Падение напряжение: Падение напряжения: расчет, формула, как найти

Разное

Содержание

Падение напряжения: расчет, формула, как найти

Чтобы понять, что такое падение напряжения, следует вспомнить, какие виды напряженности в цепи бывают. Их всего два: напряженность источника питания (при этом источник питания должен быть подключен к контуру) и, собственно, снижение напряжения, которое рассматривается отдельно или в отношении контура. В этом материале будет рассмотрено, как найти падение напряжения, и дана формула расчета падения напряжения в кабеле.

Что означает падение напряжения

Падение происходит, когда происходит перенос нагрузки на всем участке электрической цепи. Действие этой нагрузки напрямую зависит от параметра напряженности в ее узловых элементах. Когда определяется сечение проводника, важно участь, что его значение должно быть таким, чтобы в процессе нагрузки сохранялось в определенных границах, которые должны поддерживаться для нормального выполнения работы сети.

Мнемоническая диаграмма для закона Ома

Более того, нельзя пренебрегать и характеристикой сопротивляемости проводников, из которых состоит цепь. Оно, конечно, незначительное, но его влияние весьма существенно. Падение  происходит при передаче тока. Именно поэтому, чтобы, например, двигатель или цель освещения работали стабильно, необходимо поддерживать оптимальный уровень, для этого тщательно рассчитывают провода электроцепи.

Важно! Предел допустимого значения рассматриваемой характеристики отличается от страны к стране. Забывать это нельзя. Если она снижается ниже значений, которые определены в определенной стране, следует использовать провода с большим сечением.

Любой электроприбор будет работать полноценно, если к нему подается то значение, на которое он рассчитан. Если провод взят неверно, то из-за него происходят большие потери электронапряжения, и оборудование будет работать с заниженными параметрами. Особенно актуально это для постоянного тока и низкой напряженности. Например, если оно равно 12 В, то потеря одного-двух вольт уже будет критической.

Закон Ома для участка цепи

Допустимое падение напряжение в кабеле

Значение потери электронапряжения регламентируется и нормируется сразу несколькими правилами и инструкциями устройства электроустановок. Так, согласно правилу СП 31-110-2003, суммарная потеря напряжения от входной точки в помещении до максимально удаленного от нее потребителя электроэнергии не должно быть больше 7.5 %. Это правило работает на всех электроцепях с напряжением не более 400 вольт. Данное правило используется при монтаже и проектировке сетей, а также при их проверке службами Ростехнадзора.

Важно! Этот документ обобщает и отклонение электронапряжения в сетях однофазного тока бытового назначения. Оно должно быть не более 5 % при нормальной работе и 10 % после аварийной ситуации. Если сеть низковольтная, то есть до 50 вольт, то нормальным падением считается +-10 %.

Для кабелей питающей сети используют правило РД 34.20.185-94. Оно допускает параметр потерь не более 6 %, если напряжение составляет 10 кВ и не более 4–6 % при электронапряжении 380 вольт. Чтобы одновременно соблюсти эти правила и инструкции, добиваются потерь 1.5 % для малоэтажных знаний и 2.5 % для многоэтажных.

Падение напряжения на резисторе

Проверка кабеля по потере напряжения

Всем известно, что протекание электрического тока по проводу или кабелю с определенным сопротивлением всегда связано с потерей напряжения в этом проводнике.

Согласно правилам Речного регистра, общая потеря электронапряжения в главном распределительном щите до всех потребителей не должна превышать следующие значения:

  • при освещении и сигнализации при напряжении более 50 вольт – 5 %;
  • при освещении и сигнализации при напряжении 50 вольт – 10 %;
  • при силовых потреблениях, нагревательных и отопительных систем вне зависимости от электронапряжения – 7 %;
  • при силовых потреблениях с кратковременным и повторно-кратковременным режимами работы вне зависимости от электронапряжения – 10 %;
  • при пуске двигателей – 25 %;
  • при питании щита радиостанции или другого радиооборудования или при зарядке аккумуляторов – 5 %;
  • при подаче электричества в генераторы и распределительный щит – 1 %.

Исходя из этого и выбирают различные типы кабелей, способных поддерживать такую потерю напряжения.

Пример калькулятора для автоматизации вычислений

Как найти падение напряжения и правильно рассчитать его потерю в кабеле

Одним из основных параметров, благодаря которому считается напряженность, является удельное сопротивление проводника. Для проводки от станции или щитка к помещению используются медные или алюминиевые провода. Их удельные сопротивления равны 0,0175 Ом*мм2/м для меди и 0,0280 Ом*мм2/м для алюминия.

Рассчитать падение электронапряжения для цепи постоянного тока в 12 вольт можно следующими формулами:

  • определение номинального тока, проходящего через проводник. I = P/U, где P – мощность, а U – номинальное электронапряжение;
  • определение сопротивления R=(2*ρ*L)/s, где ρ – удельное сопротивление проводника, s – сечение провода в миллиметрах квадратных, а L – длина линии в миллиметрах;
  • определение потери напряженности ΔU=(2*I*L)/(γ*s), где γ – это величина, которая равна обратному удельному сопротивлению;
  • определение требуемой площади сечения провода: s=(2*I*L)/(γ*ΔU).

Важно! Благодаря последней формуле можно рассчитать необходимую площадь сечения провода по нагрузке и произвести проверочный расчет потерь.

Таблица значений индуктивных сопротивлений

В трехфазной сети

Для обеспечения оптимальной нагрузки в трехфазной сети каждая фаза должна быть нагружена равномерно. Для решения поставленной задачи подключение электромоторов следует выполнять к линейным проводникам, а светильников – между нейтральной линией и фазами.

Потеря электронапряжения в каждом проводе трехфазной линии с учетом индуктивного сопротивления проводов подсчитывается по формуле

Формула расчета

Первый член суммы – это активная, а второй – пассивная составляющие потери напряженности. Для удобства расчетов можно пользоваться специальными таблицами или онлайн-калькуляторами. Ниже приведен пример такой таблицы, где учтены потери напряжения в трехфазной ВЛ с алюминиевыми проводами электронапряжением 0,4 кВ.

Пример таблицы

Потери напряжения определены следующей формулой:

ΔU = ΔUтабл * Ма;

Здесь ΔU—потеря напряжения, ΔUтабл — значение относительных потерь, % на 1 кВт·км, Ма — произведение передаваемой мощности Р (кВт) на длину линии, кВт·км.

Однолинейная схема линии трехфазного тока

На участке цепи

Для того, чтобы провести замер потери напряжения на участке цепи, следует:

  • Произвести замер в начале цепи.
  • Выполнить замер напряжения на самом удаленном участке.
  • Высчитать разницу и сравнить с нормативным значением. При большом падении рекомендуется провести проверку состояния проводки и заменить провода на изделия с меньшим сечением и сопротивлением.

Важно! В сетях с напряжением до 220 в потери можно определить при помощи обычного вольтметра или мультиметра.

Базовым способом расчета потери мощности может служить онлайн-калькулятор, который проводит расчеты по исходным данным (длина, сечение, нагрузка, напряжение и число фаз).

Образец калькулятора для вычисления потерь

Таким образом, вычислить и посчитать потери напряжения можно с помощью простых формул, которые для удобства уже собраны в таблицы и онлайн-калькуляторы, позволяющие автоматически вычислять величину по заданным параметрам.

Источники энергии. Потенциал и падение напряжения

Еще один пост из серии основы основ. Заметил я, что многие совершенно не въезжают в концепцию падения напряжения, разности потенциалов и типов источников питания. Поэтому запилю ка я ликбез по этой теме. С самого начала. Потом заброшу его в начало рубрики «Начинающим». Пойдет как замена цикла статей канализационной электроники. Т.к. тот цикл писался для «Хакера» и особой подробностью не отличался ввиду ограничений на размер полосы.

Начало начал. Ноль.
Итак, начну с самого начала. Со дна. То есть с земли. Точки нулевого потенциала. Эта точка совершенно произвольная. Просто нам так удобно, что мы приняли ее за ноль. Надо же с чего то начинать. В однополярном питании это, обычно, минус питания. В двуполярном — нечто посредине, впрочем от конструкции зависит.

Источник энергии
Что такое вообще источник электрической энергии? Это всего лишь «зарядовый насос» который перекачивает электроны (или ионы) посредством химической, электростатической, сегнетоэлектрической, электромагнитной, термической, да любой энергии. Это не важно. Суть лишь в том, что он искажает нейтрально-равномерное распределение зарядов, стаскивая положительные в одну сторону, отрицательные в другую.
Как насос, поднимая воду на высоту, за счет энергии толпы грязных нигр, в поте лица вращающих его маховик, увеличивает потенциальную энергию воды, поднятую на высоту.

И вот если мы примем один конец нашей трубы-проводника за ноль, то на другой будет какой то потенциал. Какой?
А это зависит от силы источника энергии, ведь заряды сопротивляются, хотят обратно, к нулевому состоянию. Системе с минимальной энергией. А еще от характеристик самой силы. Например, химическая, что в солевых батарейках, не дает напряжения больше 1.5 вольт. Это свойства электролита и электродов (я химию уже подзабыл, но что то там связано с электрохимическим рядом).
Причем мы можем источники энергии составлять цепочкой. И тогда выходит, что выход первого, станет точкой нулевого потенциала для второго, такого же, и он сможет накачать еще столько же сверху. А относительно общего нуля будет вдвое больше.

Как если бы мы соединили два насоса последовательно, один набивает нам давление в 1 атмосферу, и второй относительно него набивает 1 атмосферу, а вместе они выдают аж два очка.

У меня на прошлой работе делали стендовые мультиметры. Делали их из обычных DT-838 прикручивая их на панели. Делали массово, сотнями. А все они с завода комплектуются батарейкой типа КРОНА которая тут оказывалась не нужна. Батарейка была голимая, но свои 9вольт давала. И таких батареек была целая коробка от телевизора, россыпью. А Крона прикольна тем, что она может соединяться своим разьемом с другой Кроной. Ну я от нефиг делать давай их соединять последовательно, раскладывая на полу. Сколько я их соединил я уже не помню. Потом мне тупо стало страшно, т.к. в длину у меня пространство кончилось, а в два слоя их соединять сцыкотно — так как концы близко получались. А у меня в результате получился источник напряжением чуть ли не под киловольт и способный дать в течении нескольких минут ток в пару ампер. Коротни я его на себя и от меня бы одни ботинки остались. Пришлось разобрать адскую машину.

Замкнутая цепь
Ну вот есть у нас источники энергии, каждый наращивает потенциал согласно своей дури. На вершине же этой цепи у нас будет их суммарный потенциал. Дикое количество нескомпенсированных зарядов, рвущихся к нулю. Их можно сравнить с сжатым воздухом.

Обратно они прорваться не могут — источник энергии не дает. Вперед — некуда. Для пробоя воздуха энергии не хватает. Вот и висят в таком состоянии. Как батарейка, никуда не подключенная — на выходе голый потенциал и никакой движухи. Напряжение есть, а тока нет. Осталось только дать им путь. Замкнем цепь. Накоротко, без полезной нагрузки.

И ток рванет по короткому пути, а потом обратно за счет источника энергии наверх и так далее. Напряжение наверху сразу же упадет в ноль. Но раз сопротивления нет, то с какой скростью он это будет делать? Идеальный насос, с бесконечной мощностью, разгонит нам ток до бесконечности.

Но в реальности выходит на сцену производительность насоса. Т.е. насос физически, ввиду своей конструкции, не может нам прокачать больше определенного объема (скажем, ограниченный размер цилиндра), а у батареи есть ограниченная площадь электродов, у генератора есть сопротивление обмоток. Получается в цепи все же есть сопротивление, это сопротивление источника. И выше него не прыгнешь. Также и с реальным источником напряжения. У него тоже всегда есть внутреннее сопротивление. И чем оно ниже, тем мощней источник, тем больший ток он сможет отдать.

Впрочем, никто не мешает взять и соединить два насоса-источника параллельно. И у нас получится, что они с одинаковым давлением (напряжением) родят вдвое больший ток. Правда тут надо учитывать, что ставить в параллель два источника с разным напряжением нельзя — тогда более слабый будет продавливаться более сильным и служить потребителем. Разумеется если внешней нагрузки, которая бы просадила напряжение до уровня слабого, нет.

Тоже самое касается и последовательного включения. Если мы воткнем в последовательное включение источник с большим внутренним сопротивлением чем у всех остальных, то он забьет всю цепь и будет обузой, не давая развивать максимальный ток.

Теперь вспомним о батарейках. Когда батарейка новая, то у ней малое внутреннее сопротивление, но чем больше электролита вступает в реакцию тем внутреннее сопротивление становится больше. И получается, что напряжение то она выдает и мультиметр показывает вроде бы четкие полтора вольта, но стоит затребовать с нее большой ток, как она мгновенно сдувается — возросшее сопротивление не позволяет выдать его и напряжение падает.

А теперь немног больше конкретики. Закон Ома для полной цепи.

Есть просто закон Ома: напряжение = ток * сопротивление

U = I * R

Это частный случай закона Ома для отдельного элемента цепи. Но есть еще закон Ома для полной цепи, с учетом источника.

Итак, у нас в цепи есть:

Наш идеальный насос — источник электродвижущей силы (ЭДС) — Е. У него бесконечная мощность и нулевое внутреннее сопротивление.
Но, чтобы жизнь не казалась медом, добавим еще и внутреннее сопротивление. Чтобы получить реальный источник. Re
А также есть нагрузки R1 и R2, включенные последовательно.

Ток (I) в последовательной неразветвленной цепи одинаков везде. И равен он величине ЭДС поделенной на сумму ВСЕХ сопротивлений, в том числе и внутреннего. И из этого получается вот что:

E = I*Re+I*R1+I*R2

Т.к. I*R=U перепишем все по иному:

E = I*Re + U1 + U2

Получается, что электродвижущая сила нашего источника, раскладывается, в зависимости от величины нагрузки, по всей цепи. Чем больше нагрузка, тем больше там надо приложить энергии для ее преодоления. Т.е. в нашей батарейке, если у нас E константа и не меняется (напомню, что она зависит только от химии процесса и подбора материалов батареи — т.е. это конструктивная особенность батареи), то при увеличении Re у нас, чтобы сохранить равенство, приходится снижать ток. А раз так, то падает U1 и U2 т.е. напряжение на потребителе. Еще, можно заметить, что у последовательных потребителей напряжение на каждом из них зависит от его R. И там где сопротивление больше — будет большее напряжение.

А что происходит когда мы тыкаем вольтметром в нашу дохлую батарею? А у вольтметра ОГРОМНОЕ сопротивление. И по сравнению с ним внутреннее сопротивление источника даже не отсвечивает.

Re <<<< Rвольтметра

А ток одинаково мал (доли милиампера) для всех потребителей. Таким образом в уравнении:

Е = I*Re + I*Rвольтметра

На цифрах:

Е=1.5
Re=10 Ом
Rвольтметра = 10 000 000 Ом
I = 1.5/10 000 010 = 1,499Е-7
I*Re = 0.00000015 * 10 = 1.499Е-6
I*Rвольтметра = 1,499Е-7 * 10 000 000 = 1.499

1.5 = 1.499Е-6 + 1.499

Львиная доля напряжения высадится там, где сопротивление больше — на вольтметре. И вольтметр покажет практически величину Е, но это будет работать лишь на малых токах. При снижении сопротивления нагрузки и увеличении тока, часть I*Re будет все весомей и весомей, пока не перетащит на себя все напряжение. Тогда на нагрузке напряжение упадет почти до нуля — батеря просто не способна дать ток, такой, чтобы удержать напряжение. Либо, если это не батарейка, а какой либо другой источник — источник не тянет нагрузку. А если у батареи от долгой работы на нагрузку увеличилось внутреннее сопротивление, то в этом случае батарейка села.

Источник напряжения. Стабилизация
Но бывают такие хитрые схемы, где у источника внутреннее сопротивление можно менять в широких пределах. И есть следящая система, которая регулирует его таким образом, чтобы на нагрузке было строго определенное напряжение. Разумеется до тех пор пока токи не выходят за оговоренные рамки, а дальше неизбежный провал. Причем если сопротивление нагрузки, например, уменьшится, то и сопротивление источника уменьшится, чтобы иметь возможность пустить через нагрузку больший ток и выровнять напряжение на нагрузке.

Если брать идеальный источник напряжения — фактически голый источник ЭДС с нулевым сопротивлением, то он при снижении нагрузки в ноль даст бесконечный ток. Простейшим примером источника напряжения является конденсатор в момент разрядки. У идеального конденсатора внутреннее сопротивление равно нулю, поэтому когда он разряжается, то на бесконечно малом промежутке времени дает бесконечно большой ток.

Потенциал
Исходя из названия величины — это потенциальная энергия электрического поля в конкретной точке. Но для того, чтобы ее замерить надо задать отправную точку, систему отсчета — точку нулевого потенциала. Она может быть где угодно. Зависит лишь от наших целей в текущий момент. Но обычно за ноль принимают корпус или минус питания. Это и будет нашей точкой нулевого потенциала — Землей.

Возьмем и пририсуем к нашей цепи эту точку, вот так.

Итак, у нас есть цепь. Параметры такие:

Е = 5В
R = 1 Ом — все резисторы, для простоты.
I = 1 A

Теперь найдем потенциал во всех точках. Он, традиционно, обозначется буквой фи. Правило тут простое:

  • 0. Выбираем точку нуля.
  • 1. Выбираем направление обхода.
  • 2. Выбираем направление тока в контуре. Совершенно произвольно, если ошибешься с направлением, то ряд величин будет с отрицательным знаком, но уравнение все равно сойдется. Однако лучше все же выбирать ток исходя из логического предположения того, как он должен течь при данном направлении источника — минусов будет меньше.
  • 2. Если источник нам по пути, то он увеличивает потенциал, на величину своей ЭДС.
  • 3. Если по пути нагрузка. То если ток совпадает с выбранным направление обхода, то потенциал уменьшаем на I*Rн Если же ток через нагрузку идет против нашего обхода, то увеличиваем потенциал на I*Rн.

И вернемся к нашему контуру:

  • 0. Точка нуля задана.
  • 1. Пусть обход контура по часовой.
  • 2. Ток по часовой.
  • 3. Проходим источник ЭДС. Потенциал в точке Б сразу же подскакивает на его величину. Вот оно максимальное напряжение. Но это где то в глубине батареи, мы его не замерим кроме как математически. Поэтому проходим внутреннее сопротивление. Идем по току, поэтому у нас потенциал снижается на I*Rе. В Точке В мы получили реальный потенциал на клемме нашей батареи. Идем дальше, дальше у нас резистор. Там ток течет по обходу, а значит потенциал уменьшается еще на I*R1. Дальше аналогично. В итоге, когда мы сделаем круг, на каждом резисторе потенциал будет падать до тех пор, пока не выйдет в ноль, по возвращении в точку начала обхода.

Если сделать обход в обратную сторону, то получится все то же самое, только потенциал будет рости до тех пор пока мы не дойдем до Е и, пройдя его против направления, не вычтем ЭДС выйдя опять на ноль.

Но это мы получали потенциал относительно нуля. А если взять разность потенциалов между точкой Г и Е ? А мы получим напряжение между двумя этими точками. Если ткнуть туда вольтметром, то он покажет именно это напряжение. Т.е. напряжение это разность потенциалов. А падение напряжения между точками — это та величина на которую меняется потенциал при переходе из одной точки схемы в другую.

И главное надо очень четко понять тот факт, что главное в цепи это разность потенциалов. Есть разность потенциалов — есть ток, заряды текут и стремятся эту разность свести на ноль. Нет — тока не будет, т.к. зарядам в этом случае совершенно не захочется куда то бежать и где то там что то выравнивать, т.к. энергия системы в этом случае минимальная.

Тока может и не быть, если цепь не замкнута, а вот потенциала хоть отбавляй. Например, лежит кусок провода, никуда не подключен. На концах разность ноль — все заряды равномерно распределены.
Пошла мимо провода электромагнитная волна, извне откуда то прилетела, послужила тем самым источником энергии и раскидала заряды по разным концам провода. Появилась разность потенциалов на концах.

Таким образом, даже в никуда не подключенной ноге микроконтроллера, если она висит в режиме высокого входного сопротивления (HiZ — т.е. практически никуда не подключена и цепь разомкнута), из воздуха, от случайных помех, могут наводится большие потенциалы, достаточные для хаотичного переключения входа из 0 в 1 и обратно. А если к ноге приделать длинный провод, то на нем может навестись такой потенциал, что контроллер пожгет нафиг. Поэтому то длинные линии обычно делают в виде токовой петли, с низким сопротивлением, чтобы не наводилось на них перенапряжений. А наличие-отсутствие сигнала ловят по наличию-отсутствию тока нужной величины.

Эту концепцию потенциала и зависимости тока от него надо понять досконально, на уровне спинного мозга. Потому что потом дальше оперирование будет в основном потенциалами относительно общей точки.

Понятие падения напряжения активно юзается при обсчете нелинейных элементов, вроде диодов.

Расчет резистора для светодиода
Итак, есть у нас светодиод. Некий абстрактный. И у него по даташиту падение напряжения 2.5 вольта. А допустимый ток 10мА. А еще есть батарея, дающая 5 вольт и имеющая внутреннее сопротивление в 1Ом.

Что означает падение напряжения светодиода? А то, что между его выводами напряжение может быть не выше 2.5 вольта. Т.е. воткнешь ты его на батарею хоть в 100 вольт, а там все равно должно быть 2.5 вольта. Достигается это за счет того, что сопротивление диода тем меньше, чем большее к нему приложено напряжение. Куда же деть остальные 97.5 вольт? А их придется высадить на внутреннем сопротивлении источника. А если оно мало? А не волнует! Придется вкачать большой ток, настолько болшой, чтобы на внутреннем сопротивлении источника высадило это злосчастные 97.5 вольт. Вот только ток там уйдет в сотни ампер. А светодиод от таких токов пыхнет плазменной вспышкой и устроит тебе КЗ со взрывом.

Конечно, у реального светодиода все не так страшно и сопротивление его бесконечно падать не может, а падение напряжения не константное и меняется, но когда эти отклонения будут значительными ток будет уже за гранью допустимого. Так что можно смело принять падение напряжения на светодиоде за константу.

Итак, вернемся к нашим баранам.

Есть источник, есть диод. Вот такая схема.

Е=I*Re+Vled
5=I*1 + 2.5

Воткнув наш пятивольтовый источник на наш 2.5 вольтовый диод мы получим падение напряжения на диоде 2.5 вольта. И столько же должно высадиться на внутреннем сопротивлении источника. Ток будет 2.5А это очень много, на два порядка выше чем разрешено. Значит надо добавить еще один резистор, дабы он сбросил на себя часть напряжения и обеспечил ток в 10мА.

Е=I*Re + I*R + 2.5

Понятно, т.к. I = 0.01 то вычислить R не сложно. R = 249 Ом. Ближайший из ряда E24 — 240 Ом.

Параметры диода из его даташита, токоограничительное сопротивление мы выбираем, а откуда взять внутреннее сопротивление источника? А обычно им пренебрегают, считая его равным нулю. Один фиг его сопротивление в порядки меньше чем сопротивление ограничивающего резистора.

Источник тока
Антипод источника напряжения. Если источник напряжения выдает напругу и может развить бесконечный ток, лишь бы эту напругу удержать.

То источник тока выдает ток и может выдать бесконечное напряжение, лишь бы этот ток продавить. Имеет бесконечное внутреннее сопротивление, поэтому его выдаваемое напряжение (I*Rвн) и стремится к бесконечности. У реального же источника тока есть внутреннее сопротивление и расположено оно параллельно. Т.е. если ток через нагрузку не продавливается, то он уходит по внутреннему сопротивлению, не давая броска напряжения до победного конца. И чем выше внутреннее сопротивление источника тока, тем большее падение напряжения будет на нем, а значит и большее напряжение на нагрузке. Тем самым, по закону Ома, через нагрузку продавит больший ток.

Источниками тока в природе является катушка индуктивности, в момент разрыва цепи. Поэтому то она так и искрит, т.к. накачивает дикое напряжение, стремясь пробить дорогу току и удержать его на прежнем уровне.

Что такое падение напряжения

Для человека, который знаком с электрооборудованием на уровне простого пользователя (знает, где и как включить/выключить), многие используемые электриками термины кажутся какой-то бессмыслицей. Например, чего только стоит «падение напряжения» или «сборка схемы». Куда и что падает? Кто разобрал схему на детали? На самом же деле, физический смысл происходящих процессов, скрывающийся за большинством этих слов, вполне доступен для понимания даже со школьными знаниями физики.

Чтобы объяснить, что такое падение напряжения, необходимо вспомнить, какие вообще напряжения бывают в электрической цепи (имеется в виду глобальная классификация). Их всего два вида. Первый – это напряжение источника питания, который подключен к рассматриваемому контуру. Оно может также называться приложенным ко всей цепи. А второй вид – это именно падение напряжения. Может быть рассмотрено как в отношении всего контура, так и любого отдельно взятого элемента.

На практике это выглядит следующим образом. Например, если взять обычную лампу накаливания, вкрутить ее в патрон, а провода от него подключить в домашнюю сетевую розетку, то приложенное к цепи (источник питания – проводники – нагрузка) напряжение составит 220 Вольт. Но стоит нам с помощью вольтметра замерять его значение на лампе, как станет очевидно, что оно немного меньше, чем 220. Так произошло потому, что возникло падение напряжения на электрическом сопротивлении, которым обладает лампа.

Пожалуй, нет человека, который не слышал бы о законе Ома. В общем случае формулировка его выглядит так:

I = U / R,

где R – активное сопротивление цепи или ее элемента, измеряется в Омах; U – электрическое напряжение, в Вольтах; и, наконец, I – ток в Амперах. Как видно, все три величины непосредственно связаны между собой. Поэтому, зная любые две, можно довольно просто вычислить третью. Конечно, в каждом конкретном случае придется учесть род тока (переменный или постоянный) и некоторые другие уточняющие характеристики, но основа – вышеуказанная формула.

Электрическая энергия – это, фактически, движение по проводнику отрицательно заряженных частиц (электронов). В нашем примере спираль лампы обладает высоким сопротивлением, то есть замедляет перемещающиеся электроны. Благодаря этому возникает видимое свечение, но общая энергия потока частиц снижается. Как видно из формулы, с уменьшением тока уменьшается и напряжение. Именно поэтому результаты замеров у розетки и на лампе различаются. Эта разница и является падением напряжения. Данная величина всегда учитывается, чтобы предотвратить слишком большое снижение на элементах в конце схемы.

Падение напряжения на резисторе зависит от его внутреннего сопротивления и силы протекающего по нему тока. Также косвенное влияние оказывают температура и характеристики тока. Если в рассматриваемую цепь включить амперметр, то падение можно определить умножением значения тока на сопротивление лампы.

Но далеко не всегда удается вот так просто с помощью простейшей формулы и измерительного прибора выполнить расчет падения напряжения. В случае параллельно подключенных сопротивлений нахождение величины усложняется. На переменном токе приходится дополнительно учитывать реактивную составляющую.

Рассмотрим пример с двумя параллельно включенными резисторами R1 и R2. Известно сопротивление провода R3 и источника питания R0. Также дано значение ЭДС – E.

Приводим параллельные ветки к одному числу. Для этой ситуации применяется формула:

R = (R1*R2) / (R1+R2)

Определяем сопротивление всей цепи через сумму R4 = R+R3.

Рассчитываем ток:

I = E / (R4+r)

Остается узнать значение падение напряжения на выбраном элементе:

U = I * R5

Здесь множитель «R5» может быть любым R — от 1 до 4, в зависимости от того, какой именно элемент схемы нужно рассчитать.

Расчет падения напряжения в кабеле рассчет и мероприятия

autorEd Valitov
date26.11.2018

Расчет падения напряжения в кабеле формула и причиныкартинка

 

Доброго дня, уважаемые гости и читатели нашего блога! Сегодня мы хотели бы рассказать Вам о том, как выбрать электрический провод для системы энергоснабжения объекта так, чтобы

не пришлось кусать локти, сетуя на скачки напряжения или нехватку мощности для одновременного питания всего комплекса оборудования.

Основной акцент в этом деле делаем на диаметр провода для проходящего по нему тока, и расчет падения напряжения в кабеле как раз и призван решить эту задачу.

Давайте вместе выясним, как производится расчет, а также узнаем, каким образом можно увеличить показатель силового напряжения электрической сети, повысив тем самым безопасность электроустановок.

Содержание статьи

Что нам нужно знать?

Всем известно, что кабельная проводка передает электроэнергию от источника – линии электропередачи – к конечному потребителю – жилым, административным зданиям, строительным объектам и т.п.

При движении тока по металлическому проводу часть энергии теряется в нем из-за сопротивления току самого металла.

Поэтому потребителю достается не та часть электричества, которая отошла от источника, а несколько меньшая с учетом потерь при движении тока.Расчет падения напряжения в кабеле формула и причиныДля обеспечения оптимального распределения нагрузки и стабильности напряжения провод для электрической сети необходимо выбирать определенного размера – сечения, которое определяет диаметр провода.

Падение напряжения будет также зависеть от длины проводника.

Расчетная величина падения не должна сильно отклоняться от исходного нормативного значения.

При увеличении подключаемой нагрузки также возрастают препятствия для прохождения тока.

Кроме того, при небольшой силе тока увеличивается сопротивление проводника, поэтому происходит падение напряжения, ведь все мы из школы помним математическую зависимость:

I = U / R.

Поэтому, если взять два разных по длине проводника одинакового сечения, то потери выше у более длинного из них.Расчет падения напряжения в кабеле формула и причиныСледовательно, при прокладке токоведущего кабеля для ЛЭП или других электрических установок основным критерием наряду с сечением проводника выступает его длина.

А можно ли рассчитать эту величину в обычных бытовых условиях, используя подручные средства?

Разумеется, определить снижение напряжения мы сможем тремя способами:

  • Используя два вольтметра, производим замер этой величины в на концах кабеля.
  • Измеряем напряжение последовательно на разных участках провода. При этом методе показания могут быть не объективными, т.к. возможно изменение нагрузки или условий работы сети.
  • Подключаем один электроприбор параллельно замеряемому кабелю. Здесь также возможны погрешности, потому что длинные соединительные провода способны влиять на искомую характеристику.

Важно. Значение этой величины может быть минимальным — от 0,1 В. Советуем применять для измерения приборы не ниже класса точности 0,2.

Причины падения напряжения

В большинстве случае для монтажных работ выбор останавливают на жилах двух сортов металла. Это:

  1. медь;
  2. алюминий.

Они защищены изоляционной обмоткой.

Реже применяют термоусадку для самостоятельной изоляции жильных проводов.Расчет падения напряжения в кабеле формула и причины

То есть задача изоляции – создать диэлектрическую оболочку для проводника, потому как в одном кабеле все провода лежат очень плотно друг к другу.

При протяженных линиях сердечники под обмоткой создают некоторый заряд с ёмкостным сопротивлением, по причине чего и возникает падение напряжения.

Оно происходит по следующему алгоритму.

  1. Проводящая жила под воздействием тока греется, затем создается ёмкостное реактивное сопротивление.
  2. Преобразования в элементах цепи делают мощность электрической энергии индуктивной.
  3. Сопротивление каждой фазы всей цепи возникает из-за резистивного сопротивления проводов.
  4. Каждая токопроводящая жила имеет полное сопротивление при подключении кабеля на токовую нагрузку.
  5. Если используются три фазы, то линии тока в них симметричны, нейтральная жила при этом проводит почти нулевой ток.
  6. Полное (комплексное) сопротивление создает потери напряжения, потому что ток в цепи движется с некоторым отклонением за счет реактивного сопротивления.

Данную схему можно представить графически: горизонтальная прямая линия, выходящая из определенной точки – сила тока.

Из той же точки выходит линия входного напряжения U1 и линия выходного напряжения U2, первая под большим, а вторая под меньшим углом к вектору силы тока.

Падение напряжения будет равно геометрической разнице между направлениями U1 и U2.Расчет падения напряжения в кабеле формула и причины

На рисунке – отрезок AB и есть падение, это гипотенуза треугольника.

Катеты BC и AC – показатели понижения напряжения с учетом реактивного и активного сопротивлений.

Линия AD – это значение энергетических потерь. Эту схему удобно применять, когда нет доступного способа описать показатель понижения напряжения математически, т.к. вручную его рассчитывать довольно трудно.

Результат падения напряжения

А что становится результатом этого процесса в фундаментальном смысле?

Давайте посмотрим, что происходит при снижении этой характеристики электрической энергии.

В соответствии с нормативной документацией ПУЭ, потери при движении тока от трансформаторной подстанции до самого отдаленного участка по электрической нагрузке для населенного пункта должны быть не более 9 %.

 

При этом потери в размере 4 % разрешаются от главного ввода до потребителя электроэнергии, а 5 % – от трансформатора до главного ввода.

В трехфазных коммуникациях нормативный показатель по ГОСТ 29322-2014 составляет 400 В ± 10 % при нормальной эксплуатации линии.Расчет падения напряжения в кабеле формула и причиныОтклонение этой величины от норматива может приводить к следующим результатам для стационарных объектов или электрических приборов.

  1. Сбои в работе электроустановок, неправильная работа оборудования, выход его из строя, нарушение освещения объекта.
  2. Отключение электроприборов или сбои их корректной работы.
  3. Понижение ускорения вращения у электрических двигателей при старте, потери энергии, отключение устройств при нагреве.
  4. Некорректное распределение электронагрузки от начала линии до удаленного конца провода между объектами потребления.
  5. Работа на 50 % осветительных устройств помещения.

Нормальным значением для потерь при стандартном рабочем режиме электролинии является 5 %.

Эту величину допускается принимать для электросетей на этапе проекта.

Относительно токов большой мощности строятся протяженные электрические магистрали.

Важно. К устройству ЛЭП на всех стадиях предъявляются высокие требования. Поэтому важно просчитывать потери на всех участках магистрали, от главного магистрального пути до линий второстепенного назначения.

Рассчитываем падение напряжения

При вычислении обязательно учитываем активное и реактивное сопротивления, составляющие комплексное (общее) сопротивление цепи, а также мощность.

Формула для расчета этого показателя на участке цепи длиной L выглядит так:

∆U = (P * r0 + Q * x0) * L / Uном,

где

  • P — активная мощность;
  • Q — реактивная мощность;
  • r0 — активное сопротивление;
  • x0 — реактивное сопротивление;
  • Uном — номинальное напряжение.

Как мы сказали выше, на практике допускаются отклонения от нормативного показателя по ПУЭ. Разрешенные пределы отклонения:

  • силовые линии – ±5 %;
  • внутреннее и наружное бытовое освещение – ±5 %;
  • производственное освещение (также для общественных зданий) – от +5 % до -2,5 %.

В итоге вычисления мы получим процентный показатель.

Приведем пример. Суммарная потребляемая мощность всех приборов в доме – 2 кВт. Все приборы подключены к сети. Тогда сила тока I = 2 * 1000/220 = 9 А.

Далее нам необходимо знать формулу расчета потерь напряжения. Она выглядит следующим образом:

∆U = (I * р * L) / S.

Используя эту формулу, получаем потери в кабеле:

∆U = (I * R / U) * 100 % = 2 (два провода) * 0,0175 / 1,5 * 30 = 0,7 Ом.

                Тогда значение понижения напряжения будет равняться:

∆U = (9 * 0,7 / 220) * 100 % = 2,86 %.

Полученная величина вполне вписывает в нормативный по ПУЭ показатель 5 % отклонения.

Это значение, к тому же, очень выгодно для конечного потребителя, поскольку он получает электроэнергию полной мощности с потреблением электричества более низкого напряжения.

Это позволяет существенно снизить затраты потребителей на электроэнергию.

Еще один способ определения величины потерь напряжения предполагает использование таблицы, которая представлена в профильных методических указаниях для инженеров ЛЭП.

Там учтены все технические качества линии и оборудования, в зависимости от которых можно «достать» значение потерь для определенных условий эксплуатации.

Как уменьшить падение напряжения в электрической сети

При выполнении работ по прокладке кабеля сечение провода, взятое по допустимому понижению, превосходит таковую величину, выбранную по нагреву проводника.

Это приводит к удорожанию электричества для потребителя. Как уменьшить этот показатель? Ведь от него зависит итоговая цена за 1 кВт электроэнергии.Расчет падения напряжения в кабеле формула и причины

Опишем несколько способов сделать это.

  • Установить стабилизатор около нагрузки для устойчивости сети.
  • Повысить значение потенциала у начала кабеля, подключившись к отдельному трансформатору.
  • Расположить на небольшом расстоянии от потребителя блок питания или понижающий трансформатор при подключенной нагрузке 12-36 В.

Как уменьшить потери в кабеле

Потери напряжения приводят к дополнительным затратам.

Для того чтобы понизить этот показатель, можно воспользоваться следующими методами.

  • увеличить сечение питающих кабелей;
  • уменьшить количество ломаных линий (поворотов) в проводке, тем самым уменьшив длину маршрута проводника для снижения общего сопротивления;
  • понизить температуру окружающей среды, т.к. при нагревании металла возрастает его сопротивление, охлаждение даст обратный эффект;
  • уменьшить нагрузку на сеть;
  • привести угол между вектором напряжения и вектором силы тока к единице.

Замечание. Для того чтобы понизить сопротивление кабеля, а, соответственно, потери электричества в нем, можно попробовать улучшить вентиляцию в конструкциях кабеля и кабельных лотках.

Дорогие читатели, мы с Вами рассмотрели очередной вопрос, касающийся нашей безопасности в отношении электроснабжения, именно, узнали, как произвести правильный расчет падения напряжения.

Если информация была Вам полезна, порекомендуйте наш блог своим друзьям, подписывайтесь на нас в социальных сетях и будьте всегда под защитой! Всего Вам хорошего.

 

Понравилась статья ? Поделитесь с друзьями!

Падение напряжения на проводах — расстояние от трансформатора до ламп или ленты

Нас часто спрашивают, можно ли светодиодные лампы на 12 вольт такой-то мощности в таком-то количестве отдалить от трансформатора на такое-то расстояние?

Общая рекомендация — это расстояние не должно превышать 5 метров. Это известный факт.

Но что делать, если требуется больше 5 метров? Часто из-за конструктивных ограничений невозможно уложиться в такое короткое расстояние.

Потери на проводах — суть проблемы

В некоторых ситуациях можно превратить число 5 в гораздо большее значение. Для этого нужно оценить падение напряжения на проводах.

Именно оно является причиной ограничений — сам провод имеет внутреннее сопротивление и поэтому «съедает» часть напряжения источника тока. И когда провод слишком длинный, может случиться так, что лампам останется такая малая часть исходного напряжения, что они не загорятся.

Вторая часть проблемы — провод не просто «съедает» часть напряжения, а превращает его в тепло. Помимо того, что это просто бестолковое расходование электричества, так оно ещё и несёт в себе пожарную проблему — провод может нагреться слишком сильно.

Чтобы быть уверенным, что требуемые, например, 15 метров между трансформатором и лампой не принесут неприятностей, нужно оценить, сколько именно вольт потеряется на этих 15 метрах.

Рассчитать падение напряжения на проводе очень просто. Все необходимые для этого данные у Вас, как правило, есть: длина провода, суммарная мощность подключаемых ламп (ленты), напряжение питания и площадь поперечного сечения проводника. Нужно лишь дополнительно узнать удельное электрическое сопротивление материала, из которого изготовлен провод.

Формула для расчёта падения напряжения на проводах

Достаточно легко выводится простая общая формула для расчёта падения напряжения, применимая в любой ситуации.

Нам понадобится только закон Ома R = V / I и формула связи электрической мощности, напряжения и силы тока W = V · I.

Также для оценки сопротивления провода нужно знать значение удельного электрического сопротивления [википедия] материала проводника.

Проведя простые выкладки, получим вот такую формулу, дающую оценку значения падения напряжения на проводах:

Оценка падения напряжения на проводах

Падение напряжения зависит от типа материала провода, сечения провода, его длины, мощности потребителей и напряжения источника питания. В этой формуле обозначено:

  • W — мощность в ваттах потребителей тока на конце провода;
  • V — напряжение источника тока в вольтах, как правило, 12 вольт или 24 вольта;
  • L — длина провода в метрах, т.е. удалённость потребителей от трансформатора;
  • S — площадь сечения провода в мм²;
  • ρ — значение удельного электрического сопротивление в Ом·мм²/м, для меди это примерно 0.018 Ом·мм²/м

Формула проста, но применима только в случае, если ожидаемое падение напряжения невелико, не более нескольких процентов, т.е. когда расстояние между трансформатором и потребителем не превышает 10 метров, а мощность менее 10-20 ватт.

В иных случаях следует воспользоваться более точной формулой:

Точное значение падения напряжения на проводах

Теперь, вычислив значение падение напряжения на проводах, мы можем оценить, какая мощность будет теряться — просто расходоваться на нагрев проводов. Нужно полученное значение падения напряжения умножить на мощность потребителей тока W и поделить на напряжение трансформатора V:

Оценка падения мощности на проводах

Если эта мощность получится слишком большой, то, очевидно, нужно увеличить толщину провода. Иначе можно получить разные неприятности вплоть до пожара.

Выводы

Как легко видеть из формул, двукратное увеличение площади сечения проводника примерно двукратно уменьшает падение напряжения на проводах.

Также возможным решением проблемы может быть увеличение значения напряжения источника тока. Если, конечно, потребители тока это позволяют. Опять же, двукратное увеличение питающего напряжения примерно в два раза снижает падение напряжения.

Например, наши низковольтные лампы Е27 на 12-24 вольт одинаково светят и от 12 и от 24 вольт. И в этом случае имеет смысл перейти на трансформатор на 24 вольта.

Также становится понятно, что для мощных потребителей (порядка 100 ватт) понадобятся очень толстые провода.

Пример

Оценим падение напряжения на медном проводе сечением 1.5 мм² и длиной 20 м при 24 вольтах и мощности подключенной ленты 50 ватт.

Подставив в первую формулу эти значения, мы получим, что на проводах «потеряется» примерно 1 вольт и около 2 ватт. В принципе, это не много, но если есть возможность увеличить толщину провода, лучше это сделать.

Можно, конечно, увеличить напряжение источника тока, заложив падение напряжение, но это совсем не лучший выход. Например, если мощность светильников на конце провода 180 ватт, то падение напряжения на проводе составит уже 3.5 вольта, а мощности — 25 ватт. Светильникам останется только 20 вольт, и драйверы некоторых светильников от недостатка напряжения могут войти в нештатный режим работы и начать перегреваться, потребляя гораздо больше заявленной мощности (хотя светодиоды при этом будут выдавать ту же яркость), что только увеличит падения напряжения на проводе. В этой ситуации останется только гадать, что случится раньше — возгорание проводов или выход из строя светильников.

А для трансформаторов на 12 вольт падение напряжения и расход мощности будут ещё в два раза больше.

Единственное правильное решение — увеличить толщину проводника. Как уже было сказано, увеличиваем сечение провода в два раза — примерно в два раза уменьшаем потери на проводах.

Рассчет падение напряжения по длине кабеля

Линии электропередач транспортируют ток от распределительного устройства к конечному потребителю по токоведущим жилам различной протяженности. В точке входа и выхода напряжение будет неодинаковым из-за потерь, возникающих в результате большой длины проводника.

Падение напряжения по длине кабеля возникает по причине прохождения высокого тока, вызывающего увеличение сопротивления проводника.

На линиях значительной протяженности потери будут выше, чем при прохождении тока по коротким проводникам такого же сечения. Чтобы обеспечить подачу на конечный объект тока требуемого напряжения, нужно рассчитывать монтаж линий с учетом потерь в токоведущем кабеле, отталкиваясь от длины проводника.

Потери напряжения зависят прежде всего от длины кабеляПотери напряжения зависят прежде всего от длины кабеля

к содержанию ↑

Результат понижения напряжения

Согласно нормативным документам, потери на линии от трансформатора до наиболее удаленного энергонагруженного участка для жилых и общественных объектов должны составлять не более девяти процентов.

Допускаются потери 5 % до главного ввода, а 4 % — от ввода до конечного потребителя. Для трехфазных сетей на три или четыре провода номинальное значение должно составлять 400 В ± 10 % при нормальных условиях эксплуатации.

Отклонение параметра от нормированного значения может иметь следующие последствия:

  1. Некорректная работа энергозависимых установок, оборудования, осветительных приборов.
  2. Отказ работы электроприборов при сниженном показателе напряжения на входе, выход оборудования из строя.
  3. Снижение ускорения вращающего момента электродвигателей при пусковом токе, потери учитываемой энергии, отключение двигателей при перегреве.
  4. Неравномерное распределение токовой нагрузки между потребителями на начале линии и на удаленном конце протяженного провода.
  5. Работа осветительных приборов на половину накала, за счет чего происходят недоиспользование мощности тока в сети, потери электроэнергии.

Падение напряжения на линии негативно сказывается на работе осветительных приборовПадение напряжения на линии негативно сказывается на работе осветительных приборов

В рабочем режиме наиболее приемлемым показателем потерь напряжения в кабеле считается 5 %. Это оптимальное расчетное значение, которое можно принимать допустимым для электросетей, поскольку в энергетической отрасли токи огромной мощности транспортируются на большие расстояния.

К характеристикам линий электропередач предъявляются повышенные требования. Важно уделять особое внимание потерям напряжения не только на магистральных сетях, но и на линиях вторичного назначения.

к содержанию ↑

Причины падения напряжения

Каждому электромеханику известно, что кабель состоит из проводников — на практике используются жилы с медными или алюминиевыми сердечниками, обмотанные изоляционным материалом. Провод помещен в герметичную полимерную оболочку — диэлектрический корпус.

Поскольку металлические проводники расположены в кабеле слишком плотно, дополнительно прижаты слоями изоляции, при большой протяженности электромагистрали металлические сердечники начинают работать по принципу конденсатора, создающего заряд с емкостным сопротивлением.

Конструкция силового кабеляКонструкция силового кабеля

Падение напряжения происходит по следующей схеме:

  1. Проводник, по которому пущен ток, перегревается и создает емкостное сопротивление как часть реактивного сопротивления.
  2. Под воздействием преобразований, протекающих на обмотках трансформаторов, реакторах, прочих элементах цепи, мощность электроэнергии становится индуктивной.
  3. В результате резистивное сопротивление металлических жил преобразуется в активное сопротивление каждой фазы электрической цепи.
  4. Кабель подключают на токовую нагрузку с полным (комплексным) сопротивлением по каждой токоведущей жиле.
  5. При эксплуатации кабеля по трехфазной схеме три линии тока в трех фазах будут симметричными, а нейтральная жила пропускает ток, приближенный к нулю.
  6. Комплексное сопротивление проводников приводит к потерям напряжения в кабеле при прохождении тока с векторным отклонением за счет реактивной составляющей.

Графически схему падения напряжения можно представить следующим образом: из одной точки выходит прямая горизонтальная линия — вектор силы тока. Из этой же точки выходит под углом к силе тока вектор входного значения напряжения U1 и вектор выходного напряжения U2 под меньшим углом. Тогда падение напряжения по линии равно геометрической разнице векторов U1 и U2.

Рисунок 1. Графическое изображение падения напряжения

Схема падения напряжения в проводникеСхема падения напряжения в проводнике

На представленном рисунке прямоугольный треугольник ABC отражает падение и потери напряжения на линии кабеля большой длины. Отрезок AB — гипотенуза прямоугольного треугольника и одновременно падение, катеты AC и BC показывают падение напряжения с учетом активного и реактивного сопротивления, а отрезок AD демонстрирует величину потерь.

Производить подобные расчеты вручную довольно сложно. График служит для наглядного представления процессов, протекающих в электрической цепи большой протяженности при прохождении тока заданной нагрузки.

к содержанию ↑

Расчет с применением формулы

На практике при монтаже линий электропередач магистрального типа и отведения кабелей к конечному потребителю с дальнейшей разводкой на объекте используется медный или алюминиевый кабель.

Удельное сопротивление для проводников постоянное, составляет для меди р = 0,0175 Ом*мм2/м, для алюминиевых жил р = 0,028 Ом*мм2/м.

Зная сопротивление и силу тока, несложно вычислить напряжение по формуле U = RI и формуле R = р*l/S, где используются следующие величины:

  • Удельное сопротивление провода — p.
  • Длина токопроводящего кабеля — l.
  • Площадь сечения проводника — S.
  • Сила тока нагрузки в амперах — I.
  • Сопротивление проводника — R.
  • Напряжение в электрической цепи — U.

Использование простых формул на несложном примере: запланировано установить несколько розеток в отдельно стоящей пристройке частного дома. Для монтажа выбран медный проводник сечением 1,5 кв. мм, хотя для алюминиевого кабеля суть расчетов не изменяется.

Расчет потерь напряжения при электроснабжении частного домаРасчет потерь напряжения при электроснабжении частного дома

Поскольку ток по проводам проходит туда и обратно, нужно учесть, что расстояние длины кабеля придется умножать вдвое. Если предположить, что розетки будут установлены в сорока метрах от дома, а максимальная мощность устройств составляет 4 кВт при силе тока в 16 А, то по формуле несложно сделать расчет потерь напряжения:

U = 0,0175*40*2/1,5*16

U = 14,93 В

Если сравнить полученное значение с номинальным для однофазной линии 220 В 50 Гц, получается, что потери напряжения составили: 220-14,93 = 205,07 В.

Такие потери в 14,93 В — это практически 6,8 % от входного (номинального) напряжения в сети. Значение, недопустимое для силовой группы розеток и осветительных приборов, потери будут заметны: розетки будут пропускать ток неполной мощности, а осветительные приборы — работать с меньшим накалом.

Мощность на нагрев проводника составит P = UI = 14,93*16 = 238,9 Вт. Это процент потерь в теории без учета падения напряжения на местах соединения проводов, контактах розеточной группы.

Выбор сечения кабеля по мощностиВыбор сечения кабеля по мощности

к содержанию ↑

Проведение сложных расчетов

Для более детального и достоверного расчета потерь напряжения на линии нужно принимать во внимание реактивное и активное сопротивление, которое вместе образует комплексное сопротивление, и мощность.

Для проведения расчетов падения напряжения в кабеле используют формулу:

∆U = (P*r0+Q*x0)*L/ U ном

В этой формуле указаны следующие величины:

  • P, Q — активная, реактивная мощность.
  • r0, x0 — активное, реактивное сопротивление.
  • U ном — номинальное напряжение.

Чтобы обеспечить оптимальную нагрузку по трехфазных линиям передач, необходимо нагружать их равномерно. Для этого силовые электродвигатели целесообразно подключать к линейным проводам, а питание на осветительные приборы — между фазами и нейтральной линией.

Есть три варианта подключения нагрузки:

  • от электрощита в конец линии;
  • от электрощита с равномерным распределением по длине кабеля;
  • от электрощита к двум совмещенным линиям с равномерным распределением нагрузки.

Схема электропроводки в квартиреСхема электропроводки в квартире

Пример расчета потерь напряжения: суммарная потребляемая мощность всех энергозависимых установок в доме, квартире составляет 3,5 кВт — среднее значение при небольшом количестве мощных электроприборов. Если все нагрузки активные (все приборы включены в сеть), cosφ = 1 (угол между вектором силы тока и вектором напряжения). Используя формулу I = P/(Ucosφ), получают силу тока I = 3,5*1000/220 = 15,9 А.

Дальнейшие расчеты: если использовать медный кабель сечением 1,5 кв. мм, удельное сопротивление 0,0175 Ом*мм2, а длина двухжильного кабеля для разводки равна 30 метров.

По формуле потери напряжения составляют:

∆U = I*R/U*100 %, где сила тока равна 15,9 А, сопротивление составляет 2 (две жилы)*0,0175*30/1,5 = 0,7 Ом. Тогда ∆U = 15,9*0,7/220*100% = 5,06 %.

Полученное значение незначительно превышает рекомендуемое нормативными документами падение в пять процентов. В принципе, можно оставить схему такого подключения, но если на основные величины формулы повлияет неучтенный фактор, потери будут превышать допустимое значение.

Что это значит для конечного потребителя? Оплата за использованную электроэнергию, поступающую к распределительному щиту с полной мощностью при фактическом потреблении электроэнергии более низкого напряжения.

Переплата за электроэнергиюПереплата за электроэнергию

к содержанию ↑

Использование готовых таблиц

Как домашнему мастеру или специалисту упростить систему расчетов при определении потерь напряжения по длине кабеля? Можно пользоваться специальными таблицами, приведенными в узкоспециализированной литературе для инженеров ЛЭП. Таблицы рассчитаны по двум основным параметрам — длина кабеля в 1000 м и величина тока в 1 А.

В качестве примера представлена таблица с готовыми расчетами для однофазных и трехфазных электрических силовых и осветительных цепей из меди и алюминия с разным сечением от 1,5 до 70 кв. мм при подаче питания на электродвигатель.

Таблица 1. Определение потерь напряжения по длине кабеля

Площадь сечения, мм2 Линия с одной фазой Линия с тремя фазами
Питание Освещение Питание Освещение
Режим Пуск Режим Пуск
Медь Алюминий Косинус фазового угла = 0,8 Косинус фазового угла = 0,35 Косинус фазового угла = 1 Косинус фазового угла = 0,8 Косинус фазового угла = 0,35 Косинус фазового угла = 1
1,5 24,0 10,6 30,0 20,0 9,4 25,0
2,5 14,4 6,4 18,0 12,0 5,7 15,0
4,0 9,1 4,1 11,2 8,0 3,6 9,5
6,0 10,0 6,1 2,9 7,5 5,3 2,5 6,2
10,0 16,0 3,7 1,7 4,5 3,2 1,5 3,6
16,0 25,0 2,36 1,15 2,8 2,05 1,0 2,4
25,0 35,0 1,5 0,75 1,8 1,3 0,65 1,5
35,0 50,0 1,15 0,6 1,29 1,0 0,52 1,1
50,0 70,0 0,86 0,47 0,95 0,75 0,41 0,77

Таблицы удобно использовать для расчетов при проектировании линий электропередач. Пример расчетов: двигатель работает с номинальной силой тока 100 А, но при запуске требуется сила тока 500 А. При нормальном режиме работы cos ȹ составляет 0,8, а на момент пуска значение равно 0,35. Электрический щит распределяет ток 1000 А. Потери напряжения рассчитывают по формуле ∆U% = 100∆U/U номинальное.

Двигатель рассчитан на высокую мощность, поэтому рационально использовать для подключения провод с сечением 35 кв. мм, для трехфазной цепи в обычном режиме работы двигателя потери напряжения равны 1 вольт по длине провода 1 км. Если длина провода меньше (к примеру, 50 метров), сила тока равна 100 А, то потери напряжения достигнут:

∆U = 1 В*0,05 км*100А = 5 В

Потери на распределительном щите при запуске двигателя равны 10 В. Суммарное падение 5 + 10 = 15 В, что в процентном отношении от номинального значения составляет 100*15*/400 = 3,75 %. Полученное число не превышает допустимое значение, поэтому монтаж такой силовой линии вполне реальный.

Схема подключения электродвигателя к трехфазной сетиСхема подключения электродвигателя к трехфазной сети

На момент пуска двигателя сила тока должна составлять 500 А, а при рабочем режиме — 100 А, разница равна 400 А, на которые увеличивается ток в распределительном щите. 1000 + 400 = 1400 А. В таблице 1 указано, что при пуске двигателя потери по длине кабеля 1 км равны 0,52 В, тогда

∆U при запуске = 0,52*0,05*500 = 13 В

∆U щита = 10*1400/100 = 14 В

∆U суммарные = 13+14 = 27 В, в процентном отношении ∆U = 27/400*100 = 6,75 % — допустимое значение, не превышает максимальную величину 8 %. С учетом всех параметров монтаж силовой линии приемлем.

к содержанию ↑

Применение сервис-калькулятора

Расчеты, таблицы, графики, диаграммы — точные инструменты для вычисления падения напряжения по длине кабеля. Упростить работу можно, если выполнить расчеты с помощью онлайн-калькулятора. Преимущества очевидны, но стоит проверить данные на нескольких ресурсах и отталкиваться от среднего полученного значения.

Программа для расчета сечения кабеляПрограмма для расчета сечения кабеля

Как это работает:

  1. Онлайн-калькулятор разработан для быстрого выполнения расчетов на основе исходных данных.
  2. В калькулятор нужно ввести следующие величины — ток (переменный, постоянный), проводник (медь, алюминий), длина линии, сечение кабеля.
  3. Обязательно вводят параметры по количеству фаз, мощности, напряжению сети, коэффициенту мощности, температуре эксплуатации линии.
  4. После введения исходных данных программа определяет падение напряжения по линии кабеля с максимальной точностью.
  5. Недостоверный результат можно получить при ошибочном введении исходных величин.

Пользоваться такой системой можно для проведения предварительных расчетов, поскольку сервис-калькуляторы на различных ресурсах показывают не всегда одинаковый результат: итог зависит от грамотной реализации программы с учетом множества факторов.

Тем не менее, можно провести расчеты на трех калькуляторах, взять среднее значение и отталкиваться от него на стадии предварительного проектирования.

Онлайн сервис для расчета сечения проводникаОнлайн сервис для расчета сечения проводника

к содержанию ↑

Как сократить потери

Очевидно, что чем длиннее кабель на линии, тем больше сопротивление проводника при прохождении тока и, соответственно, выше потери напряжения.

Есть несколько способов сократить процент потерь, которые можно использовать как самостоятельно, так и комплексно:

  1. Использовать кабель большего сечения, проводить расчеты применительно к другому проводнику. Увеличение площади сечения токоведущих жил можно получить при соединении двух проводов параллельно. Суммарная площадь сечения увеличится, нагрузка распределится равномерно, потери напряжения станут ниже.
  2. Уменьшить рабочую длину проводника. Метод эффективный, но его не всегда можно использовать. Сократить длину кабеля можно при наличии резервной длины проводника. На высокотехнологичных предприятиях вполне реально рассмотреть вариант перекладки кабеля, если затраты на трудоемкий процесс гораздо ниже, чем расходы на монтаж новой линии с большим сечением жил.
  3. Сократить мощность тока, передаваемую по кабелю большой протяженности. Для этого можно отключить от линии несколько потребителей и подключить их по обходной цепи. Данный метод применим на хорошо разветвленных сетях с наличием резервных магистралей. Чем ниже мощность, передаваемая по кабелю, тем меньше греется проводник, снижаются сопротивление и потери напряжения.

Внимание! При эксплуатации кабеля в условиях повышенной температуры проводник нагревается, падение напряжения растет. Сократить потери можно при использовании дополнительной теплоизоляции или прокладке кабеля по другой магистрали, где температурный показатель существенно ниже.

Расчет потерь напряжения — одна из главных задач энергетической отрасли. Если для конечного потребителя падение напряжения на линии и потери электроэнергии будут практически незаметными, то для крупных предприятий и организаций, занимающихся подачей электроэнергии на объекты, они впечатляющие. Снизить падение напряжения можно, если правильно выполнить все расчеты.

Падение напряжения — Студопедия

• Чтобы элементы или нагрузки в замкнутой цепи работали, они должны потреблять

определённое количество напряжения. «Падение» напряжения описывает то

напряжение, которое потребляется при прохождении через нагрузку. Падение

напряжения происходит только тогда, когда проходит ток.

• Истраченное напряжение (энергия) преобразуется в тепло или движение. В случае

простой цепи с лампой падение напряжения в лампе заставляет её светиться

(напряжение, преобразованное в тепло). Если дополнительные нагрузки или

лампы подключаются последовательно, напряжение падает пропорционально в

каждом устройстве.

• В нагрузке с наибольшим сопротивлением напряжение падает в наибольшей

степени, а суммарное падение напряжения в последовательной цепи равняется

напряжению источника питания.

• Иногда падение напряжения представляет собой неисправность в цепи. Например,

сопротивление, порождаемое корродированными проводами или разъёмами,

может потреблять напряжение, предназначенное нагрузке.

Curriculum Training

Основы электрооборудования Электрическая цепь

Падение напряжения в последовательной цепи

L1004_03007

• В последовательной цепи напряжение падает пропорционально в каждой нагрузке,

когда протекает ток. Добавление в цепь нагрузок уменьшает имеющееся

напряжение. Например, добавление лишней лампы, подключаемой

последовательно, приводит к тому, что все лампы становятся тусклыми.

• В цепи с одной нагрузкой эта единственная нагрузка потребляет всё напряжение



источника. Измерение напряжения покажет 12 В до нагрузки и 0 В после неё.

Нагрузка потребляет все 12 В.

• В последовательной цепи с двумя нагрузками напряжение делится между

нагрузками пропорционально их сопротивлению. После падения напряжения в

первой нагрузке (обе нагрузки имеют одинаковое сопротивление), для второй

нагрузки остаётся 6 В. Это напряжение падает в последней нагрузке, оставляя 0 В.

В этом примере каждая нагрузка снижает напряжение на 6 В. Если

просуммировать все падения напряжения,

сумма составит 12 В (6 В + 6 В = 12 В).

Сумма всех падений напряжения должна равняться напряжению источника

Питания.

Curriculum Training 03-7

Электрическая цепь Основы электрооборудования

Калькулятор падения напряжения

Это калькулятор для оценки падения напряжения в электрической цепи на основе размера провода, расстояния и ожидаемого тока нагрузки. Обратите внимание, что этот калькулятор предполагает, что цепь работает в нормальных условиях — при комнатной температуре с нормальной частотой. Фактическое падение напряжения может варьироваться в зависимости от состояния провода, используемого кабелепровода, температуры, разъема, частоты и т. Д. Рекомендуется, чтобы падение напряжения было менее 5% в условиях полной нагрузки.

Основной закон падения напряжения

В падение = ИК

где:
I: ток через объект, измеренный в амперах
R: сопротивление проводов, измеренное в Ом.

Типичные сечения проводов AWG

AWG Диаметр витков провода Площадь Сопротивление меди Допустимая нагрузка на медный провод NEC с изоляцией 60/75/90 ° C (A) Приблизительный метрический эквивалент
дюйм мм на дюйм за см тыс. Миль мм 2 Н / км O / kFT
0000 (4/0) 0.4600 11,684 2,17 0,856 212 107 0,1608 0,04901 195/230/260
000 (3/0) 0,4096 10,404 2,44 0,961 168 85,0 0,2028 0,06180 165/200/225
00 (2/0) 0.3648 9,266 2,74 1.08 133 67,4 0,2557 0,07793 145/175/195
0 (1/0) 0,3249 8,252 3,08 1,21 106 53,5 0,3224 0,09827 125/150/170
1 0.2893 7,348 3,46 1,36 83,7 42,4 0,4066 0,1239 110/130/150
2 0,2576 6.544 3,88 1,53 66,4 33,6 0,5127 0,1563 95/115/130
3 0.2294 5,827 4,36 1,72 52,6 26,7 0,6465 0,1970 85/100/110 196 / 0,4
4 0,2043 5,189 4,89 1,93 41,7 21,2 0,8152 0,2485 70/85/95
5 0.1819 4,621 5,50 2,16 33,1 16,8 1.028 0,3133 126 / 0,4
6 0,1620 4,115 6,17 2,43 26,3 13,3 1,296 0,3951 55/65/75
7 0.1443 3,665 6,93 2,73 20,8 10,5 1,634 0,4982 80 / 0,4
8 0,1285 3,264 7,78 3,06 16,5 8,37 2,061 0,6282 40/50/55
9 0.1144 2,906 8,74 3,44 13,1 6,63 2,599 0,7921 84 / 0,3
10 0,1019 2,588 9,81 3,86 10,4 5,26 3,277 0,9989 30/35/40
11 0.0907 2.305 11,0 4,34 8,23 4,17 4,132 1,260 56 / 0,3
12 0,0808 2,053 12,4 4,87 6.53 3,31 5,211 1,588 25/25/30 (20)
13 0.0720 1,828 13,9 5,47 5,18 2,62 6.571 2,003 50 / 0,25
14 0,0641 1,628 15,6 6,14 4,11 2,08 8,286 2,525 20/20/25 (15)
15 0.0571 1,450 17,5 6,90 3,26 1,65 10,45 3,184 30 / 0,25
16 0,0508 1,291 19,7 7,75 2,58 1,31 13,17 4,016 — / — / 18 (10)
17 0.0453 1.150 22,1 8,70 2,05 1,04 16,61 5,064 32 / 0,2
18 0,0403 1.024 24,8 9,77 1,62 0,823 20,95 6.385 — / — / 14 (7) 24/0.2
19 0,0359 0,912 27,9 11,0 1,29 0,653 26,42 8,051
20 0,0320 0,812 31,3 12,3 1.02 0,518 33,31 10,15 16/0.2
21 0,0285 0,723 35,1 13,8 0,810 0,410 42,00 12,80 13 / 0,2
22 0,0253 0,644 39,5 15,5 0,642 0,326 52.96 16,14 7 / 0,25
23 0,0226 0,573 44,3 17,4 0,509 0,258 66,79 20,36
24 0,0201 0,511 49,7 19,6 0.404 0,205 84,22 25,67 1 / 0,5, 7 / 0,2, 30 / 0,1
25 0,0179 0,455 55,9 22,0 0,320 0,162 106,2 32,37
26 0,0159 0.405 62,7 24,7 0,254 0,129 133,9 40,81 7 / 0,15
27 0,0142 0,361 70,4 27,7 0,202 0,102 168,9 51,47
28 0.0126 0,321 79,1 31,1 0,160 0,0810 212,9 64,90
29 0,0113 0,286 88,8 35,0 0,127 0,0642 268,5 81,84
30 0.0100 0,255 99,7 39,3 0,101 0,0509 338,6 103,2 1 / 0,25, 7 / 0,1
31 0,00893 0,227 112 44,1 0,0797 0,0404 426,9 130,1
32 0.00795 0,202 126 49,5 0,0632 0,0320 538,3 164,1 1 / 0,2, 7 / 0,08
33 0,00708 0,180 141 55,6 0,0501 0,0254 678,8 206,9
34 0.00630 0,160 159 62,4 0,0398 0,0201 856,0 260,9
35 0,00561 0,143 178 70,1 0,0315 0,0160 1079 329,0
36 0.00500 0,127 200 78,7 0,0250 0,0127 1361 414,8
37 0,00445 0,113 225 88,4 0,0198 0,0100 1716 523,1
38 0.00397 0,101 252 99,3 0,0157 0,00797 2164 659,6
39 0,00353 0,0897 283 111 0,0125 0,00632 2729 831,8
40 0.00314 0,0799 318 125 0,00989 0,00501 3441 1049

Когда электрический ток проходит по проводу, он должен превышать определенный уровень встречного давления. Если ток переменный, такое давление называется импедансом. Импеданс — это вектор или двумерная величина, состоящая из сопротивления и реактивного сопротивления (реакция созданного электрического поля на изменение тока).Если ток постоянный, давление называется сопротивлением.

Все это звучит ужасно абстрактно, но на самом деле мало чем отличается от воды, протекающей через садовый шланг. Чтобы протолкнуть воду через шланг, требуется определенное давление, что аналогично электрическому напряжению. Ток подобен воде, текущей по шлангу. И шланг вызывает определенный уровень сопротивления в зависимости от его толщины, формы и т. Д. То же самое верно и для проводов, поскольку их тип и размер определяют уровень сопротивления.

Чрезмерное падение напряжения в цепи может привести к мерцанию или тусклому горению ламп, плохому нагреву нагревателей и перегреву двигателей, превышающему нормальный, и перегоранию. Это условие заставляет нагрузку работать с меньшим напряжением, проталкивающим ток.

Эксперты говорят, что падение напряжения никогда не должно превышать 3%. Это достигается путем выбора провода правильного размера и использования удлинителей и аналогичных устройств.

Существует четыре основных причины падения напряжения.

Во-первых, это выбор материала для проволоки. Медь — лучший проводник, чем алюминий, и будет иметь меньшее падение напряжения, чем алюминий, для данной длины и размера провода. Электричество, которое движется по медному проводу, на самом деле представляет собой группу электронов, толкаемых напряжением. Чем выше напряжение, тем больше электронов может пройти через провод.

Ampacity — это максимальное количество электронов, которые могут быть вытолкнуты за один раз — слово ampacity является сокращением от амперной емкости.

Размер провода — еще один важный фактор при определении падения напряжения. Провода большего диаметра (с большим диаметром) будут иметь меньшее падение напряжения, чем провода меньшего диаметра той же длины. В американском калибре проволоки каждое уменьшение калибра на 6 дает удвоение диаметра проволоки, а каждое уменьшение на 3 марки удваивает площадь поперечного сечения проволоки. В метрической шкале калибра калибр в 10 раз больше диаметра в миллиметрах, поэтому метрическая проволока 50 калибра будет иметь диаметр 5 мм.

Еще одним важным фактором падения напряжения является длина провода.Более короткие провода будут иметь меньшее падение напряжения, чем более длинные провода того же размера (диаметра). Падение напряжения становится важным, когда длина провода или кабеля становится очень большой. Обычно это не проблема для электрических цепей в доме, но может стать проблемой при прокладке провода к пристройке, скважинному насосу и т. Д.

Чрезмерное падение напряжения может вызвать снижение эффективности работы света, двигателей и приборов. Это может привести к тусклому освещению и сокращению срока службы двигателей или приборов.Поэтому при прокладке проводов на большие расстояния важно использовать провода правильного калибра.

Наконец, величина протекающего тока может влиять на уровни падения напряжения. Падение напряжения на проводе увеличивается с увеличением тока, протекающего по проводу. Допустимая нагрузка по току такая же, как и допустимая.

Допустимая нагрузка на провод зависит от ряда факторов. Провода покрыты изоляцией, которая может быть повреждена, если температура провода станет слишком высокой. Основной материал, из которого сделана проволока, конечно, является важным ограничивающим фактором.Если по проводу передается переменный ток, скорость чередования может повлиять на допустимую нагрузку. Температура, при которой используется провод, также может влиять на допустимую нагрузку.

Кабели

часто используются в связках, и когда они соединяются вместе, выделяемое ими общее тепло влияет на допустимую нагрузку и падение напряжения. По этой причине существуют строгие правила связывания кабелей.

При выборе кабеля руководствуется двумя основными принципами. Во-первых, кабель должен выдерживать действующую на него текущую нагрузку без перегрева.Он должен уметь делать это в самых экстремальных температурных условиях, с которыми он может столкнуться в течение своего срока службы. Во-вторых, он должен обеспечивать достаточно надежное заземление, чтобы (i) ограничивать напряжение, которому подвергаются люди, до безопасного уровня и (ii) позволять току короткого замыкания срабатывать предохранитель за короткое время.

Это важные соображения безопасности. В течение 2005-2009 гг. В среднем происходило 373900 пожаров в год из-за плохого качества электроустановок. Выбор подходящего кабеля для работы — важная мера безопасности.

.Калькулятор падения напряжения

| Southwire.com

Southwire

Навигация

  • Продукты

    Закрыть

    Продукты
    Ознакомьтесь с полным ассортиментом нашей продукции.
    Посмотреть наш каталог

    • Инструменты и оборудование

    • Алюминий, 600 В вторичного распределения

    • Верхняя передача и распределение из чистого алюминия

    • Строительный провод

    • Крытые антенные системы MV (CAMV )

    • Медь голая и покрытая

    • Гибкий трубопровод

    • Кабельные системы подземной передачи высокого напряжения

    • HVAC

    • Промышленные товары

    • Резиновый шнур

    • Международные продукты

    • Leadwire

    • Кабели низкого напряжения

    • Подземные первичные распределительные сети среднего напряжения

    • Кабель в металлической оболочке

    • Крытые кабели

    • Портативный шнур

    • Насос и орошение

    • Удочка

    • SCR ® Технологии

    • SIMpull ® Кабельный ввод

    • Подстанция

    • Телеком

    • Бронированные кабели CSA HVTECK

    • CSA HVTC Tray Cables

    • Кабель CSA Mining

    • Подводящий провод CSA

    • CSA TECK 90 Неэкранированные кабели

    • Провод здания CSA

.Калькулятор падения напряжения

— Дюймовый калькулятор

Рассчитайте падение напряжения в цепи переменного или постоянного тока с учетом калибра провода, напряжения, тока и длины. Определите правильный размер цепи, включая минимальный сечение провода и максимальную длину проводника с учетом допустимого падения напряжения.

Расчет минимального сечения проводника

Расчет максимальной длины проводника



Что такое падение напряжения

Падение напряжения — это величина потери напряжения в цепи из-за сопротивления проводника.Падение напряжения является важным фактором при планировании схемы, чтобы позволить оборудованию, использующему схему, работать в соответствии с проектом. Чрезмерное падение напряжения может привести к повреждению оборудования и устройств или возникновению опасности возгорания из-за избыточного тепла.

Electric wire with a solid copper conductor

Как рассчитать падение напряжения

Падение напряжения можно рассчитать по следующей формуле:

падение напряжения VD = (M × K × I × L) ÷ CM

«M» = умножитель фазы: используйте 2 для однофазной цепи или цепи постоянного тока и 3 или 1.732, для трехфазной цепи.

«K» = постоянная величина постоянного тока: используйте 12,9 для медного проводника и 21,2 для алюминиевого проводника. Это равно сопротивлению проводника, длина которого составляет тысячу круглых милов и тысячу футов.

«I» = ток: это ток цепи в амперах. Попробуйте наш калькулятор закона Ома, чтобы преобразовать ватты в амперы.

«L» = длина в футах: это односторонняя длина проводника в футах. Воспользуйтесь нашими калькуляторами преобразования длины, чтобы преобразовать метрические измерения в футы.

«CM» = площадь поперечного сечения: это площадь поперечного сечения проводника в круглых милах. Воспользуйтесь нашим калькулятором калибра провода, чтобы найти площадь проводника в тыс. Мил. Чтобы преобразовать тысячные миллиметры в круглые милы, умножьте килограммы на 1000.

Например: Рассчитайте падение напряжения в цепи на 120 В, на чертеже 15 А, используя 25-футовый медный провод 14AWG.


Провод 14AWG имеет длину 4,1067 тыс. Мил, что составляет 4106,7 круглых мил.

VD = (M × K × I × L) ÷ CM
VD = (2 × 12.9 × 15 × 25) ÷ 4,106,7
ВД = 9,675 ÷ 4,106,7
ВД = 9,675 ÷ 4,106,7
ВД = 2,35 В

Как оценить размер проводника, необходимый для цепи

Используя уравнение для падения напряжения и небольшую алгебру, минимальный размер проводника в круглых милах для цепи можно найти, используя следующее:

круглые милы CM = (L × M × K × I) ÷ падение напряжения
kcmil = CM ÷ 1000

Подставьте значения в формулу, чтобы найти площадь поперечного сечения в круглых милах, затем разделите на 1000, чтобы найти требуемый размер проводника в километрах в мил.Используйте нашу таблицу размеров провода, чтобы найти калибр провода с правильной площадью поперечного сечения.

Например: найдите минимальный калибр проводов, необходимый для схемы на 120 В, при токе 20 А с использованием медного проводника длиной 40 футов с максимальным падением напряжения 3%.


Падение напряжения на 3% составит 3,6 В.

kcmil = ((L × M × K × I) ÷ падение напряжения) ÷ 1000
kcmil = ((40 × 2 × 12,9 × 20) ÷ 3,6) ÷ 1000
kcmil = (20640 ÷ 3,6) ÷ 1000
kcmil = 5733 ÷ 1000
тыс. Мил = 5.733
12 AWG

Как определить максимальную длину цепи

Максимальную длину проводника в цепи можно определить, переписав формулу для падения напряжения следующим образом:

L = (VD × CM) ÷ (M × K × I)

Как и раньше, подставьте известные значения в формулу, чтобы получить длину в футах.

Например: найдите максимальную длину проводника для цепи на 120 В и чертежа 15 А с использованием медного проводника 14 AWG с максимальным падением напряжения 3%.


Падение напряжения на 3% составит 3,6 В.
Провод 14 AWG имеет поперечное сечение 4 107 круглых мил.

L = (VD × CM) ÷ (M × K × I)
L = (3,6 × 4,107) ÷ (2 × 12,9 × 15)
L = 14785,2 ÷ 387
L = 38,2 футов

Также ознакомьтесь с нашим калькулятором стоимости электроэнергии, чтобы узнать, сколько будет стоить питание устройства.

.

Что такое падение напряжения? (с изображением)

Падение напряжения — это термин, используемый для описания любого снижения напряжения питания в полной электрической цепи. Термин может использоваться для описания потери напряжения на конкретном компоненте в цепи, потери напряжения, измеренной во всей цепи, или как общее описание явления потери напряжения в цепи в целом. Все электрические цепи, какими бы простыми они ни были, оказывают определенное сопротивление прохождению через них электрического тока.Это сопротивление фактически заставляет электрический ток работать сильнее и, таким образом, поглощает энергию. Этот расход энергии вызывает снижение напряжения, описываемое термином «падение напряжения».

Для измерения падения напряжения можно использовать мультиметр.

Например, простую схему можно составить из 9-вольтовой батареи, присоединенной к простой лампочке-вспышке с помощью небольшого переключателя.Если измерить напряжение на клеммах батарей при разомкнутом переключателе, показания мультиметра составят примерно 9 вольт. Если бы кто-то замкнул выключатель и зажег лампочку, это показание упало бы примерно на 1,5 вольт. Это снижение напряжения называется падением напряжения, и оно возникает в результате работы, которую должна выполнять батарея, чтобы зажечь лампочку. Каждый компонент в цепи, включая проводку, оказывает определенное сопротивление потоку электрического тока и вызывает соответствующее падение напряжения.

В приложениях, которые чрезвычайно чувствительны к напряжению питания, таких как электронные устройства, эти потери напряжения должны быть тщательно рассчитаны, а напряжение питания должно быть скорректировано с учетом их. Например, источник питания постоянного тока на 12 В обычно дает 13.8 вольт для компенсации этого явления падения напряжения. В приложениях, требующих очень длинных кабелей, обычно используются довольно тяжелые кабели, которые имеют меньшее сопротивление прохождению электрического тока, чтобы минимизировать влияние потерь напряжения. Таким образом, общая потенциальная потеря напряжения в любой цепи должна быть тщательно рассчитана на этапе проектирования и спецификации проекта, чтобы гарантировать, что конечный результат соответствует всем требованиям.

Любую потерю напряжения в цепи, к счастью, можно с большой точностью рассчитать, используя формулу падения напряжения.Это позволяет достичь последовательных и предсказуемых результатов в конце установки. Эти расчеты будут отличаться в зависимости от типа цепи, источника напряжения и задействованных компонентов и могут быть чрезвычайно сложными, часто требуя использования калькулятора падения напряжения. Однако они предполагают точную настройку характеристик источника питания в соответствии с сопротивлением цепи.

.

0 0 vote
Article Rating
Подписаться
Уведомление о
guest
0 Комментарий
Inline Feedbacks
View all comments