восстановления , .

【прямое смещение】
Относится к приложению положительного напряжения к анодной стороне диода и отрицательного напряжения к катодной стороне.
Через диод будет течь ток.

【обратное смещение】
Относится к приложению положительного напряжения к катодной стороне диода и отрицательного напряжения к анодной стороне.
Ток не проходит через диод.

【ток восстановления】
Относится к току, протекающему через диод в обратном направлении в течение времени обратного восстановления.

【обратное время восстановления】
Относится ко времени от момента изменения напряжения в обратном направлении до уменьшения тока.
Обозначается как «trr».

Время обратного восстановления для обычных выпрямительных диодов составляет от нескольких микросекунд до нескольких десятков микросекунд. С точки зрения человеческого восприятия, это чрезвычайно короткий период времени, однако это время нельзя игнорировать в зависимости от используемой схемы. Например, при выпрямлении переменного тока промышленной частоты 50 Гц и 60 Гц эффекта почти нет, однако это время слишком велико для выпрямления импульсного источника питания 100 кГц и не может быть использовано, потому что рассеивание обратного восстановления было бы слишком большим.Диоды с быстрым восстановлением — это диодов, которые были ускорены на , чтобы сократить время обратного восстановления до нескольких десятков наносекунд до нескольких сотен наносекунд.

【потери при обратном восстановлении】
Относится к рассеянию, которое происходит в результате протекания тока восстановления.
Этим рассеянием легче управлять, чем короче время обратного восстановления.

Диоды с барьером Шоттки

В этом диоде используется металл и полупроводник N-типа с барьером Шоттки вместо pn перехода.

Когда через диод протекает ток, происходит падение напряжения, называемое «прямое напряжение» , которое вызывает рассеяние мощности и выделение тепла. Это рассеяние мощности называется «прямое рассеяние» .
Эффективно сделать прямое напряжение как можно меньшим для управления прямым рассеянием. Диоды с барьером Шоттки имеют меньшее прямое напряжение , чем диоды с pn-переходом, поэтому их можно использовать для значительного уменьшения прямого рассеяния.
Кроме того, у них нет времени обратного восстановления и очень высокая скорость, поэтому они обладают превосходными характеристиками, но у них также есть недостаток в , заключающийся в том, что их трудно сделать устойчивыми к высоким напряжениям , поэтому они используются в качестве высокоэффективные диоды, выдерживающие напряжения до 200 В.

【переход с барьером Шоттки】
В этом диоде используется барьер Шоттки, образованный переходом между металлом и полупроводником N-типа.
Они названы в честь немецкого физика Вальтера Шоттки, открывшего их свойства.
Их также называют МС-переходами (переходами металл-полупроводник), когда они упоминаются по отношению к pn-переходам.

【прямое напряжение】
Относится к падению напряжения, которое возникает, когда ток течет от анода к катоду.
Обозначается как «V F ».

【прямые потери】
Относится к рассеиваемой мощности, которая возникает в результате тока I F , который течет в прямом направлении, и прямого напряжения V F .
Прямое рассеяние = V F × I F [Вт]

Стабилитроны

В них используется характеристика диодов , заключающаяся в том, что они не пропускают ток в обратном направлении и используются для формирования цепей постоянного напряжения и поглощения импульсного напряжения. Те, которые используются для поглощения импульсного напряжения, также иногда называют TVS (ограничитель переходного напряжения), чтобы различать их.

Стабилитроны

— это диоды, которые активно используют характеристики стандартных диодов, связанные с пробоем и .
Они пропускают ток от катода к аноду, в отличие от стандартных диодов, для достижения постоянного напряжения и защиты цепей путем поглощения энергии. Стабилитроны
Shindengen представляют собой кремниевые TVS, которые защищают схемы от перенапряжения, скачков сброса нагрузки и т. Д., И отличаются от обычных стабилитронов тем, что они могут выдерживать более высокие количества энергии и могут реагировать быстрее, чем варисторы. Стабилитроны общего назначения используют характеристики постоянного напряжения за счет постоянного небольшого потока тока, но TVS отличаются тем, что они обычно не пропускают ток и работают только при необходимости.

【пробой】
Относится к явлению, когда ток, превышающий заданное напряжение, быстро течет при увеличении напряжения, приложенного к обратному смещению диода.
Напряжение во время этого явления называется «напряжением пробоя».

【сброс нагрузки】
Относится к скачку напряжения (переходное высокое напряжение), которое возникает в результате отключения автомобильного аккумулятора.
Этот выброс содержит большое количество энергии, поэтому он может повредить электронные устройства и компоненты.

Мостиковые диоды ・ Модули питания

Мостовые диоды — это основная классификация диодов, классифицируемых по характеристикам внутренней проводки, а не по характеристикам диодов.

Поскольку они обычно используются для двухполупериодного выпрямления коммерческих источников питания, большинство встроенных диодов являются выпрямительными диодами общего назначения, однако есть также продукты, в которых есть встроенные диоды с барьером Шоттки для использования во вторичном выпрямлении переключения. источники питания и т. д. Существуют также изделия с 6 встроенными диодами для использования в выпрямлении 3-фазного переменного тока .
Помимо мостовых диодов, Shindengen также предлагает диодные модули (силовые модули) для использования в широком спектре приложений.

【двухполупериодное выпрямление】
Относится к выпрямлению как положительных, так и отрицательных волн переменного тока, чтобы ток протекал в одном направлении.
Выпрямление только положительной части называется полуволновым выпрямлением.

【трехфазный переменный ток】
Относится к методу электрической передачи для эффективной передачи большого количества электроэнергии. Этот метод позволяет получить большое количество энергии от небольшого тока, поэтому он используется для передачи электричества устройствам, которые требуют большого количества энергии, таким как промышленные электрические устройства и т. Д.
Для сравнения, метод, используемый для домашнего использования, называется «однофазным».

Что такое диод? | Fluke

Диод — это полупроводниковое устройство, которое, по сути, действует как односторонний переключатель тока. Это позволяет току легко течь в одном направлении, но сильно ограничивает протекание тока в противоположном направлении.

Диоды также известны как выпрямители , потому что они преобразуют переменный ток (ac) в пульсирующий постоянный ток (dc).Диоды классифицируются в соответствии с их типом, напряжением и допустимым током.

Диоды имеют полярность, определяемую анодом (положительный вывод) и катодом (отрицательный вывод). Большинство диодов пропускают ток только тогда, когда на анод подается положительное напряжение. На этом рисунке показаны различные конфигурации диодов:

Диоды доступны в различных конфигурациях. Слева: металлический корпус, крепление на шпильке, пластиковый корпус с лентой, пластиковый корпус с фаской, стеклянный корпус.

Когда диод пропускает ток, он смещен в прямом направлении . Когда диод смещен в обратном направлении, он действует как изолятор и не пропускает ток.

Странно, но факт: стрелка символа диода указывает против направления потока электронов. Причина: инженеры придумали символ, и их схемы показывают ток, текущий от положительной (+) стороны источника напряжения к отрицательной (-). То же самое соглашение используется для символов полупроводников, которые включают стрелки — стрелка указывает в разрешенном направлении «обычного» потока и против разрешенного направления потока электронов.

Испытательный диод диода цифрового мультиметра создает небольшое напряжение между измерительными выводами, достаточное для прямого смещения диодного перехода. Нормальное падение напряжения составляет от 0,5 В до 0,8 В. Смещенное в прямом направлении сопротивление хорошего диода должно находиться в диапазоне от 1000 до 10 Ом. При обратном смещении на дисплее цифрового мультиметра будет отображаться OL (что указывает на очень высокое сопротивление).

Диодам присваиваются номинальные значения тока. Если номинальное значение превышено и диод выходит из строя, он может закоротить и либо а) позволить току течь в обоих направлениях, или б) остановить ток в любом направлении.

Ссылка: Принципы цифрового мультиметра Глена А. Мазура, American Technical Publishers.

Силовой диод — силовая электроника от A до Z

Введение:
Диод — это двухконтактный полупроводниковый прибор с анодом (A) и катодом (C).

Символ:
Символ диода мощности такой же, как диод уровня сигнала.

Если клемма A имеет более высокий потенциал по сравнению с клеммой K, устройство считается смещенным в прямом направлении, и прямой ток будет течь от анода к катоду.
Это вызывает небольшое падение напряжения на устройстве (<1 В), называемое прямым падением напряжения (В f ) , которое в идеальных условиях обычно игнорируется.
Напротив, когда диод смещен в обратном направлении, он не проводит, и тогда на диод протекает небольшой ток, протекающий в обратном направлении, называемый током утечки . Это показано ниже в VI характеристиках диода.

Конструкция силового диода отличается от сигнального диода малой мощности.

Характеристики силового диода:

Характеристики обратного восстановления силового диода показаны на следующем рисунке. Из рисунка можно понять характеристику выключения диода. Время обратного восстановления t RR — это временной интервал между приложением обратного напряжения и обратным током, упавшим до 0,25 I RR .

Параметр t a — это интервал между переходом через ноль тока диода до его достижения I RR .Параметр t b — это интервал времени от максимального тока обратного восстановления до 0:25 I RR .

Нижнее значение t rr означает быстрое переключение диодов.
Отношение двух параметров t a и t b известно как коэффициент мягкости r SF.

Datasheet Параметры:
Для силовых диодов в техническом паспорте будут указаны два номинальных напряжения. Один — это повторяющееся пиковое обратное напряжение (V RRM ), а другое — непериодическое пиковое обратное напряжение.
Неповторяющееся напряжение (V RM ) — это способность диода блокировать обратное напряжение, которое может иногда возникать из-за перенапряжения.
В техническом паспорте диода обычно указываются три различных номинальных тока. Это: (1) средний ток; (2) действующий ток; и (3) Пиковый ток. Инженер-проектировщик должен убедиться, что каждое из этих значений никогда не превышается.

Выбор диода ion :
Силовой диод выбирается в основном на основе прямого тока (I F ) и пикового обратного (V RRM ) напряжения.

Диодная защита:
Демпферные цепи необходимы для диодов, используемых в схемах переключения. Это может уберечь диод от скачков перенапряжения, которые могут возникнуть в процессе обратного восстановления. Очень распространенная демпфирующая схема для силового диода состоит из конденсатора и резистора, подключенных параллельно диоду, как показано

Силовой диод Применения:
В качестве выпрямительного диода
Для ограничения напряжения
В качестве умножителя напряжения
В качестве свободного хода Диод

Типы силовых диодов:
Диоды Шоттки:
Эти диоды используются там, где низкое прямое падение напряжения (обычно 0.3 В) требуется в цепях с низким выходным напряжением. Эти диоды ограничены в возможностях блокирующего напряжения до 50 — 100 В.

Диоды быстрого восстановления :
Они используются в высокочастотных цепях в сочетании с управляемыми переключателями, где требуется небольшое время обратного восстановления. При уровнях мощности в несколько сотен вольт и нескольких сотен ампер эти диоды имеют номинальные значения менее нескольких микросекунд.

Диоды линейной частоты:
Напряжение в открытом состоянии этих диодов спроектировано так, чтобы быть как можно более низким и, как следствие, иметь большее значение t rr , что является приемлемым для применений с линейной частотой.Эти диоды доступны с номинальным напряжением блокировки в несколько киловольт и номинальным током в несколько киловольт. Более того, их можно подключать последовательно и параллельно, чтобы удовлетворить любые требования по напряжению и току.

Как проверить диод?
Мы знаем тот факт, что сопротивление диода в прямом смещении низкое, а сопротивление диода в обратном смещении высокое.
Держите мультиметр в секции омметра. Если мы измеряем сопротивление диода, используя такие соединения, как красный вывод к аноду и черный вывод (общий) к катоду, исправный диод с прямым смещением даст низкое сопротивление.

Показание высокого сопротивления в обоих направлениях указывает на разомкнутое состояние (неисправное устройство), в то время как показание очень низкого сопротивления в обоих направлениях, вероятно, указывает на закороченное устройство.

Читать дальше:
Разница между уровнем сигнала и силовыми полупроводниковыми устройствами

Подпишитесь, чтобы получать новые сообщения на свой электронный адрес…

Диодные лазерные системы высокой мощности, 10 — 1500 Вт

Доступна диодная технология IPG Photonics в трех отдельных уровнях интеграции для удовлетворения потребностей наших заказчиков диодных лазеров: PLD , DLM / DLR и серии BLM / BLR.

Линия продуктов DLM расширяет диодные лазеры IPG до удобных для пользователя модулей, включающих в себя встроенную электронику драйвера и функции охлаждения. Модули DLM с воздушным охлаждением обеспечивают выходную мощность до 500 Вт, в то время как наша версия для воды — до 2000 Вт. Доступные опции включают красный направляющий лазер и несколько оптоволоконных заделок, включая наш стандартный 5-миллиметровый коллиматор.

Линия продуктов DLR — это диодная лазерная система «под ключ» со встроенной оптикой для доставки луча, источником питания и системой охлаждения в стоечном шасси высотой 3RU.Стандартные решения DLR доступны во всем диапазоне мощностей до 2000 Вт.

Голубые диодные модули серии BLM представляют собой диодные системы со встроенной управляющей электроникой и кондуктивным, воздушным или водяным охлаждением. Эти компактные и надежные модули с выходной мощностью до 300 Вт обеспечивают выходной сигнал 450 нм с шириной линии 5 нм. Модули BLM с кондуктивным охлаждением доступны до 50 Вт, с воздушным охлаждением до 150 Вт и с водяным охлаждением до 300 Вт. Модули оснащены стандартным разъемом SMA-905 и могут быть предложены с рядом опций вывода, включая коллиматор или оптоволоконная заделка без покрытия.Диодные модули IPG имеют привлекательную цену для OEM-производителей и интеграторов и служат для широкого спектра развлекательных, медицинских и лазерных приложений.

BLR Устанавливаемые в стойку синие диодные лазеры «под ключ» включают модели мощностью 500 Вт и 1000 Вт.

Перестраиваемые диодные лазеры серии DLT обеспечивают выходную мощность от 35 до 100 Вт с возможностью настройки ширины линии и длины волны. Варианты поляризации бывают случайными, линейными и круговыми. Внешний расширитель луча / поляризатор обеспечивает диаметр луча до 3 дюймов.Гибридные лазеры обеспечивают несколько длин волн для одновременной накачки нескольких атомов щелочных металлов (например, Rb / Cs или Rb / K). Также доступен узкополосный лазер для рамановской спектроскопии большой площади для контроля качества пищевых продуктов с длиной волны 785 нм.

Независимо от того, какое диодное решение подходит для вашего применения, будьте уверены, что выбранная вами диодная технология IPG предлагает самые современные мощность, яркость, эффективность и надежность в самом компактном форм-факторе.

Что такое защита от обратного напряжения?

Что такое защита от обратного напряжения

Цепи защиты от обратного напряжения предотвращают повреждение источников питания и электронных схем в случае подачи обратного напряжения на входные или выходные клеммы.Защита от обратного напряжения реализована на входе источника питания или на плате заказных резервных источников питания с несколькими выходами. Это важно в большинстве электронных приложений, таких как ноутбуки, компьютеры, схемы CMOS и т. Д.

Защита гарантирует, что компоненты не будут повреждены при случайной замене разъемов источника питания. Существуют различные методы, различающиеся по работе, эффективности и сложности. В то время как некоторые, такие как диод или автоматический выключатель, обеспечивают только защиту от обратного напряжения, другие, такие как защитные ИС, обеспечивают защиту от обратного напряжения, перегрузки по току и перенапряжения.

Чтобы заблокировать отрицательное напряжение, разработчики обычно размещают силовой диод или P-канальный MOSFET последовательно с источником питания. Одним из недостатков последовательного диода является то, что он занимает место на плате и имеет большое рассеивание мощности при высоких токах нагрузки.

С другой стороны, полевой МОП-транзистор рассеивает меньше энергии, даже если он требует дополнительной схемы привода, что увеличивает стоимость. Оба решения влияют на работу с низким энергопотреблением, особенно на последовательный диод. Кроме того, решения могут не подходить при очень высоких токах нагрузки.

Защита от обратного напряжения с помощью диода

Диод включен последовательно с нагрузкой и позволяет мощности достигать нагрузки только при прямом смещении. Если напряжение меняется на противоположное, оно блокирует напряжение, и обратная мощность не достигает нагрузки. Использование диода — самый простой метод и его преимущество в низкой стоимости.

Недостатки использования диода: прямое падение напряжения, которое может быть значительным при низком напряжении, большое рассеивание мощности при высоких токах нагрузки и низкий КПД.Иногда используется диод Шоттки из-за его быстрого отклика и низкого падения напряжения прямого смещения.

Рисунок 1: Диод, включенный последовательно с нагрузкой. Изображение предоставлено.

Использование MOSFET для защиты от обратного напряжения

Для лучшей защиты используются полевые МОП-транзисторы, преимущество которых заключается в очень низком сопротивлении. Этот метод предполагает использование полевого МОП-транзистора P-типа на стороне питания на пути питания или полевого МОП-транзистора нижнего уровня на пути заземления.

Рисунок 2: Защита с использованием PMOSFET Image Credit

В каждой из схем полевого МОП-транзистора основной диод транзистора смещен в прямом направлении во время нормальной работы.Когда питание подключено правильно, напряжение затвора полевого транзистора принимается низким для PMOS и высоким, если это NMOS, так что канал закорачивает диод.

Когда напряжение питания меняется на противоположное, напряжение затвора PMOSFET высокое, что препятствует его включению, а значит, не позволяет обратному напряжению достигать нагрузки. Для NMOSFET напряжение затвора низкое.

Использование автоматических выключателей для защиты от обратного напряжения

Выключатели используются в приложениях с высокой мощностью от 500 Вт до нескольких киловатт.При таких высоких токах использование диодов или даже диодов Шоттки нецелесообразно из-за большого рассеяния мощности и неэффективности. Электронные автоматические выключатели используются вместе с силовым шунтирующим диодом.

При нормальной полярности и включенном автоматическом выключателе ток течет от клеммы заземления к клемме –48. При изменении полярности диод отключения питания будет проводить и создавать короткое замыкание, которое отключает автоматический выключатель.

Схема дорогая, громоздкая и требует ручной переустановки автоматического выключателя, поэтому не подходит для удаленных установок.Кроме того, точность автоматического выключателя может быть недостаточной в приложениях, требующих точного ограничения тока.

Рисунок 3: Использование автоматического выключателя для защиты от обратного напряжения Image Credit

Использование контроллера ORing

В этом методе ИС регулятора напряжения используется вместе с силовым полевым МОП-транзистором, чтобы обеспечить простую и эффективную защиту от обратной полярности. Контроллер работает автоматически, и до тех пор, пока полярность правильная, микросхема смещена должным образом, так что она включает полевой транзистор.Когда полярность изменена, IC не имеет правильного смещения и не будет работать для включения полевого транзистора с обратным смещением. Полевой транзистор остается выключенным и предотвращает поступление обратной мощности на нагрузку.

Рисунок 4: Защита от обратной полярности с помощью контроллера ORing Image Credit

Цепи защиты от перенапряжения и обратного напряжения

ИС защиты, такие как LTC 4365, предназначены для защиты чувствительных цепей от обратной полярности, перегрузки по току и перенапряжения.ИС блокирует нежелательный ток или напряжение и пропускает только безопасное напряжение.

Что такое силовой диод?

Силовой диод — это кристаллическое полупроводниковое устройство, используемое в основном для преобразования переменного тока (AC) в постоянный (DC), процесс, известный как выпрямление. Силовой диод, присутствующий в цепях питания практически всего современного электрического и электронного оборудования, сродни механическому одностороннему клапану.Он проводит электрический ток с минимальным сопротивлением в одном направлении, известном как его прямое направление, предотвращая протекание тока в противоположном направлении. Обычно способные пропускать вперед до нескольких сотен ампер, силовые диоды имеют гораздо большие P-N переходы и, следовательно, более высокую пропускную способность по прямому току, чем их меньшие родственники сигнальных диодов, используемые в бытовой электронике для регулирования и уменьшения тока. Это делает силовые диоды более подходящими для приложений, в которых задействованы более высокие токи и более высокие напряжения.

Производители обычно производят ряд силовых диодов, подходящих для конкретных целей.Они рассчитаны на максимальный ток, который они могут выдерживать в прямом направлении, и максимальное обратное напряжение, которое они могут выдержать. Из-за сопротивления небольшое падение напряжения происходит при пропускании электрического тока через силовой диод в прямом направлении. И наоборот, силовой диод может выдерживать только определенное количество напряжения, протекающего в обратном направлении, прежде чем он сломается и перестанет функционировать.

Силовые диоды изготавливаются в основном из кремния, хотя в небольших количествах используются и другие материалы, такие как бор, арсенид галлия, германий или фосфор.Для преобразования переменного тока в постоянный можно использовать один силовой диод, но это дает так называемый полуволновой переменный постоянный ток. Чаще всего в цепь подключают два, три или более диодов для создания двухполупериодного переменного постоянного тока. Самым важным из них является мостовой выпрямитель, в котором четыре подключенных диода преобразуют как положительную, так и отрицательную части волны переменного тока в постоянный ток, тем самым производя двухполупериодное выпрямление.

Электроэнергетические компании во всем мире обычно используют трехфазный переменный ток для распределения электроэнергии.Хотя он обеспечивает переменный постоянный ток от входящего переменного тока, двухполупериодный или мостовой выпрямитель не выдает постоянный ток постоянного напряжения, необходимого для питания большинства современного электрического и электронного оборудования. Поэтому к выходному концу выпрямителя обычно подключают накопительный конденсатор, чтобы сгладить пульсации напряжения. Например, в типичном домашнем хозяйстве в США трехфазный переменный ток от главных электрических цепей проходит через три пары силовых диодов. Результирующий постоянный ток затем сглаживается и подается с напряжением, достаточно постоянным для использования, пропуская его через сглаживающий конденсатор.

Что такое силовой диод

Здравствуйте, друзья, надеюсь, у вас все отлично. В сегодняшнем руководстве мы обсудим , что такое силовой диод. Диод — широко используемый модуль в электротехнике и электронике. Практически в каждом электронном устройстве и инженерном проекте используются диоды. Это устройство с PN-переходом, которое имеет 2 вывода, анод и катод. Основная функция диода — преобразование переменного тока в постоянный, эта особенность диода называется выпрямлением. Когда он работает в положительном цикле переменного тока, его состояние называется прямым смещением, когда он работает в отрицательном цикле переменного тока, его рабочее состояние известно как обратное смещение.В 1906 году был изготовлен первый диод из кристаллов минералов.

Силовой диод идентичен другим полупроводниковым диодам, но имеет некоторые отличия в конструкции. Обычные диоды используются для схем меньшего усиления и переключения, но силовые диоды используются в схемах более высокого усиления. В сегодняшнем посте мы обсудим его структуру, приложения, схемы и принцип работы. Итак, давайте начнем с с того, что такое силовой диод.

Что такое силовой диод
  • Силовой диод — это такие полупроводниковые устройства, используемые в схемах выпрямителя для выпрямления более высоких значений тока.
  • Этот диод имеет большую площадь PN перехода, чем другие диоды, благодаря этой способности он используется для выпрямления более высоких значений тока и напряжения, таких как сотни ампер и тысячи киловольт.
  • В обычных диодах обе части P и N имеют эквивалентный уровень легирования, но в мощных диодах одна сторона сильно легирована, а другая — слабо легирована.
  • На данной диаграмме вы можете видеть, что есть три области: первая — сильно легированная (P +), а вторая — менее легированная (N-), обе они соединены с высоколегированной (N +).
  • Область (N-) является основным фактором, делающим силовые диоды полезными для схем более высокой мощности.
  • As (N-) очень менее легирован из-за этого силового диода, также называемого PIN-диодом. В (PIN) I для внутреннего.
Полуволновое выпрямление силового диода
  • Такая схема, преобразующая переменный ток в постоянный, называется выпрямительной схемой.
  • Выпрямитель, преобразующий полуволны переменного тока в постоянный, называется полуволновым выпрямителем.

Схема полуволнового выпрямителя

  • На данной схеме вы можете увидеть электрическую схему однополупериодного выпрямителя, имеющего на выходе силовой диод и резистор (R).
  • Из рисунка видно, что анод диода соединен с положительным концом источника переменного тока через трансформатор, который используется для понижения напряжения, а катод соединен с отрицательным концом. Это форма диода с прямым смещением.
  • Когда первая полуволна переменного тока проходит через диод, он выпрямляет этот полупериод до постоянного тока и не работает для отрицательной половины волны.
  • Поскольку выход представляет собой сопротивление, ток, протекающий через это сопротивление, будет соответствовать закону Ома, поэтому ток сопротивления будет прямо пропорционален приложенному напряжению.
  • Напряжение на сопротивлении будет аналогично входному питанию Vs, для половины синусоидального напряжения на сопротивлении будет Vs.
  • Когда отрицательная половина волны достигает диода, он становится смещенным в обратном направлении, анод имеет отрицательную полярность, а катод — положительную полярность.Таким образом, ток не будет проходить через диод для отрицательной половины, и напряжение на сопротивлении нагрузки будет равно нулю.
  • Данная диаграмма поясняет полуволновое выпрямление.

Полупериодный выпрямитель с конденсатором

  • После выпрямления переменного тока мы получили постоянный ток, этот постоянный ток не является чистым постоянным. На выходе схемы выпрямителя присутствует некоторая пульсация.
  • Чтобы уменьшить эту пульсацию, мы используем конденсатор на выходе диода, чтобы получить чистый постоянный ток.
  • Есть некоторые недостатки в использовании конденсатора для устранения пульсаций. Поскольку более высокий выходной ток очень быстро разряжает конденсатор и конденсатор перестает работать, из-за этой пульсации не удаляйте с выхода.
  • Таким образом, использование конденсатора для однофазного выпрямления не подходит для удаления пульсаций, вместо этого выпрямляйте переменный ток с помощью двухполупериодного выпрямителя.
  • Из-за этого используется однополупериодный выпрямитель для приложений с меньшим энергопотреблением.
Кривая ВАХ силового диода
  • На данном рисунке вы можете увидеть кривую вольт-амперной характеристики.
  • Из графика видно, что ток прямого смещения растет с приложенным напряжением.
  • В режиме обратного смещения протекает гораздо меньше тока утечки, этот ток не зависит от уважаемого напряжения смещения.
  • Несущественные носители заряда являются причиной тока утечки при обратном смещении.
  • Когда значение обратного смещенного напряжения приближается к пробивному напряжению, происходит лавинный пробой (это факт, который может происходить в изоляторах и полупроводниках. Это своего рода умножение электрического тока, которое может допускать токи большой величины внутри веществ).
Разница между диодом и силовым диодом
  • Силовой диод и обычные диоды имеют некоторые отличия, которые подробно описаны здесь.

Структура:

  • Физическая структура нормального диода с PN-переходом имеет равную площадь сторон P и N, но в силовом диоде одна область в значительной степени легирована, а другая менее легирована.
  • Размер нормального диода небольшой, а силовые диоды доступны большего размера
  • Силовые диоды в основном состоят из металлических компонентов.

Номинальное напряжение:

  • Нормальные полупроводниковые диоды используются в схемах меньшей мощности, поэтому они работают при меньшем напряжении.
  • Силовые диоды используются в таких устройствах, которые работают на киловольтах, поэтому они имеют более высокие номиналы.

Номинальный ток:

  • Номинальный ток силовых диодов выше, чем у обычных диодов.Силовые диоды подходят для таких схем, где требуется ток в сотни ампер.

Температура:

  • Поскольку номинальный ток и напряжение силовых диодов выше, они могут работать при более высоких температурах. Нормальные диоды работают в низкотемпературных условиях.

Стоимость:

  • Цена на диоды выше, чем у обычных диодов, потому что силовые диоды обеспечивают дополнительную функцию, такую ​​как высокотемпературный рейтинг и т. Д.

Итак, это подробная статья о силовых диодах, если у вас есть вопросы, задавайте их в комментариях. Спасибо за прочтение. Будьте осторожны до следующего урока.

Автор: Захид Али

Я профессиональный писатель технического контента, мое хобби — узнавать что-то новое и делиться с ним новым учеником. Также имею опыт работы в различных отраслях в качестве инженера. Теперь я делюсь своими техническими знаниями со студентами инженерных специальностей.

Сообщение навигации

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *