Площадь крыши вальмовой: Расчет вальмовой крыши — онлайн калькулятор с чертежами и фото + расчет стропильной системы и площади четырехскатной крыши

Разное

Содержание

Расчет вальмовой крыши — онлайн калькулятор с чертежами и фото + расчет стропильной системы и площади четырехскатной крыши

Достаточно популярной разновидностью крыши является вальмовая. Относят эту разновидность к четырехскатным конструкциям.

Конструкция крыши весьма надежна и позволяет сооружать под крышей жилое помещение.

Однако, при проектировании необходимо учитывать массу различных параметров, ведь возведение вальмовой крыши – непростой процесс. Расчеты, которые требуются в процессе проектирования, должны быть точными, иначе это сулит сооружением непрочной конструкции.

В данной статье вы узнаете как проводится расчет вальмовой крыши + онлайн калькулятор с чертежами и фото.

Содержание статьи

Устройство крыши

Чтобы процесс расчетов, которые предстоит сделать, был максимально простым, следует первостепенно ознакомиться с устройством крыши вальмового типа. Это позволит понять, какие именно элементы нуждаются в расчетах.

Конструкция состоит из:

  • Конек. Он редставлен брусом, который располагается на самой верхней точки конструкции в горизонтальной плоскости. Служит опорой для большей части стропил.
  • Центральные стропила. Элементы стропильной конструкции, которые располагаются во всю длину и высоту скатов и конька.
  • Вальмовые стропила. Создают вальмы, прикрепляясь с одной стороны к коньку, а со второй к угловым стропилам.
  • Угловые стропила. Как и конек, этот элемент относят к основной несущей части крыши. Расположение брусьев наклонное, которое заканчивается на краю дома или на небольшом расстоянии от него. Начальная точка прикрепления – это коньковый брус.

Чертеж стропильной системы

Как рассчитать площадь четырехскатной крыши?

Схематично представить вальмовый тип крыши можно одним прямоугольником, который является основанием, двумя трапециями – грани конструкции и двумя равнобедренными треугольниками.

Отталкиваясь от такого представления конструкции, можно расчеты провести легко и без ошибок.

У любой крыши в процессе проектирования прежде всего определяется угол наклона.

Такой параметр выбирается на основании ряда факторов и является значением, от которого производят все остальные расчеты.

Алгоритм расчета площади конструкции:

  1. Первая формула, которая понадобиться в расчетах – это h = b / 2 * tanA. В данной формуле b – это ширина здания, A – это угол наклона ската, h – высота конька. Пользуясь таблицей тангенсов, узнается значение данного угла и проводится расчет.
  2. Используя значение косинуса этого же угла ската узнается длина угловых стропил. Формула для расчетов с = b / 2 * cosA, обозначения аналогичны.
  3. Для того, чтобы узнать значение длины вальмовых стропил, нужно вычислить квадратный корень из следующей формулы: d = h2 + b2 / 2, обозначения аналогичны.
  4. Площадь всей крыши находится при сложении всех условно разделенных элементов конструкции, а именно: трапеции, треугольников и прямоугольника. Формула для расчетов следующая: S = 2 * (c * b) + 2 (a — b) * c = 2 * c * (b + a — b) = 2 * c * a.

После проведения расчетов рекомендуется провести проверку всех значений. Это поможет избежать неточностей и ошибок в строительстве.

Расчет площади

Расчет вальмовой крыши онлайн калькулятор

Как посчитать длину стропил вальмовой крыши? Расчет четырехскатной крыши вы можете произвести с помощью нашего онлайн помощника.

Вы сможете рассчитать не только количество мягкой кровли, но так же систему обрешетки и стропил.

ВАЖНО!

Калькулятор производит расчет кровли вальмовой крыши.

Прежде чем приступить к расчетам, в верхнем правом углу калькулятора нужно выбрать кровельное покрытие. Ниже представлены калькуляторы для других видов крыш:

Расчет площади кровли четырехскатной крыши с помощью онлайн калькулятора ниже.

Обозначение полей в калькуляторе

Укажите кровельный материал:

Введите параметры крыши:

Стропила:

Шаг стропил (см)

Сорт древесины для стропил (см)

123

Расчёт обрешётки:

Расчёт снеговой нагрузки:

Выберите ваш регион, используя карту ниже

1 (80/56 кг/м2)2 (120/84 кг/м2)3 (180/126 кг/м2)4 (240/168 кг/м2)5 (320/224 кг/м2)6 (400/280 кг/м2)7 (480/336 кг/м2)8 (560/392 кг/м2)

Расчёт ветровой нагрузки:

Регион

IaIIIIIIIVVVIVII

Высота до конька здания

5 мот 5 м до 10 мот 10 м

Тип местности

Открытая местностьЗакрытая местностьГородские районы

Рассчитать

Результаты расчетов

Крыша:

Угол наклона подходит для данного материала.

Угол наклона для данного материала желательно увеличить!

Угол наклона для данного материала желательно уменьшить!

Высота подъёма: 0 см.

Длина конькового бруса: 0 см.

Площадь поверхности крыши: 0 м.

Примерный вес кровельного материала: 0 кг.

Количество рулонов изоляционного материала с нахлестом 10% (1×15 м): 0 рулонов.

Стропила:

Нагрузка на стропильную систему: 0 кг/м2.

Длина боковых стропил: 0 см.

Длина диагональных стропил: 0 см.

Количество вальмовых стропил: 0 шт.

Уменьшите шаг стропил!

Количество боковых стропил: 0 шт.

Обрешетка:

Количество рядов обрешетки (для всей крыши): 0 рядов.

Равномерное расстояние между досками обрешетки: 0 см.

Количество досок обрешетки стандартной длиной 6 метров: 0 шт.

Объем досок обрешетки: 0 м3.

Примерный вес досок обрешетки: 0 кг.

Описание полей калькулятора

Регион снеговой нагрузки

Виды кровельных покрытий

Определяя тип кровли и кровельный материал, всегда берут во внимание значение угла наклона ската. В случае с вальмовой конструкцией крыши есть возможность не так пристально обращать внимание на этот параметр, ведь к ней подойдет практически любой кровельный материал.

Типы покрытий:

  • Черепица. У такого вида кровельного материала, которой часто применяется в устройстве четырехскатной крыши вальмового типа, существует множество разновидностей. Бывает черепица из цемента, из керамики, битумная разновидность, которую иначе называют мягкой черепицей и из металла.
  • Шифер. Разновидности шифера применяются к устройству кровли вальмового типа все без исключения. Однако, при выборе этой разновидности материала, многое зависит от необходимости сооружать чердачное помещение жилого типа или мансарду. В этом случае лучше не использовать металлический шифер (металлический профилированный листовой материал), он не может создать комфортную атмосферу в помещении под крышей. Для покрытия вальмовой крыши, под которой находится жилое помещение лучше использовать еврошифер. Состав материала – это стеклоткань и пропитка из битума, благодаря которым кровле обеспечивается надежность и хорошие теплоизолирующие свойства.
  • Vip покрытие. Такое покрытие – идеальное решение для кровли. Его можно поставить в один ряд со сланцевой разновидностью черепицы, камышитовой кровлей, которые придают величественный вид дому, особенное, если ими покрыта вальмовая крыша. Минус в этом случае только один – дороговизна материалов, но относительно других качеств и свойств vip материалы изготовлены на высшем уровне.

Виды кровельных покрытий

Расчет покрытия кровли

Чтобы расчеты кровельного материала были как можно точнее, их обычно проводят после установки стропильной системы.

Только после завершения сбора конструкции можно определяться с более подходящим материалом для покрытия кровли.

Выбирают материал, взяв во внимания погодные условия на местности, количество осадков и располагающих для строительства финансов.

Кроме этого, количество материала всегда больше, чем площадь крыши.

Помимо того, что уложенные материалы для тепло-, паро- и гидроизоляции влияют на это значение, прибавку дает и способ укладки материала, который проводят зачастую внахлест.

Дополнительно на количество кровельного материала влияет наличие добавочных элементов.

Во всех расчетах вам поможет калькулятор вальмовой крыши — онлайн.

ОСТОРОЖНО!

Некоторые виды кровельного материала нуждаются в обустройстве дополнительной обрешеткой сплошной укладки. Это увеличивает затраты на строительство. К такому материалу можно отнести черепицу на мягком основании.

Последний нюанс, который стоит учитывать – это количество потерь материала. Учитывая устройство вальмовой разновидности конструкции, которая представлена трапециевидными и треугольными скатами, необходим раскрой материала.

В таком процессе теряется около 30 %. Оптимальным решением, позволяющим избежать столь больших потерь, является использование черепицы битумного типа или штучного материала для кровли.

Стандартный принцип расчета количества кровельного материала:

  • Рассчитывается площадь общего покрытия крыши;
  • Делится на площадь одного листа материала;
  • При этом учитывается не полная площадь материала для кровли, а на полезную его часть, т.е. на ту, которая покрывает поверхность. Для этого вычитают из общей площади материала расстояние, которое уходит на стыковку и нахлесты. Обычно такое значение равно 15 см.

Для более ясного представления о расчетах, можно рассмотреть два примера с использованием различного типа кровельного материала: шифер и металлочерепица.

Для шифера пример расчета следующий:

  1. Обычно используют для покрытия семь листов волнового шифера, полезная площадь которых равна 1,335 м2.
  2. Если применяются 8 листов такого материала, то значение полезной площади равно 1,56 м2.
  3. Далее, значение общей площади крыши делят на значение полезной площади материала. Если площадь крыши, например, 26,7 м2 то количество листов шифера, необходимого для оборудования кровли, равно 20 штук.

Пример расчета для металлочерепицы:

  1. Выбирая подобный материал для покрытия, стоит знать, что чем меньше размер материала, тем больший размер стыков необходимо применять.
  2. Изначально значение общей площади умножают на поправочный коэффициент, равный 1,1.
  3. После этого получившееся значение площади делят на полезную площадь черепицы, в зависимости от ее размера и, соответственно размера нахлествов.

Если конструкция покрытия крыши комбинированная и сложная, то значение перерасхода может достигать 60%.

Калькулятор расчета крыши

Шаг стропил

Значение расстояния, которое образуется между двумя стропилами называется шагом. Большая часть конструкций сделана таким образом, что шаг равен 1 м. Установлено и минимально допустимое значение такого параметра, равное 60 см.

Процесс расчета расстояния между стропилами выглядит следующим образом:

  1. Изначально нужно выбрать ориентировочно предполагаемый шаг стропильной системы. Отталкиваться можно от вышеуказанных значений, т.е. расстояние равно 1 м.
  2. Следующее значение, которое понадобится – это длина конька (ската).
  3. После этого, длина стропила разделяется на ориентировочно выбранное значение шага. Полученный результат округляется до большего значения, после чего увеличивается на 1.
  4. Последнее при расчете – это деление общей длины ската на значение из предыдущего пункта. Это и будет необходимое расстояние, которое нужно соблюдать в процессе установки стропильной системы.

На примере можно рассмотреть конструкцию, длина ската которого равна 12 м, а ориентировочно выбранное расстояние шага – 0,8 м:

  1. 12 / 0,8 = 15. Если число в расчете получилось нецелым, то его следует округлить до ближайшего целого значения.
  2. 15 + 1 = 16. Прибавка на единицу для более точных расчетов количества ног в конструкции.
  3. 12 / 16 = 0,75 м. Это значение будет оптимальным расстоянием шага для стропильной конструкции.

Шаг стропил

Выбор угла ската кровли и определение высоты конька

Как и в предыдущих расчетах, процесс определения высоты конька зависит от выбранного угла ската. Несмотря на то, что вальмовая конструкция крыши позволяет соорудить скаты, имеющие разное значение углов, лучше всего делать конструкцию с одинаковыми углами.

Это позволит нагрузке распределяться равномерно и иметь крыше эстетичный внешний облик.

ВНИМАНИЕ!

Значение угла наклона относительно вальмовой разновидности конструкции варьируется между 20 и 45 градусами.

На более конкретное определение такого параметра влияют:

  1. Фактор повышенной нагрузки от снега предполагает сооружение конструкции с более крутым наклоном.
  2. Если ветер в районе расположения дома сильный и порывистый, то рекомендуется уклон делать не больше, чем 30 градусов.
  3. Намерение помещение чердака использовать под жилое помещение. В данном случае учитывается удобство передвижения по чердаку и возможность обеспечить все коммуникативные конструкции таим образом, чтобы к ним был свободный доступ в случае необходимости.
  4. Покрытие, выбираемое для кровли, также играет немаловажную роль. Выбирая определенный материал, нужно поинтересоваться минимально дозволенными характеристиками в отношении угла ската.

Относительно высоты конька, то определить ее очень просто, зная значение угла ската. В конструкции необходимо условно выделить прямоугольный треугольник, в котором одна из сторон будет искомой высотой.

Формула: h = b / 2 * tanA.

Угол наклона крыши

Заключение

Этап проектирования дома и всех элементов его конструкции достаточно сложный и кропотливый. Очень важно внимательно проводить все расчеты и каждый раз их перепроверять. Облегчить такую задачу может наглядное изображение в меньшем масштабе всей будущей конструкции.

Вконтакте

Facebook

Twitter

Google+

Одноклассники

3D Расчет вальмовой крыши – Онлайн-калькулятор с чертежами

Вальмовая крыша – разновидность четырехскатной крыши с двумя торцевыми скатами в форме равнобедренного треугольника (вальмы) и двумя боковыми в форме равнобедренной трапеции. Несмотря на то, что среди стандартных конструкции являются наиболее сложными и трудоемкими в изготовлении (поскольку требуют создания громоздкой стропильной системы), благодаря отсутствию вертикальных стен строение обладает высокой обтекаемостью, тем самым обеспечивая надежную защиту от обильных осадков и значительных ветровых нагрузок.

Онлайн-калькулятор расчета вальмовой крыши от КАЛК.ПРО позволяет получить готовый проект конструкции с подробной сметой и комплектом чертежей для изготовления стропильной системы, кровли, обрешетки, гидроизоляции и т. д. Кроме того, сервис предоставляет инструменты для интерактивного 3D-моделирования с помощью которого можно наглядно оценить получившееся сооружение в реальных пропорциях. Все результаты сохраняются в личном кабинете и доступны для скачивания.

Крыша является наиболее сложным элементом дома при строительстве – любая ошибка на этапе проектирования, может привести к нарушению устойчивости конструкции и, как следствие, к дополнительным расходам на доработку.

 

Порядок расчета вальмовой крыши

  • Шаг 1. Выберите наиболее удобные единицы измерения – мм, см, м, дюймы, футы.
  • Шаг 2. Выберите способ отрисовки чертежей – цветные, черно-белые.
  • Шаг 3. Укажите тип кровельного материала – жесткий, мягкий (влияет на тип обрешетки – разреженная или сплошная, соответственно).
  • Шаг 4. Введите параметры крыши – высота (от мауэрлата до вершины стропильной системы), свес.
  • Шаг 5. Заполните поля с параметрами дома – длина, ширина, высота, толщина стены.
  • Шаг 6. Параметры бруса для мауэрлата – ширина, толщина.
  • Шаг 7. Расчет стропильной системы – величина горизонтального запила под мауэрлат, ширина и толщина стропильной доски, расстояние между элементами (рекомендации ниже).
  • Шаг 8. Введите характеристики гидроизоляции – ширина и длина материала, величина нахлеста сверху и сбоку.
  • Шаг 9. Укажите толщину контробрешетки в горизонтальной проекции (в вертикальной всегда 5 см).
  • Шаг 10 (опционально). Укажите параметры разреженной обрешетки (в случае выбора жесткой кровли) – ширина и толщина доски, расстояние между элементами.
  • Шаг 11 (опционально). Укажите параметры сплошной обрешетки (в случае выбора мягкой кровли) – ширина, длина, толщина листа ОСП.
  • Шаг 12. Характеристики кровельных листов – ширина и длина материала, величина нахлеста сверху и сбоку.
  • Шаг 13. Проверка введённых значений и начало расчета вальмовой крыши с помощью кнопки «Рассчитать».

После выполнения расчета, на вкладке «Вид в 3D» вы можете ознакомиться с трехмерной моделью конструкции, построенной в точности по заданным параметрам. Также для подписчиков доступен дополнительный инструмент – 3D-линейка.

 

Особенности чертежей вальмовой крыши

Для того чтобы получить общую высоту конструкции, необходимо сложить высоту стен, мауэрлата, стропильной системы, обрешетки, контробрешетки и кровельного материала.

 

Рекомендации

В целях экономии и при наличии определенных навыков, большинство владельцев земельных участков предпочитают заниматься строительством самостоятельно. Для того чтобы создать максимально безопасную и устойчивую вальмовую крышу, мы рекомендуем на этапе расчета внимательно ознакомиться с положениями соответствующих нормативных документов, а также изучить особенности технологии изготовления деталей и их сборки.

Основные требования перечислены в документах: СНиП II-26-76 (СП 17.13330.2011) «Кровли», СП 31-101-97 «Проектирование и строительство кровель», СНиП 2.01.07-85* (СП 20.13330.2010) «Нагрузки и воздействия», СНиП 3.03.01-87 (СП 70.13330.2011) «Несущие и ограждающие конструкции», СНиП II-25-80 (СП 64.13330.2017) «Деревянные конструкции», ГОСТ 11047-90 «Детали и изделия деревянные для малоэтажных жилых и общественных зданий», ГОСТ 30547-97 «Материалы рулонные кровельные и гидроизоляционные», ГОСТ 25772-83 «Ограждения лестниц, балконов и крыш стальные».

В таблицах ниже представлены оптимальные параметры элементов для типовых конструкций на которые можно ориентироваться при использовании калькулятора вальмовой крыши. Если вас интересуют комментарии по данным пунктам и другие рекомендации по проектированию кровельных систем, перейдите на страницу раздела «Расчет крыши онлайн».

Параметр, характеристика

Оптимальный диапазон

Угол наклона крыши

20-45°

Свес карнизный

50-100 см

Свес фронтонный / Выпуск

40-70 см

Размер мауэрлата

100х150 мм
150х150 мм

Размер стропил

50х150 мм
50х200 мм

Соотношение глубины запила и ширины стропил

1/4
1/3

Шаг стропил

60-100 см

Размер обрешетки

25х100 мм
40х150 мм

Шаг обрешетки в зависимости от типа кровли (мягкая, черепица, профнастил)

1-10 см
30-40 см
30-65 см

Размер контробрешетки

30х50 мм

Нахлест гидроизоляции

10-20 см

Толщина теплоизоляции

10-15 см

 

Наши инструменты обеспечивают точный и надежный расчет стропильной системы вальмовой четырехскатной крыши. Если же вы хотите получить больше информации непосредственно о строительстве – пошаговая инструкция по сборке расположена на странице «Крыша своими руками».

Расчет вальмовой крыши — онлайн калькулятор

Бесплатный онлайн калькулятор по расчету вальмовой крыши поможет определить угол наклона стропил, точное количество обрешетки и количество строительных материалов.

Укажите кровельный материал:

Введите параметры крыши:

Стропила:

Шаг стропил (см)

Сорт древесины для стропил (см)

123

Расчёт обрешётки:

Расчёт снеговой нагрузки:

Выберите ваш регион, используя карту ниже

1 (80/56 кг/м2)2 (120/84 кг/м2)3 (180/126 кг/м2)4 (240/168 кг/м2)5 (320/224 кг/м2)6 (400/280 кг/м2)7 (480/336 кг/м2)8 (560/392 кг/м2)

Расчёт ветровой нагрузки:

Регион

IaIIIIIIIVVVIVII

Высота до конька здания

5 мот 5 м до 10 мот 10 м

Тип местности

Открытая местностьЗакрытая местностьГородские районы

Рассчитать

Результаты расчетов

Крыша:

Угол наклона подходит для данного материала.

Угол наклона для данного материала желательно увеличить!

Угол наклона для данного материала желательно уменьшить!

Высота подъёма: 0 см.

Длина конькового бруса: 0 см.

Площадь поверхности крыши: 0 м.

Примерный вес кровельного материала: 0 кг.

Количество рулонов изоляционного материала с нахлестом 10% (1×15 м): 0 рулонов.

Стропила:

Нагрузка на стропильную систему: 0 кг/м2.

Длина боковых стропил: 0 см.

Длина диагональных стропил: 0 см.

Количество вальмовых стропил: 0 шт.

Уменьшите шаг стропил!

Количество боковых стропил: 0 шт.

Обрешетка:

Количество рядов обрешетки (для всей крыши): 0 рядов.

Равномерное расстояние между досками обрешетки: 0 см.

Количество досок обрешетки стандартной длиной 6 метров: 0 шт.

Объем досок обрешетки: 0 м3.

Примерный вес досок обрешетки: 0 кг.

Дополнительная информация о калькуляторе

Онлайн-калькулятор вальмовой крыши поможет вам рассчитать количество строительных материалов, необходимых для обустройства крыши данного типа, учтя при этом свойства материалов, параметры крыши и климатические особенности вашего региона. Вы сможете узнать, сколько вам понадобится обрешётки, изоляционного и кровельного материала. Калькулятор поможет определить, оптимален ли угол скатов крыши для выбранного кровельного материала, выдержит ли сечение стропил будущие нагрузки, а также рассчитает длину и количество пиломатериалов.

Обратите внимание!
Расчёты производятся, исходя из СНиП «Нагрузки и воздействия» и ТКП 45-5.05-146-2009, с учётом нормативов, содержащихся в данных документах.

Под названием «вальмовая крыша» подразумевается крыша, состоящая из четырёх скатов и четырёх диагональных стропил (рёбер). Скаты на торцах крыши имеют треугольную форму. От их названия (вальмы) получила название и вся конструкция крыши.

Фактически это более продвинутая разновидность двускатных крыш, которая имеет оригинальный дизайн. Существуют также полувальмовые крыши, которые отличаются от вальмовых более короткими скатами, не доходящими до карниза.

Практически все современные кровельные материалы подходят для использования в вальмовых крышах. Выбирать их следует, учитывая особенности климата местности, характеристики самих материалов и ваши личные предпочтения.

Заполняя поля калькулятора, обратите внимание на знак «Дополнительная информация» , под которым скрываются пояснения по каждому заполняемому элементу.

Внизу страницы вы можете оставить свой комментарий по улучшению данного калькулятора или задать вопрос. Будем рады вашим отзывам!

Пояснения к результатам расчетов

Угол наклона крыши

Вы узнаете, соответствует ли указанный вами угол нормам по данному материалу. В случае несоответствия вам будет предложено внести изменения.

Высота подъёма

Расстояние от основания крыши до конька.

Длина конькового бруса

Общая длина конька крыши между вальмовыми скатами.

Площадь поверхности крыши

Суммарная площадь скатов крыши, включающую площадь свесов заданной длины. Определяет количество кровельного и подкровельного материала, необходимого при строительстве крыши.

Примерный вес кровельного материала

Предположительный суммарный вес кровельного материала, необходимого для покрытия всей крыши.

Количество рулонов изоляционного материала

Нужное для крыши количество изоляционного материала, с учётом необходимого нахлёста 10%. В расчётах мы исходим из рулонов длиной 15 и шириной в 1 метр.

Нагрузка на стропильную систему

Общая максимальная нагрузка на стропильную систему. В расчетах используются введенные значения снеговых и ветровых нагрузок, вес кровельного пирога, а также учитывается сама конструкция кровли.

Длина боковых стропил

Стропильная нога с боковой стороны рассчитывается с учётом свеса.

Длина диагональных (накосных) стропил

Длина четырёх ребер (угловых стропил) вальмовой крыши.

Количество боковых и вальмовых стропил

Суммарное количество стропил, необходимое для стропильной системы крыши при заданном шаге. Сюда не входят угловые диагональные стропила (4 штуки).

Минимальное сечение стропил

Здесь представлены рекомендуемые размеры сечений стропил. Советуем придерживаться указанных здесь значений, чтобы обеспечить достаточную прочность будущей конструкции.

Количество рядов обрешетки

Столько рядов обрешётки понадобится для кровли при выбранных вами параметрах. Чтобы убедиться в правильности выбора обрешетки, настоятельно рекомендуем проконсультироваться у продавцов или производителей кровельного материала. Если вам нужно определить количество рядов обрешетки для одного ската, то данное значение следует разделить на два.

Равномерное расстояние между досками обрешетки

Избежать перерасхода материала и лишней подрезки, используйте указанное здесь значение оптимального расстояния между досками обрешетки.

Количество досок обрешетки

Общее количество 6-метровых досок, которое потребуется для обрешетки всей конструкции.

Объем и вес досок обрешетки

Необходимое количество досок для обрешетки всей крыши в кубических метрах и килограммах.

Расчет вальмовой крыши: площадь, стропильная система, онлайн-калькулятор

Вальмовые крыши являются подтипом четырехскатных крыш.

Именно такая конструкция позволяет обеспечить наиболее надежную защиту от ветровых нагрузок.

Несмотря на визуальную схожесть с обычной двухскатной крышей, вальмовые возводить значительно сложнее.

Ведь необходимо все четыре ската соединить под определенным углом.


У опытных кровельщиков трудностей в возведении не появляется, но установить ее можно и самостоятельно, если произвести правильно расчеты с учетом предполагаемых нагрузок.

И именно расчет вальмовой крыши является наиболее важным этапом при ее возведении.

Чем характеризуется рассматриваемая крыша

В классическом варианте вальмовая крыша имеет четыре ската: два основных, выполненных в виде трапеции, а также два закрывающих боковых, выполненных в виде равнобедренных треугольников.

Такое решение является очень привлекательным и в некоторой степени делает крышу «стройнее».

Такой тип крыши отлично подходит как для оформления обычных домов, так и роскошных особняков.

Помимо традиционной конструкции можно встретить различные вариации крыш с несколькими дополнительными скатами.

Также в вальме могут располагаться слуховые и чердачные окна.

Естественно, такие варианты более дорогостоящие и сложные.

Также выделяют полувальмовые крыши.

В них скаты карниза в нижней точке не достигают.

По сравнению с плоскими крышами такая конструкция позволяет обеспечить лучший сток талой и дождевой воды.

Как установить водостоки на крышу своими руками.

О сливах на крыше в статье: https://proroofer.ru/aksessuary/slivy-dlya-kryshi-osobennosti-konstrukcii-i-pravilnyj-montazh.html. Описано, как установить.

О подшивке свесов здесь. Описаны различные типы свесов для крыши.

Ветровые же нагрузки распределяются по такому скату более равномерно.

Именно поэтому используют вальмовые крыши на местностях с обильными осадками, а также сильными, частыми и порывистыми ветрами.

Процедура расчета

Конструктивно вальмовая крыша состоит из двух основных частей: стропильной системы и кровельного покрытия.

Поэтому, рассмотрим, каким образом осуществляется их расчет.

Как произвести расчеты стропильной системы

В первую очередь нужно рассчитать угол наклона стропильной конструкции.

При выборе угла наклона необходимо учитывать, что он во многом зависит от климатических условий на местности, а также выбранного кровельного материала:

  • при сильных ветрах угол наклона должен быть минимальным, что снимет нагрузку с несущих стен;
  • если на местности наблюдаются сильные снегопады, то угол наклона кровли увеличивают, чтобы снег быстрее с нее сходил;
  • в жарких регионах угол наклона делают 2-5 градусов. Это позволит избежать перегрева;
  • при выборе в качестве материала шифер и другие наборные штучные материалы минимальный угол выбирается 22 градуса;
  • при использовании рулонных материалов: 2-5 градуса при трех слоях и 2-15 градусов – при двух;
  • для укладки профнастила необходим минимальный уровень в 12 градусов;
  • для металлочерепицы уклон должен быть минимум 14 градусов, а для мягкой – 11 градусов. При условии, что используется сплошная обрешетка;
  • для ондулина достаточно уклона в 6 градусов;
  • мембранные кровли укладываются на скаты при любом уклоне.

Для расчета угла необходимо воспользоваться теоремой Пифагора и калькулятором.

Ведь боковые грани вальм, промежуточные центральные стропила и стена дома одновременно являются сторонами равнобедренного треугольника.

Для удобства можно сделать мерную рейку шириной 5 см и производить замеры непосредственно на ней.

Теперь можно переходить к разметке центральных стропил.

Для этого ранее приготовленную планку укладывают на верхнюю обвязку с торцевой стороны дома.

За счет этого осуществляется разметка горизонтальной проекции промежуточных стропил, кровельного свеса и выступа стены (по форме проекция представляет собой прямоугольник).

Половина площади кровли, доходящая до проекции конькового бруса, сформирует с промежуточными центральными стропилами также прямоугольник.

Площади полученных фигур будут одинаковыми.

Для расчета угла наклона стропильной системы используются коэффициенты.

При угле наклона крыши 3:12, например, коэффициент углового стропила составляет 1,016, а промежуточного – 1,031.

Для определения длины стропил легче всего использовать теорему Пифагора.

Если крыша еще не возведена, длину проекций промежуточных центральных стропил узнать легче всего.

Отталкиваясь от этого значения, можно определить длину стыкующихся с ней коротких стропил.

Процедура расчета площади кровли

В зависимости от угла наклона стропильной конструкции, количество используемого кровельного материала будет отличаться.

Поэтому стоит заранее просчитать его затраты.

Легче всего расчеты производить, когда стропильная конструкция уже поставлена.

В классическом варианте площади поверхностей рассчитываются по формулам, указанным на рисунке.

Но, если на крыше присутствуют слуховые окна и другие элементы, то стоит брать кровельный материал с запасом.

Программное обеспечение для расчета

Если вы решили возводить вальмовую крышу без привлечения специалистов, то расчеты в большинстве случаев создадут для вас определенные трудности.

Именно поэтому на сайтах многих компаний, занимающихся строительством крыш или продажей кровельных материалов, имеются специальные онлайн — калькуляторы.

Вам достаточно ввести определенный набор значений, по которым будет произведен расчет стропильной конструкции, обрешетки и площади кровли.

Как видно, вальмовая конструкция, несмотря на визуальную простоту выполнения, отличается высоким запасом прочности.

Проектирование ее – достаточно сложный процесс.

Но при соблюдении правил и тщательной проверке результатов расчета сделать это можно и самостоятельно.

Видео о строительном калькуляторе, представляющем собой простую программу для расчета вальмовой крыши.

Что еще почитать по теме?

Автор статьи:

Сергей Новожилов — эксперт по кровельным материалам с 9-летним опытом практической работы в области инженерных решений в строительстве.

Понравилась статья? Поделись с друзьями в социальных сетях:

Facebook

Twitter

Вконтакте

Одноклассники

Google+

Расчет вальмовой крыши дома

Планирование будущего облика крыши дома практически всегда упирается в проблему проверки спроектированной стропильной системы на прочность, жесткость и устойчивость. Очень красивые и изящные на бумаге четырехскатные, шатровые, ломаные, вальмовые и полувальмовые конструкции на практике требуют от застройщика знаний и понимания того, как рассчитать вальмовую крышу наиболее понятным и доступным способом. Чем сложнее и замысловатее компонуется кровельная конструкция, тем сложнее рассчитать ее характеристики и получить достоверный результат.

Что значит правильно рассчитать крышу

Существует несколько основных методик, позволяющих рассчитать вальмовую крышу дома с относительно небольшой погрешностью. Все они широко используются в повседневном проектировании и многократно проверены на практике. Для частного застройщика–непрофессионала можно использовать три способа, позволяющие рассчитать параметры кровли, владея знаниями в пределах школьного курса математики:

  • Табличный способ расчета, самый любимый и широко используемый в проектировании вальмовых и любых других стандартных кровельных схем. Он позволяет рассчитать основные параметры конструкции кровли, используя табличные данные, сведенные в справочники и методички;
  • Рассчитать параметры на основании тригонометрических формул и простейшей модели вальмовой крыши. Графическим построением и вычерчиванием будущей вальмовой конструкции в увеличенном масштабе можно получить все необходимые сведения о параметрах кровли простым измерением;
  • Использование готовых программ и онлайн калькуляторов. Сделать подобный объем работы вручную, рассчитать прочность и геометрию крыши без базового образования и подготовки другим способом практически невозможно.

Специализированных программ существует превеликое множество, и нередко правильно подобрать правильный программный комплекс на сегодня значительно сложнее, чем рассчитать с его помощью геометрию вальмовой крыши.

Как и с любой другой программой, при работе с АСПСК нужно понимать суть расчетов, при необходимости уметь выполнить проверочный расчет угла вальмовой крыши с помощью школьных тригонометрических формул. На сегодняшний день практически все более-менее сложные расчеты выполняются с применением всего трех основных методик. Даже опытные и уверенные в своих силах инженеры-проектировщики и архитекторы предпочитают выполнять расчет четырехскатной вальмовой крыши с обязательной перепроверкой, что называется, «на бумажке».

Что такое вальмовая крыша, и почему нужно ее рассчитать

Вальмовая схема на сегодняшний день применяется в 90 случаях из 100 при строительстве новых и ремонте старых домов. Четырехскатная крыша, вальмовой или полувальмовой схемы, обладает целым радом преимуществ:

  • Конструкция получается достаточно компактной, с хорошей устойчивостью к горизонтально ветровой нагрузке, давлению дождевой воды и снеговых пластов;
  • Вальмовая кровельная схема позволяет снизить до минимума потери тепла через кровельное покрытие и ликвидировать затекание воды через фронтоны, чем нередко страдают двухскатные кровельные схемы;
  • Вес стропильного каркаса и кровельного материала вальмовой крыши меньше, чем у традиционных двухскатных конструкций, но стоимость работ по сборке и обустройству значительно выше.

Если рассчитать крышу по всем правилам, стоимость обустройства кровли лишь ненамного превысит традиционные односкатные и двухскатные конструкции. В результате, потратив некоторые ресурсы на то, чтобы рассчитать оптимальные параметры вальмовой крыши, можно максимально оптимизировать затраты, и одновременно получить наиболее прочную, теплую и долговечную кровельную конструкцию.

Особенности применения различных методик расчета вальмовой крыши

Кроме прочности и устойчивости конструкции, немаловажной информацией является расход материалов, прежде всего дорогостоящих, длинномерного бруса и бревен, утеплителя и кровельного покрытия. Прежде чем рассчитать выбранный вариант на жесткость и прогиб стропильных балок, выполняют предварительный выбор и расчет угла вальмовой крыши. От данного параметра зависит:

  • Подбор высоты конька и характер кровельного материала, планируемого к использованию в конструкции вальмовой кровли;
  • Опираясь на значение угла и кровельный материал, можно выполнить расчет площади вальмовой крыши и размер силовых элементов.

Зная параметры кровли, элементов стропильного каркаса, несложно будет рассчитать общий вес вальмовой конструкции и стоимость материалов. Можно рассчитать затраты на возведение крыши и величину давления на стены и фундамент здания.

Простейший расчет геометрии вальмовой крыши

Для предварительного расчета каркаса вальмовой кровли можно использовать упрощенную модель, приведенную на рисунке ниже.

В качестве исходных параметров принимаем размеры основания кровли или коробки здания. Перед тем как рассчитать площадь вальмовой крыши, необходимо решить вопрос угла наклона. Обычно заказчик предлагает несколько вариантов кровельного покрытия, для каждого из них существует свой оптимальный угол наклона. Вторым фактором, который необходимо знать, чтобы правильно рассчитать несущую способность крыши, является максимальная толщина и вес снегового покрова. Для более высоких широт угол вальмовой крыши выбирают не менее 30о и даже 45о, что позволяет не учитывать давление снежной массы на стропила.

Важно! Упрощенная модель шатровой крыши может использоваться для того, чтобы рассчитать любую вальмовую конструкцию. Например, для расчета площади классического варианта крыши с двумя короткими вальмами и двумя удлиненными вальмовыми скатами достаточно добавить к площади шатровой кровли величину поверхности прямоугольников скатов, образованных коньковой балкой и длинной рядовой стропильной ногой.

После выбора угла необходимо рассчитать конек вальмовой крыши, сделать это несложно, по формуле синуса или тангенса угла прямоугольного треугольника. Используя тригонометрические формулы, можно рассчитать длину рядовых и угловых стропил, но на практике чаще всего размеры отдельных элементов стропильного каркаса просто пересчитывают по коэффициентам из таблиц. Зная угол наклона и длину рядового стропила, можно рассчитать угловые и промежуточные значения.

После того как стали известны предварительные значения размеров конька, наслонных и рядовых стропил, необходимо составить точный чертеж вальмовой крыши, на котором графическим способом можно рассчитать и точнее измерить получившиеся детали дополнительных силовых элементов. Таким способом выполнялся расчет деревянных остовов кораблей, мостов, сложные конструкции зданий из камня и дерева на протяжении нескольких веков, пока не появились современные математические методы.

При использовании достаточно маленького масштаба, примерно 1:7 или 1:10, можно графическим методом рассчитать на готовом чертеже абсолютно все детали вальмовой крыши. Как ни странно, но точность такого расчета лишь немногим превышает стандартную величину, принятую для рядовых инженерных расчетов. Тем более, при составлении деталировки и расчете размеров заготовок под конкретные детали, например, под стропильные балки или подкосы, длину и сечение выбирают с требуемым припуском на обрезку или шлифовку поверхности бруса.

Только после прорисовки чернового чертежа конструкции можно приступать к выполнению самого ответственного этапа – проведению расчета на прочность и жесткость, или чаще всего – максимальную величину прогиба стропил, коньковой балки, свесов и других элементов конструкции. Проще всего рассчитать параметры крыши, используя готовую программу.

Методика расчета вальмовой крыши с помощью программ

В простейшем случае выполнить проверку и рассчитать предварительные сведения и характеристики вальмовой крыши можно с помощью онлайн калькулятора. Компании, предоставляющие онлайновые программные комплексы, используют готовые модули, в которых заложены основные требования строительных норм и правил «Нагрузки и воздействия», а также определяющие положения ТКП 45-5.05-146-2009. Правда, рассчитать такой калькулятор сможет лишь наиболее простой вариант вальмовой крыши.

Для расчета потребуется ввести лишь ограниченный набор основных сведений о конструкции кровли:

  • Размеры основания или мауэрлата крыши;
  • Угол наклона скатов;
  • Длину торцевых и боковых свесов;
  • Материалы для изготовления несущих элементов и кровельного покрытия;
  • Шаг стропильных ног и обрешетки;
  • Данные о ветровой и снеговой нагрузке для конкретного региона.

На выходе калькулятор программа выдает достаточно большой объем информации. Прежде всего, проверяется соответствие заложенного угла наклона стропил выбранному материалу для кровельного покрытия. Вторым пунктом программа попробует рассчитать площадь кровли с учетом свесов и общую нагрузку на стропильную систему по заданным углам наклона вальмы и боковых скатов, отдельно для чистого кровельного материала и отдельно под максимальным слоем снега.

На втором этапе выдаются параметры стропильной системы:

  • Длина вальмовых, угловых и рядовых стропил;
  • Количество стропильных ног на каждой части вальмовой крыши;
  • Общий вес стропильного каркаса и рекомендуемое сечение для каждой из стропил.

В результате работы программы можно дополнительно узнать объем пиломатериалов и площадь кровельного покрытия. Полученные данные позволяют рассчитать затраты и стоимость материалов на изготовление крыши. В некоторых калькуляторах можно получать несколько вариантов расчетов, но чаще всего рассчитывать наиболее дешевый и прочный вариант приходится самостоятельно. В среднем, для получения наиболее оптимальной схемы наклона и размеров стропил, приходится отработать не менее 30-35 различных вариантов. К стоимости обычно добавляют 10-12% на издержки, связанные с подготовкой к стройке и доставкой к месту строительства.

Заключение

Существенным недостатком таких калькуляторов является упрощенная схема, по которой приходится рассчитывать параметры вальмовой крыши. Простая онлайн программа не дает ответа на основной вопрос — насколько устойчивым и жестким будет каркас, и какова будет величина максимального прогиба стропил и обрешетки в самых неблагоприятных условиях нагружения. Поэтому сложные варианты кровельных конструкций лучше всего рассчитывать с помощью специализированных программных комплексов АСПСК.

Отправить комментарий

расчёт, конструкция и правильный монтаж. Архитектура вальмовой крыши в деталях

Расчет полувальмовой крыши онлайн калькулятор. Вальмовая крыша: расчёт, конструкция и правильный монтаж. Архитектура вальмовой крыши в деталях

Четырёхскатные крыши – наиболее популярный вариант в современном частном строительстве. Зачастую у застройщиков возникает вопрос: как рассчитать площадь четырёхскатной крыши. Необходимо это для определения количества кровельного материала, гидроизоляции и утеплителя.

Сегодня сделать расчёт можно с помощью компьютерных программ, предназначенных для любых видов крыш. В этом есть свои преимущества: высокая точность, возможность выбора различных вариантов конструкции, удобство. Однако, некоторые строители предпочитают надеяться на свой ум, не тратя деньги на то, что могут сделать самостоятельно.

Прежде чем приступать к расчёту площади крыши, следует составить подробный план, где будут нанесены все размеры. Нельзя упускать ни одного элемента крыши. Кроме того, уже на этапе проектировки дома следует определиться с выбором кровельного материала, так как от этого зависит уклон кровли. Чем острее угол наклона, тем длиннее скат крыши. А значит и больший расход материала. Кроме того, каждый кровельный материал индивидуален. Например, профилированным металлическим листам требуется гораздо больший нахлёст при установке, чем, скажем натуральной черепице.

Имея точный расчёт площади крыши дома, можно максимально выгодно подобрать кровельный материал, а так же утеплитель, паровую и гидроизоляцию.

Четырёхскатные крыши могут отличаться по форме:

  • непосредственно четырёхскатная;
  • полувальмовая;
  • вальмовая;
  • четырёхскатная щипцовая.

Наиболее просто рассчитываются площади крыш, скаты которых представляют собой правильные трапеции и треугольники и не имеют каких – либо изломов на скатах.

Однако, в современном строительстве всё чаще возводятся вальмовые кровли, с множеством скатов, поверхность которых может состоять не только из треугольников и трапеций, но и ромбов, прямоугольников и прочих геометрических фигур.

Именно поэтому, перед тем, как начать расчёт четырёхскатной крыши, желательно освежить свои знания по курсу школьной геометрии.

Самостоятельный расчёт площади четырёхскатной крыши

Как уже говорилось ранее, в первую очередь составляется полный план крыши. Если проекта дома нет или стропильная система уже установлена, то план крыши придётся составлять по уже имеющемуся каркасу. Для этого потребуется лишь рулетка и угол. С помощью данного инструмента измеряются все линии крыши, от конька до перекрытий. Если крыша многоуровневая и состоит из различных высот, то на чертеже необходимо отразить, где какая высота. Так же желательно составить план крыши в проекции. Это поможет наиболее наглядно представить картину. Однако, составлять проекцию крыши необходимо только если есть навыки черчения.

Составив подробный чертёж, не составит труда разложить крышу на отдельные геометрические составляющие элементы. Это необходимо для более точных расчётов.

Помните, что размеры крыши нельзя ограничивать лишь её периметром. Необходимо так же добавлять длину свесов кровли там, где предполагается.

Правила, которые необходимо соблюдать, когда ведётся расчёт четырёхскатной крыши:

Чем проще будут фигуры, и чем больше параметров вы будете знать, тем проще будет производить расчёт.

  • Длину одного ската определяют, измеряя расстояние от крайней линии карниза до конька.
  • Каждый скат крыши рассчитывается следующим образом: площадь фигуры умножается на косинус того угла, под которым располагается данный кровельный элемент.
  • Если какой – либо скат представляет собой неправильный прямоугольник, его необходимо разделить на правильные геометрические фигуры. И так же провести расчёт каждой по отдельности.
  • После того, как произведены расчёты каждого элемента по отдельности, полученные цифровые значения суммируются.

Пример расчёта.

Для примера приведём расчёт кровли четырёхскатной крыши.

Предположим, что наша четырёхскатная крыша состоит из следующих элементов: две правильные трапеции и два равнобедренных треугольника. Скаты крыши располагаются под углом 30°. Косинус данного угла равен 0,87.

Трапециевидные скаты имеют следующие параметры: одна сторона 10 м, другая 7 м, высота 3м.

Треугольные скаты: две стороны по 3,34 м, одна сторона 7м. Высота треугольника 4,8 м.

Приступаем к расчётам.

Площадь трапеции находится следующим образом: суммируем длину горизонтальных сторон, делим на 2, умножаем на высоту. То есть, в нашем случае: S=(10 +7)/2 x 3 = 25,5.

Не забудьте, что полученное число необходимо умножить на косинус угла, в нашем случае на 0,87. В итоге площадь трапециевидного ската равна 22,185. Округляем в большую сторону, до 22,5 метров.

Завершающим этапом становится суммирование всех площадей: S = 22,5×2 + 14,7×2 = 74,4. Округляем до 75.

Таким образом, площадь четырёхскатной крыши, в нашем случае, будет равна 75 м?.

В процессе расчёта, из общей площади не вычитают различные небольшие элементы, такие как: слуховые окна, вентиляционные каналы, дымоходные трубы, парапеты или зенитные фонари. Так как площадь их мала, они не влекут особых финансовых затрат. Кроме того, вполне можно совершить ошибку при расчёте.

Расчёт кровельного покрытия и прочих материалов

После того, как проведён расчёт четырёхскатной крыши, и вычислена общая площадь, можно приступать вычислению необходимого метража кровельного материала. Ошибочным является мнение, что площадь чертежа кровли и площадь необходимого материала совпадают. Суть в том, что все элементы кровельного материала необходимо уклалывать в нахлёст. Кроме того, для каждого кровельного материала свои технические показатели величины нахлёста. Соответственно, расходы материалов значительно увеличиваются.

Вальмовых крыш — Расчет площади

Расчет, сколько черепицы потребуется для точной части значительной части крыши. Это способ минимизировать расточительство лишней черепицы. Экономика в строительстве оказывается наиболее важной темой, которая требует точности, особенно с учетом того, что черепица в настоящее время очень дорогая, поскольку покупается за каждую связку.

Количество запрошенных черепиц обычно подразумевает количество связок. Сколько связок можно определить по обычному количеству черепицы для каждой связки, которая на обычном рынке составляет 32 штуки.Ставка, тем не менее, различается, но все же зависит от пакетов, а не от единицы. Опять же, всю такую ​​информацию можно получить, определив площадь крыши.

Площадь кровли варьируется в зависимости от формы кровельной конструкции. Все типы кровельных систем имеют исключительную характеристику или форму, которая дает им эксклюзивную формулу расчета площади. Вальмовая крыша — одна из самых замысловатых форм. Многие жилые дома в таких высокоразвитых мегаполисах, как Линкольн, имеют лица, покрытые шатровой крышей.Для него характерны фасады фронтона и шатровые фасады.

По сравнению с плоской двускатной крышей с прямоугольными гранями, такая крыша имеет пару граней в виде трапеций и пару граней в форме треугольника. Начнем с вычисления площади трапециевидных граней. Установите размер основания и гребня. Умножьте их вычисление на длину стропила. Ответ заключается именно в паре граней трапециевидной формы крыши.

Площадь бедер легко вычислить.Вычислите размер основания бедра / просто проверьте его на чертеже для плана верхнего этажа. Умножьте размер на длину стропила для расчета общей площади. Специалисты кровельных служб считают длину стропила неизменной, так как это просто радиус от вершины конька.

Площадь черепицы составляет 1 кв. Фут., А это означает, что необходимое количество черепицы эквивалентно общей площади крыши, например, 100 штук на площади 100 кв.футов. Затем разделите части на 32, чтобы получить все связки.

Как рассчитать площадь крыши в метрах? Какая у меня площадь крыши?

Последнее обновление: 25 апреля 2018 г., 15:41

Знание того, как рассчитать площадь вашей крыши, может быть первым полезным шагом в оценке стоимости новой металлической крыши. В кровле мы называем расчет необходимых кровельных материалов «взлетным».

Хороший подрядчик по кровельным работам не пожалеет времени, чтобы убедиться в точности взлета.Правильные измерения и внимание к деталям крыши позволяют избежать нехватки материалов (нехватка замедляет монтаж) и предотвратить излишки (излишки увеличивают ненужные расходы для домовладельца).

Почему я должен измерять собственную крышу?

Если вы планируете заменить крышу в собственном доме, вам нужно будет рассчитать материалы, чтобы не тратить зря время и деньги. Если вы похожи на большинство людей, вам нужно нанять профессионала.

Зная свои цифры, вы сможете понять, какие кровельные материалы находятся в рамках вашего бюджета, а наличие под рукой квадратных футов — отличный способ защитить себя от завышенных цен.


Советы по началу работы

Совет 1: Измерение с точностью до дюйма вдоль карниза и поперек фронтона можно проводить с земли — только не забудьте о выступе.

Совет 2: Если вы знаете размеры вашей предыдущей работы по укладке асфальтовой кровли, вы можете использовать эту информацию, чтобы немного обмануть. Типичная битумная черепица с 3 выступами имеет выступы шириной 1 фут с вертикальной экспозицией 5 дюймов. Убедитесь, что вы физически проверили эти размеры, измерив 4 или 5 шагов.Подсчет черепицы может дать вам размеры от карниза до конька от земли.

Совет 3: 100 квадратных футов = 1 квадрат в кровельных условиях


Что вам понадобится

  1. Рулетка 100 футов с крюком для раствора (в Канаде строительные изделия все еще продаются в квадратных футах)
  2. Миллиметровая бумага с квадратами ¼ ”в буфер обмена
  3. Карандаш и ластик
  4. Инструмент для поиска высоты звука (продается в большинстве хозяйственных магазинов) или приложение для расчета высоты звука для вашего смартфона

Шаг 1. Эскиз контура крыши

Сделайте набросок контура крыши, используя размеры земли, как показано на рис. 1 ниже.Зная сначала самый длинный размер, вы сможете правильно масштабировать рисунок.

Шаг 2: Заполните детали крыши

Измерьте и нарисуйте слуховые окна, бедра, впадины, расстояния по диагонали и выступы или выступы. Дымоходы, вентиляционные отверстия, световые люки и размеры труб необходимо будет измерить, чтобы рассчитать обрезки и отливы, необходимые для работы.

Pro Подсказка: Вам может понадобиться бинокль для подсчета единиц существующего кровельного материала в недоступных местах. Если на соседних сторонах впадины или бедра имеются разные уклоны, их длину можно определить, рассматривая бедро или впадину как диагональ (гипотенузу) прямоугольного треугольника на оконном стекле рядом с ним.

Рис. 1. Набросок плана крыши

Шаг 3: Определите шаг кровли

Шаг означает угол наклона крыши или ее крутизну. Измеряется в дюймах подъема (вертикальная мера) на 12 дюймов (горизонтальная мера). На фронтальной диаграмме на рис. 2. (ниже) указано 4 единицы подъема и 6 единиц пробега. Это можно преобразовать в единицы увеличения выше 12, если учесть, что перекрестные произведения на шаге 2 должны быть равны. Следовательно, 4 x 12 должно равняться 6 x X.Шаг 3 показывает, что X должно быть равно 48, разделенному на 6. Следовательно, X равно 8, а шаг равен 8/12.

Рисунок 2. Расчет шага крыши

Примечание о теореме Пифагора (да, она вам нужна в реальной жизни)

Если вы знаете размеры двух сторон прямоугольного треугольника, но не знаете третью сторону, то Теорема Пифагора из 8 th Grade geometry — ваш лучший друг. На рис. 2 выше, квадрат роста (умноженный на себя) плюс квадрат пробега равняется квадрату диагонали.На диаграмме a 2 + b 2 = c 2 . Если рост равен 4 2 + 6 2 = c 2, , тогда 16 + 36 = c 2 — Итак, c = квадратный корень из 52. Теорема Пифагора говорит нам, что длина фронтона (диагонали) равна 7,21 футов или около 7 футов 3 дюйма.

Шаг 4: Расчет площади простой крыши

На простой вальмовой или двускатной крыше умножение длины карниза и конька на длину карниза дает площадь, которую нужно умножить на коэффициент уклона.Вентиляционные отверстия конька лучше отделывать змеевиком, а не частичной черепицей. Использование плоского рулонного ложа позволяет крышкам гребня ложиться ровно, а также может быть сформировано с дополнительным ограничителем воды в отверстии гребня.

Площадь крыши в Рис. 3 составляет 1784 фута 2 Синяя пунктирная линия разделяет крышу на 2 прямоугольника. Есть небольшая площадь, рассчитанная как 8/12, что на самом деле составляет 4/12. На такой небольшой площади, как эта, лучше ошибиться в сторону более высокого тона, поскольку это не должно существенно повлиять на общую сумму.

Pro Tip: Теорема Пифагора может использоваться для вычисления длины впадин. Общее практическое правило состоит в том, чтобы добавить по крайней мере 12 дюймов линейного материала впадины для безопасности.

Рисунок 3. Расчет простых площадей крыши

Шаг 5: Расчет сложных площадей крыш

Большинство крыш в Канаде можно рассматривать как сложные. Часто встречаются несколько смежных площадок, слуховых окон и турелей. Имейте в виду, что опытному подрядчику по металлической кровле необходимо будет учесть увеличенное рабочее время для участков вашей крыши, которые потребуют навыков точной металлообработки.

Начните с определения площади «отпечатка» и умножьте на правильный коэффициент наклона, определяемый шагом (см. Таблицу коэффициентов шага внизу страницы). На рис. 4 ниже пунктирные синие линии дают упрощенный вид «следа». Умножьте L x W, чтобы вычислить площадь для каждого прямоугольного сечения. Обратите внимание на площадь 77 футов 2 , которую необходимо вычесть из углубленной области.

После того, как для каждой области будет определена «зона покрытия», включая области выступа, найдите соответствующий коэффициент уклона или тангажа в таблице ниже.Например, площадь крыши с уклоном 8/12 имеет коэффициент уклона 1,202, поэтому 2053 футов 2 x 1,202 = 2468 футов 2 общей площади крыши.

Примечание о сложных крышах: Для сложных крыш требуется больше аксессуаров и отделок, чем для «простых» крыш, что приводит к несколько более высокой общей стоимости на квадратный фут.

Рисунок 4. Расчет сложной площади крыши

Шаг 6. Измерение или расчет длины фронтона и бедра

Коэффициент уклона также используется для определения длины фронтона, если длина участка известна.Например, на рис. 4 , рис. 4 нижний левый фронтон имеет размер 16 футов в поперечнике от карниза до карниза и, следовательно, имеет длину 8 футов. Когда это умножается на 1,202, расстояние между фронтонами составляет 9’8 дюймов (9,62 фута с округлением до ближайшего дюйма). Обратите внимание, что этот пробег также можно умножить на коэффициент бедра / впадины 1,563, чтобы получить длину впадины 12’6 дюймов.

Запишите все свои расчеты на свой чертеж, как показано на F , рис. 5 ниже.

Рис. 5. Завершенный чертеж плана крыши

Pro Tip: примечание о факторе потерь

После того, как вы определились с площадью крыши, вам нужно будет также подсчитать, сколько места вам необходимо для мусора.Для металлических кровельных материалов на кровле средней сложности (распространенной в Канаде) рекомендуется коэффициент отходов 15%. Другими словами, для крыши длиной 2468 футов 2 в нашем примере вы должны умножить на 1,15, что даст вам 2838,2 футов 2 кровельного материала.

Важное примечание: Большинство металлических кровельных продуктов упаковываются и продаются в квадрате (100 квадратных футов), поэтому для крыши нашего примера количество квадратов или коробок для покупки составляет 29.

Коэффициенты умножения для известных пробега и уклона
Ход = от карниза до центра Pt. Шаг X / 12 градусов Коэффициент уклона фронтон или диагональ Фактор бедра / долины Хип или долина
3/12 14,0 1,031 1,436
4/12 18,4 1.054 1.453
5/12 22,6 1,083 1.474
10 ′ 5/12 Пример 1,083 10 ′ 10 ″ 1.474 14 ′
6/12 26,6 1,118 1,500
7/12 Не ходить 30,3 1,158 1,530
8/12 Не ходить 33,7 1,202 1.563
10 ′ 12/8 Пример 1,202 12 ′ 1,563 15 ′ 8 ″
9/12 Не ходить 36,9 1,250 1,603
10/12 Не ходить 39,8 1,302 1.641
11/12 Не ходить 42,5 1.357 1,685
12/12 Не ходить 45,0 1,414 1,732
10 ′ 12/12 Пример 1,414 14 ′ 2 ″ 1,732 17 ′ 4 ″
13/12 Не ходить 47,3 1.474 1,781
14/12 Не ходить 49.4 1,537 1,833
15/12 Не ходить 51,3 1,600 1.887
16/12 Не ходить 53,1 1,667 1,944

PDF Скачать таблицу коэффициентов уклона

тест

Frontiers | Разрушение каркаса в скатных крышах с деревянным каркасом при экстремальных ветровых нагрузках

Введение

Устойчивость домов к экстремальным ветрам имеет важное значение для обеспечения безопасности жителей, минимизации ущерба внутреннему содержимому и уменьшения финансового бремени для сообществ и страховых компаний.На сегодняшний день проделана значительная работа по устранению часто наблюдаемых видов отказов в жилых домах. Это в первую очередь связано с системами кровли и стеновых обшивок, а также с траекторией вертикальной нагрузки между конструктивными элементами (van de Lindt et al., 2013). Большая часть жилья в Северной Америке состоит из деревянных домов на одну семью (Amini and van de Lindt, 2014; Standohar-Alfano and van de Lindt, 2016). Разрушения кровли жилых домов, а именно разрушение соединений между кровлей и стеной (RTWC) и потеря обшивки крыши, были тщательно изучены из-за их высокой частоты возникновения во время экстремальных ветровых явлений.Плотность домов относительно других построек в любом населенном пункте приводит к высоким расходам, связанным с авариями жилых домов. Например, в Оклахоме с 1989 года две трети из застрахованных убытков в размере 32 миллиардов долларов от торнадо связаны с жилыми постройками (Simmons et al., 2015).

Работа по устранению повреждений деревянных крыш жилых домов важна, потому что потеря одной панели обшивки, которая может произойти при относительно низких скоростях ветра, приведет к проникновению воды. Это часто приводит к потере всего содержимого из-за сильных дождей, сопровождающих ураганы (Sparks et al., 1994). Наблюдения, сделанные в ходе обследований повреждений после урагана, ранее привели к выявлению важных тенденций отказов в различных компонентах здания. Повторяющиеся отказы подобных компонентов предполагают, что повсеместное смягчение последствий возможно за счет усовершенствованных подходов к проектированию и инновационных решений.

Стандартизованный метод оценки скорости ветра в торнадо — это расширенная шкала Фудзита (EF), которая основана на наблюдениях за повреждениями, поскольку, как правило, невозможно напрямую измерить скорость ветра в торнадо (Копп и др., 2012). Текущая версия EF-Scale (Центр ветро- и инженерии, 2006) предоставляет оценки скорости ветра для 28 категорий обычных конструкций и растительности, называемых индикаторами ущерба (DI). Для каждого DI шкала EF использует концепцию степеней повреждения (DOD). DOD описывают последовательные режимы повреждения, которые обычно наблюдаются для определенных DI. Каждый DOD связан с минимальной, максимальной и ожидаемой скоростью ветра. Эти значения представляют собой диапазон расчетных скоростей ветра, необходимых для нанесения указанного ущерба (Центр науки и техники ветра, 2006; Mehta, 2013).Их можно связать со скоростями ветра по шкале EF для оценки интенсивности торнадо, от EF0 до EF5. В настоящем исследовании особый интерес представляет DI для резиденций на одну и две семьи (FR12). DOD-4 и DOD-6, которые имеют отношение к разрушениям кровли FR12, описаны в таблице 1. DOD-7, относящийся к обрушению стены, также включен, потому что он происходит в том же диапазоне скоростей ветра, что и DOD. -6 и часто может возникать в результате обрушения кровли.

Таблица 1 .Описание степени повреждения (DOD) и оценки скорости ветра для интересующих видов отказов в индикаторе ущерба для одно- и двухквартирных домов (FR12).

На Рисунке 1 показан пример типичного разрушения оболочки, а на Рисунке 2 показан отказ RTWC. Как уже упоминалось, большинство прошлых исследований повреждений кровли сосредоточено на этих двух режимах отказа. Очевидно, что оценки скорости ветра для повреждения кровли в шкале EF в значительной степени основаны на этих хорошо изученных режимах. Хотя DOD-6 охватывает все возможные режимы серьезных разрушений кровли, обзор доступной литературы показывает, что текущее понимание DOD-6 ограничивается исследованиями, сфокусированными на отказах RTWC.DOD-6 может произойти при ожидаемой скорости ветра 122 миль в час (Таблица 1). Эта скорость ветра соответствует относительно слабым торнадо EF2 (Wind Science and Engineering Center, 2006). DOD-4 возникает при более низких скоростях ветра. Было замечено, что двускатные крыши плохо работают в этих режимах, особенно DOD-6, по сравнению с соседними шатровыми крышами аналогичной конструкции. Фактически, в списке FR12 по канадской шкале EF (Environment Canada, 2013) отмечается, что для домов с шатровыми крышами можно предположить верхнюю границу скорости ветра для DOD 4 и 6.Это противоречит исходной документации EF-Scale (Wind Science and Engineering Center, 2006), в которой указывается, что нижняя граница DOD-6 связана с неадекватной конструкцией или большими свесами, а верхняя граница связана с улучшенной конструкцией, такой как использование ураганных ремней. Разница между этими двумя версиями EF-Scale является важным моментом, который требует дальнейшего исследования, как указали Гаванский и Копп (2017).

Рисунок 1 .Пример разрушения обшивки крыши, соответствующий DOD-4 (источник изображения: доктор Дэвид Преватт из Университета Флориды).

Рисунок 2 . Пример отказа соединения крыши со стеной, соответствующий DOD-6 (источник изображения: доктор Дэвид Преватт).

Крыши жилых домов могут быть построены с использованием различных форм и уклонов. Многие включают слуховые окна или другие дефекты для покрытия домов неправильной формы. Из различных форм крыш, возможных при строительстве деревянных каркасов, наиболее распространенными в Северной Америке являются двускатные и шатровые крыши или их композиты (Canada Mortgage and Housing Corporation, 2014).Обследования повреждений после ураганов и последующие исследования часто выявляли несоответствие в повреждениях между различными геометрическими формами жилых крыш (Meecham, 1992). Как правило, шатровые крыши работают лучше, чем крыши других форм. Анализ хрупкости, проведенный Kopp et al. (2016) и Gavanski and Kopp (2017) даже предположили, что единый DI для жилых конструкций в шкале EF может быть неадекватным из-за значительных различий в оценках скорости ветра для разной формы крыши, хотя это не было количественно оценено. в обследованиях повреждений.

В нескольких прошлых исследованиях изучались превосходные характеристики домов с шатровой крышей (Meecham et al., 1991; Meecham, 1992), с некоторыми более поздними работами, непосредственно исследующими поведение шатровой крыши в отношении обшивки крыши (DOD-4) и RTWC ( DOD-6) (Henderson et al., 2013; Kopp et al., 2016). Meecham et al. (1991) провели испытания в аэродинамической трубе, чтобы улучшить техническое понимание характеристик вальмовой крыши, и обнаружили, что существует важная взаимосвязь между распределением давления и базовой конфигурацией каркаса в крышах с деревянным каркасом.Несмотря на значительные различия между распределениями давления, зарегистрированными для моделей двускатной и шатровой крыши, общие моменты подъема и опрокидывания крыши оказались весьма схожими. Это подтвердило, что предпочтительная аэродинамическая геометрия — не единственная причина улучшения характеристик вальмовых крыш.

Результаты

Meecham et al. (Meecham et al., 1991) показали, что ориентация элементов каркаса в шатровой крыше относительно распределения подъема обеспечивает дополнительную устойчивость.Напротив, форма двускатной крыши вызывает более высокие локальные пиковые давления, а ориентация элементов каркаса приводит к менее благоприятному распределению нагрузки. В дополнение к этому, вальмовые крыши имеют RTWC по всему периметру, а двускатные крыши соединяются со стеновым каркасом только по двум противоположным стенам. Считается, что в сочетании с улучшенным распределением нагрузки в стропильных шатровых крышах эти факторы делают шатровые крыши значительно более устойчивыми к повреждениям в результате обычных видов разрушения крыши.Это также подтверждается анализом хрупкости (Kopp et al., 2016; Gavanski and Kopp, 2017).

Один из вопросов, который возникает из-за высоких скоростей ветра, полученных при анализе хрупкости конкретных видов отказов, заключается в том, становятся ли другие режимы слабым звеном в шатровых крышах. Другими словами, не откажет ли структура RTWC по-другому? Цель данной статьи — изучить, возможны ли дополнительные неизученные режимы отказов, и, если они есть, понять условия, необходимые для их возникновения.В данной статье представлен анализ и результаты двумерных численных моделей для стропильных и скатных крыш с рамой для изучения этого момента. Анализ результатов обследования также используется для подтверждения гипотезы о том, что другие виды отказов достаточно распространены для вальмовых крыш.

Обследование ущерба

Данные недавних событий в Соединенных Штатах были получены для изучения в настоящем исследовании. Эти данные были собраны после разрушительных торнадо на юге США, включая торнадо в Мур, Оклахома в 2013 году (EF5) и торнадо в Таскалузе, Алабама (EF4) и Джоплин, штат Миссури (EF5) в 2011 году.Их предоставил авторам доктор Дэвид Преватт из Университета Флориды. Группы судебно-медицинской экспертизы, состоящие из исследователей, инженеров и студентов, провели дни после этих событий, исследуя пострадавшие районы и документируя наблюдаемые повреждения. Их отчеты об этих торнадо можно найти в литературе (Prevatt et al., 2011, 2013; Graettinger et al., 2014). Объединенная база данных предоставляет тысячи изображений повреждений домов, от потери обшивки до полного разрушения.

Торнадо в Мур, штат Оклахома, было определено как событие EF5, с повреждениями в диапазоне от EF0 до EF5, наблюдаемых на пути торнадо.В результате этого события погибли 24 человека и, по оценкам, был нанесен экономический ущерб до 3 миллиардов долларов (Graettinger et al., 2014). Ветры EF0 – EF2 обычно составляют около 85% площади повреждения сильного торнадо EF4 или EF5, и поэтому можно выделить так много этапов развития повреждений. Обследование, проведенное после этого события, послужило источником информации для последующих исследований, включая определение новых методов для улучшенных обследований повреждений, анализа хрупкости компонентов дома и разработки улучшенных лабораторных моделей торнадо (Graettinger et al., 2014). Это также привело к изменениям в строительном кодексе Мура, штат Оклахома, таким образом, что к деревянным каркасным домам предъявляются новые предписывающие требования для смягчения ущерба до DOD-6 (Ramseyer et al., 2014).

Необработанная база данных фотографий, сделанных после торнадо Мура, Тускалуса и Джоплина, используется в настоящем исследовании для изучения природы разрушения вальмовой крыши. В данных выявляется множество случаев частичного разрушения вальмовой крыши. Как и в случае результатов анализа хрупкости, проведенного Kopp et al. (2016), наблюдаемые разрушения вызывают дополнительные вопросы относительно вероятности и условий, при которых могут произойти частичные разрушения вальмовой крыши.Избранные примеры наблюдаемых отказов от Мура показаны на рисунке 3 и обсуждаются ниже.

Рисунок 3 . Разрушение вальмовой крыши в Мур, штат Оклахома, после торнадо EF5 от 21 мая 2013 года. (A) Разрушение передней стороны вальмовых крыш соседних рам с рамой. (B) Отказ передней стороны вальмовой крыши рамочного каркаса с видимым неповрежденным обрамлением противоположной стороны. (C) Разрушение каркаса и обшивки комбинированной вальмовой / двускатной крыши (источник изображения: Dr.Дэвид Преватт).

На рис. 3А показаны соседние дома с шатровой крышей, которые демонстрируют аналогичные повреждения передней поверхности крыши. RTWC, кажется, целы по остальному периметру крыши, и очевидно, что несколько элементов каркаса крыши вышли из строя или были удалены, в дополнение к обшивке, покрывающей эту часть. Справа на фото оставшаяся часть крыши провисает, что дополнительно указывает на то, что нижележащая рама вышла из строя. Дома, показанные на рисунке 3A, были расположены вдоль Кайл Драйв на западной окраине Мура, штат Оклахома.Несколько домов на этом коротком участке имели аналогичные дефекты каркаса вальмовой крыши и были построены примерно в 2006 году (Graettinger et al., 2014). Осмотр фотографий повреждений в этом районе показывает, что из домов с повреждениями крыши DOD-4 или DOD-6, 40% оказались разрушенными из-за аналогичных частичных повреждений. В этих случаях кажется, что рама вышла из строя из-за прибитых соединений между элементами, поскольку сломанных пиломатериалов не видно. В следующем разделе будут представлены дополнительные статистические данные и наблюдения из двух выбранных районов после торнадо в Джоплине, штат Миссури.

На рис. 3В показан отказ, аналогичный показанному на рис. 3А, но для более крутой крыши. RTWC выглядят целыми, и видна большая открытая полость, где элементы каркаса и обшивка были удалены. Как и на Рисунке 3A, очевидно, что эта крыша не страдала исключительно обшивкой, хотя следует отметить меньшую площадь потери обшивки в правой части фотографии. Отсутствие видимых внутренних элементов в полости, особенно тех, которые поддерживают неповрежденную противоположную сторону крыши, убедительно свидетельствует о том, что эта крыша была построена как конструкция с рамой из стержней, в отличие от конструкции, содержащей сборные фермы.По имеющимся данным, многие из неудачных вальмовых крыш использовали каркас из палок.

На рис. 3С показано частичное разрушение комбинированной скатной / двускатной крыши. Этот отказ отличается от тех, которые показаны на рисунках 3A, B, поскольку очевиден отказ материала деревянных элементов. RTWC, по-видимому, целы, нижняя часть крыши потеряла только обшивку с правой стороны и элементы каркаса, помимо обшивки, слева. Возле пика крыши каркас разрушился с обеих сторон.Эта структура, по-видимому, содержит либо фермы, либо стержневой каркас с прочными соединениями. Как показано на рисунке чуть выше RTWC, элементы были соединены или иным образом усилены с помощью деревянных пластин, прибитых гвоздями.

При осмотре повреждений, показанных на Рисунке 3, и аналогичных повреждений на доступных фотографиях становится очевидно, что возможны частичные разрушения каркаса, повторяющиеся режимы разрушения, возникающие в вальмовых крышах. При сравнении этих отказов вальмовой крыши с близлежащими конструкциями на основе данных было определено, что разрушения каркаса могут влиять на некоторые шатровые крыши при скорости ветра EF2, а не разрушения RTWC или потери обшивки.Также отмечается, что конструкция крыши может иметь значение. Наблюдаемые отказы рам-рамок особенно наводят на мысль о том, что характеристики крыш с решетчатым каркасом следует отличать от характеристик стропильных конструкций при анализе и проектировании, а также в настоящем исследовании.

Статистический анализ неисправностей

Для полного анализа возникновения частичных отказов каркаса крыши все наблюдаемые повреждения в пределах диапазонов DOD-4 и DOD-6 должны быть классифицированы, чтобы определить, связаны ли наблюдаемые отказы с обшивкой, RTWC или каркасом крыши.Сортировка данных по районам предлагает дополнительную информацию о тенденциях в небольших регионах по сравнению со всем следом ущерба от события. Как уже упоминалось, данные опроса, предоставленные Университетом Флориды, включают базу данных фотографий. Также предоставляется список всех фотографий, которые использовались для оценки события, включая долготу, широту и рейтинг EF-Scale в каждом месте. Эти данные были нанесены на карту и помечены цветными метками для представления рейтинга EF-Scale. Образец полученной карты показан на рисунке 4.На этой карте показаны две области, проанализированные для получения представленных здесь предварительных статистических данных. Эти районы были расположены на западном конце пути повреждения. Анализируются только данные, соответствующие повреждениям EF1, EF2 и EF3, поскольку эти рейтинги соответствуют скоростям ветра DOD-4 и DOD-6 для крыш жилых домов. На рисунке рейтинги EF1, EF2 и EF3 представлены желтыми, оранжевыми и красными булавками соответственно.

Рисунок 4 . Западный конец пути повреждения торнадо после торнадо 22 мая 2011 г. в Джоплине, Миссури; регионы настоящего исследования обведены белым.

Анализируются две области исследования, выделенные белым цветом на Рисунке 4, и оценивается возникновение различных видов отказов. Фотографии повреждений в отмеченных местах были изучены, и отмечен предполагаемый тип отказа. При этом просмотре данных каждое отдельное жилище оценивалось на предмет того, было ли повреждение вызвано RTWC, обшивкой или повреждением каркаса. Помимо повреждений кровли, включаются разрушения стен, соответствующие DOD-7. Районы исследования были выбраны на основе характеристик домов.Исторические снимки из Google Earth используются для определения первоначальной формы изученных крыш. В районе 1 в левой части рисунка 4 обнаружены дома, которые казались более новыми, в большинстве своем с крутыми шатровыми крышами и большими строениями. Дома в Районе 2 в основном выглядят более старыми каменными домами с неглубокими крышами с деревянным каркасом.

Результаты статистического анализа показаны в Таблице 2. Как показано, в Районе 1 56% домов с соответствующим повреждением вышли из строя из-за частичного разрушения каркаса, в то время как 35% показали признаки отказа RTWC.На Рисунке 5 показан пример крутых вальмовых крыш, видимых повсюду в этом районе, с аэрофотоснимком, показывающим, как повреждение повлияло на площадь поверхности крыши. Во многих случаях были удалены самые большие поверхности крыши, в то время как части конструкции, закрывающие меньшие пространства, остались на месте. Многие из этих построек, по всей видимости, также имели рамную конструкцию.

Таблица 2 . Возникновение режимов разрушения кровли жилых домов в отдельных районах Джоплина, штат Мичиган.

Рисунок 5 . Пример типичного разрушения скатной крыши в Районе 1, включая аэрофотоснимок, показывающий след частичного разрушения (источник изображения: д-р Дэвид Преватт, Google Earth).

Возникновение типов отказов в Районе 2 отличается от такового в Районе 1; Распределение отказов кровли более равномерно по трем режимам, в то время как в Районе 1 наблюдается более высокая частота отказов, которые можно рассматривать как серьезные отказы кровли, то есть подпадающие под DOD-6.В Районе 2 33% показали частичные разрушения каркаса, а 37 и 30% пострадали от отказов RTWC и обшивки, соответственно. Чтобы понять прогрессию повреждения, дома, в которых обрушились стены, подсчитываются на основе наблюдаемого режима разрушения крыши, который, как предполагается, предшествует повреждению стены. Например, в Районе 1 10% домов пострадали от частичного разрушения каркаса крыши и обрушения стен, а 8% пострадали от разрушения RTWC и обрушения стен. Это приводит к 18% случаев обрушения стен в регионе. Взаимосвязи между режимами разрушения стен и кровли требуют дальнейшего изучения для определения причинных эффектов каждого режима разрушения крыши.

Сдвиг в возникновении определенных видов отказов между двумя регионами может быть результатом нескольких факторов; тем не менее, следует отметить, что многие дома в Районе 2 оказались более старой постройки, чем дома в Районе 1, и имели пологую крышу. Хотя это наблюдение может предполагать, что наклон крыши способствует возникновению разрушения каркаса, неясно, какие другие факторы могли иметь дополнительное влияние. Например, отсутствие боковых ограничителей в старых домах могло привести к учащению случаев обрушения стен.В примере, показанном на Рисунке 6, произошел частичный отказ каркаса крыши. Однако этот сбой мог произойти из-за обломков деревьев, видимых на вершине разрушенной крыши. Другие случаи частичного отказа в Районе 2 также неоднозначны, и, поскольку Район 2 находился с подветренной стороны от Района 1, обломки, вероятно, играли большую роль. В любом случае, в обоих регионах частичные отказы возникают по крайней мере так же часто, как и другие виды отказов кровли. Требуется дополнительная работа для получения полного набора статистических данных об этих сбоях и более точного определения региональных условий, которые могут способствовать их возникновению.

Рисунок 6 . Частичное обрушение вальмовой крыши в районе 2 (источник изображения: д-р Дэвид Преватт).

Аналитический метод

Подход и предположения

Метод численного моделирования разработан и проверен для анализа эффектов внутренней нагрузки и прочностных характеристик компонентов деревянной каркасной крыши при ветровом подъеме. После разработки модели для получения сил стержня рассчитываются возможности элемента. Результаты выбранного метода моделирования методом конечных элементов объединены с расчетными значениями пропускной способности элементов.Это позволяет оценить прочностные характеристики структурных компонентов в форме относительных соотношений спроса и мощности (D / C) и определить возможные места уязвимости. В настоящей работе термин «элемент» относится как к элементам деревянного каркаса, так и к соединениям между ними. Оба типа элементов составляют звенья на вертикальном пути нагрузки, и потенциальные отказы могут возникать в любом из них. Подробное объяснение этой работы можно найти в исследовании Стивенсона (2017).

Различия между методами строительства крыши, такими как фермовый каркас и палочный каркас, оцениваются для определения относительной вероятности разрушения каркаса каждого типа. Возможности элементов каркаса крыши также сравниваются с мощностью RTWC, чтобы обеспечить точку отсчета для соотнесения настоящих результатов с обычно наблюдаемыми видами отказов с хорошо установленными скоростями ветра (например, DOD-6). Принятие правильности конструкции в анализах позволяет выявить пробелы в текущем проекте, если обнаруживается вероятность отказа.В противном случае результаты подтвердили бы неправильное строительство в домах с наблюдаемыми неисправностями.

Анализ спроса и мощности секций стропильных и каркасных крыш

Чтобы понять возможность выхода из строя элемента или соединения в каркасе вальмовой крыши, необходимо определить воздействие нагрузки из-за подъема ветра на элементы каркаса и сравнить их со способностями элементов противостоять этим воздействиям. При точном анализе деревянных конструкций необходимо учитывать анизотропные свойства древесины, сложное поведение соединений и многочисленные возможные виды отказов.В опубликованной литературе представлена ​​подробная информация о моделировании нелинейного поведения и установлении критериев отказа для определенных компонентов крыши, но имеется ограниченная информация о других элементах и ​​конструкции каркаса. Чтобы получить сопоставимые результаты и использовать согласованные методы для различных типов конструкций, анализ всех конструкций для настоящего исследования ограничен линейным диапазоном поведения материала. Элементы, которые могут выйти из строя первыми, определяются на основе относительных линейных соотношений D / C.Этого достаточно, чтобы проверить гипотезу о частичных отказах каркаса, хотя для построения кривых хрупкости потребуется дальнейший анализ.

Чтобы наблюдать влияние линейной нагрузки на элементы и соединения кровельной системы, силы элементов рассчитываются посредством моделирования методом конечных элементов с использованием SAP2000. Отдельные фермы и компоненты крыш с решетчатым каркасом моделируются при равномерном отрицательном внешнем давлении, и полученные осевые силы и моменты используются для оценки требований к каждому элементу.Как уже упоминалось, дополнительные сведения о методе проверки и анализа модели предоставлены Стивенсоном (2017).

Конструкции вальмовых крыш, используемые в анализе

При строительстве деревянных каркасов в Канаде и США используются аналогичные подходы, в которых преобладают предписывающие или традиционные конструкции (Canada Mortgage and Housing Corporation, 2014). Для конструкции крыши эти подходы состоят из следующих документов, таких как Международный жилищный кодекс или Часть 9 Национального строительного кодекса Канады, чтобы определить размер элементов, расстояние между ними и требования к крепежам.В Канаде эти требования взяты из табличных значений, основанных на расчетных снеговых нагрузках.

Типовой проект включает в себя как крыши с решетчатым каркасом, так и стропильные крыши, хотя сами фермы должны быть спроектированы и поставляться с инструкциями по уходу, обращению и установке. Фермы, соединенные металлическими пластинами (MPC), проектируются компаниями, специализирующимися на их производстве, на основе распределения вторичной нагрузки. Они становятся преобладающей формой строительства крыш новых жилых домов, по крайней мере, в Канаде (Canada Mortgage and Housing Corporation, 2014).Тем не менее, рамная конструкция все еще используется, и большая часть стареющего жилищного фонда состоит из конструкции палки-каркаса. Как ферменные, так и рамные конструкции требуют рассмотрения в настоящем исследовании, поскольку согласно имеющимся данным обследования, оба типа кровли не работают.

Двухмерный анализ D / C в этой работе использует одну ферму MPC, основанную на тех, которые использовались в натурной вальмовой крыше, испытанной Хендерсоном и др. (2013). Рисунок 7 иллюстрирует расположение фермы; из-за симметрии показана только половина фермы.После анализа фермы была спроектирована вальмовая крыша с рамной рамой в соответствии с профилем и геометрией плана ферменной крыши от Хендерсона и др. (2013), чтобы обеспечить точку сравнения.

Рисунок 7 . Половина смоделированной фермы с маркированными соединениями и элементами.

Для кровли с решетчатым каркасом, Раздел 9.23 NBCC (Канадская комиссия по строительным и противопожарным нормам, 2010) используется для определения соответствующих требований к размещению и размеру элементов, в дополнение к минимальному количеству и направлению гвоздей в каждом стыке.Результирующая структура проиллюстрирована на рисунке 8 с помеченными размерами элементов и расстоянием между ними. Компоновка элементов крыш с решетчатой ​​рамой способствует разделению нагрузки между гранями и отдельными элементами крыши. Вальмовая стропила передает нагрузки между элементами на смежных гранях крыши, а обшивка играет роль в эффектах системы «элемент-элемент» на одной стороне. Из-за такой схемы невозможно извлечь двухмерное поперечное сечение крыши для анализа, как это было сделано в случае ферменной крыши.Вместо этого настоящий анализ крыши с прямоугольной рамой упрощается за счет изучения одного типичного домкрата. При осмотре стропила, ближайшие к центру крыши, считаются наиболее востребованными из-за давления на крышу из-за самых длинных пролетов без опоры. Ожидается, что центральные домкраты будут испытывать самые высокие моменты и внутренние силы сдвига, а их соединения должны будут выдерживать самые большие опорные реакции. Грани крыши идентичны, поэтому выбранный домкрат, показанный на рисунке 9, представляет собой четыре разных домкрата внутри крыши.

Рисунок 8 . Вид сверху проектируемой рамно-шатровой крыши.

Рисунок 9 . Иллюстрация стропила домкрата, выбранная для анализа стержневой рамы.

Численное моделирование скатных крыш с деревянным каркасом

Стратегия разработки модели в этом исследовании состоит в том, чтобы оценить, можно ли использовать более одного упрощенного аналога модели в комбинации, чтобы получить максимально возможное влияние нагрузки на каждый элемент фермы. Такой подход к оболочке считался подходящим для настоящих целей, потому что, сравнивая емкость каждого элемента с его наихудшим сценарием нагрузки, все уязвимые элементы могут быть идентифицированы без траты вычислительных или экспериментальных ресурсов на получение достаточных данных, чтобы сделать нелинейное моделирование возможным.Еще одно преимущество использования максимальных сил состоит в том, что они могут выявить критические условия, которые возможны, но, возможно, не учитывались ранее.

Установлено, что максимальный спрос на каркас фермы постоянно достигается за счет комбинации двух аналогов модели. Одна из моделей использует все шарнирные соединения, а другая — все жесткие соединения. Геометрический аналог моделируется таким образом, что элементы пояса фермы воздействуют на их нижние грани, а элементы перемычки моделируются вдоль их центроидов.Для случая фермы результаты усилий стержня и шарнира извлекаются из обеих моделей и обрабатываются для получения максимальных значений нагрузки на элементы фермы. Максимальный спрос на стропильную планку с рамой также получают от двух моделей; один с шарнирными опорами, а другой с жесткими опорами. В случае каркаса с палкой расчет отдельного стропила можно легко выполнить с помощью ручных расчетов. Тем не менее, SAP2000 используется для того, чтобы выбранные стропила можно было смоделировать с закрепленным и жестким шарниром на опорах и получить результаты максимального усилия в обоих случаях, аналогично методу, используемому в анализе фермы.

Анализ D / C выполняется с использованием результатов спроса после моделей фермы с равномерным подъемом 3,25 фунта / дюйм (0,57 Н / мм). Поднимающие силы ветра моделируются как отрицательное внешнее давление, действующее перпендикулярно поверхности крыши, а вес конструкции учитывается как статическая нагрузка. Эта нагрузка рассчитывается на основе процедуры определения направления из ASCE 7-10 (Structural Engineering Institute, 2010) с использованием базовой скорости ветра 71,5 миль в час (115 км / ч). Путем предварительного моделирования было установлено, что эта скорость ветра соответствует точке, в которой отношение D / C для RTWC равно 1.Считается, что это представляет собой подъемную силу, при которой ожидается выход из строя первого элемента фермы. Для случая стержневой рамы давление, соответствующее 71,5 миль в час, умножается на площадь притока, поддерживаемую стропилами, в результате чего получается равномерно распределенная нагрузка 2,17 фунта / дюйм (0,38 Н / мм).

Важно отметить, что базовая скорость ветра 71,5 миль в час не отражает скорости ветра торнадо и потребует корректировки для прямого сравнения с DOD-6 для жилых построек.Однако на основании этого результата из литературы можно сделать некоторые наблюдения. Моррисон и Копп (2011) протестировали соединения ногтя на пальце ноги при реалистичной ветровой нагрузке и аналогичным образом связали результаты прочности с основной системой сопротивления ветровой нагрузке, а также с расчетными скоростями ветра компонентов и обшивки, используемыми в ACSE 7-05. Скорость ветра 71,5 миль в час согласуется с оценками, приведенными в Таблице 5 Моррисона и Коппа, в которых не учитывается распределение нагрузки между соседними соединениями. При рассмотрении распределения нагрузки расчетные скорости ветра в Morrison and Kopp (2011) увеличиваются.

Примененная скорость ветра 71,5 миль в час намного ниже, чем скорость ветра при разрушении, оцененная по результатам анализа хрупкости, проведенного Коппом и др. (2016) и Гаванский и Копп (2017). Оба исследования рассматривали распределение нагрузки и обнаружили, что при средней вероятности отказа скорость ветра, вызывающая отказ RTWC в откидной крыше, составляет почти 155 миль в час (250 км / ч). Помимо несоответствия из-за распределения нагрузки, различные предположения относительно внутреннего давления, формы крыши и направления ветра могут привести к значительным различиям в расчетных скоростях ветра.Важно напомнить, что настоящее двумерное исследование сосредоточено на относительной уязвимости в пределах каркаса вальмовой крыши и не претендует на определение скорости ветра при разрушении. Согласие между скорректированной скоростью ветра и оценками ASCE 7-05 Моррисона и Коппа подтверждает точность методологии.

Расчет емкости

Минимальные мощности каждого элемента в моделях рассчитываются для сравнения с максимальной потребностью в анализе D / C. Фермы в Henderson et al.(Henderson et al., 2013) вальмовая крыша использовала пиломатериалы SPF № 2, соединенные между собой анкерными плитами MiTek MII-20. Паспорта прочности плит, подготовленные производителем в соответствии с канадскими требованиями к испытаниям анкерных плит (Институт исследований в строительстве, 2009 г.), были получены и используются при расчетах грузоподъемности. По сравнению с оценкой потенциала участников, которая проводится на основе значений, приведенных в таблице в Канадском справочнике по дизайну древесины (Canadian Wood Council / Canadian Standards Association, 2010), совместные мощности требуют значительных усилий для точной оценки.Для расчета пропускной способности соединений в этом исследовании используются проектные спецификации Канадского института решетчатых пластин (2014 г.) для ферм MPC в дополнение к уравнению, предложенному в Lewis et al. (2006) по моменту подключения мощности.

Совместные расчеты несущей способности включают определение несущей способности стальной пластины, деревянного элемента и взаимодействия между ними в соответствующих направлениях (Институт ферменных пластин, 2007 г .; Институт опорных плит Канады, 2014 г.). В случае стержневой рамы возможности соединения двух опор с помощью гвоздей оцениваются на основе расчетных значений без учета факторов и формул из Справочника по дизайну древесины Канады (Canadian Wood Council / Canadian Standards Association, 2010).В зависимости от направления нагрузки, необходимые расчеты поддержки мощности включают в себя те, для сопротивления снятия ногтей и бокового сопротивления.

Уравнения кодовой емкости обычно включают коэффициенты сопротивления материала, которые не учитываются в этом анализе постоянного тока. Уравнение из исследования Lewis et al. (2006) не включает факторы сопротивления, но обсуждение и результаты их исследования показали, что предложенное уравнение было скорректировано, чтобы включить собственный коэффициент безопасности, равный 1.5. Этот запас прочности удален в текущем анализе. Примеры расчетов пропускной способности и примечания, включая соответствующие кодовые уравнения и пункты, для всех требуемых режимов совместной пропускной способности, предоставлены Стивенсоном (2017). Для справки, на Рисунке 7 показаны соединения и элементы фермы, помеченные в соответствии с условными обозначениями, используемыми в анализе, а на Рисунке 9 показаны соединения для смоделированного домкрата.

Результаты спроса и мощности

Отдельные таблицы результатов максимального спроса и минимальной мощности приведены Стивенсоном (2017).В настоящей статье предельные отношения D / C для каждого элемента моделей фермы и стропила показаны в таблицах 3 и 4 соответственно. «Уязвимые» элементы — те, у которых отношение D / C ближе всего к 1 — выделены жирным шрифтом. Соединения со значениями D / C «N / A» либо развивают сжатие в результатах модели, либо содержат элементы, которые являются непрерывными и, следовательно, передают нагрузку через элемент, а не соединение. Результаты из таблицы 3 также схематично показаны на рисунке 10. Как можно видеть, отношения D / C для элементов и соединений сильно различаются по всей ферме.

Таблица 3 . Соотношения нагрузки и мощности (D / C) и определяющие режимы отказа для смоделированной фермы при подъеме на 3,25 фунта / дюйм (0,57 Н / мм).

Таблица 4 . Соотношения между стержнями и совместной нагрузкой (D / C) для смоделированной секции рукояти-рамы при подъеме на 2,17 фунта / дюйм (0,38 Н / мм).

Рисунок 10 . Схема расположения повреждений в ферме, основанная на результатах анализа потребности в мощности (D / C).

Предварительные результаты, полученные при анализе фермы вальмовой крыши, показывают, что RTWC с опорой на пальцах имеет самую низкую относительную прочность с разницей в 40% при соотношении D / C, равном 0.981 по сравнению со следующим по величине отношением 0,695 в элементе верхнего пояса в узле 3. Возможные изменения в пути нагрузки, возможностях элемента, геометрии и допусках фермы могут привести к сдвигам в любом из соотношений D / C; однако, поскольку анализ основан на взятии значений экстремального спроса на элементы каркаса, маловероятно, что отклонения в двух самых низких соотношениях D / C приведут к изменениям в текущих результатах. Ожидается, что RTWC с зацеплением почти всегда выйдут из строя первыми в случае плоской фермы.Однако этот вывод не верен в случае, когда ураганные ремни используются в RTWC. В этом случае отношение D / C ремня RTWC урагана составляет 0,470, что снова сравнивается с 0,695 D / C в верхнем поясе. Применение даже самого простого ремня урагана может привести к повреждению компонентов каркаса фермы.

При том же ветровом подъеме, что и ферма, результаты показывают, что стропила домкрата также наиболее уязвима при RTWC с опорой на пальцы. Анализ стержневой рамы не включает подъемную способность RTWC с ураганными ремнями.Однако ожидается, что установка перемычек на RTWC приведет к отказу на стыке 1, так как это место имеет относительно высокое отношение D / C. Следующее самое слабое соединение, в стыке 2, состоит из семи гвоздей, соединяющих стропило с балкой потолка. Его емкость намного выше — около 5000 Н.

Результаты стержневой рамы аналогичны результатам анализа фермы по двум причинам. Во-первых, они подтверждают общее ожидание того, что RTWC с опущенными пальцами, вероятно, будет наиболее уязвимым элементом вальмовой крыши на этом склоне.Результаты стержневой рамы также указывают на то, что соединение на коньке крыши является следующим наиболее уязвимым элементом. В обеих ситуациях различия в поведении крыши и параметрах подключения делают возможными другие отказы. Это особенно правдоподобно, если принять во внимание ошибки в конструкции, ухудшение характеристик элементов и устаревшие стандарты проектирования, по которым строились старые дома с каркасным домом.

Ограничения

Настоящий статистический анализ и анализ D / C успешно доказывают гипотезу о том, что разрушения каркаса вальмовых крыш возможны (и распространены), и предлагают некоторые условия, которые могут повлиять на режим, при котором может выйти из строя шатровая крыша с деревянным каркасом.Помимо этого вывода, важно отметить ограничения метода двумерного моделирования. Чтобы понять проблему отказов каркаса в деталях, необходимо разработать трехмерные модели, которые учитывают распределение нагрузки и эффекты обшивки. Из-за отсутствия данных и опубликованной информации, помогающей в моделировании соединений металлических пластин и структур стержневой рамы, создание подробных трехмерных моделей в данном исследовании было сочтено неэкономичным.

Дополнительная работа должна также оценить возможные вариации, существующие в компонентах спроса и мощности текущих результатов.На уровне элементов существует множество параметров, которые могут привести к значительному изменению поведения конструкции крыши. Эти параметры связаны с конфигурациями соединений и допусками, изменчивостью свойств древесных материалов и различиями в крепежных изделиях, предлагаемых разными производителями. В более крупном масштабе методы проектирования различаются по регионам, компаниям и даже отдельным инженерам, и строительство домов обычно не подлежит тщательному контролю качества. Вероятность ошибок конструкции и различий в конструкции может быть высокой.Эти изменения могут значительно изменить возможные результаты. Понимание отказов каркаса, помимо их теоретической возможности, является важным следующим шагом в улучшении строительных норм и правил, а также EF-Scale.

Дополнительное обсуждение наблюдаемых отказов рулевой рамы

Неисправности каркаса крыши, представленные в этой статье, описывают несколько различных случаев и факторов, которые могут привести к уязвимостям каркаса. Результаты анализа D / C подтверждают, что потеря элементов или поверхностей вальмовой крыши с рамной рамой может быть вероятной; тем не менее, прогрессирование разрушения больших участков крыши четко не определено.При повторном просмотре данных обследования повреждений и отчета о торнадо в Мур, штат Оклахома (Graettinger et al., 2014), был отмечен дополнительный режим отказа, связанный с корпусом палки-рамы. Этот режим может указывать на неправильную конструкцию внешнего каркаса крыши или на потенциальное влияние каскадных отказов, вызванных разделением нагрузки в конструкциях с рамой из стержней.

На Рисунке 11, по всей видимости, произошло частичное разрушение каркаса и удаление больших секций крыши. Однако при ближайшем рассмотрении становится очевидно, что балки потолка и потолок под ними целы.Только внешние стропила и прикрепленная обшивка были удалены или повреждены. Судя по результатам анализа D / C для каркаса с рамой, этот тип отказа маловероятен из-за относительно прочного соединения между стропилом и балкой потолка. RTWC и соединение вдоль конька крыши кажутся гораздо более уязвимыми при анализе по сравнению с ранее упомянутым соединением с семью гвоздями. Изображенные на рисунке отказы могли возникнуть из-за неправильного или отсутствующего крепежа между стропилом и балкой на верхней плите стены или возникли как разрушение верхнего стропильного соединения.Кроме того, системные эффекты могли привести к прогрессирующему каскадному разрушению соседних стыков, что привело к удалению всех поверхностей крыши после инициирования в одной точке.

Рисунок 11 . Примеры частичного обрыва каркаса, вальмовой крыши с неповрежденными балками перекрытия. (A) Полное снятие внешнего каркаса крыши. (B) Частичное удаление нескольких сторон крыши (источник изображения: доктор Дэвид Преватт).

Как уже упоминалось, анализ D / C для случая стержневой рамы не предсказал, что соединение стропил со стеной будет уязвимым из-за его относительно прочного соединения с балкой потолка.Согласно расчетам несущей способности стропил, соединение стропила с верхней пластиной должно иметь нагрузку 5000 Н, в результате чего соотношение D / C составляет 0,2. При более внимательном рассмотрении фотографий можно предположить, что на концах неповрежденных балок были прибиты соединения; однако похоже, что гвоздей было не больше нескольких. Принимая во внимание, что эти дома не были спроектированы по тем же правилам, что и гипотетическая крыша в настоящем исследовании, необходимо изучить региональные нормативные требования к проектированию в США, чтобы определить, предназначены ли эти соединения для включения большего количества гвоздей.

Отказы, показанные на рисунке 11, и многие другие подобные отказы интересны тем, что они объективно классифицируются в рамках DOD-6 для крыш жилых домов; однако это может быть неточным предположением. Это важный момент для дальнейшего изучения, поскольку он может повлиять на уточнения шкалы EF для различных методов проектирования жилых домов или даже предложить новый DOD для структур с рамой из стержней.

Заключение

Наблюдения за повреждениями и статистические оценки, представленные здесь, расширяют текущее понимание отказов кровли жилых домов и вводят ранее неисследованный режим отказа, характеризующийся повреждением компонентов каркаса крыши.Статистические данные о наблюдаемых повреждениях в выборочных районах из Мура, Оклахома и Джоплина, штат Мичиган, показали, что отказы каркаса могут происходить так же часто, как хорошо изученные виды отказов RTWC и обшивки при скоростях ветра EF1 и EF2. В то время как дома с шатровой крышей обычно считаются более устойчивыми к ветру, чем дома с двускатной крышей, наблюдения за частичными повреждениями каркаса показывают, что шатровые крыши могут быть более уязвимыми, чем предполагалось ранее.

Разработан метод численного моделирования и анализа для дальнейшего исследования поведения обычных компонентов каркаса вальмовой крыши.И фермы, и каркасные конструкции оцениваются для проведения сравнительного исследования двух методов строительства. Результаты двумерного анализа D / C для случаев стропильных и рамных рам были использованы для понимания вероятных мест уязвимости в конструкции каркаса и проверки гипотезы обрушения крыши, происходящего внутри конструкции каркаса. Упрощенный метод моделирования «нагрузка-огибающая» и анализ D / C показали возможность определения уязвимых мест в секциях крыши как с фермами, так и с решетчатым каркасом при ветровом подъеме.Наблюдательные и численные исследования дали следующие основные результаты:

• В районах, изученных с использованием геолокационных фотографий повреждений, до 56% домов в диапазоне повреждений EF1 – EF3 имели частичные разрушения конструкции крыши.

• Тип конструкции может иметь важные последствия для типа разрушения крыши, которому подвергнется дом. В микрорайонах, где 56% повреждений крыш жилых домов произошло из-за частичного разрушения каркаса крыши, дома оказались более новой конструкции с решетчатым каркасом, с большими следами и крутыми крышами.Другой регион, который показал 33% частичных отказов, — это дома, которые выглядели более старыми, с пологими крышами и каменными стенами. Также отмечается, что некоторые из частичных отказов, наблюдаемых в этом регионе, могли быть связаны со ударами обломков.

• Следует отметить, что на наблюдаемых крутых крышах многие из наблюдаемых отказов произошли асимметрично, то есть одна из больших поверхностей крыши разрушилась, а противоположная осталась нетронутой. В отличие от смоделированной крыши, которая в настоящем анализе подвергается воздействию равномерных подъемных давлений, крыши с более крутыми уклонами, вероятно, будут испытывать дисбаланс ветровых нагрузок на наветренной и подветренной сторонах.Влияние изменения уклона крыши, формы плана и направления ветровой нагрузки будет изучено дополнительно, помимо изменений прочности и жесткости материала, на более поздних этапах этого исследования.

• Идентифицирован дополнительный вид отказа, связанный с полным или частичным удалением всей внешней оболочки рам каркасных крыш. Эти отказы предполагают, что стропила, составляющие наклонную часть крыш с решетчатым каркасом, могут не иметь надлежащего крепления на коньке крыши или к балкам перекрытия и стенам под ними.Потеря внешней оболочки кровли из-за этого режима разрушения при осмотре классифицируется как повреждение DOD-6; однако на самом деле это может произойти при более низких скоростях ветра, чем те, которые необходимы для отказа RTWC, как показывает текущий анализ D / C. Этот режим отказа требует дальнейшего изучения, и дополнительная статистика его возникновения будет включена в будущую работу.

• При использовании RTWC с зацеплением, фермы MPC при равномерном подъеме, скорее всего, выйдут из строя через RTWC, что приведет к потере всей конструкции каркаса и потолка.Когда поставляются ураганные ремни, начало разрушения может перейти на элементы фермы и соединения (или на обшивку). Было обнаружено, что критические режимы разрушения в ферменной конструкции связаны с моментами элементов и соединений при подъеме. А именно, соединения верхнего пояса (Соединение 3) и горизонтальный элемент верхнего пояса (TC2) в моделируемой ферме оказались относительно уязвимыми с отношениями D / C 0,70 и 0,66, соответственно, в то время как соотношение D / C RTWC с зацепами был равен 1. Требуемый момент в элементах верхнего пояса увеличивается из-за растягивающих осевых сил, наведенных на эти элементы из-за типичного поведения фермы.

• Случай анализа рамок также показал, что RTWC с ограниченными возможностями являются наиболее уязвимым компонентом в двумерном анализе. Отношение D / C RTWC стержневой рамы составляет 1,129 при той же приложенной высоте, что и ферма. Тем не менее, верхнее стропильное соединение также имеет относительно высокое отношение D / C, равное 0,66. Изучение фотографий, сделанных при обследовании повреждений, показало, что вышедшие из строя крыши с решетчатым каркасом могли иметь менее прочные соединения, чем требовалось по проекту.

• Сравнение двухмерных анализов для случаев стропильных ферм и рам с рамой позволяет предположить, что крыши с рамой с рамой содержат более уязвимые элементы.При эквивалентном ветровом подъеме D / C RTWC фермы составляет 0,98, в то время как RTWC стропил домкрата с рамой на стержнях составляет 1,12. Это как и ожидалось; тем не менее, влияние распределения нагрузки является важным фактором, особенно для случая с рукоятью, который не рассматривается в данном исследовании.

Авторские взносы

СС — доктор философии. студент под совместным руководством ГК и А.А. Это исследование является частью работы, выполненной над диссертацией СС. Гипотеза и подход к работе были разработаны авторами совместно.SS выполнил весь анализ, интерпретировал данные, а также подготовил, оценил и подготовил рукопись для подачи под непосредственным контролем GK и AA. Г.К. и А.А. рекомендовали дизайн анализа, интерпретацию результатов и оценку рукописи для публикации. Авторы соглашаются нести ответственность за все аспекты работы, гарантируя, что вопросы, связанные с точностью или целостностью любой части работы, должным образом исследованы и решены.

Заявление о конфликте интересов

Авторы заявляют, что исследование проводилось в отсутствие каких-либо коммерческих или финансовых отношений, которые могли бы быть истолкованы как потенциальный конфликт интересов.

Благодарности

Эта работа финансировалась Канадским советом по естественным наукам и инженерным исследованиям в рамках программы совместных исследований и разработок в сотрудничестве с Chaucer Syndicates Ltd. и Институтом сокращения катастрофических потерь (ICLR). Выражаем признательность за постоянную поддержку со стороны г-на Геро Мишеля (Чосер) и г-на Поля Ковача (ICLR). Авторы также благодарны докторам. Дэвиду Преватту (Университет Флориды) и Дэвиду Руче (Университет Оберна) за предоставление данных обследования ущерба, ценные предложения и соответствующую литературу, а также Национальному научному фонду (NSF) за предоставление финансовой поддержки полевым исследованиям, приведшим к нанесению ущерба. данные опроса.Вышеупомянутые исследования ущерба были поддержаны исследовательским грантом NSF 1150975 и программой грантов NSF RAPID.

Список литературы

Амини, М. О., и ван де Линдт, Дж. У. (2014). Количественное понимание рациональных расчетных скоростей ветра торнадо для деревянных каркасных конструкций жилых домов с использованием подхода хрупкости. J. Struct. Англ. 140. doi: 10.1061 / (ASCE) ST.1943-541X.0000914

CrossRef Полный текст | Google Scholar

Канадская ипотечная и жилищная корпорация.(2014). Канадское деревянное каркасное домостроение , 3-е изд. Канада: Правительство Канады.

Google Scholar

Канадская комиссия по строительным и противопожарным кодексам. (2010). Национальный строительный кодекс Канады , 13-е изд. Оттава: Национальный исследовательский совет Канады.

Google Scholar

Канадский совет по древесине / Канадская ассоциация стандартов. (2010). Руководство по деревянному дизайну: Полный справочник по деревянному дизайну в Канаде . Оттава, Онтарио: Канадский совет по древесине.

Google Scholar

Гаванский Э., Копп Г. А. (2017). Оценка уязвимости повреждений примыкания кровли к стене каркасных домов при сильном ветре. J. Risk Uncertainty Eng. Syst. 3. DOI: 10.1061 / AJRUA6.0000916

CrossRef Полный текст | Google Scholar

Graettinger, A.J., Ramseyer, C.C., Freyne, S., Prevatt, D.O., Myers, L., Dao, T., et al. (2014). Оценка ущерба от торнадо после торнадо Мура 20 мая 2013 года .Таскалуса, штат Алабама: Университет Алабамы.

Google Scholar

Хендерсон Д. Дж., Моррисон М. Дж. И Копп Г. А. (2013). Реакция креплений, прибитых гвоздями, крыша к стене, на экстремальные ветровые нагрузки в полноразмерной шатровой крыше с деревянным каркасом. Eng. Struct. 56, 1474–1483. DOI: 10.1016 / j.engstruct.2013.07.001

CrossRef Полный текст | Google Scholar

Институт исследований в строительстве. (2009). Оценочный лист CCMC 11996-L: MT-20 и MII-20 .Оттава, Онтарио: Национальный исследовательский совет Канады.

Google Scholar

Копп Г. А., Хонг Э., Гавански Э., Стедман Д. и Силлс Д. М. (2016). Оценка скорости ветра на основе наблюдений за ущербом от торнадо в Ангусе (Онтарио) 17 июня 2014 г. Can. J. Civil Eng. 44, 37–47. DOI: 10.1139 / cjce-2016-0232

CrossRef Полный текст | Google Scholar

Копп Г. А., Моррисон М. Дж. И Хендерсон Д. Дж. (2012). Натурные испытания малоэтажных жилых домов при реалистичных ветровых нагрузках. J. Wind Eng. Ind. Aerodyn. 104–106, 25–39. DOI: 10.1016 / j.jweia.2012.01.004

CrossRef Полный текст | Google Scholar

Льюис, С. Л., Мейсон, Н. Р., Крамер, С. М., Верт, Д. К., О’Реган, П. Дж., Петров, Г. и др. (2006). «Расчет металлических пластин, соединяющих стыки деревянных ферм на момент», 9-я Всемирная конференция по деревообрабатывающей промышленности (Портленд, Орегон). Доступно по адресу: http://support.sbcindustry.com/Archive/2006/aug/Paper_322.pdf

Google Scholar

Мичем, Д.(1992). Повышенная эффективность вальмовых крыш при сильном ветре — пример из практики. J. Wind Eng. Ind. Aerodyn. 43, 1717–1726. DOI: 10.1016 / 0167-6105 (92)

-V

CrossRef Полный текст | Google Scholar

Мичем Д., Сарри Д. и Давенпорт А. Г. (1991). Величина и распределение ветровых нагрузок на вальмовые и двускатные крыши. J. Wind Eng. Ind. Aerodyn. 38, 257–272. DOI: 10.1016 / 0167-6105 (91) -Y

CrossRef Полный текст | Google Scholar

Мехта, К.С. (2013). Разработка шкалы EF для интенсивности торнадо. J. Disaster Res. 8, 1034–1041. DOI: 10.20965 / jdr.2013.p1034

CrossRef Полный текст | Google Scholar

Моррисон, М. Дж., И Копп, Г. А. (2011). Эффективность соединения гвоздя и пальца при реалистичной ветровой нагрузке. Eng. Struct. 33, 69–76. DOI: 10.1016 / j.engstruct.2010.09.019

CrossRef Полный текст | Google Scholar

Prevatt, D.O., Coulbourne, W., Graettinger, A.J., Pei, S., Гупта, Р., и Грау, Д. (2013). Джоплин, Миссури, Торнадо от 22 мая 2011 г .: Обследование структурных повреждений и аргументы в пользу устойчивых к торнадо строительных норм . Рестон, Вирджиния: Американское общество инженеров-строителей.

Google Scholar

Prevatt, D.O., van de Lindt, J. W., Graettinger, A.J., Coulbourne, W., Gupta, R., Pei, S., et al. (2011). Исследование повреждений и будущее направление структурного проектирования после торнадо Таскалуса 2011 года . Гейнсвилл, Флорида: Университет Флориды.

Google Scholar

Ramseyer, C., Floyd, R., Holliday, L., and Roswurm, S. (2014). «Влияние систем крепления поперечной нагрузки на повреждение и живучесть жилых конструкций, пострадавших от торнадо в Мур, Оклахома, 20 мая 2013 г.», в материалах Proceedings of the Structures Congress 2014 (Boston, MA: ASCE), 1484–1507.

Google Scholar

Симмонс, К. М., Ковач, П., и Копп, Г. А. (2015). Снижение ущерба от торнадо: анализ выгод и затрат улучшенных строительных норм и правил в Оклахоме. Клим. Soc. 7, 169–178. DOI: 10.1175 / WCAS-D-14-00032.1

CrossRef Полный текст | Google Scholar

Спаркс, П. Р., Шифф, С. Д., и Рейнхольд, Т. А. (1994). Повреждение ограждающих конструкций домов ветром и последующие страховые убытки. J. Wind Eng. Ind. Aerodyn. 5, 145–155. DOI: 10.1016 / 0167-6105 (94) -X

CrossRef Полный текст | Google Scholar

Откидная крыша, 7 лотков