На светодиоде где плюс где минус: Как определить полярность светодиода — 2 простых способа
Как определить полярность светодиода — 2 простых способа
Светодиод – полупроводниковый оптический прибор, пропускающий электрический ток в прямом направлении. При подключении инверсионно тока в цепи не будет, и, естественно, не произойдет свечения. Чтобы этого не случилось, нужно соблюдать полярность светодиода.
Светодиод на схеме обозначается треугольником в кружке с поперечной чертой – это катод, который имеет знак «-» (минус). С противоположной стороны находится анод, имеющий знак «+» (плюс).
Обозначение светодиода в схеме
В монтажных схемах должна присутствовать цоколевка (или распиновка) выводов для идентификации всех контактов соединения.
Как определить полярность диода, держа в руках крохотную лампочку? Ведь для правильного подключения нужно знать, где у него минус, а где плюс. Если распайка выводов будет попутана, схема не заработает.
Визуальный метод определения полярности
Первый способ определения – визуальный. У диода два вывода. Короткая ножка будет катодом, анод у светодиода всегда длиннее. Запомнить легко, так как присутствует начальная буква «к» и в том и другом слове.
Длина выводов светодиода
Когда оба вывода согнуты или прибор снят с другой платы, их длину бывает сложно определить. Тогда можно попробовать разглядеть в корпусе небольшой кристалл, который выполнен из прозрачного материала. Он располагается на небольшой подставке. Этот вывод соответствует катоду.
Также катод светодиода можно определить по небольшой засечке. В новых моделях светодиодных лент и ламп применяются полупроводники для поверхностного монтажа. Имеющийся ключ в виде скоса указывает на то, что это отрицательный электрод (катод).
Иногда на светодиодах стоит маркировка «+» и «-». Некоторые производители отмечают катод точкой, иногда линией зеленого цвета. Если нет никакой отметки или ее трудно разглядеть из-за того, что светодиод был снят с другой схемы, нужно произвести тестирование.
Определение полярности светодиода при помощи мультиметра
В некоторые приборах существует специальный режим. Он предназначен для проверки полярности диода. Прямое включение будет сигнализировать подсветкой диода. Этот метод подходит для красных и зеленых полупроводников.
Синие и белые светодиоды выдают индикацию только при напряжении более 3 вольт, поэтому нельзя достигнуть нужного результата. Для их тестирования можно использовать мультиметры типа DT830 или 831, в которых предусмотрен режим определения характеристик транзисторов.
Используя PNP-часть, один вывод светодиода вставляют в коллекторное гнездо, второй – в эмиттерное отверстие. В случае прямого подключения появится индикация, инверсионное включение не даст подобного эффекта.
Как определить полярность светодиода, если под рукой нет мультиметра? Можно прибегнуть к обычной батарейке или аккумулятору. Для этого понадобится еще любой резистор. Это нужно для защиты светодиода от пробоя и выхода из строя. Последовательно соединенный резистор, величина сопротивления которого должна быть примерно 600 Ом, позволит ограничить ток в цепи.
Проверка полярности при помощи источника питания
И еще несколько советов:
- если известна полярность светодиода, впредь нельзя подавать на него обратное напряжение.
В противном случае есть вероятность пробоя и выхода из строя. При правильной эксплуатации светодиод будет служить исправно, так как он долговечен, а также его корпус хорошо защищен от попадания влаги и пыли;
- некоторые типы светодиодов чувствительны к воздействию статического электричества (синие, фиолетовые, белые, изумрудные). Поэтому их нужно предохранять от влияния «статики»;
- при тестировании светодиода мультиметром желательно это действие произвести быстро, касание к выводам должно быть кратковременным, чтобы избежать пробоя диода и вывода его из строя.
где плюс и минус на светодиоде (анод и катод)
Светодиоды довольно часто используют в электротехнике, например, в качестве индикаторов. Для того чтобы диод работал и излучал свет, необходимо его правильно включить в электрическую цепь. А для этого нужно определить полярность светодиода. Рассмотрим способы, которые помогут это сделать.
Использование технической документации. Обозначение светодиода на схеме.
При покупке крупной партии LED устройств стоит запросить у продавца техническую документацию. Это поможет точно узнать многие характеристики изделия, не исключая полярность. На небольшое количество светодиодов паспорт обычно не дают. Но по точному названию марки элемента найти в интернете технические характеристики не составит труда.
На электрической схеме светодиоды изображают двумя способами.
Треугольником обозначают анод, вертикальной чертой – катод. Две стрелочки символизируют свечение.
Визуальное определение.
Если техническая документация недоступна, то для начала элемент стоит внимательно рассмотреть. Часто это помогает понять, где плюс у светодиода. У наиболее распространенного типа LED устройств – цилиндрического диода размером не менее 3,5 мм – один контакт длиннее. Такое конструктивное решение придумано для индикации полярности. Длинный вывод является положительным анодом.
Распознать плюс и минус можно, если удастся рассмотреть, что у светодиода внутри. Сквозь прозрачную оболочку заметно, что площадь анода (положительного контакта) меньше, чем у катода (отрицательного).
Если на корпусе светодиода имеется скос, то это признак катода.
Чем выше типоразмер и мощность LED изделия, тем больше шансы определить полярность «на глаз».
Находим анод и катод у LED элементов мощностью свыше 1Вт.
Мощные светодиоды используются в электротехнике. Как быстро определить их полярность? Довольно просто. Достаточно внимательно рассмотреть диод. При изготовлении контакты элементов мощностью свыше 0,5 Вт маркируют. Анод помечается знаком «+».
Распознаем полярность у светодиода в корпусе SMD.
Если светодиод выполнен в корпусе SMD, то рассмотреть, что же у него внутри невозможно. Как правило, производители заботятся об электротехниках и делают определенные пометки. Полярность можно распознать по срезу на корпусе, теплоотводу или пиктограмме. Первые два способа больше подходят для больших типоразмеров.
На корпусе таких диодов можно найти конструктивный срез. Именно он указывает на отрицательный контакт (катод). С противоположной стороны, соответственно, будет расположен положительный анод.
Теплоотвод с обратной стороны корпуса также подсказывает полярность. Он смещен к аноду.
На небольшие SMD диоды (например, типоразмер 1206) в качестве подсказки наносят специальные пиктограммы. Они имеют форму треугольника, буквы П или Т. Выступ обозначает катод.
Распознавание с помощью мультиметра.
Самый надежный способ распознания полярности − использование специальных приборов. При помощи обычного мультиметра можно обозначить контакты у диодов с высокой степенью точности. Попутно обнаружится исправность элемента и цвет свечения. Воспользоваться тестером можно 3-мя путями.
Во-первых, проверить LED устройство на режиме «проверка сопротивления – 2 кОм». При этом следует прикоснуться щупами мультиметра к контактам светодиода. Если красный положительный щуп тестера коснется анода диода, а черный отрицательный – катода, то экран покажет значение 1600-1800 Ом. В противоположном случае тестер выдаст единицу. Значит, щупы нужно поменять местами. Если и это не помогло, значит, элемент неисправен. Узнать цвет свечения таким методом не получится.
Во-вторых, можно установить мультиметр в режим «прозвонка, проверка диода». Если красный провод дотронется до анода, а черный – до катода, то элемент будет светиться. Экран покажет число от 500 до 1200 мВ.
В-третьих, многие тестеры позволяют проводить измерения вовсе без щупов. Мультиметр должен обладать специальным отделом для проверки PNP и NPN транзисторов. В них есть разъемы, обозначенные буквами «Е» и «С». При проверке элемента в PNP-зоне, если катод вставить в гнездо «С», а анод − в «Е», то светодиод начнет излучать свет. Следовательно, полярность определена верно. При работе в NPN-отсеке свечение появится при противоположном размещении контактов: катод в «Е», а анод в «С». Пожалуй, это самый скорый способ определения распиновки. Кстати, если у изучаемого светодиода нет длинных выводов, то можно в разъемы поместить иголки, и LED элемент аккуратно присоединять к ним.
Распознавание полярности источником питания.
Следующим наглядным методом для распознания катода и анода будет присоединение к источнику питания. Данный способ, как и предыдущий, позволяет узнать еще и исправность LED элемента.
Естественно, что для опыта необходим источник напряжения. Отлично подойдет блок питания с плавной регулировкой. Светодиод следует присоединить и постепенно увеличивать напряжение. Если при подаче 3-4 В элемент еще не светится, значит, с полярностью не угадали.
Если такого блока питания под рукой нет, то можно применить батарейку или аккумулятор от мобильного телефона. Поскольку напряжение на них может достигать 12 В, то напрямую светодиод присоединять нельзя. Для предупреждения поломки следует включить в цепь резистор. Выбрать подходящее по величине сопротивление вам поможет статья «Расчет резистора (сопротивления) для светодиода».
Резистор стоит подпаять к одному из контактов LED элемента. Полученной конструкцией коснуться выводов источника питания. Если полярность предположена верно, то диод начнет излучать свет. В ином случае, надо поменять контакты местами.
Если под рукой есть плоская севшая батарейка от часов или с материнской платы (тип CR2032), то можно обойтись без резистора. Напряжением таких источников питания не превышает 6 В, что безопасно для светодиода. Батарейку зажимают между выводами диода и по свечению или его отсутствию определяют полярность.
Итоги.
Описанные методы имеют свои сильные и слабые стороны. По технической документации и визуально невозможно проверить работоспособность светодиода. Проверка с помощью подачи напряжения требует особенной осторожности. А мощный светодиод не всегда удастся прозвонить мультиметром. Для успешной работы электротехнику стоит освоить все методы и применять их по необходимости.
как определить где плюс, а где минус?
Известно, что светодиод в рабочем состоянии пропускает ток только в одном направлении. Если его подключить инверсионно, то постоянный ток через цепь не пройдет, и прибор не засветится. Происходит это потому, что по своей сущности прибор является диодом, просто не каждый диод способен светиться. Получается, что существует полярность светодиода, то есть он чувствует направление движения тока и работает только при определенном его направлении.
Определить полярность прибора по схеме не составит труда. Светодиод обозначают треугольником в кружке. Треугольник упирается всегда в катод (знак «−», поперечная черточка, минус), положительный анод находится с противоположной стороны.
Но как определить полярность, если вы держите в руках сам прибор? Вот перед вами маленькая лампочка с двумя выводами-проводками. К какому проводку подключать плюс источника, а к какому минус, чтобы схема заработала? Как правильно установить сопротивление где плюс?
Определяем зрительно
Первый способ – визуальный. Предположим, вам необходимо определить полярность абсолютно нового светодиода с двумя выводами. Посмотрите на его ножки, то есть выводы. Один из них будет короче другого. Это и есть катод. Запомнить, что это катод можно по слову «короткий», поскольку оба слова начинаются на буквы «к». Плюс будет соответствовать тому выводу, который длиннее. Иногда, правда, на глаз определить полярность сложновато, особенно когда ножки согнуты или поменяли свои размеры в результате предыдущего монтажа.
Глядя в прозрачный корпус, можно увидеть сам кристаллик. Он расположен как будто в маленькой чашечке на подставке. Вывод этой подставки и будет катодом. Со стороны катода также можно увидеть небольшую засечку, как бы срез.
Но не всегда эти особенности заметны у светодиода, поскольку некоторые производители отходят от стандартов. К тому же есть много моделей, изготовленных по другому принципу. На сложных конструкциях сегодня производитель ставит значки «+» и «−», делают отметку катода точкой или зеленой линией, чтобы все было предельно понятно. Но если таких отметок нет по каким-то причинам, то на помощь приходит электрическое тестирование.
Применяем источник питания
Более эффективный способ определить полярность – подключить светодиод к источнику питания. Внимание! Выбирать надо источник, напряжение которого не превышает допустимое напряжение светодиода. Можно соорудить самодельный тестер, используя обычную батарейку и резистор. Это требование связано с тем, что при обратном подключении светодиод может перегореть или ухудшить свои световые характеристики.
Некоторые говорят, что подключали светодиод и так и сяк, и он от этого не портился. Но все дело в предельном значении обратного напряжения. К тому же, лампочка может сразу и не погаснуть, но срок ее работы уменьшится, и тогда ваш светодиод проработает не 30-50 тысяч часов, как указано в его характеристиках, а в несколько раз меньше.
Если мощности элемента питания для светодиода не хватает, и прибор не светится, как вы его не подключаете, то можно соединить несколько элементов в батарею. Напоминаем, сто элементы соединяются последовательно плюс к минусу, а минус к плюсу.
Применение мультиметра
Существуют прибор, который называется мультиметром. Его с успехом можно использовать, чтобы узнать, куда подключать плюс, а куда минус. На это уходит ровным счетом одна минута. В мультиметре выбирают режим измерения сопротивления и прикасаются щупами к контактам светодиода. Красный провод указывает на подключение к плюсу, а черный – к минусу. Желательно, чтобы касание было кратковременным. При обратном включении прибор ничего не покажет, а при прямом включении (плюс к плюсу, а минус к минусу) прибор покажет значение в районе 1,7 кОм.
Можно также включать мультиметр на режим проверки диода. В этом случае при прямом включении светодиодная лампочка будет светиться.
Данный способ самый эффективный для лампочек, излучающих красный и зеленый свет. Светодиод, дающий синий или белый свет рассчитан на напряжение, большее 3 вольт, поэтому не всегда при подключении к мультиметру он будет светиться даже при правильной полярности. Из этой ситуации можно легко выйти, если использовать режим определения характеристик транзисторов. На современных моделях, таких как DT830 или 831, он присутствует.
Диод вставляют в пазы специальной колодки для транзисторов, которая обычно расположена в нижней части прибора. Используется часть PNP (как для транзисторов соответствующей структуры). Одну ножку светодиода засовывают в разъем С, который соответствует коллектору, вторую ножку – в разъем Е, соответствующий эмиттеру. Лампочка засветится, если катод (минус), будет подключен к коллектору. Таким образом, полярность определена.
Определяем полярность светодиода. Где плюс и минус у LED
Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит ток только в одну сторону. Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.
Вы можете встретить два обозначения LED на принципиальной электрической схеме.
Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?
Цоколевка 5мм диодов
Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.
На рисунке выше изображен: А — анод, К — катод и схематическое обозначение.
Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод. Плюс подключается к аноду, а минус к катоду.
Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!
Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.
Как определить анод и катод у диодов 1Вт и более
В фонариках и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.
Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.
Как узнать полярность SMD?
SMD активно применяются практических в любой технике:
- Лампочки;
- светодиодные ленты;
- фонарики;
- индикация чего-либо.
Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.
Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки – это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения.
Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты.
Маркировка выводов SMD 5630 аналогична – срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду.
Как определить плюс на маленьком SMD?
В отдельных случаях (SMD 1206) можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода.
Выступ или сторона, на которую указывает треугольник, является направлением протекания тока, а вывод расположенный там – катодом.
Определяем полярность мультиметром
При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.
Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка.
Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений?
Например, на этой плате указаны полюса каждого из светодиодов и их наименование – 5630.
Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра.
Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот. Когда на экране появятся хоть какие-то значения, или диод загорится – значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ.
В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность.
Другие способы определения полярности
Самый простой вариант для определения где плюс у светодиода – это батарейки с материнской платы, типоразмера CR2032.
Её напряжение порядка 3-х вольт, чего вполне хватит чтобы зажечь диод. Подключите светодиод, в зависимости от его свечения вы определите расположение его выводов. Таким образом можно проверить любой диод. Однако это не очень удобно.
Можно собрать простейший пробник для светодиодов, и не только определять их полярность, но и рабочее напряжение.
Схема самодельного пробника
При правильном подключении светодиода через него будет протекать ток порядка 5-6 миллиампер, что безопасно для любого светодиода. Вольтметр покажет падение напряжения на светодиоде при таком токе. Если полярность светодиода и пробника совпадёт – он засветится, и вы определите цоколевку.
Знать рабочее напряжение нужно, так как оно отличается в зависимости от типа светодиода и его цвета (красный берет на себя менее 2-х вольт).
И последний способ изображен на фото ниже.
Включите на тестере режим Hfe, вставьте светодиод в разъём для проверки транзисторов, в область помеченной как PNP, в отверстия E и C, длинной ножкой в E. Так можно проверить работоспособность светодиода и его распиновку.
Если светодиод выполнен в другом виде, например, smd 5050, вы можете воспользоваться этим способом просто – вставьте в E и C обычные швейные иглы, и прикоснитесь к ним контактами светодиода.
Любому любителю электроники, да и самоделок вообще нужно знать, как определить полярность светодиода и способы их проверки.
Будьте внимательны при выборе элементов вашей схемы. В лучшем случае они просто быстрее выйдут из строя, а в худшем – мгновенно вспыхнут синем пламенем.
Понравилась статья? Расскажите о ней! Вы нам очень поможете:)
Материалы по теме:
Как определить полярность светодиода?
Светодиод, как и обычный диод, имеет два вывода: анод и катод.
Выводы светодиода на схеме указываются таким образом, что стрелка диода обозначает прямое направление тока, от анода (+) к катоду (-), следовательно, анод подключается к положительному полюсу, а катод к отрицательному.
Как определить где катод, а где анод? Это можно сделать несколькими способами, самый простой – визуально. Обычно длинная ножка светодиода указывает на то, что это анод, его подключаем к “+” источника питания.
Если же это SMD светодиод, то метка указывает на сторону, где расположен катод светодиода. Зачастую в SMD светодиодах расположено несколько кристаллов, поэтому вывод может быть не один, а к примеру 3 как на светодиоде 5050.
С помощью батарейки
Если светодиод не новый, по ножкам определить уже нельзя, но есть еще один простой способ — воспользоваться батарейкой CR2032, которую можно найти в брелоке от сигнализации или материнской плате компьютера. Ее напряжение 3 В, этого вполне хватит практически для всех маломощных светодиодов.
Необходимо поочередно приложить выводы диода к полюсам батарейки, в том положении, в котором он засветится к “+” батарейки приложен анод, соответственно к “-“ – катод.
С помощью мультиметра
Определить полярность светодиода можно также с помощью мультиметра. Необходимо просто поставить в режим прозвонки диодов (или измерения сопротивления) и поочередно приложить к выводам. Когда красный щуп мультиметра будет приложен к аноду, диод начнет светиться.
Этот способ крайне полезен, когда светодиод имеет очень малые размеры (SMD) или смонтирован на плате. Также с помощью мультиметра можно проверить исправность светодиода, если он не начнет светиться при любом положении щупов, вероятно, он вышел из строя.
Как на светодиоде определить плюс и минус. Правильное включение светодиода
Способны пропускать электрический ток в определенном направлении. Если подключение выполнено инверсионно, электрический ток не проходит по цепи, а нужный электроприбор не включится. Объясняется это тем, что приборы по принципу устройства представляют собой диоды, и не все имеют способность светиться. Это говорит о том, что светодиод имеет полярность и функционирует при определенном направлении тока. В связи с этим для подключения важно правильно определить, где у светодиодов минус и плюс. Разберем несколько способов.
Визуально
Если у Вас в руках светодиод где плюс где минус вы не знаете, попробуйте сделать это визуально. Как визуально определить светодиодную полярность? Достаточно просто.
У нового светодиода два вывода, один должен быть короче. Короткий вывод — это катод. Запомнить легко: «короткий» — «катод», оба слова на «к». Плюс находится там, где длинный вывод. Если имеем дело с использованным светодиодом, ножки которого согнуты, задача усложняется.
Тогда вглядываемся в корпус, где находится самый важный элемент — кристаллик. Он лежит на крошечной подставке, чашечке. Вывод с подставки — катод, с его стороны располагается срез или засечка.
НО данный способ не всегда применим. Многие производители сегодня при производстве не соблюдают стандарты, а ассортимент моделей поражает многообразием. Некоторые изготовители отмечают катоды точкой или линией зеленого цвета, либо проставляют знаки «-» и «+». Если же внешних опознавательных признаков нет, нужно провести электротестирование.
Источник питания в помощь
Второй способ определить светодиодную полярность — подключить его к . Главное, правильно подобрать источник питания с напряжением, чтобы оно не превышало максимальный уровень напряжения светодиода, иначе он перегорит или испортится. Элементы соединяются так: к » +» подключается «-«, к «-» подключается «+».
Мультиметр
Если вышеописанные способы не дали результатов, используйте мультиметр. Чтобы мультиметром определить полярность светодиода потребует максимум минута. Сначала нужно выбрать на оборудовании режим измерения уровня сопротивления, а затем прикоснуться специальными щипцами к светодиодным контактам. Черный провод идет к «-», а красный к «+». Не нужно касаться слишком долго, 20-30 секунд хватит. Если включение было выполнено напрямую (« + » к « + », а « — » к « -»), на мультиметре отображается показатель в области 1,7 кило Ом. Если включение обратное — на приборе не отображаются измерения..
Измерять в режиме диода несколько легче: при подсоединении напрямую, загорится . Этот режим подходит для зеленых и красных лампочек, а вот белые и синие лампочки рассчитаны на ток с напряжением более 3 В. По этой причине при подключении лампочек синего и белого цвета, они могут засветиться и при правильной полярности.
В данном случае используется режим измерения характеристик транзисторов. Светодиод вставляется в пазы колодки, снизу мультиметра. Применяется часть PNP: одна ножка диода вставляется в разъем «Е» — эмиттер, а вторая в «С» — коллектор. Лампочка светится когда, к коллектору подсоединили катод.
Таким образом, определение полярности не представляет особой сложности.
Любой любитель самоделок и электроники используют диоды в качестве индикаторов, или в качестве световых эффектов и освещения. Чтобы Led прибор светился, нужно его правильно подключить. Вам уже известно, что диод проводит . Поэтому прежде чем паять, нужно определить где анод и катод у светодиода.
Вы можете встретить два обозначения LED на принципиальной электрической схеме.
Треугольная половина обозначения – анод, а вертикальная линия – катод. Две стрелки обозначают то, что диод излучает свет. Итак, на схеме указывается анод и катод диода, как найти его на реальном элементе?
Цоколевка 5мм диодов
Чтобы подключить диоды как на схеме нужно определиться где у светодиода плюс и минус. Для начала рассмотрим на примере распространённых маломощных 5 мм диодов.
На рисунке выше изображен: А — анод, К — катод и схематическое обозначение.
Обратите внимание на колбу. В ней видно две детали – это небольшой металлический анод, и широкая деталь похожая на чашу – это катод. Плюс подключается к аноду, а минус к катоду.
Если вы используете новые LED элементы, вам еще проще определить их цоколевку. Определить полярность светодиода поможет длина ножек. Производители делают короткую и длинную ножку. Плюс всегда длиннее минуса!
Если вы паяете не новый диод, тогда плюс и минус у него одинаковой длины. В таком случае определить плюс и минус поможет тестер или простой мультиметр.
Как определить анод и катод у диодов 1Вт и более
В и прожекторах 5мм образцы используются всё реже, на их смену пришли мощные элементы мощностью от 1 ватта или SMD. Чтобы понять где плюс и минус на мощном светодиоде, нужно внимательно посмотреть на элемент со всех сторон.
Самые распространённые модели в таком корпусе имеют мощность от 0,5 ватт. На рисунке красным обведена пометка о полярности. В данном случае значком «плюс» помечен анод у светодиода 1Вт.
Как узнать полярность SMD?
SMD активно применяются практических в любой технике:
- Лампочки;
- светодиодные ленты;
- фонарики;
- индикация чего-либо.
Их внутренностей разглядеть не получится, поэтому нужно либо использовать приборы для проверки, либо полагаться на корпус светодиода.
Например, на корпусе SMD 5050 есть метка на углу в виде среза. Все выводы, расположенные со стороны метки – это катоды. В его корпусе расположено три кристалла, это нужно для достижения высокой яркости свечения.
Подобное обозначение у SMD 3528 тоже указывает на катод, взгляните на эту фотографию светодиодной ленты.
Маркировка выводов SMD 5630 аналогична – срез указывает на катод. Его можно распознать еще и по тому, что теплоотвод на нижней части корпуса смещён к аноду.
Как определить плюс на маленьком SMD?
В отдельных случаях (SMD 1206) можно встретить еще один способ обозначения полярности светодиодов: с помощью треугольника, П-образной или Т-образной пиктограммы на поверхности диода.
Выступ или сторона, на которую указывает треугольник, является направлением протекания тока, а вывод расположенный там – катодом.
Определяем полярность мультиметром
При замене диодов на новые, вы можете определить плюс и минус питания вашего прибора по плате.
Светодиоды в прожекторах и лампах обычно распаяны на алюминиевой пластине, поверх которой нанесён диэлектрик и токоведущие дорожки. Сверху она обычно имеет белое покрытие, на нём часто указана информация о характеристиках источника питания, иногда и распиновка.
Но как узнать полярность светодиода в лампочке или матрице если на плате нет сведений?
Например, на этой плате указаны полюса каждого из светодиодов и их наименование – 5630.
Чтобы проверить на исправность и определить плюс и минус светодиода воспользуемся мультиметром. Черный щуп подключаем в минус, com или гнездо со знаком заземления. Обозначение может отличаться в зависимости от модели мультиметра.
Далее выбираем режим Омметра или режим проверки диодов. Затем подключаем поочередно щупы мультиметра к выводам диода сначала в одном порядке, а потом наоборот. Когда на экране появятся хоть какие-то значения, или диод загорится – значит полярность правильная. На режиме проверки диодов значения равны 500-1200мВ.
В режиме измерения значения будут подобными тем, что на рисунке. Единица в крайнем левом разряде обозначает превышение предела, либо бесконечность.
Другие способы определения полярности
Самый простой вариант для определения где плюс у светодиода – это батарейки с материнской платы, типоразмера CR2032.
Её напряжение порядка 3-х вольт, чего вполне хватит чтобы зажечь диод. Подключите светодиод, в зависимости от его свечения вы определите расположение его выводов. Таким образом можно проверить любой диод. Однако это не очень удобно.
Можно собрать простейший пробник для светодиодов, и не только определять их полярность, но и рабочее напряжение.
Схема самодельного пробника
При правильном подключении светодиода через него будет протекать ток порядка 5-6 миллиампер, что безопасно для любого светодиода. Вольтметр покажет падение напряжения на светодиоде при таком токе. Если полярность светодиода и пробника совпадёт – он засветится, и вы определите цоколевку.
Знать рабочее напряжение нужно, так как оно отличается в зависимости от типа светодиода и его цвета (красный берет на себя менее 2-х вольт).
И последний способ изображен на фото ниже.
Включите на тестере режим Hfe, вставьте светодиод в разъём для проверки транзисторов, в область помеченной как PNP, в отверстия E и C, длинной ножкой в E. Так можно проверить работоспособность светодиода и его распиновку.
Если светодиод выполнен в другом виде, например, smd 5050, вы можете воспользоваться этим способом просто – вставьте в E и C обычные швейные иглы, и прикоснитесь к ним контактами светодиода.
Любому любителю электроники, да и самоделок вообще нужно знать, как определить полярность светодиода и способы их проверки.
Будьте внимательны при выборе элементов вашей схемы. В лучшем случае они просто быстрее выйдут из строя, а в худшем – мгновенно вспыхнут синем пламенем.
Как определить полярности диодов: плюс или минус
Диоды относятся к категории электронных приборов, работающих по принципу полупроводника, который особым образом реагирует на приложенное к нему напряжение. С внешним видом и схемным обозначением этого полупроводникового изделия можно ознакомиться на рисунке, размещённом ниже.
Общий вид изделия
Особенностью включения этого элемента в электронную схему является необходимость соблюдения полярности диода.
Дополнительное пояснение. Под полярностью подразумевается строго установленный порядок включения, при котором учитывается, где плюс, а где минус у данного изделия.
Эти два условных обозначения привязываются к его выводам, называемым анодом и катодом, соответственно.
Особенности функционирования
Известно, что любой полупроводниковый диод при подаче на него постоянного или переменного напряжения пропускает ток только в одном направлении. В случае обратного его включения постоянный ток не протекает, так как n-p переход будет смещён в непроводящем направлении. Из рисунка видно, что минус полупроводника располагается со стороны его катода, а плюс – с противоположного конца.
Расположение и обозначение выводов
Особенно наглядно эффект односторонней проводимости может быть подтверждён на примере полупроводниковых изделий, называемых светодиодами и работающих лишь при условии правильного включения.
На практике нередки ситуации, когда на корпусе изделия нет явных признаков, позволяющих сразу же сказать, где у него какой полюс. Именно поэтому важно знать особые приметы, по которым можно научиться различать их.
Способы определения полярности
Для определения полярности диодного изделия можно воспользоваться различными приёмами, каждый из которых подходит для определённых ситуаций и будет рассмотрен отдельно. Эти методы условно делятся на следующие группы:
- Метод визуального осмотра, позволяющий определиться с полярностью по имеющейся маркировке или характерным признакам;
- Проверка посредством мультиметра, включённого в режим прозвонки;
- Выяснение, где плюс, а где минус путём сборки несложной схемы с миниатюрной лампочкой.
Рассмотрим каждый из перечисленных подходов отдельно.
Визуальный осмотр
Этот способ позволяет расшифровать полярность по имеющимся на полупроводниковом изделии специальным меткам. У некоторых диодов это может быть точка или кольцевая полоска, смещённая в сторону анода. Некоторые образцы старой марки (КД226, например) имеют характерную заострённую с одной стороны форму, которая соответствует плюсу. С другого, совершенно плоского конца, соответственно, располагается минус.
Обратите внимание! При визуальном обследовании светодиодов, например, обнаруживается, что на одной из их ножек имеется характерный выступ.
По этому признаку обычно определяют, где у такого диода плюс, а где противоположный ему контакт.
Применение измерительного прибора
Самый простой и надёжный способ определения полярности – использование измерительного устройства типа «мультиметр», включённого в режим «Прозвонка». При измерении всегда нужно помнить, что на шнур в изоляции красного цвета от встроенной батарейки подаётся плюс, а на шнур в чёрной изоляции – минус.
После произвольного подсоединения этих «концов» к выводам диода с неизвестной полярностью нужно следить за показаниями на дисплее прибора. Если индикатор покажет напряжение порядка 0,5-0.7 Вольт – это значит, что он включён в прямом направлении, и та ножка, к которой подсоединён щуп в красной изоляции, является плюсовой.
В случае если индикатор показывает «единицу» (бесконечность), можно сказать, что диод включён в обратном направлении, и на основании этого можно будет судить о его полярности.
Дополнительная информация. Некоторые радиолюбители для проверки светодиодов используют панельку, предназначенную для измерения параметров транзисторов.
Диод в этом случае включается как один из переходов транзисторного прибора, а его полярность определяется по тому, светится он или нет.
Включение в схему
В крайнем случае, когда визуально определить расположение выводов не удаётся, а измерительного прибора под рукой не имеется, можно воспользоваться методом включения диода в несложную схему, изображённую на рисунке ниже.
Проверка с помощью лампочки
При его включении в такую цепь лампочка либо загорится (это значит, что полупроводник пропускает через себя ток), либо нет. В первом случае плюс батарейки будет подключён к положительному выводу изделия (аноду), а во втором – наоборот, к его катоду.
В заключение отметим, что способов, как определить полярность диода, существует довольно много. При этом выбор конкретного приёма ее выявления зависит от условий проведения эксперимента и возможностей пользователя.
Видео
elquanta.ru
Как определить полярность светодиода — 2 простых способа
Светодиод – полупроводниковый оптический прибор, пропускающий электрический ток в прямом направлении. При подключении инверсионно тока в цепи не будет, и, естественно, не произойдет свечения. Чтобы этого не случилось, нужно соблюдать полярность светодиода.
Светодиод на схеме обозначается треугольником в кружке с поперечной чертой – это катод, который имеет знак «-» (минус). С противоположной стороны находится анод, имеющий знак «+» (плюс).
В монтажных схемах должна присутствовать цоколевка (или распиновка) выводов для идентификации всех контактов соединения.
Как определить полярность диода, держа в руках крохотную лампочку? Ведь для правильного подключения нужно знать, где у него минус, а где плюс. Если распайка выводов будет попутана, схема не заработает.
Визуальный метод определения полярности
Первый способ определения – визуальный. У диода два вывода. Короткая ножка будет катодом, анод у светодиода всегда длиннее. Запомнить легко, так как присутствует начальная буква «к» и в том и другом слове.
Когда оба вывода согнуты или прибор снят с другой платы, их длину бывает сложно определить. Тогда можно попробовать разглядеть в корпусе небольшой кристалл, который выполнен из прозрачного материала. Он располагается на небольшой подставке. Этот вывод соответствует катоду.
Также катод светодиода можно определить по небольшой засечке. В новых моделях светодиодных лент и ламп применяются полупроводники для поверхностного монтажа. Имеющийся ключ в виде скоса указывает на то, что это отрицательный электрод (катод).
Иногда на светодиодах стоит маркировка «+» и «-». Некоторые производители отмечают катод точкой, иногда линией зеленого цвета. Если нет никакой отметки или ее трудно разглядеть из-за того, что светодиод был снят с другой схемы, нужно произвести тестирование.
Тестирование с применением мультиметра или аккумулятора
Хорошо, если под рукой есть мультиметр. Тогда определение полярности светодиода произойдет за одну минуту. Выбрав режим омметра (измерение сопротивлений), нетрудно произвести следующее действие. Приложив щупы к ножкам светодиода, производится замер сопротивления. Красный провод должен подключаться к плюсу, а черный – к минусу.
При правильном включении прибор выдаст значение, примерно равное 1,7 кОм, и будет наблюдаться свечение. При обратном включении на дисплее мультиметра отобразится бесконечно большая величина. Если проверка показывает, что в обе стороны диод показывает малое сопротивление, то он пробит, и его следует утилизировать.
В некоторые приборах существует специальный режим. Он предназначен для проверки полярности диода. Прямое включение будет сигнализировать подсветкой диода. Этот метод подходит для красных и зеленых полупроводников.
Синие и белые светодиоды выдают индикацию только при напряжении более 3 вольт, поэтому нельзя достигнуть нужного результата. Для их тестирования можно использовать мультиметры типа DT830 или 831, в которых предусмотрен режим определения характеристик транзисторов.
Используя PNP-часть, один вывод светодиода вставляют в коллекторное гнездо, второй – в эмиттерное отверстие. В случае прямого подключения появится индикация, инверсионное включение не даст подобного эффекта.
Как определить полярность светодиода, если под рукой нет мультиметра? Можно прибегнуть к обычной батарейке или аккумулятору. Для этого понадобится еще любой резистор. Это нужно для защиты светодиода от пробоя и выхода из строя. Последовательно соединенный резистор, величина сопротивления которого должна быть примерно 600 Ом, позволит ограничить ток в цепи.
И еще несколько советов:
- если известна полярность светодиода, впредь нельзя подавать на него обратное напряжение. В противном случае есть вероятность пробоя и выхода из строя. При правильной эксплуатации светодиод будет служить исправно, так как он долговечен, а также его корпус хорошо защищен от попадания влаги и пыли;
- некоторые типы светодиодов чувствительны к воздействию статического электричества (синие, фиолетовые, белые, изумрудные). Поэтому их нужно предохранять от влияния «статики»;
- при тестировании светодиода мультиметром желательно это действие произвести быстро, касание к выводам должно быть кратковременным, чтобы избежать пробоя диода и вывода его из строя.
lampagid.ru
как определить полярность шестью способами
Эти полупроводниковые радиодетали используются в различных электронных схемах в качестве элементов индикации. Проблем с их монтажом на плате, как правило, нет. Чтобы пропаять 2 ножки, вставленные в соответствующие отверстия на «дорожках», не нужно быть крупным специалистом в этой области. А вот с полярностью, которую необходимо учитывать при работе со всеми п/п приборами, а не только светодиодами, у людей без опыта возникают сложности. Как правильно определить полярность?
По длине выводов
Самый простой способ, если светодиод новый, ни разу не использовавшийся. Его выводы неодинаковы – один немного длиннее. Здесь несложно запомнить такую аналогию. Слова «катод» и «короткая» начинаются с одной и той же буквы – «К».
Следовательно, другая ножка, более длинная – анод светодиода. Зная это, сложно перепутать. Хотя у некоторых производителей встречается иное – они могут быть одинаковы. Стоит учесть.
По внутреннему наполнению
Если колба хорошо просматривается, то найти «чашечку» (а это катод) совсем нетрудно.
Узнать полярность светодиода – это еще не все. Необходимо его и правильно установить на плате. Схемное изображение этого полупроводника показано на рисунке. Вершина символа прибора (треугольника) указывает на катод (минусовый вывод).
По корпусу
Так проверить полярность можно не у всех светодиодов, так как это зависит от производителя. Но у некоторых на «ободке» напротив катода есть небольшая риска (засечка). Если присмотреться, заметить ее несложно. Как вариант – небольшая точка, срез.
С помощью батарейки
Также простая методика, но здесь необходимо учесть, что светодиоды разных типов отличаются напряжением пробоя. Чтобы полупроводник не вывести из строя (частично или полностью), в цепь нужно последовательно включить ограничительное сопротивление. Номиналом на 0,1 – 0,5 кОм вполне достаточно.
Мультиметром
Кстати, вполне можно задействовать и бытовой мультиметр, который уже укомплектован всем необходимым – источником питания и щупами. Это даже еще лучше.
Способ определения полярности 1 – основан на свойстве светодиода «загораться» при прохождении по нему тока. Следовательно, его анод будет там, где «плюс» батарейки мультиметра (гнездо для щупа «+»), а катод, соответственно, где минус. Чтобы проверить на «свечение», переключатель прибора устанавливается в позицию «измерение диода».
Способ определения полярности 2 – здесь измеряется сопротивление p-n перехода. Переключатель мультиметра – в положение «измерение сопротивления», предел, в зависимости от модификации тестера, в положение более 2 кОм. Например, на 10.
Касание щупами выводов светодиода – лишь кратковременное, чтобы не вывести радиодеталь из строя. Если полярности п/п и источника питания совпадают, то сопротивление будет небольшим (от сотен Ом до нескольких кОм). В этом случае красный щуп (его принято вставлять в гнездо прибора «+») указывает на ножку-анод, а черный («–»), соответственно, на катод.
Если мультиметр показывает большое сопротивление, значит, при касании щупами выводов полярность была нарушена. Следует повторить измерение, изменив ее, чтобы удостовериться в отсутствии внутреннего обрыва. Только в этом случае можно говорить не только о полярности светодиода, но и о его исправности и готовности к использованию по назначению.
На различных тематических форумах встречаются суждения, что ничего страшного не произойдет; можно подключать источник питания в любой полярности, и на светодиоде это не отразится. Но это не совсем так.
- Во-первых, все зависит от величины напряжения пробоя, то есть характеристики конкретного полупроводника.
- Во-вторых, он может в дальнейшем и работать, но частично утратить свои свойства. Проще говоря, светить, но не так сильно, как должен.
- В-третьих, подобные эксперименты негативно отражаются на эксплуатационном ресурсе светодиода. Если его гарантированная производителем наработка на отказ порядка 45 000 часов (в среднем), то после таких проверок на полярность он прослужит намного меньше. Подтверждено практикой!
electroadvice.ru
Диоды выпрямительные, принцип работы, характеристики, схемы подключения
Принцип работы, основные характеристики полупроводниковых выпрямительных диодов можно рассмотреть используя их вольтамперную характеристику (ВАХ), которая схематично представлена на рисунке 1.
Она имеет две ветви, соответствующие прямому и обратному включению диода.
При прямом включении выпрямительного диода ощутимый ток через него начинает протекать при достижении на диоде определенного напряжения Uоткр. Этот ток называется прямым Iпр. Его изменения на напряжение Uоткр влияют слабо, поэтому для большинства расчетов можно принять его значение:
- 0,7 Вольт для кремниевых диодов,
- 0,3 Вольт — для германиевых.
Естественно, прямой ток диода до бесконечности увеличивать нельзя, при его определенном значении Iпр.макс этот полупроводниковый прибор выйдет из строя. Кстати, существуют две основные неисправности полупроводниковых диодов:
- пробой — диод начинает проводить ток в любом направлении, то есть станет обычным проводником. Причем, сначала наступает тепловой пробой (это состояние обратимо), затем электрический (после этого диод можно смело выбрасывать),
- обрыв — здесь, думаю, пояснения излишни.
Если диод подключить в обратном направлении, через него будет протекать незначительный обратный ток Iобр, которым, как правило, можно пренебречь. При достижении определенного значения обратного напряжения Uобр обратный ток резко увеличивается, прибор, опять же, выходит из строя.
Числовые значения рассмотренных параметров для каждого типа диода индивидуальны и являются его основными электрическими характеристиками. Должен заметить, что существует ряд других параметров (собственная емкость, различные температурные коэффициенты и пр.), но для начала хватит перечисленных.
Здесь предлагаю закончить с чистой теорией и рассмотреть некоторые практические схемы.
СХЕМЫ ПОДКЛЮЧЕНИЯ ДИОДОВ
Для начала давайте рассмотрим как работает диод в цепи постоянного (рис.2) и переменного (рис.3) тока, что следует учитывать при том или ином включении диодов.
При подаче на диод прямого постоянного напряжения через него начинает протекать ток, определяемый сопротивлением нагрузки Rн. Поскольку он не должен превышать предельно допустимого значения следует определить его величину, после чего выбрать тип диода:
Iпр=Uн/Rн — все просто — это закон Ома.
Uн=U-Uоткр — см. начало статьи. Иногда величиной Uоткр можно пренебречь, бывают случаи, когда ее необходимо учитывать, например при расчете схемы подключения светодиода.
При включении диода в цепь переменного тока, помимо прочего, на нем периодически возникает обратное напряжение Uобр. Имейте в виду, следует учитывать его амплитудное значение (Для Uпр, кстати, тоже). Например, для бытовой электрической сети привычное всем напряжение 220В является действующим, а его амплитудное значение составляет 380В. Подробнее про это можно посмотреть на этой странице.
Это самое основное, про что надо помнить.
Теперь — несколько схем подключения диодов, часто встречающихся на практике.
Вне всякого сомнения, лидером здесь является мостовая схема диодов, используемая во всевозможных выпрямителях (рисунок 4). Выглядеть она может по разному, принцип действия одинаков, думаю из рисунка все ясно. Кстати, последний вариант — условное обозначение диодного моста в целом. Применяется для упрощения обозначения двух предыдущих схем.
- Диоды могут выступать как «развязывающие» элементы. Управляющие сигналы Упр1 и Упр2 объединяются в точке А, причем взаимное влияние их источников друг на друга отсутствует. Кстати, это простейший вариант реализации логической схемы «или».
- Защита от переполюсовки (жаргонное — «защита от дураков»). Если существует возможность неправильного подключения полярности напряжения питания эта схема защищает устройство от выхода из строя.
- Автоматический переход на питание от внешнего источника. Поскольку диод «открывается», когда напряжение на нем достигнет Uоткр, то при Uвнеш
© 2012-2018 г. Все права защищены.
Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
eltechbook.ru
Полупроводниковый диод
Полупроводниковый диод — самый простой полупроводниковый прибор, состоящий из одного PN перехода.
Основная его функция — это проводить электрический ток в одном направлении,
и не пропускать его в обратном. Состоит диод из двух слоев полупроводника типов N и P.
На стыке соединения P и N образуется PN-переход (PN-junction).
Электрод, подключенный к P, называется анод. Электрод, подключенный к N , называется катод.
Диод проводит ток в направлении от анода к катоду, и не проводит обратно.
Диод в состоянии покоя
Посмотрим, что происходит внутри PN-перехода, когда полупроводниковый диод находится в состоянии покоя.
То есть тогда, когда ни к аноду, ни к катоду не подключено напряжения.
Итак, в части N имеются в наличии свободные электроны – отрицательно заряженные частицы.
В части P находятся положительно заряженные ионы – дырки.
В результате, в том месте, где есть частицы с зарядами разных знаков,
возникает электрическое поле, притягивающее их друг к другу.
Под действием этого поля свободные электроны из части N дрейфуют через PN переход в часть P и заполняют некоторые дырки.
В итоге получается очень слабый электрический ток, измеряемый в наноамперах.
В результате, плотность вещества в P части повышается и возникает диффузия
(стремление вещества к равномерной концентрации), толкающая частицы обратно на сторону N.
Обратное включение диода
Теперь посмотрим, как у полупроводникового диода получается выполнять свою основную функцию – проводить ток только в одном направлении.
Подключим источник питания — плюс к катоду, минус к аноду.
В соответствии с силой притяжения, возникшей между зарядами разной полярности, электроны из N начнут движение к плюсу и отдалятся от PN перехода.
Аналогично, дырки из P будут притягиваться к минусу, и также отдалятся от PN перехода.
В результате, плотность вещества у электродов повышается.
В действие приходит диффузия и начинает толкать частицы обратно, стремясь к равномерной плотности вещества.
Как мы видим, в этом состоянии диод не проводит ток.
При повышении напряжения, в PN переходе будет все меньше и меньше заряженных частиц.
Прямое включение диода
Меняем полярность источника питания — плюс к аноду, минус к катоду.
В таком положении, между зарядами одинаковой полярности возникает сила отталкивания.
Отрицательно заряженные электроны отдаляются от минуса и двигаются сторону pn перехода. В свою очередь,
положительно заряженные дырки отталкиваются от плюса и направляются навстречу электорнам.
PN переход обогащается заряженными частицами с разной полярностью,
между которыми возникает электрическое поле – внутреннее электрическое поле PN перехода.
Под его действием электроны начинают дрейфовать на сторону P.
Часть из них рекомбинируют с дырками (заполняют место в атомах, где не хватает электрона).
Остальные электроны устремляются к плюсу батарейки. Через диод пошел ток ID.
Чтобы не возникло путаницы, напомню,
что направление тока на электрических схемах обратно направлению потока электронов.
Недостатки реального полупроводникового диода
На практике, в реальном диоде, при обратном подключении напряжения, возникает очень маленький ток,
измеряемый в микро, или наноамперах (в зависимости от модели прибора).
В следствии слишком высокого напряжения, может разрушиться кристаллическая структура полупроводника в диоде.
В этом случае, прибор начнет хорошо проводить ток также и при обратном смещении.
Такое напряжение называется напряжение пробоя.
Процесс разрушения структуры полупроводника невосстановим, и прибор приходит в негодность.
При прямом подключении, напряжение между анодом и катодом должно достигнуть определенного значения Vϒ,
для того чтобы диод начал хорошо проводить ток.
Для кремниевых приборов Vϒ — это примерно 0.7V, а для германиевых — около 0.3V.
Более подробно об этом, и других характеристиках полупроводникового выпрямительного диода пойдет речь в статье ВАХ полупроводникового диода.
hightolow.ru
Что такое диод и как его проверить
Приветствую друзья!
Мы настолько привыкли к компьютерам, что не представляем своей жизни без них. Эти жужжащие ящики на наших столах собраны из множества различных «железок». Интересно отметить, что ни один из этих составных «кирпичиков» сам по себе не может похвастаться теми свойствами, которыми обладает компьютер.
А собранные вместе, они являют собой нечто совершенно уникальное!
Какой кирпич не возьми – это только кусок обожженной глины; не сразу и понятно, к какому делу его – самого по себе — можно приспособить.
Это как дом, построенный из кирпичей.
Но несколько тысяч собранных определенным образом таких кусков глины — это жилище, которое защищает от непогоды и предоставляет крышу над головой.
Разумеется, можно пользоваться компьютером (и жить в доме) и не представлять себе, как эти штуки устроены.
Но если вы хотите научиться «лечить» ваши компьютеры, то придется разбираться, как устроены их составные части.
Поэтому сегодня мы поговорим об одном из компьютерных «кирпичиков» чуть более подробно. Мы попытаемся кратко познакомиться с тем, что такое полупроводниковые диоды и зачем они нужны.
Что такое диод?
Диоды применяются в компьютерных блоках питания для выпрямления переменного тока.
Выпрямительный диод – это деталь, имеющая в своем составе соединенные вместе полупроводники двух типов – p-типа (positive – положительный) и n–типа (negative – отрицательный).
При их соединении (сплавлении) образуется так называемый p-n переход. Этот переход обладает разным сопротивлением при различной полярности приложенного напряжения.
Если напряжение приложено в прямом направлении (положительная клемма источника напряжения подключена к p-полупроводнику — аноду, а отрицательная – к n-полупроводнику — катоду), то сопротивление диода невелико.
В этом случае говорят, что диод открыт. Если полярность подключения изменить на противоположную, то сопротивление диода будет очень большим. В таком случае говорят, что диод закрыт (заперт).
Когда диод открыт, то на нем падает какое-то напряжение.
Это падение напряжения создается протекающим через диод так называемым прямым током и зависит от величины этого тока.
Причем зависимость эта нелинейная.
Конкретное значение падения напряжения в зависимости от протекающего тока можно определить по вольт-амперной характеристике.
Эта характеристика обязательно приводится в полном техническом описании (data sheets, справочных листах).
Например, на распространенном диоде 1N5408, применяемом в компьютерном блоке питания, при изменении тока от 0,2 до 3 А падение напряжения изменяется от 0,6 до 0,9 В. Чем больше протекающий через диод ток, тем больше падение напряжения на нем и, соответственно, рассеиваемая на нем мощность (P = U * I). Чем большая мощность рассеивается на диоде, тем сильнее он греется.
В компьютерном блоке питания при выпрямлении сетевого напряжения применяется обычно мостовая схема выпрямления – 4 диода, включенные определенным образом.
Если клемма 1 имеет положительный относительно клеммы 2 потенциал, то ток пойдет через диод VD1, нагрузку и диод VD3.
Если клемма 1 имеет отрицательный клеммы 2 потенциал, то ток потечет через диод VD2, нагрузку и диод VD4. Таким образом, ток через нагрузку хоть и меняется по величине (при переменном напряжении), но протекает всегда в одном направлении – от клеммы 3 к клемме 4.
В этом и заключается эффект выпрямления. Если бы не было диодного моста – ток по нагрузке протекал бы в разных направлениях. С мостом же он протекает в одном. Такой ток называется пульсирующим.
В курсе высшей математики доказывается, что пульсирующее напряжение содержит в себе постоянную составляющую и сумму гармоник (частот, кратных основной частоте переменного напряжения 50 Герц). Постоянная составляющая выделяется фильтром (конденсатором большой емкости), который не пропускает гармоники.
Выпрямительные диоды присутствуют и в низковольтной части блока питания. Только схема включения состоит там не из 4-х диодов, а из двух.
Внимательный читатель может спросить: «А почему это используются разные схемы включения? Нельзя ли применить диодный мост и в низковольтной части?»
Можно, но это будет не лучшее решение. В случае диодного моста ток проходит через нагрузку и два последовательно включенных диода.
В случае использования диодов 1N5408 общее падение напряжения на них может составить величину 1,8 В. Это очень немного по сравнению с сетевым напряжением 220 В.
А вот если такая схема будет применена в низковольтной части, то это падение будет весьма заметным по сравнению с напряжениями +3,3, +5 и +12 В. Применение схемы из двух диодов уменьшает потери вдвое, так как последовательно с нагрузкой включен один диод, а не два.
К тому же, ток во вторичных цепях блока питания гораздо больше (в разы), чем в первичной.
Следует отметить, для этой схемы трансформатор должен иметь две одинаковые обмотки, а не одну. Схема выпрямления из двух диодов использует оба полупериода переменного напряжения, также как и мостовая.
Если потенциал верхнего конца вторичной обмотки трансформатора (см схему) положителен по отношению к нижнему, то ток протекает через клемму 1, диод VD1, клемму 3, нагрузку, клемму 4 и среднюю точку обмотки. Диод VD2 в это время заперт.
Если потенциал нижнего конца вторичной обмотки положителен по отношению к верхнему, то ток протекает через клемму 2, диод VD2, клемму 3, нагрузку, клемму 4 и среднюю точку обмотки. Диод VD1 в это время заперт. Получается тот же пульсирующий ток, что и при мостовой схеме.
Теперь давайте покончим со скучной теорией и перейдем к самому интересному – к практике.
Для начала скажем, что перед началом проверки диодов, хорошо бы ознакомиться с тем, как работать с цифровым тестером.
Об этом рассказывается в соответствующих статьях здесь, здесь и здесь.
Диод на электрических схемах изображается символически в виде треугольника (стрелочки) и палочки.
Палочка – это катод, стрелочка (она указывает направление тока, т.е. движения положительных зарядов) – анод.
Проверить диодный мост можно цифровым тестером, установив переключатель работы в положении проверки диодов (указатель переключателя диапазонов тестера должен стоять напротив символического изображения диода).
Если присоединить красный щуп тестера к аноду, а черный — к катоду отдельного диода, то диод будет открыт напряжением с тестера.
Дисплей покажет величину 0,5 – 0,6 В.
Если изменить полярность щупов, диод будет заперт.
Дисплей при этом покажет единицу в крайнем левом разряде.
Диодный мост часто имеет символическое обозначение вида напряжения на корпусе (~ переменное напряжение, +, — постоянное напряжение).
Диодный мост можно проверить, установив один щуп на одну из клемм «~», а второй – поочередно на выводы «+» и «-».
При этом один диод будет открыт, а другой закрыт.
Если поменять полярность щупов – то тот диод, который был закрыт, теперь откроется, а другой закроется.
Следует обратить внимание на то, что катод – это плюсовой вывод моста.
Если какой-то из диодов закорочен, тестер покажет нулевое (или очень небольшое напряжение).
Такой мост, естественно, непригоден для работы.
В закоротке диода можно убедиться, если тестировать диоды в режиме измерения сопротивления.
При закороченном диоде тестер покажет небольшое сопротивление в обоих направлениях.
Как уже говорилось, во вторичных цепях используется схема выпрямления из двух диодов.
Но даже на одном диоде падает достаточно большое напряжение по сравнению с выходными напряжениями +12 В, +5 В, +3,3 В.
Токи потребления могут достигать 20 А и более, и на диодах будет рассеиваться большая мощность.
Вследствие этого они будут сильно греться.
Мощность рассеяния уменьшится, если будет меньшим прямое напряжение на диоде.
Поэтому в таких случаях применяют так называемые диоды Шоттки, у которых прямое падение напряжения меньше.
Диоды Шоттки
Диод Шоттки состоит не из двух различных полупроводников, а из металла и полупроводника.
Получающийся при этом так называемый потенциальный барьер будет меньше.
В компьютерных блоках питания применяют сдвоенные диоды Шоттки в трехвыводном корпусе.
Типичным представителем такой сборки является SBL2040. Падение напряжения на каждом из ее диодов при максимальном токе не превысит (по даташиту) 0,55 В. Если проверить ее тестером (в режиме проверки диодов), то он покажет величину около 0,17 В.
Меньшая величина напряжения обусловлена тем, что через диод протекает очень небольшой ток, далекий от максимального.
В заключение скажем, что у диода есть такой параметр, как предельно допустимое обратное напряжение. Если диод заперт – к нему приложено обратное напряжение. При замене диодов надо учитывать эту величину.
Если в реальной схеме обратное напряжение превысит предельно допустимое – диод выйдет из строя!
Диод – важная «железка» в электронике. Чем бы еще мы выпрямляли напряжение?
На сегодня все. Надеюсь, вам было интересно.
С вами был Виктор Геронда.
До встречи на блоге!
vsbot.ru
Полярность — диод — Большая Энциклопедия Нефти и Газа, статья, страница 1
Полярность — диод
Cтраница 1
Полярность диодов определяется тестером.
Полярность диодов КИПД 02А — 1К, КИПД02Б — 1К указывается на чертеже; остальные диоды имеют обратную полярность.
Изменив полярность диода и источника опорного напряжения, можно получить ограничение снизу.
Только там иная полярность диодов и включены они непосредственно в плечи выпрямительного моста, а здесь они заменены изображением диода внутри квадрата, символизирующим выпрямительный мост. Если захочешь проследить весь путь тока, выпрямленного диодами V1 — V4, впиши их в стороны квадрата.
Для измерения отрицательного пикового значения полярность диодов должна быть обратной.
Другой тип усилительных схем основан на эффекте накопления неосновных носителей заряда, которое возникает при изменении полярности диода с прямого направления на обратное. Гь который питает его напряжением сигнала в ви-де импульсов.
Зная полярность омметра, легко определить полярность диода, так как в том случае, когда омметр показывает минимальное сопротивление, полярности диода и омметра совпадают.
Полярность диода выбирается такой, чтобы он пропускал ток в полупериоды обратной полярности.
Выпускаются в стеклянном корпусе с гибкими выводами. Полярность диода обозначается желтой точкой на корпусе вблизи положительного (анодного) вывода. Тип диода приводится на дополнительной таре.
Маркируются цветовыми точками на корпусе: АЛ336А — одной красной, АЛ336Б — двумя красными, АЛ336В — одной зеленой, АЛ336Г — двумя зелеными, АЛ336Д — одной желтой, АЛ336Е — двумя желтыми, АЛ336Ж — тремя желтыми, АЛ336И — одной белой, АЛ336К — одной черной. Полярность диодов АЛ336А, АЛ336Б и АЛ336К указывается на чертеже. Диоды АЛ336В — АЛ336И имеют обратную полярность.
Страницы: 1 2 3 4
www.ngpedia.ru
Светодиод — это разновидность диода, поэтому при подключении он требует не только ограничения тока, но и соблюдения полярности. Но в явном виде она на корпусе детали нигде не указана, и её придётся определять по косвенным признакам. Автор Instructables под ником Nikus знает целых пять таких признаков. Теперь их узнаете и вы.
Как и электроды обычного диода, электроды светодиода называются анодом и катодом. Первый из них соответствует плюсу, второй — минусу. При прямой полярности светодиод действует как стабистор: открывается при небольшом напряжении, зависящем от цвета (чем меньше длина волны, тем оно больше). Только в отличие от стабистора, он при этом светится. При обратной же полярности он ведёт себя как стабилитрон, открываясь при значительно большем напряжении. Но этот режим для светодиода — нештатный: производитель не гарантирует, что изделие не выйдет из строя, даже если ток ограничить, да и света вы никакого не получите.
Если светодиод вами ниоткуда не выпаян, а куплен новым, один вывод у него длиннее другого. Думаете, это результат не очень аккуратного изготовления? Nikus другого мнения. Тот вывод, который длиннее, соответствует плюсу, т.е., аноду. Вот и весь секрет!
Но самодельщики не очень часто используют новые светодиоды. Что ж, есть и такой признак, который при впайке, укорачивании выводов и последующей выпайке детали не исчезает. Непосвящённым и он кажется небольшим производственным дефектом. Нет, он тоже неспроста: небольшой плоский участок на цилиндническом корпусе, как будто надфилем случайно сточили. Оказывается, не случайно. Эта метка расположена рядом с отрицательным выводом — катодом.
Также Nikus советует заглянуть внутрь светодиода. Сломать? Вовсе нет. Матовые светодиоды практически исчезли с рынка, остались прозрачные, позволяющие разглядеть сбоку внутреннюю структуру. С выводами соединены две плоские пластины, и они тоже разных размеров. Большая держит чашечку с кристаллом, маленькая — волосок, соединённый с кристаллом сверху. Чашечка — минус, волосок — плюс.
Редкий самодельщик обходится без приборов-помощников, вот и Nikus купил себе недорогой мультиметр.
Среди прочих режимов, у него есть режим проверки диодов.
При подключении обычного диода в правильной полярности прибор показывает в этом режиме прямое падение напряжения. У светодиода это падение всегда больше одного вольта, поэтому даже при правильном подключении показания дисплея не изменятся. Зато светодиод слегка засветится. Если щупы подключены к мультиметру правильно, то есть, чёрный — в гнездо COM, а красный — в гнездо VΩmA, красному щупу будет соответствовать плюс.
Со стрелочными тестерами сложнее. Те из них, которые питаются от одной 1,5-вольтовой батарейки, для проверки светодиодов не годятся. Те же, у которых напряжение питания составляет от 3 до 12 В, подходят, но у них в режиме омметра полярность напряжения на щупах часто обратная. Проверить её можно другим прибором, работающим в режиме вольтметра. Только и на том и на другом подключите щупы правильно!
Nikus пишет, что носит с собой мультиметр повсюду, кроме бассейна. Вы же, скорее всего, так не делаете, а необходимость узнать полярность светодиода может возникнуть внезапно. На помощь придёт распространённая трёхвольтовая батарейка типоразмера 2016, 2025 или 2032. У новой батарейки напряжение без нагрузки может достигать 3,7 В, поэтому лучше взять слегка разряженную, примерно для 2,8 В, так лучше для светодиода.
Диоды относятся к категории электронных приборов, работающих по принципу полупроводника, который особым образом реагирует на приложенное к нему напряжение. С внешним видом и схемным обозначением этого полупроводникового изделия можно ознакомиться на рисунке, размещённом ниже.
Особенностью включения этого элемента в электронную схему является необходимость соблюдения полярности диода.
Дополнительное пояснение.
Под полярностью подразумевается строго установленный порядок включения, при котором учитывается, где плюс, а где минус у данного изделия.
Эти два условных обозначения привязываются к его выводам, называемым анодом и катодом, соответственно.
Особенности функционирования
Известно, что любой полупроводниковый диод при подаче на него постоянного или переменного напряжения пропускает ток только в одном направлении. В случае обратного его включения постоянный ток не протекает, так как n-p переход будет смещён в непроводящем направлении. Из рисунка видно, что минус полупроводника располагается со стороны его катода, а плюс – с противоположного конца.
Особенно наглядно эффект односторонней проводимости может быть подтверждён на примере полупроводниковых изделий, называемых светодиодами и работающих лишь при условии правильного включения.
На практике нередки ситуации, когда на корпусе изделия нет явных признаков, позволяющих сразу же сказать, где у него какой полюс. Именно поэтому важно знать особые приметы, по которым можно научиться различать их.
Способы определения полярности
Для определения полярности диодного изделия можно воспользоваться различными приёмами, каждый из которых подходит для определённых ситуаций и будет рассмотрен отдельно. Эти методы условно делятся на следующие группы:
- Метод визуального осмотра, позволяющий определиться с полярностью по имеющейся маркировке или характерным признакам;
- Проверка посредством мультиметра, включённого в режим прозвонки;
- Выяснение, где плюс, а где минус путём сборки несложной схемы с миниатюрной лампочкой.
Рассмотрим каждый из перечисленных подходов отдельно.
Визуальный осмотр
Этот способ позволяет расшифровать полярность по имеющимся на полупроводниковом изделии специальным меткам. У некоторых диодов это может быть точка или кольцевая полоска, смещённая в сторону анода. Некоторые образцы старой марки (КД226, например) имеют характерную заострённую с одной стороны форму, которая соответствует плюсу. С другого, совершенно плоского конца, соответственно, располагается минус.
Обратите внимание!
При визуальном обследовании светодиодов, например, обнаруживается, что на одной из их ножек имеется характерный выступ.
По этому признаку обычно определяют, где у такого диода плюс, а где противоположный ему контакт.
Применение измерительного прибора
Самый простой и надёжный способ определения полярности – использование измерительного устройства типа «мультиметр», включённого в режим «Прозвонка». При измерении всегда нужно помнить, что на шнур в изоляции красного цвета от встроенной батарейки подаётся плюс, а на шнур в чёрной изоляции – минус.
После произвольного подсоединения этих «концов» к выводам диода с неизвестной полярностью нужно следить за показаниями на дисплее прибора. Если индикатор покажет напряжение порядка 0,5-0.7 Вольт – это значит, что он включён в прямом направлении, и та ножка, к которой подсоединён щуп в красной изоляции, является плюсовой.
В случае если индикатор показывает «единицу» (бесконечность), можно сказать, что диод включён в обратном направлении, и на основании этого можно будет судить о его полярности.
Дополнительная информация.
Некоторые радиолюбители для проверки светодиодов используют панельку, предназначенную для измерения параметров транзисторов.
Диод в этом случае включается как один из переходов транзисторного прибора, а его полярность определяется по тому, светится он или нет.
Включение в схему
В крайнем случае, когда визуально определить расположение выводов не удаётся, а измерительного прибора под рукой не имеется, можно воспользоваться методом включения диода в несложную схему, изображённую на рисунке ниже.
При его включении в такую цепь лампочка либо загорится (это значит, что полупроводник пропускает через себя ток), либо нет. В первом случае плюс батарейки будет подключён к положительному выводу изделия (аноду), а во втором – наоборот, к его катоду.
В заключение отметим, что способов, как определить полярность диода, существует довольно много. При этом выбор конкретного приёма ее выявления зависит от условий проведения эксперимента и возможностей пользователя.
Видео
Светодиод где плюс где минус
При работе светодиоды способны пропускать электрический ток в определенном направлении. Если подключение выполнено инверсионно, электрический ток не проходит по цепи, а нужный электроприбор не включится. Объясняется это тем, что приборы по принципу устройства представляют собой диоды, и не все имеют способность светиться. Это говорит о том, что светодиод имеет полярность и функционирует при определенном направлении тока. В связи с этим для подключения важно правильно определить, где у светодиодов минус и плюс. Разберем несколько способов.
Визуально
Если у Вас в руках светодиод где плюс где минус вы не знаете, попробуйте сделать это визуально. Как визуально определить светодиодную полярность? Достаточно просто.
У нового светодиода два вывода, один должен быть короче. Короткий вывод — это катод. Запомнить легко: «короткий» — «катод», оба слова на «к». Плюс находится там, где длинный вывод. Если имеем дело с использованным светодиодом, ножки которого согнуты, задача усложняется.
Тогда вглядываемся в корпус, где находится самый важный элемент — кристаллик. Он лежит на крошечной подставке, чашечке. Вывод с подставки — катод, с его стороны располагается срез или засечка.
НО данный способ не всегда применим. Многие производители сегодня при производстве не соблюдают стандарты, а ассортимент моделей поражает многообразием. Некоторые изготовители отмечают катоды точкой или линией зеленого цвета, либо проставляют знаки «-» и «+». Если же внешних опознавательных признаков нет, нужно провести электротестирование.
Источник питания в помощь
Второй способ определить светодиодную полярность — подключить его к источнику питания. Главное, правильно подобрать источник питания с напряжением, чтобы оно не превышало максимальный уровень напряжения светодиода, иначе он перегорит или испортится. Элементы соединяются так: к » +» подключается «—», к «—» подключается «+».
Мультиметр
Если вышеописанные способы не дали результатов, используйте мультиметр. Чтобы мультиметром определить полярность светодиода потребует максимум минута. Сначала нужно выбрать на оборудовании режим измерения уровня сопротивления, а затем прикоснуться специальными щипцами к светодиодным контактам. Черный провод идет к «-», а красный к «+». Не нужно касаться слишком долго, 20-30 секунд хватит. Если включение было выполнено напрямую (« + » к « + », а « — » к « —»), на мультиметре отображается показатель в области 1,7 кило Ом. Если включение обратное — на приборе не отображаются измерения..
Измерять в режиме диода несколько легче: при подсоединении напрямую, загорится лампочка. Этот режим подходит для зеленых и красных лампочек, а вот белые и синие лампочки рассчитаны на ток с напряжением более 3 В. По этой причине при подключении лампочек синего и белого цвета, они могут засветиться и при правильной полярности.
В данном случае используется режим измерения характеристик транзисторов. Светодиод вставляется в пазы колодки, снизу мультиметра. Применяется часть PNP: одна ножка диода вставляется в разъем «Е» — эмиттер, а вторая в «С» — коллектор. Лампочка светится когда, к коллектору подсоединили катод.
Таким образом, определение полярности не представляет особой сложности.
Подключение светодиодов
Полярность светодиода
Светодиоды — это диоды, которые представляют собой электронные устройства, пропускающие ток только в одном направлении. Это означает, что светодиоды (и другие диоды) имеют положительную (+) и отрицательную (-) стороны. Для работы светодиода его необходимо подключить к источнику напряжения правильной стороной. Сторона подачи напряжения диода является положительной (+) стороной, она называется анодом . Отрицательная сторона называется катодом .
Поскольку диоды изготовлены из полупроводникового материала, они имеют очень определенное напряжение, при котором они будут включаться. Если напряжение питания, которое вы используете, больше, чем напряжение включения, вам понадобится резистор между одним из выводов светодиода и подключением к GND или к напряжению питания.
Светодиод резистор
Чтобы убедиться, что светодиод не повреждается слишком большим током, соединение между ним и источником напряжения требует резистора.Величина необходимого сопротивления зависит от того, какой ток будет использовать светодиод, чтобы он был достаточно ярким, чтобы видеть, но не настолько, чтобы он перегорел. Обычно это около 20 мА для большинства одноцветных светодиодов. Чтобы выбрать правильное значение сопротивления для светодиода, вам также необходимо знать, какое у него напряжение включения (Vf). Красный светодиод потребляет наименьшее количество напряжения для включения, около 1,8 В, в то время как для некоторых синих светодиодов требуется более 3,0 В.
Чтобы решить, какое сопротивление вам нужно, вам нужно использовать закон Ома для тока через резистор.Этот ток равен той же величине, которая течет к светодиоду, но напряжение на резисторе другое, потому что светодиод имеет напряжение включения, которое вы вычитаете из напряжения питания:
Напряжение резистора = напряжение питания - напряжение включения светодиода (Vf)
Для расчета сопротивления, необходимого для тока 20 мА для красного светодиода с Vf 2,0 В:
R = (3,3 В - 2,0 В) / 0,02 А = 65 Ом
Вот небольшая таблица с несколькими вариантами резисторов для красных светодиодов с разными значениями Vf:
Поставка | Vf | R |
---|---|---|
3.3 в | 1,8 в | 75 Ом |
3.3 в | 2.0 в | 65 Ом |
3.3 в | 2.2 v | 55 Ом |
Все о светодиодах
Что такое светодиод?
Кажется, что в наши дни все светится светодиодом. Но что такое светодиоды и почему они так популярны? Давайте взглянем.
LED или светодиоды — это особый тип диодов, преобразующих электрическую энергию в свет.По сути, это крошечные лампочки, которые можно использовать в электрической цепи. Два из многих преимуществ светодиодов по сравнению с традиционными лампочками заключаются в том, что они требуют намного меньше энергии для зажигания и более энергоэффективны, что означает, что они превращают большую часть энергии, которая проходит через них, в свет и меньше — в тепло.
Как работают светодиоды?
Если вы когда-нибудь смотрели на светодиод, то могли заметить, что «выводы» или ножки бывают двух разной длины. Более длинная ветвь — это положительная сторона светодиода, называемая «анодом», а более короткая ветвь — это отрицательная сторона, называемая «катодом».”
Внутри светодиода ток может течь только от анода (положительная сторона) к катоду (отрицательная сторона) и никогда в обратном направлении. Это означает, что если подключить обратную схему, светодиод не загорится. Фактически, задний светодиод может помешать правильной работе всей схемы, блокируя прохождение тока через эту точку. Первое, что вы должны попробовать, если светодиод не загорается при включении в цепь, это перевернуть его.
Да будет свет
Яркость светодиода напрямую зависит от того, сколько тока он потребляет.Это означает, что сверхяркие светодиоды разряжают батареи намного быстрее, чем более тусклые светодиоды. К счастью, яркость светодиода можно регулировать, контролируя, сколько тока проходит через него. Фактически, управление током с помощью светодиода важно по нескольким причинам.
При прямом подключении к источнику тока светодиод будет пытаться рассеять столько энергии, сколько ему позволено потреблять. Когда для светодиода имеется слишком большой ток, он перегорает и умирает.По этой причине важно ограничить количество тока, протекающего через светодиод.
Сопротивляйтесь силе
Для управления мощностью, протекающей через светодиод, решающее значение имеют резисторы. Резисторы ограничивают поток электронов в цепи и предотвращают попытки светодиода потреблять слишком большой ток. Мы углубимся в резисторы в другом посте, но пока важно знать, что базовый шаблон для схемы светодиода включает последовательное подключение источника питания, резистора и светодиода, как показано ниже.
Для определения наилучшего номинала резистора можно использовать базовые математические операции, но для целей этого обсуждения и для большинства светодиодов 330 Ом — хорошее место для начала. Таким образом, вот удобная блок-схема, которая поможет вам разработать схему светодиода и выбрать правильное значение резистора методом проб и ошибок.
Самая простая схема
Самый простой способ зажечь светодиод — это подключить его к батарейке типа «таблетка». Этот метод работает без резистора, потому что батарейки типа «таблетка» не вырабатывают достаточно энергии, чтобы повредить светодиод.Это отличный способ продемонстрировать важность правильного размещения светодиода в цепи — если он расположен обратной стороной, светодиод не загорится. Просто поместите длинный конец светодиода (положительная сторона) напротив «+» стороны батареи и поместите короткий конец светодиода (отрицательная сторона) напротив «-» стороны батареи, и ваш светодиод загорится. вверх.
Чтобы узнать больше о светодиодах, ознакомьтесь с нашим руководством по светоизлучающим диодам.
Хотите узнать, как производятся светодиоды? Несколько лет назад у нас была возможность посетить завод по производству светодиодов.
Защищенный сайт
Магазин с
Уверенность
Лучше всего просматривать при использовании:
Internet Explorer
или
Mozilla Firefox
|
Светодиодные схемы Наша цель — дать обзор основных
Символ светодиода является стандартным обозначением диода с В приведенных ниже схемах мы используем символ батареи для обозначения Обозначения переключателей довольно просты. Однополюсный, Обозначение конденсатора, которое мы здесь используем, относится к электролитическому или Базовая схема
Это настолько просто, насколько возможно. Цепь одного светодиода — это
Пример работы с этой формулой можно найти на нашем На схеме выше у нас есть как ограничивающий резистор, так и Цепи с двумя или более светодиодами Цепи с несколькими светодиодами делятся на две основные категории; Общие правила для параллельных и последовательных цепей светодиодов могут быть
Параллельная проводная светодиодная цепь
Выше показаны два примера одной и той же схемы.Рисунок 1 на Если бы мы построили схему точно так, как показано на рисунке 1, Во многих случаях на этом веб-сайте мы приводим примеры Возвращаясь к рисунку 1; вы можете увидеть в этом примере В реальной жизни наш реальный проект проводки выглядел бы больше как Макеты макетов железных дорог могут стать электрически сложными из-за Последовательная проводная светодиодная схема
Эта схема представляет собой простую последовательную цепь для питания трех светодиодов.
Единственная реальная разница в том, что наш первый шаг — добавить Нам нужно знать, какой провод мы собираемся использовать, и что Другой способ сформулировать правила 1 и 2 выше:
Давайте рассмотрим несколько примеров с использованием 9-вольтовой батареи (или Пример № 1 Мы хотим подключить два наших супербелых светодиода 2×3 последовательно.
Пример 2 Мы хотим последовательно соединить четыре наших красных светодиода Micro.Что
Пример № 3 Мы хотим подключить три наших сверхбелых светодиода Micro
Здесь мы снова можем использовать наш провод №38 для всего, кроме
Мы знаем, что Vs (для этих примеров) составляет 9 вольт. И. мы Теперь посчитаем последовательную пару светодиодов. Формула для
Опять же, против составляет 9 вольт, поэтому 9 — (3.5 + 3.5) Подсветка Kato Amtrak Superliner с подсветкой EOT
Вот схема легкового автомобиля, подключенного для освещения с помощью Последовательная / параллельная проводная светодиодная цепь
Здесь мы немного расширили наш пример №3 выше. У нас есть Интересная особенность последовательных / параллельных цепей светодиодов заключается в том, как Используя нашу параллельную схему ранее, мы могли соединить Для получения дополнительной информации об использовании нашего импульсного источника питания для вашего Не забывайте правило №4. При создании групп серий убедитесь, что Наконец, проявите изобретательность.Вы можете смешивать и сочетать. Последовательные схемы, Еще кое-что для тех из вас, кто чувствует себя некомфортно … ДА БУДЕТ СВЕТ …
2008 Нжиниринг |
Почему резистор должен быть на аноде светодиода?
Посмотрите еще раз на книгу Forrest Mims III . Он не утверждает, что резисторы должны быть на аноде, и есть примеры, когда они находятся на катоде. В моей книге 1988 года серийная защита светодиодов представлена на P.69:
ЦЕПЬ ПРИВОДА СИД
— Поскольку светодиоды зависят от тока, обычно необходимо защитить их от чрезмерного тока с помощью последовательного резистора. Некоторые светодиоды имеют встроенный резистор. Скорее нет .
Затем дается формула о том, как рассчитать сопротивление по напряжению питания и прямому току светодиода. На прилагаемой схеме резистор установлен на аноде, но не объясняется, что выбор произвольный.
Однако на той же странице представлено устройство «индикатор полярности светодиода», в котором два последовательно соединенных светодиода совместно используют резистор, который обязательно находится на аноде одного и катоде другого.В «трехпозиционном индикаторе полярности» ограничительный резистор находится на стороне питания, а не на стороне земли.
Обычно в некотором смысле лучше (если есть выбор), чтобы важное устройство было подключено к земле, а окружающие аксессуары, такие как резисторы смещения, были на стороне питания.
В цепях высокого напряжения выбор между нагрузкой со стороны питания или со стороны земли имеет значение с точки зрения безопасности. Например, следует ли поместить выключатель света на горячую сторону лампы или на нейтраль? Если вы подключаете выключатель так, чтобы свет выключался путем прерывания возврата нейтрали, это означает, что патрон лампочки постоянно подключен к горячему! Это означает, что если кто-то выключит выключатель перед заменой лампы, на самом деле это не безопаснее; главная панель должна использоваться для фактического разрыва горячего соединения с розеткой.В цепи батареи нет защитного заземления: минусовая клемма произвольно обозначена как общий возврат, а слово «земля» используется для этого общего.
Является ли нагрузочное устройство стороной заземления или стороной питания, также имеет значение, если напряжение от устройства передается в какую-либо другую цепь, где оно используется для какой-либо цели. Светодиод 1,2 В, анод которого подключен к 5 В, будет обеспечивать показание 3,8 В с катода, если течет ток. Если вместо этого катод заземлен, то анод будет обеспечивать 1.2В чтение. Таким образом, размещение резистора не имеет значения, только если такой ситуации не существует в схеме: нет третьего соединения с переходом между резистором и светодиодом, которое влияет на какую-то другую схему.
Есть ли полярность у светодиодных ламп?
Независимо от того, являетесь ли вы опытным электриком или впервые экспериментируете со схемами, вы должны убедиться, что все компоненты правильно подключены друг к другу.
И если вы новичок в схемотехнике, то я знаю, что иногда может возникнуть путаница, как эти части правильно соединены.
Если вы используете светодиоды, вы можете не знать, к какому пути их подключить. Имеет ли значение, каким образом светодиод подключен так же, как при установке батареи?
Короче да, у светодиодных ламп есть полярность. Они сделаны с положительным и отрицательным подключением. Они должны быть подключены к вашей цепи в правильном направлении, иначе они не будут работать.
В Интернете есть много противоречивой информации о светодиодах, в том числе о полярности и ее важности.Итак, в этой статье я расскажу вам:
- Имеет ли значение полярность светодиодов
- Как определить положительную и отрицательную стороны светодиода
- Что произойдет, если неправильно подключить светодиод
К концу этой статьи вы будете уверены, что лучше всего подключить светодиод, но дайте мне знать в комментариях, если у вас все еще есть вопросы.
Важна ли полярность для светодиодов?
По определению, диод — это электрический компонент, который работает только тогда, когда через него проходит ток в одном направлении.
Светодиод — это светоизлучающий диод, поэтому он работает точно так же, как и любой другой диод. Он будет выполнять свою работу — в данном случае «излучать свет» — только в том случае, если он подключен правильно.
Светодиоды
имеют анод и катод. Это ножки светодиода, и их нужно правильно подключить в схему. Анод — это положительное соединение, а катод — отрицательное.
Ваш источник питания будет иметь полярность. Вы должны убедиться, что анод правильно подключен к положительному потоку цепи, а катод затем отправляет ток через отрицательное направление.
Ваш светодиод будет работать правильно, только если вы соблюдаете полярность!
Как определить положительную и отрицательную ногу светодиода?
Самый простой способ определить полярность светодиода — это посмотреть на длину ножек. Вы должны заметить, что они немного отличаются.
Это не ошибка; вот как они устроены — более длинная нога является положительной, а более короткая — отрицательной.
Но что делать, если лампочка не новая, а ножки обрезаны или припаяны, чтобы соответствовать установке?
Не волнуйтесь, есть и другие способы проверить.
Во-первых, посмотрите на сам светодиод. Вы должны заметить, что одна сторона колбы плоская, а другая закругленная. Плоская сторона находится ближе всего к отрицательному полюсу, а положительная — к закругленному краю.
Если это не помогает, посмотрите на светодиод. Если вы видите пластины внутри светодиода, вы должны признать, что одна из них больше. Пластина большего размера является отрицательной, а более тонкая пластина — положительной стороной.
Если вы все еще не можете определить, какой именно, и не хотите подключать его к своей цепи, вы можете просто взять аккумулятор.Подключите одну ногу к положительной стороне батареи, а другую — к отрицательной. Если светодиод загорается, значит, все правильно. Если нет, переверните индикатор и попробуйте снова.
Наилучший способ сделать это — использовать батарейку типа «таблетка» (Amazon). Они меньше по размеру и менее мощные, а это значит, что вы не повредите лампочку, и вы можете просто прижать ее к ножкам.
Вы можете использовать более крупную батарею AA или AAA, но вам нужно будет подключить ее.
Еще лучше, чем батарейка, был бы мультиметр.Они предназначены для этой работы, поэтому для тестирования достаточно просто включить устройство на диод, а затем прикоснуться к положительным и отрицательным контактам к ножкам светодиода, чтобы увидеть, загорается ли он.
Вы должны хорошо проверить светодиод на длину ножек или плоскую кромку, но эти другие варианты означают, что вы всегда сможете решить это так или иначе. В будущем у вас не должно возникнуть проблем с определением положительных и отрицательных полюсов светодиода.
Что произойдет, если подключить светодиодные фонари задним ходом?
Если подключить светодиод в цепь обратной стороной, анодом и катодом назад, то ничего не произойдет.
Под этим я подразумеваю две вещи. Во-первых, свет не работает. Но, во-вторых, его тоже не повредят.
По крайней мере, это верно в большинстве случаев, когда в цепи напряжение от низкого до нормального. Если вы подключили светодиод к цепи высокого напряжения и неправильно подключили его, это могло бы повредить светодиод и помешать его работе.
Не всегда можно увидеть это собственными глазами. Вы можете просто перевернуть светодиод и обнаружить, что он по-прежнему не работает, тогда как вы знаете, что он сломан.Иногда можно увидеть физические повреждения, если лампочка сгорела или перегрелась.
Оба эти случая необычны, и в большинстве случаев я могу заверить вас, что ваша схема не будет такой мощной. Не паникуйте, если вы случайно подключите светодиод с обратной полярностью. Просто измените его, и он должен работать.
Некоторые предпочитают включать в свои схемы обратный диод. Это предназначено для защиты любых светодиодов или других диодов и позволяет протекать через них обратному току, если что-то пойдет не так.Возможно, вам не понадобится добавлять обратный диод, но в зависимости от вашей работы это может быть полезным вариантом.
Заключительные слова
Не надо гадать, когда устанавливаете светодиод в электрическую цепь. Я знаю, что иногда вам может понадобиться работать быстро, но важно убедиться, что все правильно подключено.
Но, как я уже пояснил, определить правильную полярность не так уж сложно, поскольку доступно множество опций.
Большинство людей могут отличить их сразу по ногам, но есть несколько вариантов, из которых можно выбрать, когда это не ясно.
Какой метод вы используете для проверки полярности светодиода? Вы когда-нибудь видели сильно перегоревший светодиод из-за плохой схемы?
Дайте мне знать в комментариях ниже.
Как работает диод и светодиод? | ОРЕЛ
С возвращением, капитаны компонентов! Сегодня пришло время повысить уровень своих знаний и перейти от простых пассивных компонентов к области полупроводниковых компонентов. Эти детали оживают, когда соединяются в цепь, и могут управлять электричеством разными способами! Вам предстоит работать с двумя полупроводниковыми компонентами: диодом и транзистором.Сегодня мы поговорим о диоде, печально известном способе управления, который позволяет электричеству течь только в одном направлении! Если вы видели светодиод в действии, значит, вы уже далеко впереди, давайте приступим.
Управляйте потоком
Диод хорошо известен своей способностью управлять протеканием электрического тока в цепи. В отличие от пассивных компонентов, которые бездействуют, сопротивляясь или накапливая, диоды активно задействуют приливы и отливы тока, протекающего по нашим устройствам.Есть два способа описать, как ток будет или не течет через диод, и они включают:
- С опережением. Если вы правильно вставите батарею в цепь, ток будет проходить через диод; это называется состоянием с прямым смещением.
- с обратным смещением. Когда вам удается вставить батарею в цепь в обратном направлении, ваш диод блокирует прохождение любого тока, и это называется состоянием с обратным смещением.
Простой способ визуализировать разницу между состояниями прямого и обратного смещения диода в простой схеме
Хотя эти два термина могут показаться слишком сложными, представьте диод как переключатель.Он либо закрыт (включен) и пропускает ток, либо открыт (выключен), и ток не может течь через него.
Полярность диодов и символы
Диоды — это поляризованные компоненты, что означает, что они имеют очень специфическую ориентацию, поэтому для правильной работы их необходимо подключить в цепь. На физическом диоде вы заметите две клеммы, выходящие из формы жестяной банки посередине. Одна сторона — это положительный вывод, который называется анодом . Другой вывод — это отрицательный конец, называемый катодом . Возвращаясь к нашему потоку электричества, ток может течь только в диоде от анода к катоду, а не наоборот.
Вы можете определить катодную сторону физического диода, посмотрев на серебряную полоску рядом с одним из выводов. (Источник изображения)
Вы можете легко обнаружить диод на схеме, просто найдите большую стрелку с линией, проходящей через нее, как показано ниже. У некоторых диодов и анод, и катод отмечены как положительный и отрицательный, но простой способ запомнить, в каком направлении течет ток в диоде, — это следовать направлению стрелки.
Стрелка на символе диода указывает направление протекания тока.
В наши дни большинство диодов изготовлено из двух самых популярных полупроводниковых материалов в электронике — кремния или германия. Но если вы знаете что-нибудь о полупроводниках, то знаете, что в своем естественном состоянии ни один из этих элементов не проводит электричество. Так как же заставить электричество проходить через кремний или германий? Небольшой фокус под названием допинг.
Легирование полупроводников
Странные полупроводниковые элементы.Возьмем, к примеру, кремний. Днем это изолятор, но если вы добавите в него примеси с помощью процесса, называемого допингом, вы придадите ему магическую силу проводить электричество ночью.
Благодаря своим двойным свойствам как изолятор, так и проводник, полупроводники нашли свою идеальную нишу в компонентах, которые должны контролировать поток электрического тока в виде диодов и транзисторов. Вот как работает процесс легирования в типичном куске кремния.
- Расти.Во-первых, кремний выращивают в строго контролируемой лабораторной среде. Это называется чистой комнатой, то есть в ней нет пыли и других загрязнений.
- Допинг это отрицательно. Теперь, когда кремний вырос, пришло время легировать его. Этот процесс может идти двумя путями. Первый — это легирование кремния сурьмой, которая дает ему несколько дополнительных электронов и позволяет кремнию проводить электричество. Этот кремний называется кремнием n-типа или отрицательного типа, потому что в нем больше отрицательных электронов, чем обычно.
- Допинг положительно. Можно также добавить кремний в обратную сторону. Добавляя бор к кремнию, он удаляет электроны из атома кремния, оставляя группу пустых дырок там, где должны быть электроны. Это кремний p-типа или положительного типа.
- Объедините . Теперь, когда ваши кусочки кремния легированы как положительно, так и отрицательно, вы можете соединить их вместе. Соединяя кремний n-типа и p-типа вместе, вы создаете так называемое соединение.
Именно на этом перекрестке, который можно представить себе как некую нейтральную зону, происходит вся магия в диоде.Допустим, вы соединяете кремний n-типа и p-типа, а затем подключаете батарею, создавая цепь. Что случится?
В этом случае отрицательный вывод подключен к кремнию n-типа, а положительный вывод подключен к кремнию p-типа. А между двумя кусками кремния — нейтральная зона? Что ж, он начинает сжиматься, и начинает течь электрический ток! Это состояние диода с прямым смещением, о котором мы говорили в начале.
Правильное подключение батареи к кремнию n-типа и p-типа позволяет току течь через переход.(Источник изображения)
Теперь предположим, что вы подключаете батарею наоборот: отрицательная клемма подключена к кремнию p-типа, а положительная клемма — к кремнию n-типа. Здесь происходит то, что нейтральная зона между двумя кусками кремния становится шире, и ток вообще не течет. Это состояние с обратным смещением, которое может принять диод.
Подсоедините батарею в непреднамеренном направлении, и ваш диод остановит протекание тока между n-типом и p-типом.(Источник изображения)
Прямое напряжение и пробои
Когда вы работаете с диодами, вы узнаете, что для того, чтобы один пропускал ток, требуется очень определенное количество положительного напряжения. Напряжение, необходимое для включения диода, называется прямым напряжением (VF). Вы также можете увидеть, что это называется напряжением включения или напряжением включения.
Что определяет это прямое напряжение? Полупроводник , материал и типа . Вот как он распадается:
- Кремниевые диоды.Для использования кремниевого диода потребуется прямое напряжение от 0,6 до 1 В.
- Германиевые диоды. Для использования диода на основе германия потребуется более низкое прямое напряжение около 0,3 В.
- Другие диоды. Специализированные диоды, такие как светодиоды, потребуют более высокого прямого напряжения, тогда как диоды Шоттки (см. Ниже) потребуют более низкого прямого напряжения. Лучше всего свериться с таблицей данных для вашего конкретного диода, чтобы определить его номинальное прямое напряжение.
Я знаю, что мы все это время говорили о диодах, позволяющих току течь только в одном направлении, но это правило можно нарушить.Если вы приложите огромное отрицательное напряжение к диоду, вы действительно сможете изменить направление его тока! Определенная величина напряжения, которая вызывает этот обратный поток, называется напряжением пробоя . Для обычных диодов напряжение пробоя находится в диапазоне от -50 В до -100 В. Некоторые специализированные диоды даже предназначены для работы при этом отрицательном напряжении пробоя, о котором мы поговорим позже.
Семейство диодов — наконец вместе
Существует множество диодов, каждый из которых имеет свои собственные особенности.И хотя у каждого из них есть общая основа ограничения потока тока, вы можете использовать эту общую основу для создания множества различных применений. Давайте посмотрим на каждого члена семейства диодов!
Стандартные диоды
Ваш средний диод. Стандартные диоды имеют умеренные требования к напряжению и низкий максимальный ток.
Стандартный диод для повседневного использования, доступный в компании Digi-Key, обратите внимание на серебряную полоску, которая отмечает катодный конец. (Источник изображения)
Выпрямительные диоды
Это более мощные собратья стандартных диодов и имеют более высокий максимальный ток и прямое напряжение.В основном они используются в источниках питания.
Более мощные братья и сестры стандартного диода, разница состоит в большем номинальном токе и прямом напряжении.
Диоды Шоттки
Это необычный родственник семейства диодов. Диод Шоттки пригодится, когда вам нужно ограничить величину потери напряжения в вашей цепи. Вы можете идентифицировать диод Шоттки на схеме, ища свой типичный символ диода с добавлением двух новых изгибов (S-образной формы) на катодном выводе.
Найдите изгибы на катодном конце диода, чтобы быстро определить, что это изгибы Шоттки.
Стабилитроны
Стабилитроны — это черная овца в семействе диодов. Эти парни используются для того, чтобы посылать электрический ток в обратном направлении! Они делают это, используя напряжение пробоя, которое мы обсуждали выше, также называемое пробоем Зенера. Воспользовавшись этой пробивной способностью, стабилитроны отлично подходят для создания стабильного опорного напряжения в определенной точке цепи.
Стабилитрон разительно отличается от остальных диодов семейства и может передавать ток от катода к аноду. (Источник изображения)
Фотодиоды
Фотодиоды — это непокорные тинейджеры семейства диодных. Вместо того, чтобы просто пропускать ток через цепь, фотодиоды улавливают энергию источника света и превращают ее в электрический ток. Вы найдете их для использования в солнечных панелях, а также в оптических коммуникациях.
Фотодиоды принимают все это, улавливая энергию света и превращая ее в электрический ток.(Источник изображения)
Светодиоды (светодиоды)
Яркие звезды семейства диодов. Как и стандартные диоды, светодиоды позволяют току течь только в одном направлении, но с изгибом! Когда подается правильное прямое напряжение, эти светодиоды загораются яркими цветами. Но вот загвоздка: светодиоды определенного цвета требуют разного прямого напряжения. Например, для синего светодиода требуется прямое напряжение 3,3 В, а для красного светодиода требуется только 2,2 В.
Что делает эти светодиоды настолько популярными?
- Эффективность .Светодиоды излучают свет с помощью электроники, не выделяя тонны тепла, как традиционные лампы накаливания. Это позволяет им сэкономить массу энергии.
- Контроль. Светодиодами также очень легко управлять в электронной схеме. Если перед ними установлен резистор, они обязательно будут работать!
- Недорого. Светодиоды также очень недороги и рассчитаны на длительный срок службы. Вот почему они так часто используются в светофорах, дисплеях и инфракрасных сигналах.
Светодиоды бывают разных форм и цветов, для каждого из которых требуется разное прямое напряжение! (Источник изображения)
Наиболее распространенное применение диодов
Поскольку диоды бывают разных форм, размеров и конфигураций, их использование в наших электронных схемах столь же разнообразно! Вот лишь несколько примеров использования диодов:
Преобразование переменного тока в постоянный
Процесс преобразования переменного тока (AC) в постоянный ток (DC) может выполняться только диодами! Этот процесс выпрямления (преобразования) тока позволяет вам подключить всю вашу повседневную электронику постоянного тока к розетке переменного тока в вашем доме.Есть два типа приложений преобразования, в которых играет свою роль диод:
- Полуволновое выпрямление. Для этого преобразования требуется только один диод. Если вы отправляете сигнал переменного тока в цепь, то ваш единственный диод отсекает отрицательную часть сигнала, оставляя только положительный вход в виде волны постоянного тока.
Одиночный диод в цепи однополупериодного выпрямителя, отсекающий отрицательный полюс сигнала переменного тока. (Источник изображения)
- Полноволновое мостовое выпрямление .В этом процессе преобразования используются четыре диода. И вместо того, чтобы просто отсекать отрицательную часть сигнала переменного тока, такую как полуволновой выпрямитель, этот процесс фактически преобразует все отрицательные волны в сигнале переменного тока в положительные волны для сигнала готовности постоянного тока.
Двухполупериодный мостовой выпрямитель делает еще один шаг вперед, преобразуя весь положительный и отрицательный сигнал переменного тока в постоянный. (Источник изображения)
Управляющие скачки напряжения
Вы также найдете диоды, которые используются в приложениях, где могут произойти неожиданные скачки напряжения.Диоды в этих приложениях могут ограничить любое повреждение, которое может произойти с устройством, поглощая любое избыточное напряжение, которое попадает в диапазон напряжения пробоя диода.
Защита вашего тока
Наконец, вы также найдете диоды, которые используются для защиты чувствительных цепей. Если вы хоть раз разбили батарею неправильно и ничего не взорвалось, то можете поблагодарить за это свой дружелюбный диод. Размещение диода последовательно с положительной стороной источника питания гарантирует, что ток течет только в правильном направлении.
Пора освободиться от потока
Вот и все, контрольный диод и все его сумасшедшие члены семьи! У диодов есть масса применений, от питания этих ярких светодиодных ламп до преобразования переменного тока в постоянный. Но почему, несмотря на все эти удивительные применения, диод не получил такой же огласки, как транзистор или интегральная схема? Мы думаем, что дело в том, что на кухне слишком много поваров. Первый диод был открыт почти 150 лет назад, и с тех пор сотни инженеров и ученых приложили свои усилия, чтобы улучшить это открытие.Несмотря на долгую историю существования многих людей, диод до сих пор считается четвертым по значимости изобретением после колеса.
Знаете ли вы, что Autodesk EAGLE включает в себя массу бесплатных библиотек диодов, которые вы можете начать использовать уже сегодня? Пропустите рутинную работу по созданию деталей, попробуйте Autodesk EAGLE бесплатно сегодня!
Как подключить светодиодную ленту к источнику питания
Если вы новичок в использовании светодиодных лент, но хотите, чтобы они начали работать, наиболее важным шагом является выяснение того, как обеспечить соответствующую мощность на входе светодиодной ленты, чтобы она загорелась.В зависимости от того, где вы приобрели светодиодную ленту и источник питания для светодиодов, способы настройки могут отличаться. Ниже мы рассмотрим наиболее распространенные настройки.
Обеспечение электрической совместимости светодиодной ленты и источника питания
Большинство светодиодных лент работают от низкого напряжения постоянного тока. Обычно используются напряжения постоянного тока 12 В и 24 В.
Прежде всего, убедитесь, что источник питания рассчитан на правильное напряжение, которое соответствует напряжению светодиодной ленты. Пониженное напряжение на светодиодной ленте приведет к тому, что светодиодная лента будет работать с меньшей яркостью или вообще не будет светить, а перенапряжение приведет к сгоранию светодиодов.
Во-вторых, убедитесь, что мощность блока питания достаточна для длины используемой светодиодной ленты. Это можно рассчитать, посмотрев на лист технических характеристик светодиодной ленты, в котором обычно указывается ток или потребляемая мощность на длину.
Если оба эти условия соблюдены, с точки зрения электричества, мы в порядке.
Схема подключения светодиодной ленты Waveform Lighting
Далее нам нужно будет посмотреть, совместимы ли блок питания и светодиодная лента с точки зрения разъемов и вилок.Поскольку светодиодные ленты и блоки питания бывают разных типов подключения, это может немного запутать. Итак, чтобы пролить свет (каламбур!), Мы составили таблицу ниже.
Щелкните здесь, чтобы загрузить версию в формате PDF, которая может помочь, если у вас возникли проблемы с размером текста.
Как интерпретировать эту диаграмму:
Во-первых, определите тип соединения, используемого на «стороне источника питания» (закрашено зеленым). Затем определите тип подключения на «стороне светодиодной ленты» (заштрихованной синим цветом).Подробные инструкции по определению типа приведены ниже.
Затем найдите пересечение строки и столбца, которое относится к вашей настройке. Например, если у вас есть «открытые провода» на источнике питания и «розетки постоянного тока» на светодиодной полосе, обратитесь к правому нижнему квадрату в таблице.
Фотография и текст внутри квадрата описывают, как выполняется соединение, а также аксессуары и компоненты, которые вам понадобятся. Дополнительные сведения см. Ниже:
Определение выходного разъема постоянного тока источника питания (заштриховано зеленым)
Мы начнем с рассмотрения типа разъема источника питания на стороне выхода постоянного тока.
Наиболее распространенным разъемом является штекер постоянного тока, такой как тот, который используется в источниках питания Waveform Lighting FilmGrade:
В других случаях, например, с блоками питания Meanwell, вилки может вообще не быть — только два провода, отмеченные красным и белым:
Оба типа могут работать со светодиодной лентой, но методика подключения будет отличаться, поэтому обязательно определите это, прежде чем двигаться дальше.
Затем проверьте тип подключения на светодиодной полосе (закрашена синим)
Почти все светодиодные ленты имеют медные контактные площадки, помеченные (+) и (-) на самой полосе.Это то место, где в конечном итоге должны быть пропущены электрические вводы. В зависимости от вашей конкретной ситуации вы, вероятно, столкнетесь с тремя различными возможными сценариями.
В первом сценарии (первая строка диаграммы), если вы разрезаете какие-либо сегменты катушки со светодиодной лентой, вы обнаружите, что в конце каждого сегмента остаются (примерно) полукруглые медные площадки.
Если вы приобрели катушку целиком, вероятно, производитель предоставил некоторые провода, уже прикрепленные к концам светодиодной ленты.Провода могут быть либо открытыми с оголенным проводом (второй сценарий), либо оканчиваться розеткой постоянного тока (третий сценарий). Если вы разрежете светодиодную ленту на более короткие сегменты, у вас будет хотя бы один сегмент, который попадает под первый сценарий.
Обратитесь к таблице выше, чтобы определить, как подключить каждый из этих сценариев к источнику питания.
Помните о некоторых основных принципах электроники: конечная цель — подключить положительный провод (обычно красный) выхода постоянного тока источника питания к (+) медной площадке, а отрицательный или заземляющий (обычно черный или белый) выход постоянного тока блока питания на (-) медную площадку.
Преобразование медных контактных площадок в провода
Если вы разрезаете светодиодную ленту на более короткие сегменты, скорее всего, вы получите медные контактные площадки без каких-либо проводов. Во многих учебных пособиях и обучающих видеороликах сразу же предлагается припаять провода к этим медным контактным площадкам, чтобы обеспечить электрическое соединение. Но пайка не для всех. Это может быть беспорядочно и требует некоторой практики, чтобы преуспеть.
Вместо этого мы рекомендуем использовать беспаечные разъемы. Эти разъемы предназначены для закрепления на концах светодиодной ленты, чтобы провода надежно контактировали с медными площадками.Поскольку зажимы крепятся надежно, припой не требуется.
Точно так же за считанные секунды вы можете превратить медные контактные площадки на конце сегмента светодиодной ленты в провода.
И, что лучше всего, вы можете просто открыть защелку, чтобы освободить и снять светодиодную ленту с разъема.
(У нас также есть беспаечные соединители для соединения двух сегментов светодиодной ленты.)
Следует ли соединять части светодиодной ленты «параллельно» или «последовательно»?
Если вы пытаетесь подключить более одного сегмента светодиодной ленты к одному источнику питания, вы можете внезапно понять, что вы можете подключить первый сегмент ко второму сегменту последовательно или подключиться к двум сегментам независимо от одного и того же. источник питания.
Как правило, «последовательное соединение» будет более простым, но может привести к некоторым проблемам с падением напряжения. См. Здесь для подробного анализа преимуществ и недостатков каждого подхода.
Где я могу купить аксессуары для подключения светодиодных лент к источнику питания?
Предлагаем к продаже аксессуары прямо в нашем магазине. См. Ссылки ниже.
Закупка PN 7095 (штекерный адаптер постоянного тока)
Закупка PN 7094 (гнездовой адаптер переменного тока)
Закупка PN 3070 Беспаечный разъем
Другие сообщения
Выбор между 2700K и 3000K
При поиске светодиодных осветительных приборов для дома и жилых помещений вы часто сталкиваетесь с выбором в c… Подробнее
Как выбрать напряжение светодиодной ленты
При поиске светодиодной ленты вы можете неоднократно сталкиваться с номинальным напряжением. Но вы не уверены, что именно это означает? Вы знаете … Подробнее
Требуется ли включение в список UL для светодиодных лент?
Если вы работали с электроникой и освещением, вы, несомненно, встречали знакомую маркировку UL.Как продукт низкого напряжения, как … Подробнее
Все, что вам нужно знать о лампах A19
Что означает термин A19?
Термин A19 используется для описания общей формы и размеров светового .
Добавить комментарий