Последовательное соединение светодиодов: Последовательное и параллельное соединение светодиодов
Последовательное и параллельное соединение светодиодов
При конструировании различных электронных устройств часто возникает необходимость в последовательном, параллельном или комбинированном включении элементов. Не стали исключением и светодиоды. Учитывая их небольшие размеры, а также с целью повышения яркости, в одном корпусе осветительного прибора можно разместить несколько LED-чипов.
Как правильно собрать электрическую цепь, чтобы надёжность схемы была на высоком уровне? Что нужно знать о светодиодах, соединяя их параллельно или последовательно?
Параллельное соединение
Необходимость в параллельном включении возникает в случае, когда напряжения источника питания недостаточно для запитки нескольких последовательно соединённых светодиодов. Теоретически, в самом простом варианте можно было бы отдельно объединить все аноды и все катоды излучающих диодов. После чего подключить их к источнику напряжения с соблюдением полярности.
Но такая схема не работоспособна, так как дифференциальное сопротивление открытого светодиода чрезмерно мало, что провоцирует режим короткого замыкания. В результате все светодиоды в цепи единожды вспыхнут и навсегда погаснут.
Но как говорят: «Правило без исключений не бывает». В китайских игрушках и зажигалках с подсветкой можно увидеть, что светодиоды запитаны прямо от батареек без каких-либо промежуточных элементов. Почему они не перегорают? Дело в том, что ток в цепи ограничен внутренним сопротивлением круглых батареек типа AG1. Их мощности недостаточно, чтобы нанести вред светодиоду.
Ограничить резкое нарастание тока в нагрузке можно с помощью резистора. О том, как это грамотно сделать с одним светодиодом, подробно написано в данной статье. Для цепи из нескольких параллельно подключенных LED с одним резистором схема примет следующий вид.
Но и этот вариант не пригоден для конструирования осветительных устройств с высокой надёжностью. Почему? Ответ на этот вопрос кроется в особенностях строения полупроводников. В процессе производства полупроводниковых элементов невозможно получить два абсолютно одинаковых прибора. Даже у светодиодов из одной партии будет разное дифференциальное (внутреннее) сопротивление, от которого зависит величина прямого напряжения. Это касается не только светодиодов, но и других полупроводников. Среди диодов, транзисторов и тиристоров тоже не найти двух приборов с равными электрическими параметрами.
Из второй схемы видно, что резистор R1 ограничивает только суммарный ток цепи, который затем распределяется по ветвям со светодиодами в зависимости от их сопротивления. По закону Ома светодиод с наименьшим сопротивлением p-n-перехода получит наибольшую порцию тока. И скорее всего он будет больше номинального значения, что ускорит деградацию кристалла. Работа светодиода в режиме перегрузки по току рано или поздно приведёт к выходу из строя на обрыв. Оставшиеся в работе светодиоды распределят между собой ток сгоревшего элемента, что также приведёт к резкой потере яркости.
Как и в первом варианте, китайцы не стесняются конструировать светильники на базе «полурабочих» схем.
Схему с одним резистором часто можно встретить в дешёвых фонариках и маломощных светильниках на пальчиковых батарейках. А чтобы светодиоды проработали хотя бы год, сопротивление резистора умышленно завышают, как бы, исключая возможные перегрузки.
Ниже приведен единственно верный вариант параллельного включения светодиодов.
Здесь последовательно с каждым светодиодом подключен ограничительный резистор. Такое схемотехническое решение позволяет выровнять токи в каждой отдельной ветви, не позволяя им превышать рабочее значение.
Подключать светодиоды через резистор рекомендуется только от стабилизированного источника постоянного напряжения.
Пример расчета
Для закрепления теоретических знаний параллельное соединение светодиодов рассмотрим на конкретном примере.
В схеме включены два светодиода: слаботочный красный и мощный одноваттный белый, которые для удобства можно запитать от разных выключателей.
Дано:
- источник напряжения U = +5 В;
- LED1 – красного свечения с ULED1 = 1,8 В и ILED1 = 0,02 А;
- LED2 – белого свечения с ULED2 = 3,2 В и ILED2 = 0,35 А.
Требуется рассчитать параметры и выбрать резисторы R1 и R2.
При параллельном включении к обеим ветвям (R1-LED1 и R2- LED2) прикладывается одинаковое напряжение, равное 5 В. Сопротивление каждого резистора определим по формуле:
Округляем полученное значение R2 до ближайшего большего значения из стандартного ряда E24 – 5,1 Ом. Подставив его обратно в формулу, находим реальный ток во второй ветви: С учетом возможного отклонения сопротивления выбранного резистора, которое для ряда Е24 может достигать 5%, ток 0,33 А является оптимальным. Снижение рабочего тока примерно на 4% сильно не повлияет на яркость, но позволит светодиоду работать без перегрузок.
Мощность, которую должны рассеивать резисторы, определим с учетом пересчёта тока LED2 по формуле:
Резистор R1 подойдёт любой как планарный, так и с выводами сопротивлением 160 Ом и мощностью 0,125 Вт. Корпус резистора R2 должен эффективно отводить тепло в течение длительной работы светильника. Поэтому его выбираем с двойным запасом по мощности, а именно: 5,1 Ом – 1 Вт.
Последовательное соединение
В последовательном включении светодиодов нужно соблюдать правило: «Напряжение источника питания должно быть больше суммы падений напряжений на светодиодах».
Остаток напряжения в неравенстве гасится одним единственным резистором R, правильное включение которого показано на схеме. Все светодиоды подключаются поочередно от анода к катоду. Сопротивление резистора задаёт ток цепи. Это значит, что соединять последовательно можно светодиоды только с одинаковым рабочим током.
Пример расчета
Расчет сопротивления и мощности резистора проведём на примере включения трёх белых светодиодов из серии Cree XM-L, для которых характерным является ток ILED = 0,7 А и прямое напряжение ULED = 2,9 В. Взяв за основу цветовую температуру и требуемую яркость, можно последовательно подключать светодиоды из разных групп в пределах серии XM-L. Например, один Cree XM-L-T6 с ТС=5000°K и два Cree XM-L-T2 с ТС=2600°K, которые в итоге дадут мощный поток нейтрального света.
Питание на схему поступает от блока стабилизированного напряжения U = +12 В. Сопротивление резистора находим по закону Ома: Ближайший стандартный номинал – 4,7 Ом, при котором ток теоретически будет равен 0,702 А. Это не критично, но следует быть уверенным, что сопротивление резистора не изменится под влиянием температуры во время работы. Поэтому устанавливать нужно либо прецизионный резистор с допуском менее 1%, либо последовательно с R1 = 4,7 Ом запаять ещё одно сопротивление 0,1-0,2 Ом такой же мощности.
Найдём мощность резистора:
По аналогии с расчётами для первой схемы устанавливать нужно резистор примерно с двойным запасом по мощности, то есть один на 5 Вт. Можно его заменить на два штуки по 2 Вт, но тогда придётся пересчитать сопротивление.
Два важных момента
В момент первого включения желательно измерить мультиметром ток в цепи и падение напряжения на каждом светодиоде. Если полученные данные будут отличаться от расчётных, то нужно пересчитать сопротивление резистора. Иначе, ток в схеме может оказаться слишком заниженным (с потерей яркости) или завышенным (с перегревом чипа светодиода).
Как в последовательном, так и в параллельном включении светодиодов нельзя делать расчеты, ссылаясь исключительно на способность источника питания обеспечить нужный ток или напряжение. Важны оба этих параметра, произведение которых даёт мощность. Мощность блока питания всегда должна быть больше мощности потребления, чтобы гарантировать стабильную и продолжительную работу всего устройства.
Правильная схема подключения светодиодов: последовательно или параллельно
Самое правильное подключение нескольких светодиодов — последовательное. Сейчас объясню почему.
Дело в том, что определяющим параметром любого светодиода является его рабочий ток. Именно от тока через светодиод зависит то, какова будет мощность (а значит и яркость) светодиода. Именно превышение максимального тока приводит к чрезмерному повышению температуры кристалла и выходу светодиода из строя — быстрому перегоранию либо постепенному необратимому разрушению (деградации).
Ток — это главное. Он указан в технических характеристиках светодиода (datasheet). А уже в зависимости от тока, на светодиоде будет то или иное напряжение. Напряжение тоже можно найти в справочных данных, но его, как правило, указывают в виде некоторого диапазона, потому что оно вторично.
Для примера, заглянем в даташит светодиода 2835:
Как видите, прямой ток указан четко и определенно — 180 мА. А вот напряжение питания светодиодов при таком токе имеет некоторый разброс — от 2.9 до 3.3 Вольта.
Получается, что для того, чтобы задать требуемый режим работы светодиода, нужно обеспечить протекание через него тока определенной величины. Следовательно, для питания светодиодов нужно использовать источник тока, а не напряжения.
Источник тока (или генератор тока) — источник электрической энергии, который поддерживает постоянное значение силы тока через нагрузку с помощью изменения напряжения на своем выходе. Если сопротивление нагрузки, например, возрастает, источник тока автоматически повышает напряжение таким образом, чтобы ток через нагрузку остался неизменным и наоборот. Источники тока, которыми запитывают светодиоды, еще называют драйверами.
Конечно, к светодиоду можно подключить источник стабилизированного напряжения (например, выход лабораторного блока питания), но тогда нужно точно знать какой величины должно быть напряжение для получения заданного тока через светодиод.
Например, в нашем примере со светодиодом 2835, можно было бы подать на него где-то 2.5 В и постепенно повышать напругу до тех пор, пока ток не станет оптимальным (150-180 мА).
Так делать можно, но в этом случае придется настраивать выходное напряжение блока питания под каждый конкретный светодиод, т.к. все они имеют технологический разброс параметров. Если, подключив к одному светодиоду 3.1В, вы получили максимальный ток в 180 мА, то это не значит, что поменяв светодиод на точно такой же из той же партии, вы не сожжёте его (т.к. ток через него при напряжении 3.1В запросто может превысить максимально допустимое значение).
К тому же необходимо очень точно поддерживать напряжение на выходе блока питания, что накладывает определенные требования к его схемотехнике. Превышение заданного напряжения всего на 10% почти гарантированно приведет к перегреву и выходу светодиода из строя, так как ток при этом превысит все мыслимые значения.
Вот прекрасная иллюстрация к вышесказанному:
А самое неприятное то, что проводимость любого светодиода (который по сути является p-n-переходом) находится в очень сильной зависимости от температуры. На практике это приводит к тому, что по мере разогрева светодиода, ток через него начинает неумолимо возрастать. Чтобы вернуть ток к требуемому значению, придется понижать напряжение. В общем, как ни крути, а без контроля тока никак не обойтись.
Поэтому самым правильным и простым решением будет использовать для подключения светодиодов драйвера тока (он же источник тока). И тогда будет совершенно неважно, какой вы возьмете светодиод и каким будет прямое напряжение на нем. Нужно просто найти драйвер на нужный ток и дело в шляпе.
Теперь, возвращаемся к главному вопросу статьи — почему все-таки последовательное подключение, а не параллельное? Давайте посмотрим, в чем разница.
Параллельное подключение
При параллельном подключении светодиодов, напряжение на них будет одинаковым. А так как не существует двух диодов с абсолютно одинаковыми характеристиками, то будет наблюдаться следующая картина: через какой-то светодиод будет идти ток ниже номинального (и светить он будет так себе), зато через соседний светодиод будет херачить ток в два раза превышающий максимальный и через полчаса он сгорит (а может и быстрее, если повезет).
Очевидно, что такого неравномерного распределения мощностей нужно избегать.
Для того, чтобы существенно сгладить разброс в ТТХ светодиодов, лучше подключать их через ограничительные резисторы. Напряжение блока питания при этом может быть существенно выше прямого напряжения на светодиодах. Как подключать светодиоды к источнику питания показано на схеме:
Проблема такой схемы подключения светодиода в том, что чем больше разница между напряжением блока питания и напряжением на диодах, тем больше бесполезной мощности рассеивается на ограничительных резисторах и тем, соответственно, ниже КПД всей схемы.
Ограничение тока происходит по простой схеме: повышение тока через светодиод приводит к повышению тока и через резистор тоже (т.к. они включены последовательно). На резисторе увеличивается падение напряжения, а на светодиоде, соответственно, уменьшается (т.к. общее напряжение постоянно). Уменьшение напряжения на светодиоде автоматически приводит к снижению тока. Так все и работает.
В общем, сопротивление резисторов рассчитывается по закону Ома. Разберем на конкретном примере. Допустим, у нас есть светодиод с номинальным током 70 мА, рабочее напряжение при таком ток равно 3.6 В (это все берем из даташита к светодиоду). И нам нужно подключить его к 12 вольтам. Значит, нам нужно рассчитать сопротивление резистора:
Получается, что для питания светодиода от 12 вольт нужно подключить его через 1-ваттный резистор на 120 Ом.
Точно таким же образом, можно посчитать, каким должно быть сопротивление резистора под любое напряжение. Например, для подключение светодиода к 5 вольтам сопротивление резистора надо уменьшить до 24 Ом.
Значения резисторов под другие токи можно взять из таблицы (расчет производился для светодиодов с прямым напряжением 3.3 вольта):
Uпит | ILED | ||||||||
---|---|---|---|---|---|---|---|---|---|
5 мА | 10 мА | 20 мА | 30 мА | 50 мА | 70 мА | 100 мА | 200 мА | 300 мА | |
5 вольт | 340 Ом | 170 Ом | 85 Ом | 57 Ом | 34 Ом | 24 Ом | 17 Ом | 8.5 Ом | 5.7 Ом |
12 вольт | 1.74 кОм | 870 Ом | 435 Ом | 290 Ом | 174 Ом | 124 Ом | 87 Ом | 43 Ом | 29 Ом |
24 вольта | 4.14 кОм | 2.07 кОм | 1.06 кОм | 690 Ом | 414 Ом | 296 Ом | 207 Ом | 103 Ом | 69 Ом |
При подключении светодиода к переменному напряжению (например, к сети 220 вольт), можно повысить КПД устройства, взяв вместо балластного резистора (активного сопротивления) неполярный конденсатор (реактивное сопротивление). Подробно и с конкретными примерами мы разбирали этот момент в статье про подключение светодиода к 220 В.
Последовательное подключение
При последовательном же подключении светодиодов через них протекает один и тот же ток. Количество светодиодов не имеет значение, это может быть всего один светодиод, а может быть 20 или даже 100 штук.
Например, мы можем взять один светодиод 2835 и подключить его к драйверу на 180 мА и светодиод будет работать в нормальном режиме, отдавая свою максимальную мощность. А можем взять гирлянду из 10 таких же светодиодов и тогда каждый светодиод также будет работать в нормальном паспортном режиме (но общая мощность светильника, конечно, будет в 10 раз больше).
Ниже показаны две схемы включения светодиодов, обратите внимание на разницу напряжений на выходе драйвера:
Так что на вопрос, каким должно быть подключение светодиодов, последовательным или параллельным, может быть только один правильный ответ — конечно, последовательным!
Количество последовательно подключенных светодиодов ограничено только возможностями самого драйвера.
Идеальный драйвер может бесконечно повышать напряжение на своем выходе, чтобы обеспечить нужный ток через нагрузку, поэтому к нему можно подключить бесконечное количество светодиодов. Ну а реальные устройства, к сожалению, имеют ограничение по напряжению не только сверху, но и снизу.
Вот пример готового устройства:
Мы видим, что драйвер способен регулировать выходное напряжение только лишь в пределах 64…106 вольт. Если для поддержания заданного тока (350 мА) нужно будет поднять напряжение выше 106 вольт, то облом. Драйвер выдаст свой максимум (106В), а уж какой при этом будет ток — это от него уже не зависит.
И, наоборот, к такому led-драйверу нельзя подключать слишком мало светодиодов. Например, если подключить к нему цепочку из 10-ти последовательно включенных светодиодов, драйвер никак не сможет понизить свое выходное напряжение до необходимых 32-36В. И все десять светодидов, скорее всего, просто сгорят.
Наличие минимального напряжения объясняется (в зависимости от схемотехнического решения) ограничениями мощности выходного регулирующего элемента либо выходом за предельные режимы генерации импульсного преобразователя.
Разумеется, драйверы могут быть на любое входное напряжение, не обязательно на 220 вольт. Вот, например, драйвер превращающий любой источник постоянного напряжения (блок питания) от 6 до 20 вольт в источник тока на 3 А:
Вот и все. Теперь вы знаете, как включить светодиод (один или несколько) — либо через токоограничительный резистор, либо через токозадающий драйвер.
Как выбрать нужный драйвер?
Тут все очень просто. Выбирать нужно всего лишь по трем параметрам:
- выходной ток;
- максимальное выходное напряжение;
- минимальное выходное напряжение.
Выходной (рабочий) ток драйвера светодиодов — это самая важная характеристика. Ток должен быть равен оптимальному току для светодиодов.
Например, в нашем распоряжении оказалось 10 штук полноспектральных светодиодов для фитолампы:
Номинальный ток этих диодов — 700 мА (берется из справочника). Следовательно, нам нужен драйвер тока на 700 мА. Ну или чуточку меньше, чтобы продлить срок жизни светодиодов.
Максимальное выходное напряжение драйвера должно быть больше, чем суммарное прямое напряжение всех светодиодов. Для наших фитосветодиодов прямое напряжение лежит в диапазоне 3…4 вольта. Берем по-максимуму: 4В х 10 = 40В. Наш драйвер должен быть в состоянии выдать не менее 40 вольт.
Минимальное напряжение, соответственно, рассчитывается по минимальному значению прямого напряжения на светодиодах. То есть оно должно быть не более 3В х 10 = 30 Вольт. Другими словами, наш драйвер должен уметь снижать выходное напряжение до 30 вольт (или ниже).
Таким образом, нам нужно подобрать схему драйвера, рассчитанного на ток 650 мА (пусть будет чуть меньше номинального) и способного по необходимости выдавать напряжение в диапазоне от 30 до 40 вольт.
Следовательно, для наших целей подойдет что-нибудь вроде этого:
Разумеется, при выборе драйвера диапазон напряжений всегда можно расширять в любую сторону. Например, вместо драйвера с выходом на 30-40 В прекрасно подойдет тот, который выдает от 20 до 70 Вольт.
Примеры драйверов, идеально совместимых с различными типами светодиодов, приведены в таблице:
Светодиоды | Какой нужен драйвер |
---|---|
60 мА, 0.2 Вт (smd 5050, 2835) | см. схему на TL431 |
150мА, 0.5Вт (smd 2835, 5630, 5730) | драйвер 150mA, 9-34V (можно одновременно подключить от 3 до 10 светодиодов) |
300 мА, 1 Вт (smd 3528, 3535, 5730-1, LED 1W) | драйверы 300мА, 3-64V (на 1-24 последовательно включенных светодиода) |
700 мА, 3 Вт (led 3W, фитосветодиоды) | драйвер 700мА (для 6-10 светодиодов) |
3000 мА, 10 Ватт (XML2 T6) | драйвер 3A, 21-34V (на 7-10 светодиодов) или см. схему |
Кстати, для правильного подключения светодиодов вовсе не обязательно покупать готовый драйвер, можно просто взять какой-нибудь подходящий блок питания (например, зарядник от телефона) и прикрутить к нему простейший стабилизатор тока на одном транзисторе или на LM317.
Готовые схемы стабилизаторов тока для светодиодов можно взять из этой статьи.
Подключение светодиодов
Подключение светодиодов дело несложное, достаточно помнить школьный курс физики и соблюдать некоторые правила.
На этой страничке мы кратко изложим, как правильно подключить светодиод, чтоб он не сгорел и светил Вам долго.
Надо помнить, что главный параметр у светодиода — ток(I), а не напряжение (V), т.е. светодиод надо запитывать стабилизированным током, величина которого указывается производителем на конкретный тип светодиодов.
Ток на светодиоды можно ограничить резистором, а можно подключить к драйверу светодиодов (стабилизатору тока). Подключение светодиодов через драйвер является предпочтительным, так как драйвер обеспечивает стабильный ток на светодиоде независимо от изменения напряжения на его входе.
Подключение светодиода к драйверу (стабильному источнику тока) следует производить так: сначала подключаем светодиод к драйверу, потом подаём напряжение на драйвер.
Виды подключения:
- Последовательное — Минус светодиода соединяется с плюсом следующего и т.д. до набора требуемого количества. При последовательном подключении светодиодов падение напряжения на светодиоде, указанное производителем, умножается на количество светодиодов в цепочке. Например, у нас 3 светодиода с номинальным током 350 mA. и падением напряжения 3.0 вольта, 3.0х3=9 вольт, т.е. нам будет нужен стабализированный источик тока 350 mA. 10-12 вольт.
- Параллельное — Плюс соединяется с плюсом, минус с минусом. При параллельном соединении суммируется ток, падение напряжения остаётся неизменным, т.е., если у Вас 3 светодиода с характеристиками: 350 mA. 3.0 V., то 0.35+0.35+0.35=1.05 А. Вам нужен источник тока с параметрами 3-5 V. 1.05 А.
- Последовательно-параллельное — При таком подключении несколько последовательных цепочек соединяются параллельно. Следует учитывать, что кол-во светодиодов в цепочках должно быть равным. Источник тока подбирается исходя из падения напряжения на одной цепочке и произведению тока на кол-во цепочек. Т.е. 3 последовательные цепочки с параметрами 12 V 350 A. подключаем параллельно, напряжение остаётся 12 V, ток 0.35х3=1.05 А., значит, нам нужен источник с параметрами 12-15 вольт и током 1050 mA.
Подключение через резистор (сопротивление) .
Закон Ома: U= R*I, отсюда R = U/I , где R — сопротивление — измеряется в Омах , U — напряжение- измеряется в вольтах (В) , I — ток- измеряется в амперах (А). ПРИМЕР: Источник питания Vs = 12 в , светодиод — 2,0 в , 20 мА , найти R. Преобразуем миллиамперы в амперы: 20мА = 0.02 А . Теперь посчитаем R , R = 10/0.02 R = 500 Om. Так как на сопротивлении у нас рассеивается 10 вольт ( 12 — 2.0 ), необходимо посчитать мощность сопротивления (чтоб оно не сгорело) Р = U *I, считаем: P = 10*0.02A = 0.2Bт . R = 500 Om , 0.2Bт. Последовательное соединение светодиодов:
При последовательном подключении порядок расчета тот же, только нужно учесть, что падение напряжения на резисторе будет меньше, т.е. от источника питания (Vs) надо отнять суммарное падение напряжения на светодиодах (VL): VL = 3*2 =6В (источник у нас 12В значит 12 — 6 = 6В), подставляем R = 6/0,02 = 300 Ом. Считаем мощность Р = 6*0.02 = 0.12вт. Берём резистор 300 Ом 0.125 вт.
Последовательно-параллельное подключение:
Стабилизатор тока на LM 317.
R! Ом |
Iвых.мА |
68 |
18 |
10 |
120 |
3.9 |
320 |
1.8 |
700 |
1.3 |
1000 |
В таблице даны значения сопротивления (R1) и выходного тока (Iвых), данную схему можно считать простейшим светодиодным драйвером. Следует учитывать, что при токе больше 350 мА микросхему следует ставить на радиатор. К достоинствам данной схемы можно отнести малое количество деталей и простоту изготовления. Недостаток: низкий КПД.
Драйвер светодиода — источник стабилизированного тока для питания светодиода (светодиодов).
Существует много разновидостей драйверов для светодиодов, что значительно упрощает разработку светотехнических приборов на основе светодиодов для тех или иных условий эксплуатации. Например: AC — DC драйвер работает от переменного входного напряжения. Бывает со входом, рассчитанным на 85 — 280 вольт и 12 — 24 вольта, может иметь в схеме корректор коэффициента мощности (ККМ), фильтры радиопомех, всевозможные защиты, повышающие надёжность и безопасность эксплуатации драйвера, и наличие или отсутствие гальванической развязки выхода и питающей сети. Так как в этих драйверах применяется импульсная схема преобразования входного напряжения, эти драйверы имеют высокий КПД.
При работе с драйвером, не имеющим гальванической развязки по питанию, для избежания поражения электрическим током, следует быть особенно внимательным.
DC — DC драйвер — работающий от постоянного входного напряжения. Бывают понижающие (buck) и повышающие (boost)
Подключение светодиода (светодиодов) к драйверу. Возьмём драйвер MR16 3x1W, выходной ток 300 мА. Этот драйвер относится к понижающим, может работать как от переменного напряжения величиной 12 вольт, так и от постоянного. Драйвер позволяет подключить 3 одноваттных светодиода, соединённых последовательно.
Однако, к нему можно подключить и 6 полуваттных диодов, например (SMD5730). В этом случае светодиоды подключаются последовательно — параллельно. Так как у этих светодиодов максимальный ток 150 мА., а падение напряжения 3-3.2 вольта, то у нас получится две цепочки диодов, соединённых параллельно, а в каждой цепочке по три светодиода соединены последовательно.
Также можно подключать и более маломощные светодиоды, только параллельных цепочек в этом случае будет больше. Этот драйвер хорошо подходит для подключения светодиодов в автомобиле.
Комбинированное (последовательно-параллельное) подключение применяется, в основном, когда есть необходимость в подключении большого количества светодиодов к источнику тока с низким выходным напряжением. Возьмём, к примеру, мощную светодиодную матрицу 50 ватт, она содержит в себе 50 одноваттных кристаллов. Схема включения кристаллов в такой матрице: 5 параллельных групп по 10 кристаллов в каждой группе, соединённых последовательно. При данном включении кристаллов напряжение питания такой матрицы составляет 32-36 вольт, или светодиодную линейку. На этой линейке две последовательные группы полуваттных светодиодов, по девять светодиодов в каждой группе, подключены параллельно. Благодаря такому монтажу появилась возможность запитать линейку от драйвера 10 ватт. Вот ещё пример: в наличии имеем девять одноваттных светодиодов и драйвер R1. Параметры светодиодов: падение напряжения — 3.2-3.4 вольта, ток 350 мА., параметры драйвера: входное напряжение — 12-14 вольт, напряжение на выходе 10-11 вольт, ток 1000 мА. Подключаем три светодиода последовательно и получаем падение напряжения на цепочке 9.6-10.2 вольт. Делаем ещё две таких цепочки и все три соединяем параллельно, получаем общий ток, необходимый для работы нашей группы светодиодов — 1050 мА., что вполне соответствует выходным параметрам имеющегося у нас драйвера. Таким образом, при комбинировании подключения светодиодов появляется возможность подключить их к источнику тока, который Вам наиболее доступен.
Параллельное соединение диодов
В электротехнике нередко возникает необходимость в получении выпрямленного тока, который превышает предельную величину, соответствующую одному диоду. В таких случаях, применяется параллельное соединение диодов одного типа. Это позволяет равномерно распределить проходящий через них ток. Однако, не всегда удается добиться такой равномерности, поэтому приходится прибегать к искусственному выравниванию прямых сопротивлений диодов. Для этого используются добавочные сопротивления с небольшой величиной, включаемые в последовательную цепь с каждым диодом. В результате, получается работающая схема со всеми необходимыми параметрами.
Для чего диоды соединяются параллельно
Основной целью параллельного соединения диода является увеличение их прямого тока. Это основной параметр каждого диода. Однако, существует большое количество диодов, рассчитанных на различные значения токов в самом широком диапазоне. Поэтому, обычное параллельное соединение полностью не решает вопроса по увеличению общего прямого тока.
Если каждый из диодов, включенных параллельно, будет обладать прямым током в 1 ампер и максимальным обратным напряжением 100 вольт, то вся цепочка будет иметь параметры в 3 ампера и 100 вольт. То есть, параллельное включение предполагает возрастание прямого тока, пропорционально количеству включенных диодов. При этом, максимальное значение обратного напряжения остается неизменным.
Когда производится параллельное соединение диодов с разными характеристиками, то и распределение прямого тока будет неравномерным. Диод, имеющий наименьшее сопротивление, будет брать на себя в прямом направлении большее количество тока. При наступлении определенных обстоятельств, такое превышение может стать критическим и привести к пробою диода. Для того, чтобы избежать подобной ситуации, с каждым светодиодом последовательно подключается резистор. Их сопротивление выбирается из расчета, что напряжение будет падать не более чем на 1 вольт.
Кроме параллельного, в электрических цепях нередко используется последовательное соединение диодов, что при определенных обстоятельствах имеет решающее значение.
Последовательное соединение
В электротехнике используется не только параллельное соединение диодов. Для высоковольтных цепей нередко применяется их последовательное соединение. При таком варианте соединения происходит равномерное распределение напряжения между всеми подключенными диодами.
Тем не менее, здесь также необходимо учитывать различные значения обратных токов. Таким образом, в случае последовательного включения, будет наблюдаться падение большей части приложенного напряжения на диоде, имеющем минимальный обратный ток. В случае превышения допустимого значения обратного напряжения, может произойти пробой диода. Поэтому, здесь также падение напряжения искусственно выравнивается, для чего используются специальные шунтирующие сопротивления.
Ошибки при пайке транзисторов и диодов
Как соединить светодиодные лампы последовательно или параллельно. Как подключить точечные светильники параллельно
Лампы накаливания – это весьма распространенный источник света. В люстрах и других светильниках, так же как в подвесных и натяжных потолках, их может быть три, пять, а то и несколько десятков. Каждый такой источник света – это один из элементов электрической цепи, которые, как нам известно еще из школьной программы, могут по-разному соединяться как между собой, так и с другими элементами на схемах. Далее напомним нашим читателям:
- на каких схемах лампы соединены параллельно;
- на каких – последовательно;
- и в чем суть различных соединений ламп.
Увидев, как соединены между собой лампы на схемах, наши читатели впоследствии смогут сделать оптимальный выбор осветительной системы.
Электрическая цепь с последовательным соединением
Элементы электрических цепей могут соединяться либо последовательно, либо параллельно. Точно так же делается последовательное подключение и параллельное подключение ламп. Это совершенно разные соединения, которые приводят к различным результатам их работы. Чтобы наглядно понять детали этих соединений, рассмотрим пример с лампами накаливания. Берем две лампочки, два патрона и присоединяем к их клеммам провода.
Чтобы хорошо различать проводники при соединении, выбираем для них красный и черный цвета. Для ламп накаливания, которые по сути являются резисторами, эти провода будут как бы равноправными. Перемена их местами никак не будет сказываться на работе лампы.
Сделаем последовательное соединение лампочек:
- укладываем их на стол с расправленными проводами, с концами, зачищенными от изоляции;
- выбираем произвольно по одному проводу в каждой лампе. Для наглядности выберем оба черных провода;
- скручиваем концы двух выбранных проводов.
Если свободные концы двух красных проводов присоединить к источнику питания, через лампочки потечет электрический ток. В каждой лампе он будет одинаковым. Причем независимо от того, какие у этой лампы характеристики. Для того чтобы определить мощность лампы накаливания, потребуется узнать как величину тока, так и величину напряжения. В результате последовательного соединения каждая лампа оказывает влияние на работу остальных лампочек.
На лампе, как и на любом резисторе в электрической цепи, получается падение напряжения. Его величина определяется по закону Ома для участка цепи как произведение величин тока и напряжения. При накале спирали, который соответствует правильному режиму работы лампочки, ее сопротивление таково, что выделяемая энергия, включая свет, обеспечивает ее оптимальную яркость и продолжительность работы. Поэтому каждая лампочка может эффективно работать только при определенном напряжении. А ему будет соответствовать сопротивление горячей светящейся спирали.
Чем слабее, тем ярче
При последовательном соединении двух лампочек напряжения на них будут одинаковыми только при одинаковых сопротивлениях их спиралей. А это получится лишь при их одинаковой конструкции. По этой причине перед тем как подключить последовательно соединенные лампы к источнику питания, необходимо обязательно знать их рабочие напряжения (или токи) и мощность. Если этих характеристик нет, правильно оценить на глаз яркость, оптимальную для лампочки, сложно.
Можно, конечно же, подключить каждую лампочку к регулятору напряжения (ЛАТРу или диммеру). Плавно изменяя и при этом измеряя величину напряжения на лампе, получаем более или менее яркое ее свечение. Но лампочка при такой оценке может работать неправильно и, что наиболее опасно, давать слишком много света. Это сократит срок ее службы. Поэтому сделанные замеры тока или напряжения для расчетов параметров других присоединяемых лампочек получатся не такими, какими они должны быть на самом деле.
- При последовательном соединении лампочек необходимо пользоваться только заводскими данными мощности и напряжения для них.
Особую бдительность надо соблюдать тогда, когда напряжение источника питания заметно больше рабочего напряжения каждой из ламп последовательного соединения. При неоптимально подобранных параметрах некоторые из них могут перегореть по причине неправильного распределения напряжения между ними. В этом легко убедиться, если вкрутить в уже подготовленные нами патроны лампочки разной мощности, но для напряжения 220 В. Что из этого получилось, видно на изображении, которое приведено ниже.
Используя соединительную колодку и проводной выключатель, выполняем монтаж проводов испытуемых лампочек. Подключаем вилку к розетке и включаем выключатель. Мы видим разную яркость источников света. Менее мощная лампочка 40 Вт из-за большего сопротивления работает при более высоком напряжении. Поэтому она светит заметно ярче 60-ваттной. Теперь должно быть понятно, что лампочки остаются работоспособными по причине их более высокого рабочего напряжения. Оно существенно больше падения напряжения питания на каждой из них.
Перед последовательным соединением
Если бы лампочки 40 Вт и 60 Вт были, к примеру, подключены на напряжение 127 В, одна из них непременно сгорела бы. Рекомендуется сделать расчет суммы падений напряжения на каждой лампе перед тем как соединить их последовательно. При этом результат меньше напряжения питания соединенных ламп должен быть получен на основании заводских данных.
- Самым большим неудобством при последовательном соединении большого числа лампочек является перегорание одной из них. После этого перестает работать вся цепочка из ламп. Приходится брать тестер и проверять каждую.
Последовательное соединение других типов ламп также возможно. Однако давать общие рекомендации по этому поводу сложно. Дело в том, что все прочие электрические источники света, а это различные газоразрядные и светодиодные лампы, являются нелинейными элементами, к которым неприменим закон Ома для участка цепи. К тому же их надо подключать через балласты различной конструкции.
Современные электронные балласты работают совершенно иначе, чем традиционные индуктивные. Определить все необходимые параметры расчетным путем не получится. По этой причине для газоразрядных и светодиодных источников света более подходящей будет схема параллельного соединения.
Лучше соединять параллельно
Когда существует параллельное соединение ламп, напряжение источника питания всегда оказывается на клеммах каждой из них. Между ними могут быть только проводники электрического тока. Их сопротивлением пренебрегают по причине крайне малой величины. Схема параллельного подключения исключает взаимное электрическое влияние между источниками света. Каждый из них светит в полную силу, если подключается к выходу источника питания с напряжением, соответствующим их номинальному значению.
- Последовательно соединять лампы накаливания и светодиоды рекомендуется только при необходимости подсоединить самый простой и дешевый источник питания для низковольтных источников света – электрическую сеть на 220 вольт. С источниками света, подключенными по такой схеме, сталкивались все. Это елочная гирлянда.
- Соединение ламп накаливания, а также подключение светильников рекомендуется в основном делать параллельно. Эта схема подключения не оставит совсем без света при перегорании даже нескольких лампочек.
Когда проводка в квартире или доме уже присутствует и нет надобности подключать дополнительные источники света, то вопрос — как подключить лампу, не является актуальным. Но как же выполнить эту работу когда появляется такая необходимость. Тут без элементарных знаний электротехники и умения составить принципиальную, казалось бы, элементарную схему уже не обойтись.
Все источники света люминесцентные (экономки), светодиодные светильники могут быть подключены, как в принципе и все имеющиеся в электрической цепи сопротивления, параллельно, последовательно, смешанно. Смешанное соединение не используется для подключения ламп, так как в нём просто нет необходимости. А вот на параллельном и последовательном подключении стоит остановить своё внимание поподробнее.
Последовательное и параллельное подключение двух и более источников света
Для того чтобы подключить самую простую лампочку накаливания, как в принципе и любую другую, нужно подключить её один контакт к фазе, а другой к нулю, самому распространённому в бытовых условиях стран СНГ переменному напряжению 220 вольт.
Параллельное подключение устройств освещения подразумевает под собой подключение двух и более источников светового потока в параллель, то есть одни контакты ламп подключаются только к фазе, а все другие только к нулю, как показано на рисунке 1.
Через каждую лампочку пройдёт ток, который будет зависеть от её мощности, так же как и яркость светового потока, излучаемого ими, будет тоже зависеть от мощности каждой лампы. Естественно, что ток I будет равен сумме всех трёх токов, поэтому диаметр сечения основных проводников следует выбирать согласно ему. Это подключение считается самым распространённым и приемлемым, так как к нему можно будет, при необходимости в будущем, добавлять источники света и они не будут влиять на уже установленные.
При последовательном соединении, изображённом на рисунке, ток, протекающий по одной лампочке, будет зависеть от мощности, каждого источника света, а напряжение на них будет разделено на количество ламп и при данном входящем напряжении 220 вольт, будет равняется 110 вольт на каждом источнике света.
Такое подключение нужно обязательно выполнять со светильниками, которые имеют равную мощность. Рассмотреть это можно на примере двух ламп накаливания. Так как если подключить одну лампу 20 Ватт, а другую, например, на 200 Ватт, то лампа с меньшей мощностью тут же выйдет из строя, так как по ней пройдёт ток такой же, как и во второй лампе мощностью 200 Ватт, а это в 10 раз больше её номинала. Такое подключение может быть использовано для увеличения срока службы ламп накаливания, например, в подъездах и на лестничных клетках. Подключив две лампы на 220 вольт и мощностью, например, по 60 Ватт, они будут гореть вполсилы и прослужат очень долго. Нужно учесть, что это возможно только при подключении ламп накаливания. Последовательное подключение двух и более светодиодных ламп (светильников) и экономичных ламп нецелесообразно, так как они и так обладают довольно большим сроком службы.
Подключение лампы на один выключатель или на несколько
Как подключить лампу через выключатель? Главным нюансом при подключении является то, что нулевой провод питания непосредственно подключается к сети 220 вольт, а через выключатель разрывается фаза. Это делается для того чтобы можно было смело решать проблемами с патроном осветительного прибора, отключив лишь выключатель. Если подключение двух выключателей выполнить последовательно, то только при нажатии обеих клавиш лампа загорится. Такие виды подключения выключателей освещения очень редко используются, только при определённых индивидуальных условиях.
Интереснее является подключение так называемого проходного выключателя.
Суть такой схемы подключения одной лампы заключается в том, что включение и отключение лампы может быть произведено как от первого, так и от второго выключателя, вне зависимости в каком положении каждый из них. Например, это удобно, допустим, в длинном коридоре при входе в него человек нажимает на клавишу выключателя 2, и спокойно идёт по освещённому помещению, дойдя до конца коридора, не нужно возвращаться для выключения света, а можно лёгким нажатием выключателя 1, установленного в конце коридора, произвести отключение данного источника света. При таком подключении фаза тоже проходит через выключатели.
Усовершенствование освещения путём установки датчика движения
Главная функция установки датчика движения и подключения его к системе освещения, это автоматическое включение освещения без нажатия на клавишу выключателя освещения. То есть человек зашел помещение или в зону срабатывания датчика и свет включился, после ухода свет самостоятельно (автоматически) выключился. При выборе датчика движения необходимо в первую очередь учесть максимальную мощность ламп освещения.
Схема подключения датчика движения тоже не вызывает особых сложностей. Её можно устанавливать как с выключателем, так и без него. Просто при включении контакта выключателя датчик движения выводится из сети освещения, и осветительный прибор включается напрямую без датчика.
В любом случае работая с напряжением обязательно выполнять требования техники безопасности, а в частности:
- проверять наличие и отсутствие напряжения на токоведущих элементах, к которым человек дотрагивается при монтаже;
- автоматы питания освещения должны быть под замком;
- работы производить исправным инструментом.
Видео о подключении ламп
Светодиоды (они же led) на протяжении многих лет активно применяются как в производстве телевизоров, так и в качестве основного освещения дома или квартиры, однако вопрос о том, как правильно выполнить подключение светодиодов актуален и по сей день.
ВАЖНО!!!
Опытный электрик слил в сеть секрет, как платить за электроэнергию вдвое меньше, легальный способ…
На сегодняшний день их существует огромное количество, различной мощности (сверхяркие ), работающих от постоянного напряжения, которые можно подключать тремя способами:
- Параллельно.
- Последовательно.
- Комбинированно.
Также существуют специально разработанные схемы, позволяющие подключить светодиод к стационарной бытовой сети 220В. Давайте рассмотрим более детально все варианты подключения led, их преимущества и недостатки, а также как это выполнить своими руками.
Основные принципы подключения
Как было сказано ранее, конструкция светоизлучающего диода подразумевает их подключение исключительно к источнику постоянного тока. Однако, поскольку рабочая часть светодиода – это полупроводниковый кристалл кремния, то очень важно соблюдать полярность, в противном случае светодиод не будет излучать световой поток.
Каждый светодиод имеет техническую документацию, в которой содержатся инструкции и указания по правильному подключению. Если документации нет, можно посмотреть . Маркировка поможет узнать производителя, а зная производителя, Вы сможете найти нужный даташит, в котором и содержится информация по подключению. Вот, такой не хитрый совет.
Как определить полярность?
Для решения вопроса существует всего 3 способа:
С полярностью разобрались, теперь нам нужно определиться с тем, как подключить LED к сети. Для тех, кто не понял, читайте подробную и интересную статью . В ней мы собрали все возможные способы проверки, и даже при помощи батарейки.
Способы подключения
Условно, подключение происходит по 2 способам:
- К стационарной сети промышленной частоты (50Гц) напряжением 220В;
- К сети с безопасным напряжением величиной 12В.
Если необходимо подключить несколько led к одному источнику питания, тогда нужно выбрать последовательное или параллельное подключение.
Рассмотрим каждый из вышеприведенных примеров по отдельности.
Подключение светодиодов к напряжению 220В
Первое, что нужно знать при подключении к сети 220В, — для номинального свечения через светодиод должен проходить ток в 20мА, а падение напряжения на нем не должно превышать 2,2-3В. Исходя из этого, необходимо рассчитать номинал токоограничивающего резистора по следующей формуле:
в которой 0,75 – коэффициент надежности led, U пит – это напряжения источника питания, U пад – напряжение, которое падает на светоизлучающем диоде и создает световой поток, I – номинальный ток, проходящий через него, и R – номинал сопротивления для регулирования проходящего тока. После соответствующих вычислений, номинал сопротивления должен соответствовать 30 кОм.
Однако не стоит забывать, что на сопротивлении будет выделятся большое количество тепла за счет падения напряжения. По этой причине дополнительно необходимо рассчитать мощность этого резистора по формуле:
Для нашего случая U – это будет разность напряжения питающей сети и напряжения падения на светодиоде. После соответствующих вычислений, для подключения одного led мощность сопротивления должна равняться 2Вт.
После определения номинала и мощности сопротивления можно собрать схему для подключения одного светодиода к 220В. Для ее надежной работы необходимо ставить дополнительный диод, который будет защищать светоизлучающий диод от пробоя, при возникновении амплитудного напряжения на выводах светодиода в 315В (220*√2).
Схема практически не применяется, поскольку в ней возникают очень большие потери из-за выделения тепла в сопротивлении. Рассмотрим более эффективную схему подключения к 220 В:
На схеме, как видим, установлен обратный диод VD1, пропускающий обе полуволны на конденсатор C1 емкостью 220 нФ, на котором происходит падение напряжение до необходимого номинала.
Сопротивление R1 номиналом 240 кОм, разряжает конденсатор при выключенной сети, а во время работы схемы не играет никакой роли.
Но это упрощенная модель для подключения LED, в большинстве светодиодных ламп уже встроенный драйвер (схема), который преобразует переменное напряжение 220В в постоянное с величиной 5-24В для их надежной работы. Схему драйвера Вы можете видеть на следующем фото:
Подключение светодиодов к сети 12В
12 вольт – это безопасное напряжение, которое применяется в особо опасных помещениях. Именно к таким и относятся ванные комнаты, бани, смотровые ямы, подземные сооружения и другие помещения.
Для подключения к источнику постоянного напряжения номиналом 12В, аналогично, подключению к сетям 220В необходимо гасящее сопротивление. В противном случае, если подключить его напрямую к источнику, из-за большего проходящего тока светодиод мгновенно сгорит.
Номинал этого сопротивления и его мощность рассчитываются по тем же формулам:
В отличии от цепей 220В, для подключения одного светодиода к сети 12В нам потребуется сопротивление со следующими характеристиками:
- R = 1,3 кОм;
- P = 0,125Вт.
Еще одним достоинством напряжения 12В, является то, что в большинстве случаев оно уже выпрямленное (постоянное), что значительно упрощает схему подключения. Рекомендуется дополнительно монтировать стабилизатор напряжения типа КРЭН или аналога.
Как мы уже знаем, светоизлучающий диод можно подключить как к цепям 12В, так и к цепям 220В, однако существует и несколько вариаций их соединения между собой:
- Последовательное.
- Параллельное.
Последовательное подключение
При последовательном соединении через токоограничивающий резистор в одну цепочку собираются несколько светодиодов, причем катод предыдущего припаивается к аноду последующего:
В схеме, по всем светодиодам будет проходить один ток (20мА), а уровень напряжения будет состоять из сумм падения напряжения на каждом. Это означает, используя данную схему подключения, нельзя включить в цепь любое количество светодиодов, т.к. оно ограничено падением напряжения.
Падение напряжения – это уровень напряжения, которое светоизлучающий диод преобразует в световую энергию (свечение).
Например, в схеме падение напряжения на одном светодиоде составит 3 Вольта. Всего в схеме 3 светодиода. Источник питания 12В. Считаем, 3 Вольта * 3 led = 9 В
— падение напряжения.
После несложных расчетов, мы видим, что не сможем включить в схему параллельного подключения более 4 светодиодов (3*4=12В), запитывая их от обычного автомобильного аккумулятора (или другого источника с напряжением 12В).
Если захотим последовательно подключить большее количество LEd, то понадобится источник питания с большим номиналом.
Данная схема довольно часто встречалась в елочных гирляндах, однако из-за одного существенного недостатка в современных применяют смешанное подключение. Что за недостаток, разберем ниже.
Недостатки последовательного подключения
- При выходе из строя хотя бы одного элемента, не рабочей становится вся схема;
- Для питания большого количества led нужен источник с высоким напряжением.
Параллельное подключение
В данной ситуации все происходит наоборот. На каждом светодиоде уровень напряжения одинаковый, а сила тока состоит из суммы токов, проходящих через них.
Следуя из вышесказанного делаем вывод, если у нас есть источник в 12В и 10 светодиодов, блок питания должен выдерживать нагрузку в 0,2А (10*0,002).
Исходя из вышеупомянутых расчетов — для параллельного подключения потребуется токоограничивающий резистор с номиналом 2,4 Ом (12*0,2).
Это глубокое заблуждение!!! Почему? Ответ Вы найдете ниже
Характеристики каждого светодиода даже одной серии и партии всегда разные. Если другими словами: чтобы засветился один, необходимо пропустить через него ток с номиналом 20 мА, а для другого этот номинал может составлять уже 25 мА.
Таким образом, если в схеме установить только одно сопротивление, номинал которого был рассчитан ранее, через светодиоды будет проходить разный ток, что вызовет перегрев и выход из строя светодиодов, рассчитанных на номинал в 18мА, а более мощные будут светить всего на 70% от номинала.
Исходя из вышесказанного, стоит понимать, что при параллельном подключении, необходимо устанавливать отдельное сопротивление для каждого.
Недостатки параллельного подключения:
- Большое количество элементов;
- При выходе одного диода из строя увеличивается нагрузка на остальные.
Смешанное подключение
Подобный способ подключения является самым оптимальным. По такому принципу собраны все светодиодные ленты. Он подразумевает комбинацию параллельного и последовательного подключения. Как он выполняется можно увидеть на фото:
Схема подразумевает включение параллельно не отдельных светодиодов, а последовательных цепочек из них. В результате этого даже при выходе из строя одной или нескольких цепочек, светодиодная гирлянда или лента будут по-прежнему одинаково светить.
Мы рассмотрели основные способы подключения простых светодиодов. Теперь разберем методы соединения мощных светодиодов, и с какими проблемами можно столкнуться при неправильном подключении.
Как подключить мощный светодиод?
Для работоспособности мощных светоизлучающих диодов, так же, как и простых нам потребуется источник питания. Однако в отличии от предыдущего варианта, он должен быть на порядок мощней.
Чтобы засветить мощный светодиод номиналом 1W, источник питания должен выдерживать не менее 350 мА нагрузки. Если номинал 5W, то источник питания постоянного тока должен выдержать нагрузку тока не менее 1,4А.
Для корректной работы мощного светодиода обязательно необходимо использовать интегральный стабилизатор напряжения типа LM, который защищает его от скачков напряжения.
Если необходимо подключить не один, а несколько мощных LED, рекомендуем ознакомиться с правилами последовательного и параллельного подключения, которые были описаны выше.
Ошибки при подключении
Видео
Ошибки подключения могут повлечь за собой неприятные последствия, от банальной поломки светодиодов, до нанесения себе повреждений. Поэтому, настоятельно рекомендуем посмотреть видео, где разбирают часто встречающиеся ошибки.
Заключение
Прочитав статью можно сделать вывод, что все светодиоды, вне зависимости от рабочего напряжения, всегда подключаются параллельно или последовательно — школьный курс физики. Еще стоит помнить, что никакой светодиод не подключается напрямую в сеть 220В, всегда нужно использовать защитные элементы в схеме подключения. Тип применяемых защитных элементов зависит от вида подключаемого светоизлучающего диода.
Секция Физика
Номинация: Учебные проекты
Параллельное соединение лампочки и электродвигателя в повседневной жизни и техника безопасности при работе с электроприборами.
Научный руководитель: Колегойда Е.А., учитель начальных классов
Актуальность:
Последовательное соединение
ламп накаливания в домашнем быту используется редко.
Ситуация была такая, что подъездная лампа перегорала с периодичностью в один месяц, и надо было что-то делать.
Обычно, в таких случаях лампу включают через диод, чтобы она питалась пониженным напряжением 110В и долго служила. Вариант проверенный, но при этом сама лампа мерцает, да и светит в полнакала.
Когда же стоят две последовательно, то они так же питаются пониженным напряжением 110В, не мерцают, долго служат, светят и потребляют энергии как одна. Причем их можно развести по разным углам помещения, что тоже плюс.
Здесь в линии коричневого цвета, лампы
HL1
и
HL2
соединены последовательно – одна за другой. Поэтому такое соединение называют
последовательным
.
Если подать напряжение питания 220В на концы
L
и
N
, то загорятся обе лампы, но гореть они будут не в полную силу, а в половину накала. Так как сопротивление нитей ламп рассчитано на питающее напряжение 220В, и когда они стоят в цепи последовательно, одна за другой, то за счет добавления сопротивления нити накала следующей лампы, общее сопротивление цепи будет увеличиваться, а значит, для следующей лампы напряжение всегда будет меньше согласно закону Ома.
Поэтому при последовательном соединении двух ламп напряжение 220В будет делиться пополам, и составит 110В для каждой.
Примером последовательного соединения могут служить новогодние гирлянды. Здесь из миниатюрных лампочек с низким питанием создается одна лампа на напряжение 220В.
Например, берем лампочки, рассчитанные на 6,3 Вольта и делим их на 220 Вольт. Получается 35 штук. То есть, чтобы сделать одну лампу на напряжение 220В, нам нужно соединить последовательно 35 штук с напряжением питания 6,3 Вольта.
Как Вы знаете, у гирлянд есть один недостаток. Перегорает одна из ламп, например, канала зеленого цвета, значит, не горит канал зеленого цвета. Тогда мы идем на рынок, покупаем лампочки зеленого цвета, а потом дома по одной вынимаем, вставляем новую, и пока не заработает канал, перебираем его весь.
Вывод:
Недостатком последовательного соединения является то, что если выйдет из строя хоть одна из ламп, гореть не будут все, так как нарушается электрическая цепь.
А вторым недостатком, является слабое свечение. Поэтому последовательное соединение ламп накаливания на напряжение 220В в домашних условиях практически не применяется.
Параллельным соединением
называют такое соединение, где все элементы электрической цепи, в данном случае лампы накаливания, находятся под одним и тем же напряжением. То есть получается, что каждая лампа, своими контактами, подключена и к фазе и к нулю. И если перегорит любая из ламп, то остальные будут гореть. Именно такое соединение ламп, рассчитанных на напряжение питания 220В, используется в домашнем быту, и не только.
На следующем рисунке так же изображено параллельное соединение. Здесь все три лампы соединены в одном месте. Еще такое соединение называют «звезда»
Бывают моменты, что когда именно из одной точки нужно развести проводку в разные направления.
Именно «звездой» делают разводку по квартире при монтаже розеток.
Параллельное включение ламп применяется и при освещении дорог. В частности, электрические лампы и двигатели, предназначенные для работы при определенном напряжении, всегда включают параллельно.
На электровозах постоянного тока и некоторых тепловозах тяговые двигатели в процессе регулирования скорости движения нужно включать под различные напряжения, поэтому они в процессе разгона переключаются с последовательного соединения на параллельное.
Цель моей исследовательской работы:
показать преимущества параллельного соединения ламп и предложить рекомендации по технике безопасности при работе с электричеством.
Практическая ценность проделанной работы:
при параллельном соединении элементов требуется больше проводов в реальной жизни, но это компенсируется тем, что если ломается один элемент, то все остальные работают.
При этом весь ток будет проходить через эту вторую лампу. Это очень удобно.
Если елочная гирлянда имеет параллельно включенные лампочки, и одна из них перегорает, то вы можете этого и не заметить. А когда заметите, просто заменить погасшую лампочку.
Так, электроприборы в наших домах включаются в цепь параллельно. И если один из них выходит из строя, то остальные остаются в рабочем состоянии.
Эквивалентным сопротивлением
называется сопротивление, которое может заменить все элементы, входящие в данную цепь.
Стоить отметить, что при параллельном соединении эквивалентное сопротивление будет достаточно малым. Соответственно, сила тока будет достаточно большой. Это стоит учитывать при включении в розетки большого количества электрических приборов. Ведь тогда сила тока возрастет, что может привести к перегреванию проводов и пожарам.
Исследования:
1. Для представления проекта параллельного соединения лампочки и электродвигателя я установил пропеллер, затем замкнул выключатель, электродвигатель начнет вращаться, а лампочка загорится. Если выкрутить лампочку, замкнуть выключатель, электродвигатель продолжит работать.
2. Человеческое тело — проводник. Если случайно человек окажется под напряжением, то в большинстве случаев он не избежит травмы и даже смерти. Для этого я собрал конструктор со звуком звездных войн и светом, управляемый сенсором. Заменил кнопку сенсорной пластиной. Прерывистое прикосновение пальцев к пластине позволяет управлять звездными войнами.
Полученные результаты и их оценка:
Первый эксперимент показал, что параллельное соединение имеет существенные преимущества перед последовательным, вследствие чего оно получило наиболее широкое распространение, так если ломается один элемент, то все остальные работают.
Второй эксперимент показывает, что человеческое тело имеет не очень большое сопротивление (1кОм) и обладает свойствами электрического конденсатора
(это устройство для накопления заряда и энергии
)
. Человеческое тело — проводник. Если случайно человек окажется под напряжением, то в большинстве случаев он не избежит травмы и даже смерти.
Электричество – друг человечества. Однако, при неправильном обращении к нему, такая дружба может оказаться очень опасной. Чтобы снизить вероятность поражения электрическим током, необходимо соблюдать элементарные правила безопасной работы
Таким образом, я предлагаю рекомендации по технике безопасности при работе с электричеством.
Первая помощь при поражении электрическим током.
Электрический ток ничем не пахнет, не имеет цвета, не издает звуков и не осязается, поэтому предупредить человека о своем присутствии не может. О нем просто надо знать или быть предельно осторожным. При поражении электрическим током опасность усугубляется неспособностью пострадавшего помочь себе.
Обеспечь свою безопасность. Надень сухие перчатки (резиновые, шерстяные, кожаные и т.п.), резиновые сапоги. По возможности отключи источник тока. При подходе к пострадавшему по земле иди мелкими, не более 10 см, шагами.
Сбрось с пострадавшего провод сухим токонепроводящим предметом (палка, пластик). Оттащи пострадавшего за одежду не менее чем на 10 метров от места касания проводом земли или от оборудования, находящегося под напряжением.
Вызови (самостоятельно или с помощью окружающих) «скорую помощь».
Определи наличие пульса на сонной артерии, реакции зрачков на свет, самостоятельного дыхания.
При отсутствии признаков жизни проведи сердечно-легочную реанимацию.
При восстановлении самостоятельного дыхания и сердцебиения придай пострадавшему устойчивое боковое положение.
Если пострадавший пришел в сознание, укрой и согрей его. Следи за его состоянием до прибытия медицинского персонала, может наступить повторная остановка сердца.
Освобождение пострадавшего от тока.
Прежде всего необходимо быстро освободить пострадавшего от действия электрического тока, т.е. отключить цепь тока с помощью ближайшего штепсельного разъема, выключателя (рубильника) или путем вывертывания пробок на щитке.
В случае отдаленности выключателя от места происшествия можно перерезать провода или перерубить их (каждый провод в отдельности) топором или другим режущим инструментом с сухой рукояткой из изолирующего материала.
При невозможности быстрого разрыва цепи необходимо оттянуть пострадавшего от провода или же отбросить сухой палкой оборвавшийся конец провода от пострадавшего.
Необходимо помнить, что пострадавший сам является проводником электрического тока. Поэтому при освобождении пострадавшего от тока оказывающему помощь необходимо принять меры предосторожности, чтобы самому не оказаться под напряжением: надеть галоши, резиновые перчатки или обернуть свои руки сухой тканью, подложить себе под ноги изолирующий предмет — сухую доску, резиновый коврик или, в крайнем случае, свернутую сухую одежду.
Оттягивать пострадавшего от провода следует за концы его одежды, к открытым частям тела прикасаться нельзя. При освобождении пострадавшего от тока рекомендуется действовать одной рукой.
Если он находится на стремянке, подставке или каком-либо ином приспособлении, надо принять меры, чтобы предотвратить ушибы или переломы при падении.
Если человек попал под напряжение выше 1000 В такие меры предосторожности недостаточны. Необходимо обратиться к специалистам, которые немедленно снимут напряжение.
Первая помощь пострадавшему
Меры первой помощи зависят от состояния пострадавшего после освобождения от тока.
Для определения этого состояния необходимо:
— немедленно уложить пострадавшего на спину;
— расстегнуть стесняющую дыхание одежду;
— проверить по подъему грудной клетки, дышит ли он;
— проверить наличие пульса (на лучевой артерии у запястья или на сонной артерии на шее;
— проверить состояние зрачка (узкий или широкий).
Широкий неподвижный зрачок указывает на отсутствие кровообращения мозга.
Определение состояния пострадавшего должно быть проведено быстро, в течение 15 — 20 секунд.
1. Если пострадавший в сознании, но до того был в обмороке или продолжительное время находился под электрическим шоком, то ему необходимо обеспечить полный покой до прибытия врача и дальнейшее наблюдение в течение 2-3 часов.
2. В случае невозможности быстро вызвать врача необходимо срочно доставить пострадавшего в лечебное учреждение.
3. При тяжелом состоянии или отсутствии сознания нужно вызвать врача (Скорую помощь) на место происшествия.
4. Ни в коем случае нельзя позволять пострадавшему двигаться: отсутствие тяжелых симптомов после поражения не исключает возможности последующего ухудшения его состояния.
5. При отсутствии сознания, но сохранившемся дыхании, пострадавшего надо удобно уложить, создать приток свежего воздуха, давать нюхать нашатырный спирт, обрызгивать водой, растирать и согревать тело. Если пострадавший плохо дышит, очень редко, поверхностно или, наоборот, судорожно, как умирающий, надо делать искусственное дыхание.
6. При отсутствии признаков жизни (дыхания, сердцебиения, пульса) нельзя считать пострадавшего мертвым. Смерть в первые минуты после поражения — кажущаяся и обратима при оказании помощи. Пораженному угрожает наступление необратимой смерти в том случае, если ему немедленно не будет оказана помощь в виде искусственного дыхания с одновременным массажем сердца. Это мероприятие необходимо проводить непрерывно на месте происшествия до прибытия врача.
7. Переносить пострадавшего следует только в тех случаях, когда опасность продолжает угрожать пострадавшему или оказывающему помощь.
Сопротивление тела человека.
От величины сопротивления зависит величина тока, проходящего через тело человека в случае попадания под напряжение. Чем больше сопротивление, тем лучше. Однако сопротивление тела человека имеет свойство меняться в меньшую или большую сторону. Уменьшение сопротивления зависит от таких факторов, как влажность организма, наличие алкоголя в крови, эмоциональное состояние человека и т.д.
Здоровые и физически крепкие люди противостоят электричеству лучше больных и ослабленных, причем степень поражения во многом определяется состоянием человека. Пот, возбудимость или переутомление снижают сопротивляемость организма.
Смертельным фактором является сила тока, а не напряжение, причем в отличие от переменного тока к постоянному человек быстро привыкает, а вот переменный крайне опасен. Существует порогово ощутимый ток — 0,6-1,5 мА. Ток в 10-15 мА приводит к тому, что пострадавший уже не способен убрать руки от провода или электроприбора (неотпускающий ток). При 50 мА повреждаются органы дыхания и сердечно-сосудистая система, 100 мА (промышленный ток, к частным домам не подводящийся) вызывают остановку сердца.
Таким образом, чем дольше длится воздействие тока на человека, тем вероятнее летальный исход, поскольку сопротивляемость тела уменьшается.
Как правило, электрическую разводку делают как можно выше от пола, поэтому, чтобы упростить себе работу, полезно обзавестись складной лестницей.
перед началом ремонтных работ, связанных с опасностью получить удар электрическим током, следует выключить групповой автомат на щитке в квартире или на лестничной клетке;
надо разместить на электрощите на лестничной клетке предупреждающую табличку, иначе сосед может случайно включить электричество в самый неподходящий момент;
перед тем как приступить к работам, с помощью индикаторной отвертки нужно удостовериться в действительном отсутствии электричества в сети;
предохранители (пробки), которые сейчас в строительстве не используют, еще установлены в некоторых домах, поэтому следует помнить, что заменяют их только при перегорании. Кустарный ремонт в виде установки проволочек («жучков») может привести к пожару;
Использование самодельных предохранителей.
В старых жилых домах, где для защиты электрической сети применяются предохранители с плавкой вставкой, очень часто домашние умельцы делают самодельные плавкие вставки. Делать это категорически запрещается. Лучше использовать автоматические выключатели, либо поставить пробку-автомат.
главным условием безопасного использования электроэнергии в быту является хорошее состояние изоляции, электротехники, предохранительных щитков, переключателей, розеток, ламповых патронов, светильников, шнуров. Изоляцию следует регулярно проверять и обновлять при необходимости. Чтобы не повредить ее, не рекомендуется подвешивать провода на гвозди, железные и деревянные предметы, перекручивать их, размещать за газовыми и водосточными трубами, радиаторами, использовать в качестве вешалки, вытаскивать вилку из розетки за шнур, покрывать их краской и белить, укладывать на работающие светильники. Нельзя использовать светильники с поврежденными вилкой, проводом или выключателем;
покидая квартиру, не забудьте выключить свет и электроприборы, поскольку так не только экономится электричество, но и существенно уменьшается риск возникновения пожара;
не следует пользоваться переносными светильниками в ванной комнате. Покупая светильник для нее, нужно внимательно прочитать инструкцию, поскольку есть светильники для сырых помещений, в конструкции которых использованы специальные элементы, чтобы сделать их безопасными;
наиболее внимательно надо подойти к вопросу электробезопасности в помещениях, где обычно находятся дети;
мощность лампочки в светильнике должна соответствовать допустимому для него пределу. В результате нарушения теплового режима могут произойти короткое замыкание и, как следствие, пожар;
поскольку проводка в квартире, как правило, скрытая, нельзя произвольно сверлить отверстия и забивать гвозди. Если вы не уверены в том, что в данной зоне не проходят какие-либо провода, используйте особую электродрель с двойной изоляцией;
осветительные устройства не стоит подвешивать на токоведущих проводах — только на специальных приспособлениях.
Заземление бытовых приборов.
Металлический корпус любой бытовой техники потенциально опасен. Это означает то, что если произойдёт пробой фазы на корпус, то прикосновение к корпусу повлечёт за собой поражение электрическим током. В современной технике вероятность пробоя достаточно мала, но она присутствует и поэтому металлические части необходимо заземлять. Делается это при помощи трёхжильной проводки (фаза, ноль, земля), европейской розетки и европейской вилки.
Эксплуатация мощных потребителей.
Если в советские времена нагрузка на проводку была незначительной, то сегодня дела обстоят по-другому. Стиральные машины, пылесосы, постоянно работающие электрические нагреватели воды (бойлеры) приводят к постепенному перегреву старой алюминиевой проводки. Это может привести к повреждению изоляции и возникновению короткого замыкания. Чтобы этого не произошло, можно заменить алюминиевые провода на медные, или увеличить сечение провода.
Электробезопасность во влажных помещениях.
Не стоит пользоваться в ванной комнате электрическими приборами, особенно находясь в воде. Влажные помещения особо опасны, т.к. вода – хороший электропроводник. В крайнем случае, необходимо находиться на безопасном расстоянии от воды. Кроме того, обязательно должны использоваться надёжные аппараты защиты сети, которые в случае короткого замыкания или даже маленькой утечки тока отключат напряжение.
Использование инструмента и электроинструмента.
Т.к. в большинстве случаев проводка выполняется скрытым способом, то любые работы по сверлению или штроблению стен, выполняемые электроинструментом, необходимо выполнять с особой осторожностью, дабы случайно не повредить провода и самому не попасть под напряжение.
Общие советы по безопасности:
Следите за целостностью сетевых шнуров бытовой техники, не перегружайте проводку мощными потребителями. Используйте современные комплектующие (выключатели, розетки, щитки). В случае необходимости не поленитесь проконсультироваться по разным электрическим вопросам с опытным электриком.
Д
ля проведения 3-го занятия потребуются:
1.Устройство собранное в течении 2-го занятия.
2.Электрический патрон, подобный использованному ранее.
3.Отрезок кабеля ВВГ 2*1.5, длинною около 0,5 метра.
4.Электрическая лампочка.
Подсоединяем патрон к кабелю, вворачиваем лампочку — получаем в результате то же изделие, что и в конце 1-го занятия, за исключением отсутствующей эл. вилки.
Берем устройство, собранное в течении 2-го занятия — аккуратно срезаем изоляцию
на участке около 1см. провода, идущего на эл. патрон. Снимаем крышку с выключателя, что бы получить доступ к его электрическим клеммам.
Присоединяем второй патрон с лампочкой номер 2, как показано на рисунке ниже.
Таким образом, один конец оказывается присоединен с помощью скрутки к проводу идущему напрямую к лампочке номер 1.
Второй конец присоединяется к клемме выключателя вместе с другим проводом идущим на электрическую лампочку номер 1.
Изолируем место скрутки проводов, с помощью изоленты, закрываем крышку-корпус выключателя. Втыкаем эл. вилку в розетку, нажимаем выключатель — обе лампочки горят. Такое соединение называется параллельным.
Эл. схема параллельного подключения выглядит вот так.
Особенностью такого соединения, является возможность, задействовать одновременно несколько
потребителей электроэнергии, рассчитаных на одно и то же напряжение. Эл. лампочек может быть не две, как в нашем примере, а гораздо больше.
На яркость свечения отдельно взятой лампы, увеличение их количества (до определенного предела) практически не влияет, напряжение эл. сети уменьшается незначительно.
Но потребление электроэнергии в сети возрастает с каждым, дополнительно подключенным приемником электроэнергии — растет сила тока, начинают греться провода.
Что бы предотвратить возгорание изоляции, при превышении эл. током определенного порога, срабатывает автоматический выключатель, и все гаснет.
В нашем быту, как правило, мы постоянно сталкиваемся именно с таким подключением эл. устройств. Различные
электроприборы, группы точечных, и других светильников — все это примеры параллельного соединения.
Можно сказать, что все электроприемники, например, в отдельно взятой квартире так или иначе, в итоге оказываются подключенными
параллельно, к жилам вводного питающего кабеля.
В случае, если Вас, заинтересовала эта тема, с теоретической точки зрения,
дополнительную интересующую информацию, легко почерпнуть в любом учебнике по электротехнике.
Параллельное и последовательное соединение, подробно описано там с позиции законов Кирхгофа
и Ома, со всеми формулами и выкладками.
Несколько упрощенный вариант этой темы вы можете посмотреть
Необязательное лирическое дополнение.
В моем детстве (конец 70-х), огромной популярностью пользовались, самодельные цветомузыкальные установки.
Радиолюбители собирали свои электронные схемы, как правило, используя в выходных каскадах тиристоры ку202н.
Это позволяло, применять в качестве источника света, самые обычные лампочки 220-240 вольт. Их покрывали разноцветными
лаками, устанавливали в рассеивающие экраны, автомобильные фары — очень ярко и очень красиво.
К тому времени, у меня не было, ни достаточных познаний в радиоэлектронике, ни тиристоров, ни магнитофона.
Была ламповая радиола Кантата-203, большое количество лампочек от карманного фонаря(2,5 вольт) и огромное
желание что-нибудь сделать.
Опытным путем было определено — маленькая лампочка подсоединенная к выходу динамика
начинала моргать в такт музыке, чем громче, тем ярче. Лампочка маленькая — света, соответственно, тоже мало.
Что же делать? Тут и пришло на помощь параллельное соединение. Паять к тому времени, я уже немного умел (научили на
уроках «труда»),взял два достаточно длинных проводка, да и припаял с десяток лампочек. Один проводок к цокольным
контактам, второй к боковым. Подключил к «Кантате», влупил громкость на полную — красота! Половину лампочек покрасил
зелеными чернилами, половину красными. Прилепил это все пластилином к большой стекляшке от старой люстры,
найденной на помойке — настоящая получилась вещь!
Большее количество лампочек добавлять не стал (а хотелось!) — яркость начинала
падать, звук в динамиках — хрипеть. Даже у Советских ламповых радиол, запас мощности был ограничен. Соединял я
в дальнейшем параллельно и динамики, радиола выдержала, но кассетный магнитофон «Электроника» моего друга,
таких издевательств не вынес — сдох.
Но точечные светильники и силовая сеть 220 вольт, это совсем другое дело. Можно брать их хоть четыре(светильников), хоть шесть — да и подключать,
к двум проводам, торчащим из потолка (где был старый светильник), самое главное делать это очень надежно.
Использование каких — либо материалов этой страницы,
допускается при наличии ссылки на сайт
схемы включения светодиодов параллельно и последовательно, как правильно соединить ленты или панели к сети с напряжением 12 и 220 вольт
Соединение светодиодов – несложная процедура даже для человека без профессиональных навыков.
Соединение в LED цепочку компонентов может быть нескольких видов – последовательное и параллельное.
Эти схемы могут выполняться в различных вариациях, каждая из которых имеет свои положительные и отрицательные стороны.
Принципы подключения
Светоизлучающие диоды активно применяются в подсветке, индикации. Своими руками можно создать устройства, поэтому важно знать, как производить соединение светодиодов.
К основным способам подключения относятся:
- параллельное;
- последовательное;
- комбинированное.
Основные причины выхода из строя светодиодных цепочек:
- неправильное соединение;
- некачественные диоды или блоки питания.
Конструкция излучающего диода подразумевает его подключение к источнику постоянного тока. При соединении важно соблюдать полярность компонента – если перепутать катод и анод, диод не будет излучать световой поток.
Важно! Любой компонент имеет техдокументацию, в которой указывается полярность. Ее узнать можно по маркировке компонента или визуально.
Полярность
Определить, какой из электродов является плюсом, а какой – минусом, можно несколькими способами.
Первый – конструктивно. Обычный LED компонент имеет две ножки, длинная является плюсом (анодом), а короткая – катодом.
При помощи тестера. Для этого нужно взять мультиметр, перевести его в положение «Прозвонка» и прикладывать щупы к электродам. Когда красный щуп коснется анода, а черный катода – светодиод загорится. Если при перестановке на шкале высвечивается и не меняется «бесконечное» сопротивление, есть неполадка с элементом. Так что мультитестер используется и для проверки работоспособности излучающих приборов.
Визуальный осмотр. Можно посмотреть внутрь колбы. Широкая часть – это катод, а узкая – анод. Мощные светодиоды сверхъяркого типа имеют маркировку выводов «+» и «–». Компоненты для поверхностного монтажа обычно имеют специальный скос, который указывает на катод.
Включение в источник питания. Диод можно подключить к аккумулятору, батарее или другому блоку. Нужно постепенно повышать электропитание, которое вызовет свечение. Если компонент не горит, полярность следует поменять. Собирается такая схема проверки обязательно с использованием токоограничивающего резистора.
По технической документации. В паспорте прибора будет написано, какая полярность.
После определения плюса и минуса электродов нужно разобраться с методом подсоединения.
Способы подключения
Этапы соединения:
- определение полярности;
- составление схемы подключения;
- подбор драйвера и блока питания;
- расчет резистора;
- сбор цепи;
- тестирование подключенной системы.
Можно выделить 2 метода соединения – к электросети 220 Вольт и 12 Вольт. Осуществить подключение можно последовательно или параллельно. Наилучшим способом считается последовательное соединение светодиодов.
Подключение к напряжению 220 В
Чтобы светодиод загорелся, через него должен проходить ток в 20 мА и выше, а падение напряжения не должно превышать 2,2 – 3 В в зависимости от материалов кристалла. С учетом указанных параметров выбирается токоограничивающий резистор по закону Ома. Его формула:
R=(Uпит-Uпад)/(I*0,75), где R – номинал резистора, Uпит – напряжение источника, Uпад – падение на диоде, I – номинальный ток, 0,75 – коэффициент надежности.
Падением напряжения называют уровень напряжения, которое светодиод преобразует в свечение.
Также требуется знать мощность резистора. Она вычисляется как P=I*I*R=(Uпит-Uпад)*(Uпит-Uпад)/R.
Таким образом, для тока в 20 мА, сети 220 В и падения напряжения на диоде 2,2-3 В номинал сопротивления должен быть равен 30 кОм. Мощность сопротивления равняется 2 Вт.
Упрощенная схема подключения будет состоять из светодиода, диода, конденсатора и резисторов.
Но такое соединение используется все реже. Чтобы подключить светодиоды к электросети, используются специальные устройства – драйверы. Они преобразуют переменное напряжение 220 В в постоянное, пригодное для работы элемента. В большинстве светодиодных лент драйверы уже имеются в конструкции. В основе драйвера находятся диодный мост, делитель напряжения и стабилизатор. Основное преимущество – простота исполнения и надежность эксплуатации.
Как выбрать нужный драйвер, зависит от трех параметров:
- выходной ток;
- максимальное и минимальное напряжение на выходе;
Рабочий ток является важнейшей характеристикой. Ток драйвера должен быть чуть меньше или равен току светодиода.
Подключение к сети 12 в
Напряжение 12 В является оптимальным для работы светоизлучающего диода. Оно безопасно, и используется для включения в особо опасных помещениях (ванная, смотровые ямы гаража, бани).
Для подключения к 12 В нужен резистор. Он рассчитывается по той же формуле, что и для 220 В.
Важное преимущество 12 В – оно постоянное. Это позволяет упростить схему соединения.
Последовательное подключение
Чтобы подключить светодиоды последовательно, нужно к катоду одного устройства припаять анод другого, и так до нужной длины цепочки. Соединение производится через токоограничивающий резистор. По схеме будет протекать один и тот же ток через все элементы. Уровень напряжения будет суммой падений на каждом участке.
Так, для подключения к источнику питания с напряжением 12 Вольт потребуется не более четырех светодиодов 3 Вольт (3*4=12). Для большего числа диодов нужен более мощный аккумулятор.
Преимущества и недостатки
Преимущества:
- одинаковый уровень тока;
- простота.
Недостатки:
- количество светодиодов ограничено падением напряжения;
- если сломается один элемент, непригодной становится вся цепочка.
Схема раньше использовалась в гирляндах для елки. Сейчас ее вытеснило смешанное соединение.
Параллельное подключение
При параллельном подключении уровень напряжения на каждом светодиоде одинаков. Сила тока наоборот состоит из суммы токов, проходящих через элементы. Подключаются диоды так же через резисторы, но для каждого устройства он свой. Это связано с тем, что любой светоизлучающий диод имеет различные характеристики. Если поставить один резистор, через светодиоды будет пропускаться разный ток, и некоторые могут выйти из строя.
Параллельное подключение может использоваться для реализации двухцветного свечения ламп.
Плюсы и минусы
Преимущества:
- можно использовать большее количество диодов;
- если перегорит один светодиод, цепь продолжит работу.
Недостатки:
- требуется много резисторов;
- если сломается один элемент, на другие увеличится нагрузка.
Смешанное подключение
Смешанный тип соединения является самим оптимальным. Он используется во всех LED лентах, гирляндах, светодиодных панелях и представляет собой смесь параллельного и последовательного включений.
Так, параллельно включаются не отдельные элементы, а группы светодиодов. В группах диоды подключаются последовательно через один резистор для каждой цепи.
Преимущество:
- при поломке элемента из одной цепочки вся гирлянда будет светить дальше;
- нужно не так много резисторов.
В этом способе учтены и исправлены все недостатки из параллельного и последовательного соединений.
Как подключить мощный светодиод
Для мощного светодиода потребуется источник питания с большим номиналом. Так, диод 1 В будет загораться, если по нему будет протекать ток величиной не менее 350 мА. Для 5 В элемента потребуется источник тока с нагрузкой не менее 1,4 А.
Схема соединения также будет включать токоограничивающий резистор и интегральный стабилизатор напряжения. Он помогает обезопасить светодиод от скачков электричества. Чаще всего используется интегральная микросхема LM317 для стабилизации. Подключить мощный светодиод можно параллельно, последовательно и комбинированным способом.
Распространенные ошибки при подключении
Самые часто встречающиеся ошибки при соединении светодиодов:
- Выбор резистора не того номинала – если подобрать слишком маленькое сопротивление, светодиод может перегореть. При большом значении светить диод будет не в полную силу.
- Подключение напрямую к источнику питания без токоограничивающего резистора. Излучающий компонент сразу сгорит.
- Соединение по параллельной схеме с одним резистором для всех диодов. Компоненты начнут выходить из строя, так как рабочий ток у каждого различный.
- Соединение по последовательной схеме светодиодов, рассчитанных на разный ток. В таком случае часть диодов перегорит, а часть будет светить тусклее.
- Подключение напрямую к сети 220 В без защиты.
Важно! Совершение описанных ошибок повлечет за собой негативные последствия в виде поломки диода или нанесения себе травм.
Основные выводы
Все светодиоды, в не зависимости от их рабочего напряжения или силы тока, подключаются последовательно или параллельно. Способ включения может быть и комбинированным – в таком случае устраняются недостатки последовательного и параллельного соединений. Важно уметь правильно собирать цепь, подбирать источник питания, считать номиналы токоограничивающих резисторов и нужное количество светодиодов, чтобы схема функционировала. Соединение без токоограничивающего резистора и других защитных элементов приведет к поломке диода.
Предыдущая
Лампы и светильникиКакие лампочки лучше для дома: светодиодные или энергосберегающие
Следующая
Лампы и светильникиКак сделать светильник из светодиодной ленты на 12 и 220 Вольт своими руками
Схема подключения светодиода
электрика, сигнализация, видеонаблюдение, контроль доступа (СКУД) и другие инженерно технические системы (ИТС)
Схема подключения светодиода очень проста. Это можно видеть на рисунке 1. Однако, для того чтобы правильно подключить светодиод необходимо произвести некоторые расчеты.
Как видно из приведенной схемы светодиод (VD) подключается последовательно c резистором (R), образуя с ним делитель напряжения. Также резистор можно рассматривать как элемент, обеспечивающий номинальный рабочий ток светодиода.
Для расчета величины его сопротивления нам необходимо знать:
- падение напряжения на светодиоде (Uvd),
- уже упомянутый его рабочий ток (Iраб).
Если подходить строго, то эти значения следует брать из паспорта светодиода, но для дальнейших примеров я приму их за 2 Вольта (В) и 15 милиАмпер (мА) соответственно. Это достаточно реальные величины.
Далее берем закон Ома и на его основании пишем формулу:
R=U/I=(Uпит-Uvd)/Iраб=(Uпит-2)/15
Заметьте, я указал ток в мА, поэтому сопротивление получится в килоОмах (кОм). Для небольших токов так удобнее. Остается определиться с напряжением питания. Для 12 Вольт сопротивление резистора будет:
R=(12-2)/15=0,666 кОм. Ближайшее по ряду, если не ошибаюсь, 0,68 кОм или 680 ом. Округлять надо в большую сторону.
Кроме того, надо определить мощность, рассеиваемую резистором:
P=I*U=I2*R=152*0,68=153. Ток берем в мА, сопротивление в кОм, мощность получаем в милиВаттах (мВт). Ближайшая по ряду, округленная в большую сторону мощность резистора составляет 0,250 Вт.
Обратили внимание не некоторую некорректность? Расчетное значение сопротивления мы округлили в большую сторону, значит ток в цепи будет меньше, то есть мы получили завышенное значение мощности. Желающие могут посчитать точно, но разница будет незначительная.
Примем эту схему за базовую и на ее основе рассмотрим варианты подключения нескольких светодиодов:
Параллельное подключение светодиодов (рис.2) большинством специалистов не рекомендуется по следующим основным объективным причинам:
- из-за разброса параметров токи, протекающие через светодиоды, будут различны, что может привести к выходу из строя того светодиода, где окажется превышенным максимально допустимое значение тока,
- при неисправности любого светодиода (обрыв) его ток поделится между оставшимися, далее по сценарию предыдущего пункта. Потом цепная реакция и вся линейка выходит из строя.
- ток потребления такой схемы равен сумме токов всех светодиодов, то есть при их значительном количестве имеет достаточно большое значение.
Негативные последствия такого подключения можно отчасти избежать, если уменьшить рабочий ток процентов на 30% от номинального, правда яркость сечения светодиодов при этом снизится.
Если сказанное Вас не пугает можете рассчитать сопротивление и мощность резистора по приведенной ранее методике при условии что Iраб=Ivd1+…+Ivdn или просто умножьте ток любого светодиода на их количество. Почему? Потому, что для этих двух случаев светодиоды должны иметь максимально близкие параметры, то есть быть однотипными, кроме того, желательно из одной партии.
Последовательное подключение светодиодов (рис.3) более корректно, недостатком может явиться разная яркость их свечения (опять же из за разброса параметров).
Кстати, такое соединение используется в светодиодной ленте.
Для расчета этой схемы следует взять Uvd=Uvd1+…+Uvdn
Еще одно, общее для всех схем подключения ограничение, Uvd должно быть меньше Uпит на величину, позволяющую установить токоограничивающий резистор.
Например, для схемы на рис.3 при напряжении питания 12В и падении напряжения на светодиоде 2В можно взять пять светодиодов, суммарным падением напряжения 10В. Если их будет 6 штук, то Ur =0, что означает отсутствие резистора, а такого быть не должно.
Последнее, как быть, если при последовательном соединении не удается соблюсти указанное условие?
Выход — использовать смешанное подключение (рис.4). Расчет схемы в этом случае производится для каждой последовательной цепи подключения, а при одинаковом количестве светодиодов и их типов в каждой цепи расчет можно сделать один раз для любой последовательной группы светодиодов.
Напоминаю — все светодиоды должны быть однотипные, по крайней мере, для общей последовательной цепи.
© 2012-2021 г. Все права защищены.
Представленные на сайте материалы имеют информационный характер и не могут быть использованы в качестве руководящих и нормативных документов
светодиодов для начинающих: 9 шагов (с изображениями)
В отличие от светодиодов, которые подключены последовательно, светодиоды, подключенные параллельно, используют один провод для подключения всех положительных электродов светодиодов, которые вы используете, к положительному проводу источника питания и используйте другой провод для подключения всех отрицательных электродов светодиодов, которые вы используете, к отрицательному проводу источника питания. Параллельная разводка элементов имеет ряд явных преимуществ по сравнению с последовательным подключением.
Если вы соедините целую группу светодиодов параллельно, вместо того, чтобы разделять мощность, подаваемую на них, между ними, все они будут использовать ее.Таким образом, аккумулятор на 12 В, подключенный к четырем последовательно соединенным 3-вольтовым светодиодам, будет распределять 3 В для каждого из светодиодов. Но та же батарея 12 В, подключенная к четырем светодиодам 3 В параллельно, подает полное напряжение 12 В на каждый светодиод — этого достаточно, чтобы наверняка сжечь светодиоды!
Подключение светодиодов параллельно позволяет нескольким светодиодам использовать только один источник питания низкого напряжения. Мы могли бы взять те же четыре светодиода на 3 В и подключить их параллельно к меньшему источнику питания, скажем, двум батареям АА, вырабатывающим в общей сложности 3 В, и каждый из светодиодов получит необходимое им 3 В.
Короче говоря, последовательная проводка делит общий источник питания между светодиодами. Их параллельное соединение означает, что каждый светодиод будет получать полное напряжение, выводимое источником питания.
И, наконец, несколько предупреждений … при параллельном подключении источник питания истощается быстрее, чем при последовательном подключении, поскольку в конечном итоге они потребляют больше тока от источника питания. Он также работает только в том случае, если все светодиоды, которые вы используете, имеют одинаковую мощность. ЗАПРЕЩАЕТСЯ смешивать и сочетать светодиоды разных типов / цветов при параллельном подключении.
Хорошо, теперь перейдем к делу.
Я решил сделать две разные параллельные установки.
Первый, который я попробовал, был максимально простым — всего два светодиода на 1,7 В, подключенных параллельно к одной батарее 1,5 В AA. Я подключил два положительных электрода на светодиодах к положительному проводу, идущему от батареи, и подключил два отрицательных электрода на светодиодах к отрицательному проводу, идущему от батареи. Для светодиодов 1,7 В не требуется резистор, потому что 1.5В от аккумулятора хватило, чтобы зажечь светодиод, но не больше, чем напряжение на светодиодах, чтобы не было риска его перегорания. (Эта установка не изображена)
Оба светодиода 1,7 В горели от источника питания 1,5 В, но помните, что они потребляли больше тока от батареи и, таким образом, ускоряли разрядку батареи. Если бы к батарее было подключено больше светодиодов, они бы потребляли еще больше тока от батареи и разряжали бы ее еще быстрее.
Для второй установки я решил собрать все, чему я научился, и подключить два светодиода параллельно к моему источнику питания 9 В — определенно слишком много энергии для одних светодиодов, поэтому мне наверняка придется использовать резистор.
Чтобы выяснить, какое значение мне следует использовать, я вернулся к верной формуле — но поскольку они были подключены параллельно, в формуле есть небольшое изменение, когда дело доходит до тока — I.
R = (V1 — V2 ) / I
, где:
V1 = напряжение питания
V2 = напряжение светодиода
I = ток светодиода (в других расчетах мы использовали 20 мА, но поскольку параллельное подключение светодиодов потребляет больше тока, мне пришлось умножить ток на этот LED отображает общее количество светодиодов, которые я использовал.20 мА x 2 = 40 мА или 0,04 А.
И мои значения для формулы на этот раз были:
R = (9 В — 1,7 В) / 0,04 A
R = 182,5 Ом
Опять же, поскольку пакет разнообразия не поставлялся с резистором точного номинала, я попытался используйте два резистора на 100 Ом, соединенные последовательно, чтобы получить сопротивление 200 Ом. Я закончил тем, что просто повторил ошибку, которую сделал на последнем шаге, еще раз, и по ошибке соединил их параллельно, так что два резистора 100 Ом в итоге дали сопротивление только 50 Ом.Опять же, эти светодиоды особенно простили мою ошибку — и теперь я получил ценный урок о последовательном и параллельном подключении резисторов.
Последнее замечание о параллельном подключении светодиодов — пока я ставлю резистор перед обоими светодиодами, рекомендуется ставить резистор перед каждым светодиодом. Это более безопасный и лучший способ подключить светодиоды параллельно резисторам, а также гарантирует, что вы не сделаете ошибку, которую я сделал случайно.
Загорелись светодиоды 1,7 В, подключенные к батарее 9 В, и мое маленькое приключение в страну светодиодов было завершено.
Описание серии
и параллельных цепей
Надеюсь, те, кто ищет практическую информацию об электрических схемах и подключении светодиодных компонентов, первыми нашли это руководство. Однако вполне вероятно, что вы уже читали здесь страницу Википедии о последовательных и параллельных схемах, возможно, несколько других результатов поиска Google по этому вопросу, но все еще неясны или вам нужна более конкретная информация, касающаяся светодиодов. За годы обучения, обучения и разъяснения клиентам концепции электронных схем мы собрали и подготовили всю критически важную информацию, которая поможет вам понять концепцию электрических цепей и их связь со светодиодами.
Перво-наперво, не позволяйте, чтобы электрические схемы и компоненты проводки светодиодов казались устрашающими или сбивающими с толку — правильное подключение светодиодов может быть простым и понятным, если вы следите за этим постом. Давайте начнем с самого основного вопроса…
Какой тип цепи мне следует использовать?
Один лучше другого… Последовательный, Параллельный или Последовательный / Параллельный?
Требования к освещению часто диктуют, какой тип схемы можно использовать, но если есть выбор, то наиболее эффективным способом использования светодиодов высокой мощности является использование последовательной схемы с драйвером светодиодов постоянного тока.Последовательная схема помогает обеспечить одинаковое количество тока для каждого светодиода. Это означает, что каждый светодиод в цепи будет иметь одинаковую яркость и не позволит одному светодиоду потреблять больше тока, чем другому. Когда каждый светодиод получает одинаковый ток, это помогает устранить такие проблемы, как тепловой выход из строя.
Не волнуйтесь, параллельная схема по-прежнему является жизнеспособным вариантом и часто используется; позже мы обрисуем этот тип схемы.
Но сначала давайте рассмотрим схему серии :
Часто называемый «гирляндным» или «замкнутым» током в последовательной цепи следует один путь от начала до конца, при этом анод (положительный) второго светодиода соединен с катодом (отрицательным) первого.На изображении справа показан пример: для подключения последовательной цепи, подобной показанной, положительный выход драйвера подключается к положительному выводу первого светодиода, а от этого светодиода выполняется соединение от отрицательного к положительному полюсу второго. Светодиод и так далее, до последнего светодиода в цепи. Наконец, последнее подключение светодиода идет от отрицательного полюса светодиода к отрицательному выходу драйвера постоянного тока, создавая непрерывную петлю или гирляндную цепь.
Вот несколько пунктов для справки о последовательной цепи:
- Одинаковый ток течет через каждый светодиод
- Полное напряжение цепи — это сумма напряжений на каждом светодиоде
- При выходе из строя одного светодиода вся схема не будет работать
- проще подключать и устранять неисправности
- Различное напряжение на каждом светодиодах — это нормально
Цепи серии
Питание последовательной цепи:
Концепция петли к настоящему времени не проблема, и вы определенно можете понять, как ее подключить, но как насчет питания последовательной цепи.
Второй маркер выше гласит: «Общее напряжение цепи — это сумма напряжений на каждом светодиоде». Это означает, что вы должны подать как минимум сумму прямых напряжений каждого светодиода. Давайте посмотрим на это, снова используя приведенную выше схему в качестве примера, и предположим, что светодиод представляет собой Cree XP-L, работающий от 1050 мА с прямым напряжением 2,95 В. Сумма трех из этих прямых напряжений светодиодов равна 8,85 В постоянного тока . Таким образом, теоретически 8,85 В — это минимальное необходимое входное напряжение для управления этой схемой.
В начале мы упоминали об использовании драйвера светодиода с постоянным током, потому что эти силовые модули могут изменять свое выходное напряжение в соответствии с последовательной схемой. Поскольку светодиоды нагреваются, их прямое напряжение изменяется, поэтому важно использовать драйвер, который может изменять свое выходное напряжение, но сохранять тот же выходной ток. Чтобы получить более полное представление о драйверах светодиодов, загляните сюда. Но в целом важно убедиться, что ваше входное напряжение в драйвере может обеспечивать выходное напряжение, равное или превышающее 8.85V мы рассчитали выше. Некоторым драйверам требуется вводить немного больше, чтобы учесть питание внутренней схемы драйвера (драйвер BuckBlock требует накладных расходов 2 В), в то время как другие имеют функции повышения (FlexBlock), которые позволяют вводить меньше.
Надеюсь, вы сможете найти драйвер, который сможет дополнить вашу светодиодную схему последовательно включенными диодами, однако существуют обстоятельства, которые могут сделать это невозможным. Иногда входного напряжения может быть недостаточно для питания нескольких светодиодов последовательно, или, может быть, слишком много светодиодов для подключения последовательно, или вы просто хотите ограничить стоимость драйверов светодиодов.Какой бы ни была причина, вот как понять и настроить параллельную схему светодиодов.
Параллельная цепь:
Если последовательная схема получает одинаковый ток к каждому светодиоду, параллельная схема получает одинаковое напряжение на каждый светодиод, а общий ток на каждый светодиод представляет собой общий выходной ток драйвера, деленный на количество параллельных светодиодов.
Опять же, не волнуйтесь, здесь мы увидим, как подключить параллельную светодиодную схему, и это должно помочь связать идеи воедино.
В параллельной схеме все положительные соединения связаны вместе и обратно к положительному выходу драйвера светодиода, а все отрицательные соединения связаны вместе и обратно к отрицательному выходу драйвера.Давайте посмотрим на это на изображении справа.
В примере, показанном с выходным драйвером 1000 мА, каждый светодиод будет получать 333 мА; общий выход драйвера (1000 мА), деленный на количество параллельных цепочек (3).
Вот несколько пунктов для справки о параллельной цепи:
- Напряжение на каждом светодиоде одинаковое
- Полный ток — это сумма токов, протекающих через каждый светодиод.
- Общий выходной ток распределяется через каждую параллельную цепочку
- Требуется точное напряжение в каждой параллельной цепочке, чтобы избежать перегрузки по току
Теперь давайте немного повеселимся, объединим их вместе и наметим серию / параллельную цепь :
Как следует из названия, последовательная / параллельная цепь объединяет элементы каждой цепи.Начнем с последовательной части схемы. Допустим, мы хотим запустить в общей сложности 9 светодиодов Cree XP-L по 700 мА каждый с напряжением 12 В постоянного тока ; прямое напряжение каждого светодиода при 700 мА составляет 2,98 В постоянного тока . Правило номер 2 из маркированного списка последовательной цепи доказывает, что 12 В постоянного тока недостаточно для последовательного включения всех 9 светодиодов (9 x 2,98 = 26,82 В, постоянного тока, ). Тем не менее, 12 В постоянного тока достаточно для работы трех последовательно включенных (3 x 2,98 = 8,94 В постоянного тока ). И из правила № 3 параллельной схемы мы знаем, что общий выходной ток делится на количество параллельных цепочек.Итак, если бы мы использовали BuckBlock на 2100 мА и три параллельных ряда по 3 последовательно соединенных светодиода, то 2100 мА было бы разделено на три, и каждая серия получила бы 700 мА. На изображении в качестве примера показана эта установка.
Если вы пытаетесь настроить светодиодную матрицу, этот инструмент планирования светодиодных схем поможет вам решить, какую схему использовать. На самом деле он дает вам несколько разных вариантов различных последовательных и последовательных / параллельных цепей, которые будут работать. Все, что вам нужно знать, это ваше входное напряжение, прямое напряжение светодиодов и количество светодиодов, которые вы хотите использовать.
Падение нескольких светодиодных гирлянд:
При работе с параллельными и последовательными / параллельными цепями следует помнить, что если цепочка или светодиод перегорят, светодиод / цепочка будет отключена из цепи, так что дополнительная токовая нагрузка, которая шла на этот светодиод, будет раздать остальным. Это не большая проблема для массивов большего размера, поскольку ток будет рассеиваться в меньших количествах, но как насчет схемы с двумя светодиодами на цепочку? Затем ток будет удвоен для оставшегося светодиода / цепочки, что может быть более высокой нагрузкой, чем светодиод может выдержать, что приведет к перегоранию и разрушению вашего светодиода! Обязательно помните об этом и постарайтесь создать такую настройку, которая не испортит все ваши светодиоды, если один из них перегорит.
Другая потенциальная проблема заключается в том, что даже когда светодиоды поступают из одной производственной партии (одного бункера), прямое напряжение все еще может иметь допуск 20%. Варьирование напряжений в отдельных цепочках приводит к тому, что ток не делится поровну. Когда одна струна потребляет больше тока, чем другая, перегруженные светодиоды нагреваются, и их прямое напряжение изменяется сильнее, что приводит к более неравномерному распределению тока; это называется тепловым разгоном. Мы видели, как многие схемы, настроенные таким образом, работают хорошо, но требуется осторожность.Для получения дополнительной информации об этой концепции и способах ее избежать (текущее зеркало) есть отличная статья на сайте LEDmagazine.com.
Основы мощного светодиодного освещения
Светодиоды
подходят для многих систем освещения, они предназначены для получения большого количества света за счет малого форм-фактора, сохраняя при этом фантастическую эффективность. Здесь, в LEDSupply, есть множество светодиодов для всевозможных осветительных приборов, главное — знать, как их использовать. Светодиодная технология немного отличается от другого освещения, с которым знакомо большинство людей.Этот пост здесь, чтобы объяснить все, что вам нужно знать о светодиодном освещении: как безопасно подключать светодиоды, чтобы получить как можно больше света и максимально долгий срок службы.
Что такое светодиод?
Светодиод — это тип диода, преобразующего электрическую энергию в свет. Для тех, кто не знает, диод — это электрический компонент, который работает только в одном направлении. По сути, светодиод — это электрический компонент, который излучает свет, когда электричество проходит в одном направлении, от анода (положительная сторона) к катоду (отрицательная сторона).Светодиод является аббревиатурой от « L ight E miting D iode». По сути, светодиоды похожи на крошечные лампочки, им просто требуется гораздо меньше энергии для включения и они намного эффективнее производят высокую светоотдачу.
Типы светодиодов
В целом мы предлагаем два разных типа светодиодов:
Сквозное отверстие 5 мм и поверхностное крепление.
5мм светодиоды
5-миллиметровые светодиоды — это диоды внутри линзы диаметром 5 мм с двумя тонкими металлическими ножками внизу.Они используются там, где требуется меньшее количество света. 5-миллиметровые светодиоды также работают с гораздо более низкими токами возбуждения, максимально около 30 мА, тогда как светодиоды для поверхностного монтажа требуют минимум 350 мА. Все наши 5-миллиметровые светодиоды от ведущих производителей доступны в различных цветах, интенсивности и схемах освещения. Светодиоды со сквозным отверстием отлично подходят для небольших фонарей, вывесок и всего, где вы используете макетную плату, поскольку их можно легко использовать с их проводами. Ознакомьтесь с нашим руководством по настройке 5-миллиметровых светодиодов, чтобы узнать больше об этих крошечных источниках света.
Светодиоды для поверхностного монтажа (SMD)
Рисунок 1 — Эмиттер без покрытия
Светодиоды для поверхностного монтажа — это диоды, которые могут быть размещены на подложке (печатной плате) с кремниевым куполом над диодом для его защиты (см. Рис. 1). Мы поставляем мощные светодиоды для поверхностного монтажа от лидеров отрасли Cree и Luxeon. Оба на наш взгляд отличные, поэтому мы их все-таки носим. Некоторые предпочитают одно другому, но это приходит с опытом и знанием того, что искать. Cree, как правило, имеет более высокие показатели мощности Lumen и является лидером на рынке светодиодов высокой мощности.Luxeon, с другой стороны, имеет отличные цвета и терморегулятор.
Светодиоды высокой мощности
поставляются в виде неизолированных эмиттеров (как показано на рис. 1) или устанавливаются на печатную плату с металлическим сердечником (MCPCB). Платы изолированы и содержат токопроводящие дорожки для упрощения подключения цепей. Наши 20-миллиметровые платы со звездообразным расположением 1 и 3 являются бестселлерами. Мы также предлагаем QuadPod, которые могут содержать 4 светодиода высокой мощности на плате, немного превышающей размеры 20-миллиметровых звезд (см. Рис. 2). Все наши варианты светодиодов высокой мощности также могут быть построены на линейной конструкции.LuxStrip вмещает 6 светодиодов на фут и легко подключается до 10 футов в длину.
Рисунок 2 — Опции MCPCB
Полярность имеет значение: светодиоды подключения
Электронная полярность указывает, является ли схема симметричной или нет. Светодиоды представляют собой диоды, поэтому ток может течь только в одном направлении. Когда нет тока, не будет света. К счастью, это означает, что если мы подключим светодиод в обратном направлении, он не сожжет всю систему, он просто не загорится.
Положительная сторона светодиода — это анод, а отрицательная сторона — катод.Ток течет от анода к катоду и никогда не течет в другом направлении, поэтому важно знать, как отличить анод от катода. Для светодиодов для поверхностного монтажа это просто, поскольку соединения промаркированы, но для 5-миллиметровых светодиодов подходит более длинный вывод, который является анодом (положительным), посмотрите на Рисунок 3 ниже.
Рисунок 3 — Поиск анода и катода светодиода
Варианты цвета
Одна из замечательных особенностей светодиодов — это различные варианты и виды света, которые вы можете получить от них.
Белые светодиоды
Коррелированная цветовая температура (CCT) — это процесс создания разного белого света при разных температурах. Цветовая температура указывается в градусах Кельвина (K), что представляет собой шкалу температур, в которой ноль соответствует абсолютному нулю, а каждый градус равен одному Кельвину. При более низких температурах от 3000K до 4500K белый цвет становится более теплым или нейтральным. Более высокие температуры 5 000K + — это холодные белые цвета, также известные как «дневной белый».
Цветные светодиоды
Для цветов на самом деле важна длина волны в нанометрах (нм).Для некоторых применений цвета необходимы для визуального эффекта, но иногда для таких применений, как лечение, выращивание, освещение рифовых аквариумов и многое другое, необходимы определенные длины волн. См. Рис. 4, где показано, при каких длинах волн и при каких температурах получаются определенные цвета.
Рисунок 4 — Цвета светодиодов и цветовая температура
Мы стараемся обеспечить одинаковую цветовую температуру и длину волны для каждой марки и типа светодиодов. Вы всегда можете найти цвет или длину волны наших светодиодов в подразделе страницы продукта и даже можете выполнить поиск по цвету в раскрывающемся меню светодиодов на главной странице.В белом цвете мы несем 3000K, 4000K, 5000K и 6500K. Что касается цветов, мы работаем от 400 до 660 нм.
Яркость светодиода
Светодиоды
известны не только своими цветами, но и намного ярче, чем другие источники света. Иногда трудно сказать, насколько ярким будет светодиод, потому что он измеряется в люменах. Люмен — это научная единица измерения светового потока или общего количества видимого света от источника. Обратите внимание, что светодиоды диаметром 5 мм обычно указываются в милликанделах (мкд). Угол обзора 5-миллиметровых светодиодов также влияет на световой поток, который они излучают, подробнее об этом см. Здесь.
Почему ток имеет значение…
Количество света (люмен), излучаемого светодиодом, зависит от величины подаваемого тока. Ток измеряется в миллиамперах (мА) или амперах (А). Мощные светодиоды выдерживают ток от 350 мА до 3000 мА. Светодиоды различаются по своим текущим параметрам, поэтому обязательно следите за этим при выборе светодиода и драйвера.
Определение яркости
А теперь самое сложное — выбрать комбинацию светодиода и драйвера, которая будет выдавать необходимый свет.Мы проделали большую работу здесь, в посте, измеряющем яркость каждого светодиода высокой мощности при разных токах возбуждения. Обратите внимание, что это меры для звезд 1-Up, поэтому, если вы хотите больше света, светодиоды 3-Up являются хорошим вариантом, поскольку они в три раза больше света в том же месте.
Указанный выше ресурс всегда можно использовать для определения светоотдачи светодиода, но найти его вручную не очень сложно.
Для этого необходима информация из технического паспорта светодиода.На всех наших светодиодных страницах мы ссылаемся на технические данные производителя в нижней части страницы.
Пример: определение яркости Cree XP-L при 2100 мА
В этом примере мы используем Cree XP-L. Сначала найдите таблицу характеристик потока (рисунок 5). Мы коснемся группировки позже, которая помечена в столбце «Группа», но предположим, что мы собираемся использовать холодный белый XP-L из самого верхнего контейнера (v5). Выделенное число — это типичный поток при 1050 мА, который является током, при котором измеряется XP-L.Справа от него указаны типичные значения люменов для управляющих токов 1500, 2000 и 3000 мА.
Рисунок 5 — График светового потока светодиода
Для этого примера предположим, что мы хотим запустить этот светодиод с драйвером светодиода BuckBlock 2100 мА, и нам нужно определить, какой будет световой поток. При управлении промежуточным приводным током, которого нет в списке, найдите график относительного потока в зависимости от тока в таблице данных, который выглядит как график справа.
Стрелка — проверенный (базовый) выход (при относительном потоке 100%).Следуя кривой до 2100 мА (?), Мы видим, что это увеличение освещенности на 75%. Взяв 460 люмен сверху и умножив его на 1,75, мы увидим, что холодный белый XP-L при 2100 мА дает около 805 люмен.
При переходе на светодиоды может быть трудно найти светодиоды и световой поток, необходимый для этого. Это связано с тем, что свет всегда измерялся мощностью лампочки. Светодиоды имеют гораздо лучшую эффективность, что делает практически невозможным измерение таким образом, поскольку светодиод на 50 Вт будет значительно ярче, чем лампа накаливания на 50 Вт.На рисунке 7 показаны различные лампы накаливания и количество люменов, которые они дают. Это помогает лучше понять, какое количество света ожидать от светодиода и будет ли оно таким же ярким, как и старое освещение.
Рисунок 6 — Мощность лампы накаливания в люменах
Угол обзора и оптика
У наших 5-миллиметровых светодиодов указаны углы обзора для каждого, поэтому просто найдите тот, который вам подойдет. Что касается светодиодов для поверхностного монтажа, большинство из них излучают очень широкий угол в 125 градусов! К счастью, светодиодные звездообразные платы совместимы и просты в использовании со светодиодной оптикой.Эта вторичная оптика используется для фокусировки света, они могут отражать свет от светодиода в пятно, среднее пятно, широкое пятно или эллиптические и овальные узоры.
Как видно на Рисунке 8, оптика 1-Up имеет форму конуса и требует держателя оптики. В случае наших светодиодных панелей держатели оптики имеют четыре ножки, которые входят в пазы звезды. Тройные светодиодные звезды также совместимы с оптикой Carclo, в плате которой есть три отверстия для ножек оптики.
Рисунок 7 — Светодиодная оптика и держатели
Как подключить светодиоды
Светодиоды
известны своей лучшей эффективностью из всех других источников света.Эффективность — это мера того, насколько хорошо источник света излучает видимый свет, также называемый люменами на ватт. Другими словами, сколько света мы получаем на наш ватт мощности. Чтобы найти это, сначала выясните мощность используемого светодиода. Чтобы найти ватты, вам нужно умножить прямое напряжение (напряжение, при котором ток начинает течь в нормальном направлении) на ток возбуждения в амперах (обратите внимание, что он ДОЛЖЕН быть в амперах… а не в миллиамперах). Давайте в качестве примера рассмотрим светодиодный индикатор Cree XP-L 1-up.
Рисунок 8 — Прямое напряжение светодиода
Допустим, мы используем Cree XP-L при 2000 мА. Из рисунка 8 видно, что при таком токе возбуждения прямое напряжение составляет 3,15. Итак, чтобы найти ватт, мы умножаем 3,15 (прямое напряжение) на 2 А (2000 мА = 2 А), что дает 6,3 Вт.
Итак, теперь, чтобы определить эффективность, нам просто нужно разделить 742 люмен (проверенное количество люмен для этого светодиода при 2000 мА) на 6,3 Вт. Таким образом, эффективность (люмен / ватт) этого Cree XP-L составляет 117,8. Это большая эффективность, но также следует отметить, что Cree может похвастаться тем, что светодиод XLamp XP-L имеет прорывную эффективность 200 люмен / ватт при токе 350 мА.Приятно знать, что эффективность снижается по мере того, как вы пропускаете больший ток на светодиод, поскольку это увеличивает нагрев, что делает светодиод немного менее эффективным. Иногда вам придется смириться с этим, если вам нужно, чтобы светодиод был очень ярким, но если вы хотите получить максимальную эффективность, вам следует использовать светодиоды с более низким током. Все это помогает определить, сколько энергии потребуется вашим приложениям, а также сэкономить энергию в будущем.
Подробнее о драйверах светодиодов
Это означает, что вам нужно найти драйвер светодиода, который может управлять светодиодами с током, который вам нужен, чтобы получить желаемое количество люменов.Драйвер светодиодов — это электрическое устройство, которое регулирует мощность светодиода или цепочки светодиодов. Драйвер реагирует на меняющиеся потребности светодиода, подавая на светодиод постоянное количество энергии, поскольку его электрические свойства меняются с температурой. Хорошая аналогия для понимания этого — автомобиль с круиз-контролем. Когда автомобиль (светодиод) движется по холмам и долинам (изменения температуры), круиз-контроль (водитель) следит за тем, чтобы он оставался на постоянной скорости (свет), регулируя при этом газ (мощность), необходимый для этого.Драйвер так важен, потому что светодиоды требуют очень специфической электроэнергии для правильной работы. Если напряжение, подаваемое на светодиод, ниже требуемого, через переход проходит очень небольшой ток, что приводит к слабой освещенности и плохой работе. С другой стороны, если напряжение слишком велико, через светодиод течет слишком много тока, что может привести к перегреву и серьезному повреждению или полному выходу из строя (тепловой разгон). Всегда проверяйте таблицу светодиодов, чтобы знать, какой ток рекомендуется, чтобы избежать этих проблем.
Какое напряжение мне нужно, чтобы загорелся светодиод?
Это часто задаваемый вопрос, и на самом деле его довольно легко понять. Все, что вам нужно знать, это прямое напряжение ваших светодиодов. Если у вас несколько светодиодов, подключенных последовательно, вам нужно учитывать все прямые напряжения вместе взятые, если у вас параллельная цепь, вам нужно только учитывать прямое напряжение того количества светодиодов, которое у вас есть на цепочку. Подробнее о настройке проводки см. Здесь. Рекомендуется поддерживать как минимум 2-вольтовые накладные расходы, поскольку некоторые драйверы (например, драйверы LuxDrive) требуют этого для правильной работы драйвера.Так что, если ваше общее прямое напряжение для последовательной цепи составляет 9,55, вы должны быть в безопасности с источником питания 12 В. Для автономных драйверов (вход переменного тока) просто знайте выходное напряжение, на которое они рассчитаны, и убедитесь, что вы защищены, поэтому драйвер входа переменного тока с выходным диапазоном 3-12 В постоянного тока также подойдет для этого приложения.
Контроль нагрева
Определение мощности вашей системы также поможет вам узнать больше о необходимом вам регуляторе нагрева. Поскольку эти светодиоды обладают большой мощностью, они выделяют тепло, что может быть очень плохим, как вы можете узнать здесь.Слишком большое количество тепла приведет к тому, что светодиоды будут излучать меньше света, а также сократят срок службы. Мы всегда рекомендуем использовать радиатор и говорим, что на каждый ватт светодиодов приходится около 3 квадратных дюймов. Для большей мощности я бы порекомендовал поискать радиатор, который рекомендован для той мощности, которую вы используете.
Светодиодный биннинг и качество
Сейчас, когда индустрия светодиодов растет довольно быстрыми темпами, важно понимать разницу в светодиодах. Это частый вопрос, поскольку светодиоды могут варьироваться от очень дешевых до очень дорогих.Я был бы осторожен при покупке дешевых светодиодов, так как вы всегда получаете то, за что платите. Да, светодиоды могут работать отлично вначале, но обычно они не работают так долго или быстро перегорают из-за плохого тестирования.
Все светодиоды, представленные здесь, на LEDSupply, тщательно отобраны. У нас есть только лучшие марки и цветовые температуры. Наш обширный опыт в отрасли помог нам понять важность качественного производства и сборки светодиодов. При производстве светодиодов характеристики могут отличаться от средних значений, указанных в технических паспортах.По этой причине производители разделяют светодиоды по световому потоку, цвету и прямому напряжению. Мы выбираем бункеры с самым высоким световым потоком (видимый свет) и самым низким прямым напряжением, так как это гарантирует, что у нас есть светодиоды с максимальной эффективностью. Большое количество светодиодной продукции производится дешево и не документируется должным образом, что приводит ко многим неудачным проектам и заставляет людей думать, что светодиоды на самом деле не служат так долго, как говорят. Благодаря нашему опыту и покупательной способности мы можем предложить лучшие продукты по разумным ценам.
Это должно дать вам хорошее начало для понимания светодиодов и того, что искать, но если у вас есть дополнительные вопросы или вы хотите получить дополнительную информацию об определенном продукте и о том, подойдет ли он для вас, мы здесь, чтобы помочь. Просто напишите нам по адресу [email protected] или позвоните по телефону (802) 728-6031, чтобы поговорить с нашей очень хорошо осведомленной командой технической поддержки.
Как работает светодиод 5 мм?
Светоизлучающие диоды (светодиоды) повсюду вокруг нас. Они есть в наших домах, в наших машинах, даже в наших телефонах. Светодиоды бывают разных форм и размеров, что дает дизайнерам возможность адаптировать их к своему продукту.Каждый раз, когда загорается что-то электронное, есть большая вероятность, что за ним находится светодиод. Их низкое энергопотребление и небольшие размеры делают их отличным выбором для многих различных продуктов, поскольку их можно более плавно интегрировать в дизайн, чтобы сделать его в целом лучшим устройством.
Раньше мы обсуждали светодиоды высокой яркости, но в этом посте мы сосредоточим наше внимание на светодиодах диаметром 5 мм или светодиодах со сквозными отверстиями. Это типы светодиодов, которые, вероятно, будут использоваться в вашей небольшой электронике в качестве светового индикатора или чего-то в этом роде.5-миллиметровые светодиоды потребляют гораздо меньше тока, чем светодиоды высокой яркости, 20 мА по сравнению с минимум 350 мА для мощных светодиодов. Если вы следили за нашим оригинальным постом Mastering LEDs, вы должны знать: больше тока = больше света. Очевидно, что эти 5-миллиметровые светодиоды будут скорее акцентным светом для очень маленьких помещений. Именно для этого предназначены 5-миллиметровые светодиоды, их можно использовать вместе в большом массиве для создания знака или какой-то матрицы, или их можно использовать сами по себе, чтобы сделать небольшой индикатор или один из этих крошечных фонариков на цепочке для ключей. .
5-миллиметровые светодиоды
очень полезны, так как они легко питаются от небольшого источника питания и служат долгое время. Это позволяет легко встраивать их во многие электронные устройства или размещать фонари там, где они обычно не могут находиться. Название 5-миллиметрового светодиода связано с их размерами: эпоксидный корпус наверху имеет диаметр около 5 мм. Эти сверхмалые источники света просты в использовании, но мы не можем упускать из виду некоторые этапы настройки нашей светодиодной схемы.
5-миллиметровый светодиодный экран, основы
Светодиод — это вариант основного диода.Диод — это электронный компонент, который проводит электричество только в одном направлении. Диоды имеют так называемое номинальное прямое напряжение, которое определяет минимальную разницу напряжений между анодом (+) и катодом (-), чтобы позволить электронам течь (а-а-а-а… сладкое электричество). Светодиод в основном такой же, как диод, с основным отличием, что он генерирует свет, когда течет электричество.
5-миллиметровые светодиоды
— это светодиоды, которые удерживают матрицу на опоре наковальни, которая для защиты заключена в эпоксидный купол.Затем соединения выполняются через две ножки или штыри, выходящие из нижней части. Как мы уже упоминали, диод пропускает поток только в одном направлении. Это делает очень важным различать положительную сторону (анод) и отрицательную сторону (катод). Со светодиодами 5мм это просто, заметили, что ножки разной длины? Более длинная ветвь — это анод, а более короткая из двух — катод. Если ваши ножки подрезаны или у вас есть производитель, который делает их такого же размера, обычно есть плоское пятно вокруг обода 5-миллиметрового корпуса со стороны катода (см. Ниже).
Убедитесь, что вы всегда подключаете положительный полюс батареи / источника питания к аноду, а отрицательный или заземляющий — к катоду. Это обеспечит совпадение полярности и прохождение электричества, если у вас достаточно входного напряжения, и ваш 5-миллиметровый светодиод загорится. Если вы подключите его в обратном направлении, ничего не произойдет, и цепь останется замкнутой. Чтобы убедиться, что у вас достаточно мощности для светоизлучающего диода, есть два основных параметра, на которые следует обратить внимание при рассмотрении технических характеристик светодиодов: прямое напряжение и прямой ток.
Напряжение светодиода 5 мм
Для каждого светодиода должно быть указано «прямое напряжение», которое определяет величину напряжения, необходимого для проведения электричества и получения света. Если вы попытаетесь подать что-либо меньшее, чем это количество, светодиод останется открытым и непроводящим. Как только напряжение, падающее на светодиоде, достигнет прямого напряжения, ваш светодиод загорится. Если у вас несколько светодиодов последовательно, вы должны учитывать сумму их номинальных значений прямого напряжения.
Давайте взглянем на один из наших стандартных синих светодиодов 5 мм.Теперь мы можем легко увидеть в технических характеристиках на странице продукта, что светодиод имеет прямое напряжение около 3,4 В. Итак, мы берем этот светодиод и пытаемся подключить его к батарее АА, светодиод что-нибудь сделает? Батарейки AA имеют номинальное напряжение 1,5 В, поэтому нет, у нас недостаточно напряжения для проведения электричества. Однако, если мы добавим еще одну батарею AA последовательно, наше напряжение будет 3 В, и мы сможем запустить 5-миллиметровый светодиод. «Но вы сказали, что для светодиода требуется 3,4 В!» Да, я знаю, но когда вы говорите с точностью до нескольких знаков после запятой, все будет в порядке.
5 мм светодиодный ток
Теперь некоторые люди думают, что им нужно позаботиться только о напряжении светодиода, и все будет в порядке. Это упускает из виду очень важную часть светодиодов — ток. Светодиоды будут потреблять столько тока, сколько они могут в цепи, в свою очередь, вызывая повышение температуры светодиода, пока он не перегорит. Поэтому, чтобы уменьшить количество выходящих из строя светодиодов, позвольте нам обратить внимание на номинальный ток светодиодов.
Приведенный выше пример, когда входное напряжение и прямое напряжение настолько близки, — это единственный пример, когда вам не нужно сильно беспокоиться о токе.Как показывает практика на нашем сайте, когда ваше входное напряжение составляет 3 В, вы можете включить любой из 5-миллиметровых светодиодов, кроме красного и желтого, не беспокоясь об отслеживании тока. Это связано с тем, что в источнике питания недостаточно тока для того, чтобы 5 мм потреблял и сгорал.
В любом другом случае вам нужно ограничить количество тока, протекающего через светодиод. С помощью мощных светодиодов
это делается с помощью драйвера постоянного тока. Номинальный ток 5-миллиметровых светодиодов намного ниже, обычно около 15-30 мА, и мы можем контролировать ток, подключив резистор последовательно со светодиодом.Здесь вы часто будете слышать термин «резистор ограничения тока», поскольку резистор обеспечивает значительное ограничение тока, протекающего по цепи.
5-миллиметровые светодиоды обычно тестируются при 20 мА, они могут потреблять ток до 30 мА, но, на мой взгляд, я обычно стараюсь поддерживать 5-миллиметровые светодиоды на 20 мА, что рекомендуется во всех их спецификациях. Теперь нам нужно выяснить, как подобрать резистор подходящего размера для вашей схемы, чтобы ваши светодиоды были в безопасности!
Подбор резистора подходящего размера для светодиодов
Резисторы
бывают самых разных размеров, и чтобы найти правильный размер для вашей системы, требуется математика.Но не волнуйтесь, с этим калькулятором сопротивления, который рассчитывает размер резистора, который вам нужен, будет очень просто. Это отличный инструмент, но он всегда помогает узнать, как производятся расчеты, поэтому следите за ним. Чтобы найти токоограничивающий резистор правильного размера, мы должны знать два свойства светодиода: прямой ток и прямое напряжение.
Давайте использовать тот же синий светодиод, что и в примере выше. На странице продукта вы увидите таблицу, изображенную справа. В кружке показано прямое напряжение (Vf) при заданном испытательном токе.Таким образом, вы можете видеть, что для этого светодиода при постоянном токе 20 мА на светодиодах падает 3,2-3,6 В. Мы выберем золотую середину и предположим, что этот светодиод упадет на 3,4 В.
В этом примере я буду использовать 3 последовательно соединенных батарейки AA в качестве источника питания. Каждая батарея AA имеет напряжение около 1,5 В, поэтому в общей сложности у нас есть 4,5 В питания для нашего светодиода. Мы должны использовать закон Ома, чтобы найти предел резистора, но сначала мы должны найти напряжение, проходящее через него. Резистор и светодиод будут размещены последовательно, что означает, что падение напряжения на них будет суммировано, чтобы равняться входному напряжению.Это означает, что мы можем легко найти напряжение, которое будет падать на резисторе, поскольку мы уже знаем, что светодиоды составляют 3,4 В.
Входное напряжение = LED В f + Напряжение резистора
Напряжение резистора = Входное напряжение — светодиод В f
Напряжение на резисторе = 4,5–3,4 В
Таким образом, на резисторе будет падать около 1,1 В. Теперь, когда у нас есть это, мы можем использовать закон Ома для расчета необходимого сопротивления!
Сопротивление = напряжение / ток (в амперах)
Сопротивление = 1.1 / 0,02 (20 мА)
Сопротивление = 55 Ом
В зависимости от светодиода резистор будет меняться. В этом примере мы можем предположить, что необходим резистор на 55 Ом, ближайший размер, который у нас есть, — 60,4, поэтому мы бы выбрали его. Если вы сомневаетесь в значении или у вас есть одно среднее между предложенными значениями сопротивления, выберите размер немного большего размера.
Последнее, что нужно проверить с вашими светодиодами и резисторами, — это мощность резистора. Все наши резисторы ¼ Вт. Требуемая мощность резистора — это разница между мощностью светодиода и общей мощностью схемы.Итак, в приведенном выше примере мы найдем требуемую мощность резистора.
Мощность светодиода = 3,4 В x 0,02 A = 0,068 Вт
Общая мощность = 4,5 В x 0,02 A = 0,09 Вт
Мощность, рассеиваемая на резисторе = 0,09 — 0,068 = 0,022 Вт
Резистор
¼ Вт (0,25) может легко выдержать 0,022 Вт, так что все готово! Установите резистор последовательно со светодиодом (на положительной стороне соединения), и ваш свет будет готов.
Не хотите ломать голову над поиском резистора и работать с несколькими резисторами в одной цепи? Оцените DynaOhm от LuxDrive. Это полностью залитый полупроводниковый переменный резистор, который оптимизирован для замены резисторов в 5-миллиметровых светодиодных устройствах. Этот блок будет включаться последовательно, как и резистор. Разница в том, что он уже рассчитан на определенный номинальный ток, поэтому все, о чем вам нужно беспокоиться, — это напряжение. DynaOhm может принимать от 2,6 В до 50 В постоянного тока, поэтому вводите все, что вам нужно для светодиодов.
Теперь, когда мы закончили все эти забавные разговоры о напряжении и токе, мы можем погрузиться в то, что действительно волнует людей, — на свет, который излучают эти крошечные лампочки. Цвет и яркость измеряются несколькими способами. На нашем сайте они всегда хорошо перечислены и систематизированы, но давайте узнаем, как эти диоды создают тот свет, который они создают.
Длина волны светодиода
Длина волны светодиода
— это, по сути, очень точный способ объяснить цвет света. Для светодиодов будет различаться цвет, так как производственный процесс интенсивен, а иногда и длины волн немного отличаются.На листе технических характеристик светодиода 5 мм вы фактически увидите минимальную и максимальную длину волны. Вариации всегда находятся в пределах одного и того же спектра, просто если вы покупаете светодиоды одного цвета в разных партиях, вероятно, будут небольшие отклонения (даже если наши глаза их не замечают).
Эта длина волны фактически определяется типом полупроводникового материала, из которого изготовлен диод внутри этого 5-миллиметрового корпуса. Структура энергетических зон полупроводников различается в зависимости от материала, поэтому фотоны излучаются с разными частотами, что влияет на видимый нами свет.Ниже представлена полная таблица наших светодиодов и вариантов длины волны. Некоторые из наиболее популярных цветов, которые мы продаем, — это Deep Red 660 нм и Pink 440 нм.
Есть также 5-миллиметровые белые светодиоды теплого и холодного белого цвета.
Яркость светодиода
Таким образом, длина волны зависит от материала полупроводника, но интенсивность света зависит от тока, подаваемого на диод. Следовательно, чем выше ток возбуждения, тем ярче будет ваш светодиод. Яркость 5-миллиметровых светодиодов обычно измеряется в милликанделах (мкд), но это гораздо больше, чем просто установка определенного количества яркости на любой светодиод.
Интересная особенность этого измерения света, канделы, заключается в том, что это не мера количества световой энергии, как измеряется большинство других форм света, а, скорее, фактическая яркость. Это число определяется путем определения мощности, излучаемой в определенном направлении, и взвешивания этого числа с помощью функции яркости света. В основном это означает, что угол луча, который мы обсудим ниже, может влиять на свет, но также влияет на длину волны. Человеческий глаз более чувствителен к некоторым длинам волн, чем к другим, и эта модель яркости учитывает это.Вот почему ИК-светодиоды 5 мм не будут иметь выхода, потому что мы не можем видеть эту длину волны. То же самое для УФ и даже синего и других распространенных цветов.
Эта сила света (яркость) варьируется от светодиода к светодиоду, как вы увидите. Цвета обычно ниже, от десятков до сотен, тогда как белые (и некоторые цвета, которые мы видим лучше, например, зеленый) могут достигать 20 000 мкд. Мы перечисляем светоотдачу всех 5-миллиметровых светодиодов при испытательном токе 20 мА.
Угол обзора 5 мм
5мм светодиода на нашем сайте будут маркированы по цвету и углу луча.5-миллиметровые светодиоды показывают график, подобный приведенному справа, который показывает угол, под которым будет идти луч, и интенсивность при определенных углах. Чтобы прочитать график, представьте, что светодиод вертикально стоит под ним. «Спицы» на графике — это углы, а линии, похожие на радугу, — это интенсивность в процентах от максимальной интенсивности. Ниже мы расскажем, как определить угол обзора и яркость любого 5-миллиметрового светодиода под этим углом.
Рассеянный светодиод 5 мм
Часто рекомендуется иметь какой-нибудь рассеиватель или матовое покрытие, если на светодиоды будут смотреть непосредственно человеческий глаз.Некоторые 5-миллиметровые светодиоды имеют эпоксидную отделку купола, которая делает световой поток более мягким. У нас есть один белый 5-миллиметровый светодиод, в котором используется эта отделка, поэтому она приятна для глаз. Это снизит яркость, но сделает свет лучше.
Go Explore со светодиодами 5 мм
Светодиоды
5 мм очень доступны по цене и просты в разработке. Посмотрите, что вы можете с ними сделать, варианты безграничны. Теперь вы знаете, как запитать 5-миллиметровые светодиоды, определить их цвет и яркость, а также убедиться, что свет распространяется туда, где он вам нужен.Удачи!
BuckBlock DC LED Driver
Выходной ток: 2100 мА, 1400 мА и 1000 мА | Диапазон входного напряжения: 10Vdc-32Vdc |
Затемнение: 0-10 В | Защита выхода: Короткое замыкание и разрыв цепи |
Защита входа: Обратная полярность с Polarifet | Размер: 2,0 дюйма (Д) X 1,2 дюйма (Ш) X 0,38 дюйма (В) |
Внешнее управление: Аналоговый / цифровой контроль интенсивности | Управление потенциометром: 0-100% интенсивность |
КПД: 90% | Подключение: Провода 18 AWG |
Модули питания светодиодов BuckBlock ™ серии LuxDrive ™ A009 представляют собой высокомощные драйверы постоянного тока с широким диапазоном мощности для питания светодиодов высокой яркости (HB) при постоянных высоких выходных токах.В тех случаях, когда стандартные блоки питания подают на выход фиксированное напряжение, BuckBlock спроектирован для выработки фиксированного тока. Выходное напряжение будет регулироваться по мере необходимости для поддержания указанного выходного тока с различными падениями прямого напряжения светодиодов. BuckBlock имеет схему измерения тока с быстрым откликом, позволяющую устройству мигать или стробировать светодиоды, а выход BuckBlock включает внешнее затемнение с использованием обычных диммеров низкого напряжения 0-10 В. Форм-фактор BuckBlock чрезвычайно низкопрофильный, полностью герметизирован и поставляется с шестидюймовыми цветными выводами 18AWG, что делает установку в ограниченном пространстве быстрой и простой.
Выбор продукции
Деталь Номер |
Вход постоянного тока (В DC ) | Выход | Управление Диммирование (В) |
Соединение Тип |
||||
---|---|---|---|---|---|---|---|---|
Мин. | Макс. | Ток мА |
Допуск (±) |
КПД (%) |
Максимальное напряжение | |||
A009-D-V-1000 | 10 | 32 | 1000 | 10% | 90 | 80% от Vin | 0-10 | (6) 18AWG 6 «Провода |
A009-D-V-1400 | 10 | 32 | 1400 | 10% | 90 | 75% от Vin | 0-10 | (6) 18AWG 6 «Провода |
A009-D-V-2100 | 10 | 32 | 2100 | 10% | 90 | 50% от Vin | 0-10 | (6) 18AWG 6 «Провода |
Абсолютные максимальные рейтинги
Параметр | Максимальная производительность |
---|---|
Вход затемнения, порог включения | 1.7 В ± 5% |
Вход диммирования, полный по порогу | 9 В ± 5% |
Диапазон регулировки внешнего горшка | 0%, 5-100% |
Время нарастания выходной мощности | <1,5 мс |
Время спада мощности | <100 s = "" td = ""> |
Ток покоя (DIM = 0 В) | <4.5 ma = "" td = ""> |
Температура хранения | -40 ° C — 125 ° C |
Рабочая температура | -40 ° C — 80 ° C |
Информация о приложении: Высокоэффективный светодиодный силовой модуль BuckBlockTM — это высокоэффективный преобразователь постоянного тока в постоянный, который обеспечивает фиксированный выходной ток путем изменения выходного напряжения, необходимого для поддержания заданного тока.Поскольку прямое напряжение светодиодов может изменяться в зависимости от нескольких факторов окружающей среды, а также от возраста светодиода, важно использовать этот тип драйвера в светодиодной системе. Более высокие выходные токи идеальны для управления несколькими цепочками светодиодов или мощных светодиодных модулей. Схема измерения тока с быстрым откликом позволяет использовать устройство в приложениях, где требуется мигание или пульсация светодиодов. Доступно несколько опций, позволяющих использовать со многими типами светодиодов и в различных режимах работы.
Привод с фиксированным током: Когда провода регулятора яркости (фиолетовый / серый) остаются неподключенными, A009 предназначен для подачи номинального тока на один или несколько переходов светодиодов. Например, блок с номиналом 2100 мА будет управлять до четырех белых светодиодов 2100 мА, соединенных последовательно при 24 В постоянного тока. Из-за природы понижающего стабилизатора входное напряжение всегда должно быть выше, чем полное прямое падение напряжения на переходе (-ах) светодиодов, соединенных последовательно. Таким образом, для последовательной колонны из четырех соединений, имеющей среднее прямое падение 3.15 В каждое, необходимое минимальное входное напряжение будет 24 В постоянного тока. Стандартный источник питания 24 В постоянного тока — хороший выбор для этого приложения. См. Стр. 3 для получения информации о максимальных номинальных значениях Vout / Vin для различных приводных токов.
На рисунках 10 и 11 показаны блоки 1400 мА и 2100 мА, управляющие несколькими светодиодами. Обратите внимание, что параллельные цепочки светодиодов могут управляться напрямую без дополнительных схем, необходимых для распределения тока. Природа самих светодиодов будет обеспечивать достаточное разделение тока, если параллельные цепочки содержат три или более переходов каждая и имеют одинаковую длину.
Регулируемый ток — внешнее управление — модель «V»: На рисунках 14 и 15 показано, как легко регулировать яркость модуля питания светодиодов высокой мощности A009 BuckBlockTM. На рисунке 14 показана простейшая конфигурация диммирования с использованием потенциометра 20 кОм. Это дает диапазон затемнения от 0 до 100%. Если несколько модулей A009 должны быть уменьшены с помощью одного потенциометра, значение потенциометра должно быть приблизительно (20KÎ © / N), где N — количество модулей.
На рисунке 15 показан настенный диммер 0–10 В, такой как LEDdynamics A019 Low Voltage Dimming Control, используемый для управления яркостью светодиода.Это предпочтительный выбор для регулирования яркости нескольких устройств, поскольку диммер 0-10 В может работать с несколькими драйверами. Вход 0-10 В также может быть запитан коммерческим контроллером освещения, который имеет токонесущие выходы 0-10 В, что позволяет интегрировать светодиоды с другими формами освещения в больших автоматизированных системах.
Для больших систем, в которых несколько удаленных модулей BuckBlock будут затемнены вместе, важно использовать провод большего сечения (например, 18AWG) для прокладки линий DIM по схеме звездообразной проводки (где каждый модуль проходит весь путь назад до диммер).Это поможет нейтрализовать любые падения напряжения на проводах DIM, которые могут привести к тому, что некоторые лампы будут тускнеть не так, как другие.
Для более расширенного управления вход 0-10 В может иметь широтно-импульсную модуляцию (ШИМ). На рисунке 18 показано, как легко выполнить сопряжение с микроконтроллером с помощью транзистора 2N3904 или аналогичного. Рекомендуется частота ШИМ 200 Гц. Эта конфигурация также может использоваться для стробирования или импульса светодиодов с помощью логического сигнала TTL или CMOS.
В дополнение к конфигурациям, описанным выше, BuckBlock также может управляться цифро-аналоговым преобразователем.Цифро-аналоговый преобразователь должен иметь возможность потреблять не менее 1 мА тока со входа 0–10 В BuckBlock. Если цифро-аналоговый преобразователь не может потреблять ток, следует использовать повторитель напряжения с выходом с открытым коллектором между цифро-аналоговым преобразователем и входом 0–10 В.
Если цепь управления диммированием, используемая с BuckBlock, имеет потенциал превысить 10 В, ток на входе DIM необходимо ограничить до 10 мА или меньше. См. Рисунок 8.
Внешнее включение / выключение: Если требуется ручное включение / выключение, потенциометр на Рисунке 14 можно заменить кнопочным или тумблером.Выходной ток будет равен нулю, а входной ток упадет до уровня покоя, когда переключатель замкнут. На рисунках 16 и 17 показано внешнее управление затемнением в сочетании с управлением включением / выключением.
Управление температурой: BuckBlock может работать со многими конфигурациями светодиодной нагрузки без дополнительного теплоотвода при температуре окружающей среды 25 ° C. В ситуациях с повышенными температурами окружающей среды, например, в закрытых светильниках, может потребоваться дополнительный теплоотвод.Если температура драйвера (измеренная по метке T на этикетке) превышает 60 ° C, рекомендуется дополнительный теплоотвод. Если температура драйвера превышает 80 ° C, требуется дополнительный теплоотвод.
Лучшая поверхность для отвода тепла от BuckBlock — это задняя сторона (противоположная стороне с маркировкой). Модуль может быть прикреплен к радиатору с термопастой и монтажным кронштейном, который плотно прижимает устройство к радиатору, или с помощью двусторонней ленты, которая обеспечивает как тепловой путь, так и механический монтаж.При использовании ленты (такой как 3M F9469PC, лента с очень высоким сцеплением (VHB), подходящая для постоянного монтажа), использование более тонкой разновидности (толщиной 0,005 дюйма или меньше) поможет отвести тепло через ленту к радиатору. Следует соблюдать осторожность при установке модуля BuckBlock с лентой VHB, так как высокая прочность сцепления очень затрудняет снятие или повторное расположение модуля.
Если BuckBlock становится слишком горячим во время использования, он снижает выходной ток для ограничения рассеиваемой мощности. Если температура продолжит расти, драйвер выключится, пока температура не упадет до безопасного уровня.
Подключения: Во всех случаях управляемые светодиоды должны быть расположены как можно ближе к выходу светодиода A009. Провод 18AWG должен подходить для большинства проводов, но если требуются длинные провода, следует рассмотреть вариант более толстого сечения
Провода подачи питания также должны быть короткими. Если источник питания расположен в нескольких футах от устройства, на входных клеммах может потребоваться конденсатор емкостью 100 мкФ или более, 50 В, как показано на Рисунке 20.
Примечание: Выше представлены основные характеристики продукта, а не полное техническое описание производителя.Пожалуйста, просмотрите .pdf для получения полных спецификаций.
Что такое последовательное и параллельное соединение и когда что применять? — служба поддержки клиентов
Возможны два различных метода подключения: последовательное соединение и параллельное соединение. Вы должны знать разницу в проводке светодиодного освещения. Светодиод должен быть подключен либо последовательно, либо параллельно. Как они должны быть связаны, зависит от источника света. Неправильное соединение со светодиодом приведет к выходу из строя светодиодных фонарей.
Последовательный порт на 350 мА, 500 мА, 700 мА и 1050 мА
Требуется последовательное соединение со светодиодной подсветкой на 350 мА, 500 мА, 700 мА и 1050 мА. В этом случае вы используете источник питания с регулируемым током.
При последовательном подключении есть только один поток. Ток входит в первую точку через +, а затем уходит через -, чтобы перейти к следующей точке и сделать то же самое с третьей точкой. Ток течет таким образом в одном направлении, пока все точки не будут снабжены током.Всякий раз, когда хотя бы одна точка нарушена, цепь разрывается. Дефектное пятно больше не может проводить ток, поэтому все виды спорта в цепи выходят из строя.
Однако самые современные светодиодные прожекторы защищены от этого. Эти защищенные точки имеют встроенный мост, который позволяет току течь к другим точкам цепи в случае пробоя.
Параллельно с 12 В, 24 В и 230 В
Параллельное подключение требуется со светодиодной подсветкой на 12 В, 24 В и 230 В.В этом случае вы используете подачу напряжения.
При параллельном подключении начальные (+) и конечные (-) точки (-) разных точек соединяются друг с другом. В отличие от последовательного соединения, питание при параллельном соединении может проходить через несколько цепей. Всякий раз, когда одна точка выходит из строя, все остальные точки не выходят из строя. Электроэнергия все еще может достигать других точек в цепи.
На рисунке ниже показано, что происходит с силовой цепью при выходе из строя одной точки.При параллельном подключении силовая цепь остается неизменной, а все остальные точки продолжают работать. Однако при последовательном подключении, когда одна точка выходит из строя, питание больше не может циркулировать, поэтому другие точки выходят из строя.
При параллельном подключении силовая цепь продолжается. При последовательном подключении цепь питания не может продолжаться.
Чтобы продлить срок службы светодиодных фонарей, мы советуем подключать их к источнику постоянного тока.
Как рассчитать и подключить светодиоды последовательно и параллельно
В этой статье вы узнаете, как рассчитать светодиоды последовательно и параллельно, используя простую формулу, и настроить свои собственные индивидуальные светодиодные дисплеи, теперь вам не нужно просто задаваться вопросом, как провода светодиодные фонари? но на самом деле может это сделать, подробности узнайте здесь.
Эти фонари известны не только своими великолепными цветовыми эффектами, но также своей долговечностью и наименьшим энергопотреблением.
Более того, светодиоды могут быть соединены в группы для формирования больших буквенно-цифровых дисплеев, которые могут использоваться в качестве индикаторов или рекламы.
Молодые любители электроники и энтузиасты часто путаются и задаются вопросом, как рассчитать светодиод и его резистор в цепи, поскольку им сложно оптимизировать напряжение и ток через группу светодиодов, необходимых для поддержания оптимальной яркости.
Почему нам нужно рассчитывать светодиоды
Проектирование светодиодных дисплеев может быть забавным, но очень часто мы просто думаем, как подключить светодиодные фонари? С помощью формулы узнайте, насколько просто создать свои собственные светодиодные дисплеи.
Мы уже знаем, что для включения светодиода требуется определенное прямое напряжение (FV). Например, для красного светодиода требуется FV 1,2 В, для зеленого светодиода — 1,6 В, а для желтого светодиода — около 2 В.
Все современные светодиоды имеют примерно 3.Прямое напряжение 3 В независимо от цвета.
Но поскольку заданное напряжение питания светодиода будет в основном выше, чем его значение прямого напряжения, добавление резистора ограничения тока со светодиодом становится обязательным.
Поэтому давайте узнаем, как можно рассчитать резистор ограничителя тока для выбранного светодиода или серии светодиодов
Расчет резистора ограничителя тока
Значение этого резистора можно рассчитать по следующей формуле:
R = (питание напряжение VS — прямое напряжение светодиода VF) / ток светодиода I
Здесь R — рассматриваемый резистор в омах
Vs — входное напряжение питания светодиода
VF — прямое напряжение светодиода, которое на самом деле является минимальным напряжением питания, требуемым светодиод для освещения с оптимальной яркостью.
Когда возникает вопрос о последовательном подключении светодиодов, вам просто нужно заменить «прямое напряжение светодиода» на «общее прямое напряжение» в формуле, умножив FV каждого светодиода на общее количество светодиодов в серии. Предположим, что имеется 3 последовательно соединенных светодиода, тогда это значение становится 3 x 3,3 = 9,9
Ток светодиода или I относится к номинальному току светодиода, он может находиться в диапазоне от 20 мА до 350 мА в зависимости от спецификации выбранного светодиода. Это должно быть преобразовано в амперы в формуле, чтобы 20 мА стало 0.02 А, 350 мА становится 0,35 А и так далее.
Как подключить светодиоды?
Чтобы понять это, давайте прочитаем следующее обсуждение:
Предположим, вы хотите разработать светодиодный дисплей, содержащий 90 светодиодов, с источником питания 12 В для питания этого 90 светодиодного дисплея.
Чтобы оптимально согласовать и настроить 90 светодиодов с источником питания 12 В, вам необходимо соответствующим образом соединить светодиоды последовательно и параллельно.
Для этого расчета нам потребуется учитывать 3 параметра, а именно:
- Общее количество светодиодов, которое в нашем примере составляет 90
- Прямое напряжение светодиодов, здесь мы считаем его 3 В для упрощения расчет, обычно это 3.3V
- Вход питания, который в данном примере составляет 12 В.
Прежде всего, мы должны рассмотреть параметр последовательного подключения и проверить, сколько светодиодов может быть размещено в пределах заданного напряжения питания
Мы делаем это, разделив напряжение питания на 3 вольта.
Очевидно, ответ будет = 4. Это дает нам количество светодиодов, которые можно разместить в блоке питания 12 В.
Однако вышеупомянутое условие может быть нецелесообразным, потому что это ограничит оптимальную яркость строгим напряжением питания 12 В, а в случае уменьшения питания до некоторого более низкого значения приведет к более низкому освещению светодиода.
Следовательно, чтобы обеспечить более низкий запас по крайней мере 2 В, было бы целесообразно исключить одно количество светодиодов из расчета и сделать его 3.
Таким образом, 3 последовательно соединенных светодиода для источника питания 12 В выглядят достаточно хорошо, и это гарантирует, что даже если питание было уменьшено до 10 В, при этом светодиоды могли загореться довольно ярко.
Теперь мы хотели бы знать, сколько таких 3 светодиодных гирлянд можно сделать из наших 90 светодиодов в руках? Следовательно, разделив общее количество светодиодов (90) на 3, мы получим ответ, равный 30.Это означает, что вам нужно будет припаять 30 рядов светодиодных цепочек или цепочек, каждая из которых имеет 3 светодиода в серии. Это довольно легко, правда?
Как только вы закончите сборку упомянутых 30-ти светодиодных гирлянд, вы, естественно, обнаружите, что каждая цепочка имеет свои собственные положительные и отрицательные свободные концы.
Затем подключите рассчитанное значение резисторов, как описано в предыдущем разделе, к любому из свободных концов каждой серии, вы можете подключить резистор на положительном конце цепи или отрицательном конце, положение не имеет значения. поскольку резистор просто должен соответствовать серии, вы можете даже включить что-то среднее между серией светодиодов.Используя предыдущее значение, мы находим резистор для каждой светодиодной цепочки:
R = (напряжение питания VS — прямое напряжение светодиода VF) / ток светодиода
= 12 — (3 x 3) / 0,02 = 150 Ом
Предположим мы подключаем этот резистор к каждому из отрицательных концов светодиодных цепочек.
- После этого вы можете начать соединять общие положительные концы светодиодов вместе и отрицательные концы или концы резисторов каждой серии вместе.
- Наконец, подайте напряжение 12 В на эти общие концы, соблюдая полярность.Вы сразу же обнаружите, что весь дизайн ярко светится с одинаковой интенсивностью.
- Вы можете выровнять и расположить эти светодиодные цепочки в соответствии с дизайном дисплея.
Светодиоды с нечетным счетчиком
Может возникнуть ситуация, когда светодиодный дисплей содержит светодиоды с нечетным числом.
Например, предположим, что в приведенном выше случае вместо 90, если бы дисплей состоял из 101 светодиода, тогда, учитывая 12 В в качестве источника питания, становится довольно неудобной задачей разделить 101 на 3.
Итак, мы находим ближайшее значение, которое прямо делится на 3, что составляет 90. Разделив 99 на 3, мы получим 33. Следовательно, расчет для этих 33 цепочек светодиодов будет таким, как описано выше, но как насчет оставшихся двух светодиодов? Не беспокойтесь, мы все еще можем сделать цепочку из этих двух светодиодов и поставить ее параллельно с оставшимися 33 цепочками.
Однако, чтобы гарантировать, что 2 цепочки светодиодов потребляют равномерный ток, как и остальные 3 цепочки светодиодов, мы рассчитываем последовательный резистор соответственно.
В формуле мы просто изменяем общее прямое напряжение, как показано ниже:
R = (напряжение питания VS — прямое напряжение светодиода VF) / ток светодиода
= 12 — (2 x 3) / 0,02 = 300 Ом
Это дает нам значение резистора специально для цепочки из 2 светодиодов.
Следовательно, у нас есть 150 Ом для всех трех светодиодных цепочек и 300 Ом для двух светодиодных цепочек.
Таким образом, вы можете отрегулировать цепочки светодиодов с несовпадающим количеством светодиодов, вставив подходящий компенсирующий резистор последовательно с соответствующими цепочками светодиодов.
Таким образом, проблема легко решается путем изменения номинала резистора для оставшейся меньшей серии.
На этом мы завершаем наше руководство по последовательному и параллельному подключению светодиодов для любого заданного количества светодиодов с использованием указанного напряжения питания. Если у вас есть какие-либо связанные вопросы, используйте поле для комментариев, чтобы решить эту проблему.
Расчет светодиодов, подключенных последовательно, параллельно на плате дисплея
До сих пор мы изучили, как светодиоды могут быть подключены или рассчитаны последовательно и параллельно.
В следующих параграфах мы исследуем, как создать большой цифровой светодиодный дисплей путем последовательного и параллельного соединения светодиодов.
В качестве примера мы построим числовой дисплей «8», используя светодиоды, и посмотрим, как он подключен.
Необходимые детали
Для конструкции вам понадобятся следующие электронные компоненты:
КРАСНЫЙ светодиод 5 мм. = 56 шт.
РЕЗИСТОР = 180 ОМ ¼ ВАТТ CFR,
ПЛАТА ОБЩЕГО НАЗНАЧЕНИЯ = 6 НА 4 ДЮЙМА
Как рассчитать и построить светодиодный дисплей?
Конструкция этой схемы отображения номера очень проста и выполняется следующим образом:
Вставьте все светодиоды в плату общего назначения; следуйте ориентации, как показано на принципиальной схеме.
Сначала припаяйте только один вывод каждого светодиода.
После этого вы обнаружите, что светодиоды не выровнены прямо, а на самом деле закреплены довольно криво.
Прикоснитесь наконечником паяльника к припаянной точке светодиода и одновременно надавите на конкретный светодиод так, чтобы его основание прижалось к плате. Сделайте это, чтобы все светодиоды выровнялись ровно.
Теперь закончите пайку другого непаянного вывода каждого из светодиодов. Аккуратно отрежьте их провода кусачком.Согласно принципиальной схеме общие плюсы всех светодиодов серии.
Подключите резисторы 180 Ом к отрицательным открытым концам каждой серии. Снова соедините все свободные концы резисторов.
На этом завершается построение светодиодного дисплея с номером «8». Чтобы проверить это, просто подключите источник питания 12 В к общему положительному выводу светодиода и отрицательному общему резистору.
Число «8» должно мгновенно загореться в виде большого цифрового дисплея, и его можно будет распознать даже с большого расстояния.
Подсказки по работе схемы
Чтобы четко понять, как создать большой цифровой светодиодный дисплей, важно знать, как работает схема в деталях.
Глядя на схему, можно заметить, что весь дисплей разделен на 7 светодиодных полос.
Каждая серия содержит группу из 4 светодиодов. Если мы разделим входные 12 вольт на 4, мы обнаружим, что каждый светодиод получает 3 вольта, достаточных для того, чтобы они ярко светились.
Добавить комментарий