Принцип работы выпрямителя: Маломощные однофазные выпрямители

Разное

Содержание

Маломощные однофазные выпрямители

Одними из самых  распространенных преобразователей тока являются выпрямители переменного тока в пульсирующий (постоянный по направлению движения носителей, но переменный по мгновенной величине) ток. Они имеют очень широкое применение. Условно их можно разделить на маломощные выпрямители (до нескольких сотен ватт  и выпрямители большой мощности (киловатты и больше)).

Содержание:

Принцип работы выпрямителя

Структурная схема выпрямителя показана ниже:

Главною его частью является выпрямляющее устройство В, образованное из диодов, объединенных особым образом. Именно здесь и происходит преобразование переменного тока в пульсирующий постоянный. Переменное напряжение подается на выпрямляющее устройство через трансформатор Тр. В некоторых случаях трансформатора может и не быть (если напряжение силовой сети отвечает той, которая необходима для работы выпрямителя). Трансформатор(если он есть) в большинстве также имеет особенности в соединении его обмоток. Пульсирующий ток , как правило не является постоянным по величине в каждое мгновение времени, и когда необходимо иметь более сглаженное его значение, чем полученный после выпрямляющего устройства, применяют фильтры Ф. В случае необходимости выпрямитель дополняют стабилизатором напряжения  или тока Ст, который поддерживает их на постоянном уровне, если параметры силовой сети изменяется по разным причинам. Структурную схему завершает нагрузка Н, которая значительно влияет на работу всего устройства и поэтому считается составляющей частью всего преобразователя.

Собственно выпрямителем является та его часть, которая обведена на рисунке выше пунктиром и состоит из трансформатора и выпрямительного устройства.

В этом подразделе рассматриваются  выпрямители малой мощности, которые необходимы для обеспечения постоянным напряжением всяких устройств в областях управления, регулирования, усилителях тока, генераторах малой мощности и так далее. Как правило, они питаются от однофазного переменного напряжения 220 или 380 В частотою 50 Гц.

Нулевая схема выпрямления

Рассмотреть принцип действия самого простого выпрямителя однофазного тока целесообразно на так называемой нулевой схеме. Хотя она сейчас встречается относительно редко (о чем речь пойдет далее), знание физических процессов, которые происходят в этой схеме, очень важны для понимания дальнейшего материала.

Нулевая схема выглядит так:

Трансформатор Тр    имеет на вторичной стороне две обмотки, соединенные последовательно таким образом, что относительно средней точки а  напряжения  на свободных концах обмоток в и с одинаковые по величине, но противоположные по фазе. Выпрямительное устройство образовано двумя диодами D1 и D2, которые соединены вместе своими катодами, тогда как каждый анод соединен с соответствующей обмоткой. Нагрузка Zн присоединена между катодами диодов и точкой трансформатора.

Рассмотрим, как возникает пульсирующее напряжение на нагрузке. Сначала будем считать нагрузку чисто активным сопротивлением, Zн=Rн.  Когда напряжение в обмотках будет изменяться по синусоидальному закону, то в тот полупериод, когда к аноду диода приложен положительный потенциал, будет проходить прямой ток. Поскольку напряжение на диоде составляет доли вольта, пренебрежем им. Тогда вся положительная полуволна переменного напряжения будет приложена просто к нагрузке Rн.  Когда напряжение приложенное минусом к аноду, тока не будет (малым обратным током диода также пренебрежем). Таким образом, до нагрузки будем доходить лишь положительная полуволна переменного напряжения в течении половины периода. Вторая половина периода будет свободна от тока.

Вторичные обмотки соединены противофазно, нагрузка общая для обеих обмоток, таким образом, в то время, когда в одной из них (например в верхней) ток будет проходить, другая будет от него свободна и наоборот.

Поэтому в нагрузке каждый полупериод будет заполнен полуволной переменного напряжения:

И выпрямленное напряжение Ud будет иметь вид одинаковых полуволн, которые повторяются с периодом, вдвое меньшим, чем период переменного напряжения в сети питания (2π радиан). Для обобщения, что будет удобно, далее будем считать, что период изменения выпрямленного напряжения меньше 2π в m раз и равняется 2π/m (в нашем случае m-2). Если нагрузка активное сопротивление Rн, то и ток в нем id , будет повторять кривую напряжения.

Рассмотренная схема будет иметь тот недостаток, что во вторичных обмотках по сравнению с первичной имеют место значительные пульсации тока, потому что эти обмотки работают по очереди. Поскольку они намотаны на один сердечник, магнитный поток в последнем будет переменным, поэтому и в первичной обмотке ток будет переменным, имея как положительную, так и отрицательную полуволны. Как известно из курса электротехники, действующие и средние значения тока или напряжения одинаковые только для постоянного тока. Чем больше пульсации, тем больше будет действующее значение относительно среднего. Поэтому мощности обеих сторон трансформатора не будут одинаковыми. Однако трансформатор один, и объем железа для его сердечника следует выбирать, исходя из какого-то одного значения мощности.

Поэтому условно ввели понятие типовой мощности трансформатора, которая равняется среднему мощностей обеих сторон:

Выпрямительный мост или схема Гретца

Указанный недостаток можно исправить, используя выпрямляющее устройство в виде так называемого моста (схема Гретца):

В этом случае первые полупериоды будут работать, например, диоды D2  и D4, а вторые полупериода — D1 и D3. На нагрузке каждый раз будет полная полуволна вторичного напряжения:

 Мостовая схема кроме того имеет менее сложный, более легкий и дешевый трансформатор. Как мы увидим далее, у нее есть еще несколько преимуществ.

Интересно, что эта схема появилась исторически раньше нулевой однако распространения не получила, потому что имела во-первых четыре диода вместо двух. Однако главным  было не их количество, а то что при работе каждые полупериода ток проходит через два последовательно соединенных диода, на которые падает двойное напряжение. На то время полупроводниковых диодов еще не было, а вакуумные или ртутные имели значительное падение напряжения при прохождении прямого тока, что существенно понижало коэффициент  полезного действия. Оказалось, что более сложный трансформатор нулевой схемы, но с одним диодом в кругу выпрямления тока экономично выгоднее, чем мостовая схема с удвоенным числом диодов и двойным расходом энергии на них. И только появление относительно дешевых полупроводниковых диодов с очень маленьким падением прямого напряжения позволило повернуться к мостовым схемам, которая сейчас практически вытеснила нулевую ( в этом при желании можно усмотреть проявление одного из  диалектических законов – развитие по спирали).

Основные соотношения для выпрямителя

Выведем некоторые важные формулы, которые описывают процессы, существующие в этой схеме. Будем считать, что заданными величинами являются средние значения напряжения на нагрузку Ud и среднее значение тока в нем Id.

Среднее значение выпрямленного напряжения

Запомним это выражение на дальнейшее. В нашем случае m=2 и  . Поскольку Ud считаем заданным, то

Амплитудное значение вторичного напряжения

Из предыдущего выражения имеем:

Коэффициент трансформации трансформатора

Этот коэффициент определяет отношения питающей сети к напряжению на обмотке вторичной стороны:

Действующее значение тока вторичной обмотки

Ток вторичной обмотки в то же время есть током в нагрузке. Поскольку нагрузка чисто активная и ток в ней повторяет по форме пульсирующее напряжение, то между его средним значением и его действующим значением существует такая же зависимость, что и для напряжений, то есть

Действующее значение тока первичной обмотки

Ток в первичной обмотке повторяет с учетом n ток вторичной обмотки :

Мощность трансформатора

Мощности первичной и вторичной сторон трансформатора в этой схеме одинаковые, поэтому:

Пульсация выпрямленного напряжения

Пульсирующее напряжение состоит из среднего значения Ud   и бесконечного количества гармоничных составляющих, амплитуды которых можно определить по формулам Фурье. Если начало координат выбрать так как на рисунке, то в гармоничном составе будут присутствовать только косинусные гармоники (т.к. кривая симметрична относительна оси координат). Амплитуда k-ой гармоники определяется по формуле:

Где: l – полупериод π/m;  

Наибольшую амплитуду будет иметь первая гармоника U(1)m, поэтому определим только ее, предположив, что k=1:

Заменив   получим:

Отношение первой гармоники к среднему значению называют коэффициентом пульсаций:

Запомним эту формулу на будущее, а сейчас отметим, что в нашем случае при m – 2, q – 2/3. Это большие пульсации – амплитуда первой гармоники составляет 67% от среднего значения выпрямленного напряжения.

 Средний ток диодов

Как мы уже видели диоды работают по очереди – каждый из них проводит в среднем половину общего тока , который есть в нагрузке. Поэтому каждый из диодов должен быть рассчитан на ток  Iв = Id/2

Наибольшее обратное напряжение на диоде

В то время когда диод B1 проводит его можно считать замкнутым, и тогда к диоду B2 будет приложено в обратном направлении напряжение вторичной обмотки. Поэтому каждый из диодов должен быть рассчитан на ее амплитудное значение:

принцип работы, схема, область применения

С целью управления напряжением в сети используются электронные выпрямители. Данные устройства работают путем изменения частоты. Многие модификации разрешается применять в сети переменного тока.

К основным параметрам выпрямителей относится проводимость. Также стоит учитывать показатель допустимого перенапряжения. Для того чтобы более детально разобраться в вопросе, надо рассмотреть схему выпрямителя.

Устройство модификаций

Схема выпрямителя предполагает использование контактного тиристора. Стабилизатор, как правило, применяется переходного типа. В некоторых случаях он устанавливается с системой защиты. Еще имеется множество модификаций на триодах. Работают данные устройства при частоте от 30 Гц. Для коллекторов они неплохо подходят. Также схема выпрямителя включает в себя компараторы низкой проводимости. Чувствительность у них соответствует показателю не менее 10 мВ. Определенный класс устройств оснащается варикапом. За счет этого модификации можно подключать к однофазной цепи.

Как это работает?

Как говорилось ранее, выпрямитель работает за счет изменения частоты. Первоначально напряжение попадает на тиристоры силовые. Процесс преобразования тока осуществляется при помощи триода. Чтобы избежать перегрева устройства, имеется стабилизатор. При появлении волновых помех в работу включается компаратор.

Область применения устройств

Наиболее часто устройства устанавливаются в трансформаторы. Также есть модификации для приводных модулей. Еще не стоит забывать про автоматизированные устройства, которые используются на производстве. В модуляторах выпрямители играют роль регулятора напряжения. Однако в данном случае многое зависит от типа устройства.

Существующие типы модификаций

По конструкции выделяют полупроводниковые, тиристорные и мостовые модификации. В отдельную категорию относят силовые устройства, которые могут работать при повышенной частотности. Двухполупериодные модели для этих целей не подходят. Дополнительно выпрямители отличают по фазе. На сегодняшний день можно встретить одно-, двух- и трехфазные устройства.

Полупроводниковые модели

Полупроводниковые выпрямители замечательно подходят для понижающих трансформаторов. Многие модификации выпускаются на базе коннекторных конденсаторов. Проводимость на входе у них не превышает 10 мк. Также стоит отметить, что полупроводниковые выпрямители отличаются по чувствительности. Устройства до 5 мВ способны использоваться при напряжении 12 В.

Системы защиты у них применяются класса Р30. Для подключения модификаций используются переходники. При напряжении 12 В параметр перезарузки в среднем равен 10 А. Модификации с обкладками выделяются высоким параметром рабочей температуры. Многие устройства способны работать от транзисторов. Для понижения искажений используются фильтры.

Особенности тиристорных устройств

Тиристорный выпрямитель предназначен для регулировки напряжения в сети постоянного тока. Если говорить про модификации низкой проводимости, то у них используется только один триод. Предельное напряжение при загрузке в 2 А составляет не менее 10 В. Система защиты у представленных выпрямителей используется, как правило, класса Р44. Также стоит отметить, что модели хорошо подходят для силовых проводников. Как работает трансформатор на тиристорных выпрямителях? В первую очередь напряжение попадает на реле.

Преобразование постоянного тока происходит благодаря транзистору. Для контроля выходного напряжения используются конденсаторные блоки. У многих моделей имеется несколько фильтров. Если говорить про недостатки выпрямителей, то стоит отметить, что у них высокие тепловые потери. При выходном напряжении свыше 30 В, показатель перегрузки значительно снижается. Дополнительно стоит учитывать высокую цену на тиристорный выпрямитель.

Мостовые модификации

Мостовые выпрямители работают при частоте не более 30 Гц. Угол управления зависит от триодов. Компараторы в основном крепятся через диодные проводники. Для силового оборудования модели подходят не лучшим образом. Для модулей применяются стабилизаторы с низкоомным переходником. Если говорить про минусы, то следует учитывать низкую проводимость при высоком напряжении. Системы защиты, как правило, применяются класса Р33.

Многие модификации подключаются через дипольный триод. Как работает трансформатор на этих выпрямителях? Первоначально напряжение подается на первичную обмотку. При напряжении свыше 10 В в работу включается преобразователь. Изменение частоты осуществляется при помощи обычного компаратора. С целью уменьшения тепловых потерь на мостовой управляемый выпрямитель устанавливается варикап.

Силовые устройства

Силовые выпрямители в последнее время считаются очень распространенными. Показатель перегрузки при невысоком напряжении у них не превышает 15 А. Система защиты в основном используется серии Р37. Модели применяются для понижающих трансформаторов. Если говорить про конструктивные особенности, то важно отметить, что устройства выпускаются с пентодами. Они выделяются хорошей чувствительностью, но у них низкий параметр рабочей температуры.

Конденсаторные блоки разрешается применять на 4 мк. Выходное напряжение свыше 10 В задействует преобразователь. Фильтры, как правило, используются на два изолятора. Также стоит отметить, что на рынке имеется множество выпрямителей с контроллерами. Основное их отличие кроется в возможности работы при частоте свыше 33 Гц. При этом перегрузка в среднем соответствует 10 А.

Двухполупериодные модификации

Двухполупериодный однофазный выпрямитель способен работать на разных частотах. Основное преимущество модификаций кроется в высоком параметре рабочей температуры. Если говорить про конструктивные особенности, то важно отметить, что тиристоры силовые используются интегрального типа, и проводимость у них не превышает 4 мк. При напряжении 10 В система в среднем выдает 5 А.

Системы защиты довольно часто применяются серии Р48. Подключение модификаций осуществляется через адаптеры. Также стоит отметить недостатки выпрямителей этого класса. В первую очередь это низкая восприимчивость к магнитным колебаниям. Параметр перегрузки порой может быстро изменяться. При частоте ниже 40 Гц чувствуются перепады тока. Еще эксперты отмечают, что модели не способны работать на одном фильтре. Дополнительно для устройств не подходят полевые транзисторы.

Однофазные устройства

Однофазный управляемый выпрямитель способен выполнять множество функций. Устанавливают модели чаще всего на силовые трансформаторы. При частоте 20 Гц параметр перегрузки в среднем не превышает 50 А. Система защиты у выпрямителей используется класса Р48. Многие эксперты говорят о том, что модели не боятся волновых помех и отлично справляются с импульсными скачками. Есть ли недостатки у моделей данного типа? В первую очередь они касаются низкого тока при высокой загруженности. Чтобы решить эту проблему, устанавливаются компараторы. Однако стоит учитывать, что они не могу работать в цепи переменного тока.

Дополнительно периодически возникают проблемы с проводимостью тока. В среднем данный параметр равен 5 мк. Понижение чувствительности сильно влияет на работоспособность триода. Если рассматривать однофазные неуправляемые выпрямители, то обкладки у них используется с переходником. У многих моделей имеется несколько изоляторов. Также стоит отметить, что выпрямители данного типа не подходят для понижающих трансформаторов. Стабилизаторы чаще всего применяются на три выхода, и предельное напряжение у них не должно превышает 50 В.

Параметры двухфазных устройств

Двухфазные выпрямители производятся для цепей постоянного и переменного тока. Многие модификации эксплуатируются на триодах контактного типа. Если говорить про параметры модификаций, то стоит отметить малое напряжение при больших перегрузках. Таким образом, устройства плохо подходят для силовых трансформаторов. Однако преимуществом устройств считается хорошая проводимость.

Чувствительность у моделей стартует от 55 мВ. При этом тепловые потери незначительные. Компараторы применяются на две обкладки. Довольно часто модификации подключают через один переходник. При этом изоляторы предварительно проверяются на выходное сопротивление.

Трехфазные модификации

Трехфазные выпрямители активно применяются на силовых трансформаторах. У них очень высокий параметр перегрузки, и они способны работать в условиях повышенной частотности. Если говорить про конструктивные особенности, то важно отметить, что модели собираются с конденсаторными блоками. За счет этого модификации разрешается подключать к цепи постоянного тока и не бояться про волновые помехи. Импульсные скачки блокируются за счет фильтров. Подключение через переходник осуществляется при помощи преобразователя. У многих моделей имеется три изолятора. Выходное напряжение при 3 А не должно превышать 5 В.

Дополнительно стоит отметить, что выпрямители этого типа используются при больших перегрузках сети. Многие модификации оснащаются блокираторами. Понижение частоты происходит при помощи компараторов, которые устанавливаются над конденсаторной коробкой. Если рассматривать релейные трансформаторы, то для подключения модификаций потребуется дополнительный переходник.

Модели с контактным компаратором

Управляемые выпрямители с контактным компаратором в последнее время пользуются большим спросом. Среди особенностей модификаций стоит отметить высокую степень перегрузки. Системы защиты в основном применяются класса Р55. Работают устройства с одной конденсаторной коробкой. При напряжении 12 В выходной ток равен не менее 3 А. Многие модели способны похвастаться высокой проводимостью при частоте 5 Гц.

Стабилизаторы довольно часто применяются низкоомного типа. Они хорошо себя показывают в цепи переменного тока. На производстве выпрямители применяются для работы силовых трансформаторах. Допустимый уровень проводимости у них равен не более 50 мк. Рабочая температура в данном случае зависит от типа динистора. Как правило, они устанавливаются с несколькими обкладками.

Устройства с двумя компараторами

Электронные выпрямители с двумя компараторами ценятся за высокий параметр выходного напряжения. При перегрузке в 5 А модификации способны работать без тепловых потерь. Коэффициент сглаживания у выпрямителей не превышает 60 %. Многие модификации обладают качественной системой защиты серии Р58. В первую очередь она призвана справляться с волновыми помехами. При частоте 40 Гц устройства в среднем выдают 50 мк. Тетроды для модификаций используются переменного типа, и чувствительность у них равна не более 10 мВ.

Есть ли недостатки у выпрямителей данного типа? В первую очередь надо отметить, что их запрещается подключать к понижающим трансформаторам. В сети постоянного тока у моделей малый параметр проводимости. Рабочая частотность в среднем соответствует 55 Гц. Под однополюсные стабилизаторы модификации не подходят. Чтобы использовать устройства на силовых трансформаторах, применяется два переходника.

Отличие модификаций с электродным триодом

Управляемые выпрямители с электродными триодами ценятся за высокий параметр выходного напряжения. При низких частотах они работают без тепловых потерь. Однако стоит учитывать, что параметр перегрузки в среднем равен 4 А. Все это говорит о том, что выпрямители не способны работать в сети постоянного тока. Фильтры разрешается применять лишь на две обкладки. Выходное напряжение, как правило, соответствует 50 В, а система защиты используется класса Р58. Для того чтобы подключить устройство, применяется переходник. Коэффициент сглаживания у выпрямителей данного типа составляет не менее 60 %.

Модели с емкостным триодом

Управляемые выпрямители с емкостным триодом способны работать в сети постоянного тока. Если рассматривать параметры модификаций, то можно отметить высокое входное напряжение. При этом перегрузка при работе не будет превышать 5 А. Система защиты используется класса А45. Некоторые модификации подходят для силовых трансформаторов.

В данном случае многое зависит от конденсаторного блока, который установлен в выпрямителе. Как утверждают эксперты, номинальное напряжение многих модификаций составляет 55 В. Выходной ток в системе составляет 4 А. Фильтры для модификаций подходят переменного тока. Коэффициент сглаживания у выпрямителей составляет 70 %.

Устройства на базе канального триода

Управляемые выпрямители с канальными триодами отличаются высокой степенью проводимости. Модели данного типа замечательно подходят для понижающих трансформаторов. Если говорить про конструкцию, то стоит отметить, что модели всегда производятся с двумя коннекторами, а фильтры у них используются на изоляторах. Если верить экспертам, то проводимость при частоте 40 Гц сильно не меняется.

Есть ли недостатки у данных выпрямителей? Тепловые потери являются слабой стороной модификаций. Многие эксперты отмечают низкую проводимость коннекторов, которые устанавливаются на выпрямители. Чтобы решить проблему, применяются кенотроны. Однако их не разрешается использовать в сети постоянного тока.

Отличие модификаций

Выпрямители на 12 В используются только для понижающих трансформаторов. Компараторы в устройствах устанавливаются с фильтрами. Предельная перегрузка модификаций составляет не более 5 А. Системы защиты довольно часто применяются класса Р48. Для преодоления волновых помех они замечательно подходят. Еще часто применяются преобразовательные стабилизаторы, у которых высокий коэффициент сглаживания. Если говорить про недостатки модификаций, то стоит отметить, что выходной ток в устройствах составляет не более 15 А.

Однополупериодный выпрямитель, принцип его работы и схема

Питание электронных схем самого различного назначения требует источника постоянного напряжения. В обычной бытовой сети ток переменный, его частота в большинстве случаев 50 Гц. Форма графика изменения величины напряжения представляет собой синусоиду с периодом в 0,02 секунды, при этом один полупериод оно относительно нейтрали положительное, второй – отрицательное. Для решения задачи его преобразования в постоянную величину применяются выпрямители переменного тока. Они бывают разной конструкции, и их схемы могут отличаться.

Для того чтобы понять, как работает самый простой однополупериодный выпрямитель, нужно сначала разобраться в природе электрической проводимости. Ток есть направленное движение заряженных частиц, которые могут иметь противоположную полярность, условно их делят на электроны и дырки, иначе – доноры и акцепторы, имеющие проводимости «n» и «p» типов соответственно. Если материал с n-проводимостью соединить с другим, p-типа, то на их границе образуется так называемый p-n-переход, ограничивающий движение заряженных частиц одним направлением. Это открытие позволило использовать полупроводниковую технику, заменив ею большинство ламповой электроники.

Однополупериодный выпрямитель в своей основе содержит диод, устройство с одним p-n переходом. Переменное напряжение, поступающее на вход схемы, на выходе содержит лишь его половину, ту, которая соответствует направлению включения выпрямительного диода. Вторая часть периода, имеющая противоположное направление, просто не проходит и «срезается».

На схеме изображен однофазный выпрямитель, применяемый чаще всего в простых домашних устройствах и предназначенный для бытовых целей. В промышленных условиях часто используется трехфазная сеть, поэтому и схемы преобразования переменного тока в постоянный могут быть сложнее. Кроме того, как правило, в цепь включают предохранители и фильтры. На входе схемы может включаться понижающий трансформатор или другой источник переменного напряжения. Выпрямительные диоды различаются по своим параметрам, главным из которых является величина тока, на которую диод рассчитан.

Однополупериодный выпрямитель имеет существенный недостаток по сравнению с двухполупериодным. Напряжение после выпрямления не является в буквальном смысле постоянным, оно пульсирует от максимальной величины до нуля по полусинусовидной форме графика и имеет в промежутке между импульсами нулевое значение. Такую неравномерность подачи обычно компенсируют включением сглаживающего конденсатора довольно большой величины (иногда измеряемой в тысячах микрофарад), рассчитанного на напряжение не меньшее, чем возникает на выходе схемы, как правило, с запасом. Такая мера также не обеспечивает идеальной ровности графика, но величина отклонений от заданного значения значительно снижается, что дает возможность применять однополупериодный выпрямитель для запитывания простых схем, не требующих высокой стабильности напряжения.

В более сложных случаях используются двухполупериодные схемы выпрямления с последующей стабилизацией.

Однополупериодный выпрямитель тока. Схема и принцип работы.

Выпрямитель тока – это устройство, позволяющее выполнить преобразование тока переменного направления в ток постоянного направления. И сегодня мы рассмотрим базовую схему выпрямителя – однополупериодный выпрямитель. Разберем схему, принцип работы, а также достоинства и недостатки.

Однополупериодный выпрямитель.

Схема однополупериодного выпрямителя выглядит следующим образом:

Пусть на входе у нас переменное напряжение, меняющееся по синусоидальному закону:

Резистор же R_н играет роль нагрузки. То есть мы должны обеспечить протекание через него постоянного тока. Давайте разберемся как эта простейшая схема сможет решить нашу задачу!

Итак, диод D_1 пропускает ток только в одном направлении, в те моменты, когда к нему приложено прямое смещение, что соответствует положительным полупериодам (U_{вх}\gt0) входного сигнала. Когда к диоду будет приложено обратное смещение (отрицательные полупериоды), он будет закрыт и по цепи будет протекать только незначительный обратный ток. И в результате сигнал на нагрузке будет выглядеть так:

Обратным током обычно можно пренебречь, поэтому в итоге мы получаем, что ток через нагрузку протекает только в одном направлении. Но назвать его постоянным не представляется возможным 🙂 Ток через нагрузку хоть и является выпрямленным (протекает только в одном направлении), но носит пульсирующий характер.

Для сглаживания этих пульсаций в схему выпрямителя тока обычно добавляется конденсатор:

Идея заключается в том, что во время положительного полупериода, конденсатор заряжается (запасает энергию). А во время отрицательного полупериода конденсатор, напротив, разряжается (отдает энергию в нагрузку).

Таким образом, за счет накопленной энергии конденсатор обеспечивает протекание тока через нагрузку и в отрицательные полупериоды входного сигнала. При этом емкость конденсатора должна быть достаточной для того, чтобы он не успевал разряжаться за время, равное половине периода.

Проверяем напряжение на нагрузке для этой схемы:

В точке 1 конденсатор заряжен до напряжения U_1. Далее входное напряжение понижается, а конденсатор, в свою очередь, начинает разряжаться на нагрузку. Поэтому выходное напряжение не падает до нуля вслед за входным.

В точке 2 конденсатор успел разрядиться до напряжения U_2. В то же время значение входного сигнала также становится равным этой же величине, поэтому конденсатор снова начинает заряжаться. И эти процессы в дальнейшем циклически повторяются.

А теперь поэкспериментируем и используем в схеме однополупериодного выпрямителя конденсатор меньшей емкости:

И здесь мы видим, что конденсатор из-за меньшей емкости успевает разрядиться гораздо сильнее, и это приводит к увеличению

Работа трехфазного мостового выпрямителя: принцип, схемы, характеристики

Рассматриваемый выпрямитель (рис. 4.26) широко используется в устройствах большой мощности.

Опишем работу выпрямителя при подключении его к активной (рис. 4.26, а) и активноиндуктивной (рис. 4.26, б) нагрузке. Изучаемый выпрямитель подобен рассмотренному однофазному мостовому, но получает питание от трехфазного источника напряжения, содержит 6 тиристоров, представляет собой достаточно сложную систему и вследствие этого более труден для анализа.

Так как тиристоры Th Т2 и Т3 соединены катодами, принято говорить, что они составляют катодную группу тиристоров. Тиоисторы 74, Т5 и Г6, соединенные анодами, составляют анодную группу.

В однофазном мостовом выпрямителе каждый тиристор может проводить ток в паре с единственным тиристором и таких пар всего две. В трехфазном мостовом выпрямителе каждый тиристор может проводить ток в паре с одним из двух тиристоров противоположной группы. К примеру, тиристор Г, может проводить ток или в паре с тиристором Г5, или в паре с тиристором Г6. Вследствие этого имеется 6 пар тиристоров, совместно проводящих ток нагрузки.

Основная трудность при анализе выпрямителя состоит в том, чтобы определить, какая пара тиристоров находится во включенном состоянии или может в нем находиться (т. е. может быть включена импульсами управления). Подобные проблемы типичны для всех электронных устройств, содержащих нелинейные и, в частности, работающие в ключевом режиме элементы. При анализе таких устройств очень полезно выявить их характерные особенности, сужающие круг возможных сочетаний режимов работы элементов и упрощающие определение токов и напряжений.

Укажем такие особенности для рассматриваемой схемы.

— Не могут быть включены два тиристора одной группы (так как их проводящее состояние обеспечило бы протекание под действием соответствующего линейного напряжения очень большого обратного тока одного из тиристоров, что невозможно для исправного прибора).
— Если имеется пара включенных тиристоров, то напряжение ивых равно определенному линейному напряжению, причем возможны 6 вариантов:

Например, при включенных тиристорах Г, и Т5 ивых = = иаЬ а при включенных тиристорах Т4 и Т2 ивых = — иаЬ

Пусть в некоторый момент времени при включенной одной паре тиристоров ивых = и{ Тогда не может быть включена другая пара, для которой ивых = и2ии2< и{ (иначе это соответствовалооы включению тиристора, находящегося под обратным напряжением, что невозможно). Отсюда следует, что в рассматриваемой схеме исключено скачкообразное уменьшение напряжения ивых (ордината точки временной диаграммы напряжения ивых не может совершать скачки вниз). Но скачкообразное увеличение напряжения ивых вполне возможно.

Второе следствие этой особенности рассматриваемого выпрямителя состоит в том, что в случае, когда все тиристоры непрерывно получают импульсы управления (и таким образом выполняют функции диодов), в некоторый момент времени во включенном состоянии будет находиться та пара приборов, которая обеспечит наибольшее значение напряжения ивых (иначе, по крайней мере, на одном тиристоре этой пары создавалось бы существенное прямое напряжение).

Если тиристоры работают в режиме диодов (или если анализируется неуправляемый трехфазный мостовой выпрямитель, кратко рассмотренный выше), для выявления включенных в заданный момент времени приборов достаточно:

  1. по временным диаграммам выбрать из трех (uab, иЬс, иса) одно линейное напряжение, имеющее максимальное по модулю значение;
  2. выделить в трехфазной схеме однофазную мостовую, питающуюся выбранным напряжением;
  3. определить два прибора (из четырех), которые открываются выбранным напряжением.

Пример использования алгоритма.

Работа выпрямителя на активную нагрузку при нулевом угле управления. В рассматриваемом случае тиристоры выполняют функции диодов (и результаты анализа применимы также к неуправляемому выпрямителю). Рассмотрим временные диаграммы (рис. 4.27), характеризующие работу схемы. Через Um обозначено амплитудное значение линейных напряжений uab, иЬс, иса (общим обозначением всех линейных напряжений является иЛ). Ось абсцисс разделена на отрезки, каждому из которых присвоен номер, обозначаемый через л.

На временной диаграмме напряжения ивых для каждого отрезка указано совпадающее с ним линейное напряжение, а на временной диаграмме тока ieblx — совпадающий с ним ток включенной пары тиристоров. Обратимся к отрезку с номером 1. На этом отрезке максимальным по модулю является напряжение иЬс

Однофазный выпрямитель, питающийся напряжением иЬс, образуют тиристоры Т2, Г3, Г5, Т6. Так как иЬс < О, открыты тиристоры Т4 и Т5 причем аналогично выполняется анализ для других отрезков.

Частота пульсаций (частота основной гармоники пульсаций) напряжения ивых в 6 раз больше частоты напряжения питающей сети, что сильно облегчает их фильтрацию. Приведем основные соотношения, характеризующие рассматриваемый режим. Среднее значение Ucp выходного напряжения:

где U — действующее значение линейного напряжения.

Регулировочная характеристика выпрямителя при работе на активную нагрузку

Угол управления а для каждого тиристора отсчитывается от момента включения соответствующего диода неуправляемого выпрямителя (по существу это справедливо и для рассмотренного однофазного мостового, и для других управляемых выпрямителей).
Как следует из последнего выражения, при а = 2л/3
Используя полученные выражения, изобразим регулировочную характеристику графически (рис. 4.28, сплошная линия).
Работа выпрямителя на активноиндуктивную нагрузку при угле управления я/3 рад (60 эл. град.) (рис. 4.29). При построении временных диаграмм предполагалось, что индуктивность LH достаточно велика и ток нагрузки практически постоянный. Регулировочная характеристика выпрямителя при работе на активно-индуктивную нагрузку.

Наличие индуктивности обеспечивает режим непрерывного тока.

Отсюда следует, что при а = л/2, Ucp = 0. Дадим графическое изображение регулировочной характеристики (рис. 4.28, пунктир).

Схема работы и ее характеристики

В самом периоде 1880-х годов началась идентификация и уникальность выпрямителей. Развитие выпрямителей привело к появлению различных подходов в области силовой электроники. Первоначальный диод, который использовался в выпрямителе, был разработан в 1883 году. С развитием вакуумных диодов, которые были впервые применены в первые дни 1900-х годов, возникли ограничения на выпрямители. В то время как с модификациями ртутных дуговых трубок использование выпрямителей было расширено до различных мегаваттных диапазонов.И один тип выпрямителя — это полупериодный выпрямитель.

Усовершенствование вакуумных диодов показало эволюцию ртутных дуговых трубок, и эти ртутные дуговые трубки были названы выпрямительными трубками. С развитием выпрямителей были впервые использованы многие другие материалы. Итак, это краткое объяснение того, как развивались выпрямители и как они развивались. Позвольте нам получить четкое и подробное объяснение того, что такое полуволновой выпрямитель, его схема, принцип работы и характеристики.

Что такое полуволновой выпрямитель?

Выпрямитель — это электронное устройство, преобразующее переменное напряжение в постоянное. Другими словами, он преобразует переменный ток в постоянный. Выпрямитель используется практически во всех электронных устройствах. В основном он используется для преобразования сетевого напряжения в постоянное напряжение в блоке питания. При питании от постоянного тока работают электронные устройства. В зависимости от периода проводимости выпрямители подразделяются на две категории: полуволновой выпрямитель и полнополупериодный выпрямитель.

Конструкция

По сравнению с двухполупериодным выпрямителем, HWR является самым простым выпрямителем в конструкции.Только с одним диодом можно построить устройство.

Конструкция HWR

Полупериодный выпрямитель состоит из следующих компонентов:

  • Источник переменного тока
  • Резистор в секции нагрузки
  • А диод
  • А понижающий трансформатор

Источник переменного тока

Это источник тока подает переменный ток на всю цепь. Этот переменный ток обычно представляется как синусоидальный сигнал.

Понижающий трансформатор

Для увеличения или уменьшения переменного напряжения обычно используется трансформатор.Поскольку здесь используется понижающий трансформатор, он снижает напряжение переменного тока, а когда используется повышающий трансформатор, он увеличивает напряжение переменного тока с минимального уровня до высокого уровня. В HWR в основном используется понижающий трансформатор, поскольку необходимое напряжение для диода очень минимально. Когда трансформатор не используется, большое количество переменного напряжения вызовет повреждение диода. Хотя в некоторых случаях также можно использовать повышающий трансформатор.

В понижающем устройстве вторичная обмотка имеет минимальное количество витков, чем первичная обмотка.Из-за этого понижающий трансформатор снижает уровень напряжения от первичной до вторичной обмотки.

Диод

Использование диода в полуволновом выпрямителе позволяет току течь только в одном направлении, тогда как он останавливает ток в другом направлении.

Резистор

Это устройство, которое блокирует прохождение электрического тока только до определенного уровня.

Это конструкция полупериодного выпрямителя .

Работа полуволнового выпрямителя

Во время положительного полупериода диод находится в состоянии прямого смещения и проводит ток к RL (сопротивление нагрузки).На нагрузке возникает напряжение, такое же, как входной сигнал переменного тока положительного полупериода.

В качестве альтернативы, во время отрицательного полупериода диод находится в состоянии обратного смещения, и через диод не протекает ток. На нагрузке появляется только входное напряжение переменного тока, и это общий результат, который возможен в течение положительного полупериода. Выходное напряжение пульсирует постоянным напряжением.

Цепи выпрямителя

Однофазные цепи или многофазные цепи входят в состав цепей выпрямителя.Для бытовых применений используются однофазные выпрямительные схемы малой мощности, а для промышленных применений HVDC требуется трехфазное выпрямление. Наиболее важным применением диодов с PN переходом является выпрямление, и это процесс преобразования переменного тока в постоянный.

Полупериодное выпрямление

В однофазном полуволновом выпрямителе течет либо отрицательная, либо положительная половина переменного напряжения, а другая половина переменного напряжения блокируется. Следовательно, выходной сигнал принимает только половину волны переменного тока.Один диод требуется для однофазного полуволнового выпрямления и три диода для трехфазного питания. Полупериодный выпрямитель производит большее количество пульсаций, чем двухполупериодный выпрямитель, и для устранения гармоник он требует гораздо большей фильтрации.

Однофазный полуволновой выпрямитель

Для синусоидального входного напряжения выходное постоянное напряжение холостого хода для идеального полуволнового выпрямителя составляет

В среднеквадратичное значение = Впик / 2

В = = Пик / ᴨ

Где

  • Vdc, Vav — выходное напряжение постоянного тока или среднее выходное напряжение
  • Vpeak — пиковое значение входного фазного напряжения
  • Vrms — выходное напряжение среднеквадратичного значения

Работа полуволнового выпрямителя

PN переход диод проводит только при прямом смещении.Полупериодный выпрямитель использует тот же принцип, что и диод с PN переходом, и таким образом преобразует переменный ток в постоянный. В схеме однополупериодного выпрямителя сопротивление нагрузки включено последовательно с диодом с PN переходом. Переменный ток — это вход однополупериодного выпрямителя. Понижающий трансформатор принимает входное напряжение, а результирующий выходной сигнал трансформатора передается на нагрузочный резистор и диод.

Работа HWR объясняется в двух фазах:

  • Процесс положительной полуволны
  • Процесс отрицательной полуволны
Положительный полуволна

При частоте 60 Гц в качестве входного напряжения переменного тока, шаг трансформатор понижает это напряжение до минимального.Таким образом, на вторичной обмотке трансформатора создается минимальное напряжение. Это напряжение на вторичной обмотке называется вторичным напряжением (Vs). Минимальное напряжение подается как входное напряжение на диод.

Когда входное напряжение достигает диода, во время положительного полупериода диод переходит в состояние прямого смещения и пропускает электрический ток, тогда как во время отрицательного полупериода диод переходит в отрицательное состояние смещения и препятствует прохождению электрического тока.Положительная сторона входного сигнала, который подается на диод, совпадает с прямым напряжением постоянного тока, которое подается на диод P-N. Таким же образом, отрицательная сторона входного сигнала, который подается на диод, совпадает с обратным постоянным напряжением, которое прикладывается к PN-диоду

Итак, было известно, что диод проводит ток в смещенном вперед состоянии и препятствует поток тока в обратном смещенном состоянии. Таким же образом в цепи переменного тока диод пропускает ток в течение цикла + ve и блокирует прохождение тока во время цикла -ve.Переходя к + ve HWR, он не будет полностью блокировать полупериоды -ve, он допускает несколько сегментов полупериодов -ve или допускает минимальный отрицательный ток. Это генерация тока из-за неосновных носителей заряда, находящихся в диоде.

Генерация тока через эти неосновные носители заряда очень минимальна, поэтому им можно пренебречь. Эту минимальную часть полупериодов -ve невозможно наблюдать на участке нагрузки. В практических диодах считается, что отрицательный ток равен «0».

Резистор в секции нагрузки использует постоянный ток, который вырабатывается диодом. Таким образом, резистор называется резистором электрической нагрузки, где напряжение / ток постоянного тока рассчитываются на этом резисторе (R L ). Электрическая мощность считается электрическим коэффициентом схемы, в которой используется электрический ток. В HWR резистор использует ток, производимый диодом. Из-за этого резистор называют нагрузочным резистором. R L в HWR используется для ограничения или ограничения дополнительного постоянного тока, генерируемого диодом.

Таким образом, был сделан вывод, что выходной сигнал в полуволновом выпрямителе представляет собой непрерывные полупериоды + ve, которые имеют синусоидальную форму.

Отрицательная полуволна

Работа и конструкция полуволнового выпрямителя в отрицательном направлении почти идентична положительной полуволновой выпрямителю. Единственный сценарий, который здесь будет изменен, — это направление диода.

Если входное напряжение переменного тока составляет 60 Гц, понижающий трансформатор снижает его до минимального напряжения.Таким образом, на вторичной обмотке трансформатора создается минимальное напряжение. Это напряжение на вторичной обмотке называется вторичным напряжением (Vs). Минимальное напряжение подается в качестве входного напряжения на диод.

Когда входное напряжение достигает диода, во время отрицательного полупериода диод переходит в состояние прямого смещения и пропускает электрический ток, тогда как во время положительного полупериода диод переходит в отрицательное состояние смещения и препятствует прохождению электрического тока.Отрицательная сторона входного сигнала, который подается на диод, совпадает с прямым напряжением постоянного тока, которое подается на диод P-N. Таким же образом, положительная сторона входного сигнала, который подается на диод, совпадает с обратным напряжением постоянного тока, которое прикладывается к PN-диоду

Итак, было известно, что диод проводит ток в состоянии обратного смещения и препятствует протекание тока в прямом смещенном состоянии. Таким же образом в цепи переменного тока диод пропускает ток в течение цикла -ve и блокирует ток во время цикла + ve.Переходя к -ve HWR, он не будет полностью препятствовать положительным полупериодам, он допускает несколько сегментов положительных полупериодов или допускает минимальный положительный ток. Это генерация тока из-за неосновных носителей заряда, находящихся в диоде.

Генерация тока через эти неосновные носители заряда очень минимальна, поэтому им можно пренебречь. Эта минимальная часть положительных полупериодов не может быть соблюдена на участке нагрузки. В практических диодах считается, что положительный ток равен «0».

Резистор в секции нагрузки использует постоянный ток, который вырабатывается диодом. Таким образом, резистор называется резистором электрической нагрузки, где напряжение / ток постоянного тока рассчитываются на этом резисторе (R L ). Электрическая мощность считается электрическим коэффициентом схемы, в которой используется электрический ток. В HWR резистор использует ток, производимый диодом. Из-за этого резистор называют нагрузочным резистором. R L в HWR используется для ограничения или ограничения дополнительного постоянного тока, генерируемого диодом.

В идеальном диоде полупериоды + ve и -ve на выходе кажутся похожими на полупериоды + ve и -ve Но в практических сценариях полупериоды + ve и -ve несколько отличаются от полупериодов + ve и -ve. циклы ввода, и это незначительно.

Итак, был сделан вывод, что выходной сигнал в однополупериодном выпрямителе представляет собой непрерывные полупериоды -ve, которые имеют синусоидальную форму. Таким образом, выходной сигнал полуволнового выпрямителя представляет собой непрерывные синусоидальные сигналы с положительной и отрицательной полярностью, но не чистый сигнал постоянного тока и в пульсирующей форме.

Работа полуволнового выпрямителя

Это пульсирующее значение постоянного тока изменяется в течение короткого периода времени.

Работа полуволнового выпрямителя

Во время положительного полупериода, когда вторичная обмотка верхнего конца положительна по отношению к нижнему, диод находится в состоянии прямого смещения и проводит ток. Во время положительных полупериодов входное напряжение прикладывается непосредственно к сопротивлению нагрузки, когда прямое сопротивление диода предполагается равным нулю.Формы сигналов выходного напряжения и выходного тока такие же, как у входного переменного напряжения.

Во время отрицательного полупериода, когда вторичная обмотка нижнего конца положительна относительно верхнего конца, диод находится в состоянии обратного смещения и не проводит ток. Во время отрицательного полупериода напряжение и ток на нагрузке остаются равными нулю. Величина обратного тока очень мала и ею пренебрегают. Таким образом, во время отрицательного полупериода мощность не подается.

Серия положительных полупериодов — это выходное напряжение, возникающее на сопротивлении нагрузки. Выходной сигнал представляет собой пульсирующую волну постоянного тока, и для создания плавных выходных волновых фильтров используются фильтры, которые должны проходить через нагрузку. Если входная волна имеет полупериод, то он известен как полуволновой выпрямитель.

Схемы трехфазного полуволнового выпрямителя

Трехфазный полуволновой неуправляемый выпрямитель требует трех диодов, каждый из которых подключен к одной фазе. Схема трехфазного выпрямителя страдает от высокого уровня гармонических искажений как в цепях постоянного, так и переменного тока.Выходное напряжение на стороне постоянного тока выдает три различных импульса за цикл.

Трехфазный HWR в основном используется для преобразования трехфазной мощности переменного тока в трехфазную мощность постоянного тока. При этом вместо диодов используются переключаемые, которые называются неуправляемыми переключателями. Здесь неуправляемые переключатели соответствуют тому, что не существует подхода к регулированию времени включения и выключения переключателей. Это устройство построено с использованием трехфазного источника питания, подключенного к трехфазному трансформатору, причем вторичная обмотка трансформатора всегда соединена звездой.

Здесь используется только соединение звездой по той причине, что нейтральная точка необходима для повторного подключения нагрузки ко вторичной обмотке трансформатора, обеспечивая тем самым обратное направление для потока мощности.

Общая конструкция 3-фазного HWR, обеспечивающего исключительно резистивную нагрузку, показана на рисунке ниже. Конструктивно каждая фаза трансформатора обозначена как отдельный источник переменного тока.

Коэффициент полезного действия трехфазного трансформатора составляет почти 96.8%. Хотя эффективность трехфазного HWR больше, чем у однофазного HWR, она меньше, чем эффективность трехфазного двухполупериодного выпрямителя.

Трехфазный HWR

Характеристики полуволнового выпрямителя

Характеристики полуволнового выпрямителя для следующих параметров

PIV (Peak Inverse Voltage)

В условиях обратного смещения диод должен выдерживать максимальное напряжение. Во время отрицательного полупериода ток через нагрузку не протекает.Таким образом, на диоде появляется полное напряжение, потому что нет падения напряжения через сопротивление нагрузки.

PIV полуволнового выпрямителя = V SMAX

Это PIV полуволнового выпрямителя .

Средние и пиковые токи в диоде

Предположим, что напряжение на вторичной обмотке трансформатора синусоидально, а его пиковое значение равно V SMAX . Мгновенное напряжение, которое подается на однополупериодный выпрямитель, составляет

Vs = V SMAX Sin wt

Ток, протекающий через сопротивление нагрузки, составляет

I MAX = V SMAX / (R F + R L )

Регулировка

Регулировка — это разница между напряжением холостого хода и напряжением полной нагрузки по отношению к напряжению полной нагрузки, а регулирование напряжения в процентах дается как

% Регулирование = {(Vno-load — Vfull-load) / Vfull-load} * 100

КПД

Отношение входного переменного тока к выходному постоянному току известно как КПД (?).

? = Pdc / Pac

Мощность постоянного тока, подаваемая на нагрузку, составляет

Pdc = I 2 dc R L = (I MAX / ᴨ) 2 R L

Входная мощность переменного тока трансформатора,

Pac = Рассеиваемая мощность в сопротивлении нагрузки + рассеиваемая мощность в переходном диоде

= I 2 действующее значение R F + I 2 действующее значение R L = {I 2 MAX /4} [R F + R L ]

? = Pdc / Pac = 0.406 / {1 + R F / R L }

КПД полуволнового выпрямителя составляет 40,6%, если пренебречь R F .

Коэффициент пульсаций (γ)

Содержание пульсаций определяется как количество переменного тока, присутствующего в выходном постоянном токе. Если коэффициент пульсаций меньше, производительность выпрямителя будет больше. Значение коэффициента пульсаций для полуволнового выпрямителя составляет 1,21.

Мощность постоянного тока, генерируемая HWR, не является точным сигналом постоянного тока, а является пульсирующим сигналом постоянного тока, а в форме пульсирующего постоянного тока существуют пульсации.Эти колебания можно уменьшить, используя фильтрующие устройства, такие как катушки индуктивности и конденсаторы.

Для расчета количества пульсаций в сигнале постоянного тока используется коэффициент, который называется коэффициентом пульсаций и обозначается как γ . Когда коэффициент пульсации высокий, он показывает расширенную пульсирующую волну постоянного тока, тогда как минимальный коэффициент пульсации показывает минимальную пульсирующую волну постоянного тока.

Когда значение γ очень минимально, это означает, что выходной постоянный ток почти такой же, как чистый сигнал постоянного тока.Таким образом, можно утверждать, что чем ниже коэффициент пульсации, тем более плавный сигнал постоянного тока.

В математической форме этот коэффициент пульсации обозначается как отношение среднеквадратичного значения секции переменного тока к секции постоянного тока выходного напряжения.

Коэффициент пульсации = среднеквадратичное значение секции переменного тока / среднеквадратичное значение секции постоянного тока

I 2 = I 2 dc + I 2 1 + I 2 2 + I 2 4 = I 2 dc + I 2 ac

γ = I ac / I dc = (I 2 — I 2 ) / I dc = {(I rms / I 2 dc ) / Idc = {(I rms / I 2 dc ) -1} = k f 2 -1)

Где kf — коэффициент формы

kf = Irms / Iavg = (Imax / 2) / (Imax / ᴨ) = ᴨ / 2 = 1.57

Итак, γ = (1,572 — 1) = 1,21

Коэффициент использования трансформатора (TUF)

Он определяется как отношение мощности переменного тока, подаваемой на нагрузку, и номинальных значений переменного тока вторичной обмотки трансформатора. TUF полуволнового выпрямителя составляет около 0,287.

HWR с конденсаторным фильтром

Согласно общей теории, которая обсуждалась выше, выход полуволнового выпрямителя представляет собой пульсирующий сигнал постоянного тока. Это получается, когда HWR работает без фильтра.Фильтры — это устройство, которое используется для преобразования пульсирующего сигнала постоянного тока в устойчивые сигналы постоянного тока, что означает (преобразование пульсирующего сигнала в плавный сигнал). Это может быть достигнуто путем подавления пульсаций постоянного тока, которые возникают в сигнале.

Хотя эти устройства теоретически можно использовать без фильтров, но предполагается, что они будут реализованы для любых практических приложений. Поскольку устройству постоянного тока потребуется устойчивый сигнал, пульсирующий сигнал должен быть преобразован в плавный, чтобы его можно было использовать в реальных приложениях.По этой причине HWR используется с фильтром в практических сценариях. Вместо фильтра можно использовать катушку индуктивности или конденсатор, но чаще всего используется HWR с конденсатором.

На рисунке ниже поясняется принципиальная схема конструкции полуволнового выпрямителя с конденсаторным фильтром и то, как он сглаживает пульсирующий сигнал постоянного тока.

Преимущества и недостатки

По сравнению с двухполупериодным выпрямителем, однополупериодный выпрямитель не так широко используется в приложениях.Хотя у этого устройства мало преимуществ. Преимущества полуволнового выпрямителя : :

  • Дешево — Поскольку используется минимальное количество компонентов
  • Простота — Из-за того, что конструкция схемы полностью проста
  • Простота в использовании — Поскольку конструкция проста, использование устройства также будет оптимизировано.
  • Небольшое количество компонентов

Недостатки полуволнового выпрямителя :

  • В секции нагрузки выходная мощность включается в компоненты как постоянного, так и переменного тока, где базовый уровень частоты аналогичен уровню частоты входного напряжения.Кроме того, будет увеличиваться коэффициент пульсации, что означает, что шум будет высоким, и потребуется расширенная фильтрация для обеспечения постоянного выходного сигнала постоянного тока.
  • Поскольку подача мощности будет только во время одного полупериода входного переменного напряжения, их характеристики выпрямления минимальны, а также будет меньше выходная мощность.
  • Полупериодный выпрямитель имеет минимальный коэффициент использования трансформатора.
  • В сердечнике трансформатора происходит насыщение по постоянному току, что приводит к току намагничивания, гистерезисным потерям, а также к развитию гармоник.
  • Величина мощности постоянного тока, которая поступает от полуволнового выпрямителя, недостаточна для генерации даже общего количества энергии. В то время как это можно использовать для нескольких приложений, таких как зарядка аккумулятора.

Приложения

Основное применение однополупериодного выпрямителя — получение мощности переменного тока от источника постоянного тока. Выпрямители в основном используются для внутренних цепей источников питания почти в каждом электронном устройстве. В источниках питания выпрямитель обычно размещается последовательно, таким образом, он состоит из трансформатора, сглаживающего фильтра и регулятора напряжения.Некоторые другие применения HWR:

  • Использование выпрямителя в блоке питания позволяет преобразовывать переменный ток в постоянный. Мостовые выпрямители широко используются в огромных приложениях, где они обладают способностью преобразовывать высокое переменное напряжение в минимальное постоянное напряжение.
  • Реализация HWR помогает получить требуемый уровень постоянного напряжения через понижающие или повышающие трансформаторы.
  • Это устройство также используется при сварке железных цепей, а также в репелленте от комаров, чтобы выталкивать провод для паров.
  • Используется в радиоустройстве AM для целей обнаружения.
  • Используется в качестве возбуждающих цепей и генерации импульсов.
  • Применяется в усилителях напряжения и устройствах модуляции.

Речь идет о схеме полуволнового выпрямителя и работе с ее характеристиками. Мы считаем, что информация, представленная в этой статье, поможет вам лучше понять этот проект. Кроме того, по любым вопросам, касающимся этой статьи, или любой помощи в реализации проектов в области электрики и электроники, вы можете свободно обращаться к нам, оставляя комментарии в разделе комментариев ниже.Вот вам вопрос, какова основная функция однополупериодного выпрямителя?

Сравнение различных типов выпрямителей и их работы

Различные типы выпрямителей

В большом количестве электрических и электронных цепей для их работы требуется постоянное напряжение. Мы можем просто преобразовать переменное напряжение в постоянное, используя устройство, называемое диодом с PN переходом. Одним из наиболее важных применений диодов с PN переходом является выпрямление переменного тока в постоянный. Диод с PN-переходом пропускает электрический ток только в одном направлении i.е, условие прямого смещения и блокирует электрический ток в состоянии обратного смещения. Это единственное свойство диода позволяет ему работать как выпрямитель. В этой статье обсуждаются различные типы выпрямителей и их сравнение.

Различные типы выпрямителей

Выпрямитель — это электрическое устройство, состоящее из одного или нескольких диодов, которые пропускают ток только в одном направлении. Он в основном преобразует переменный ток в постоянный. Выпрямители могут быть отлиты в несколько форм в зависимости от необходимости, например, полупроводниковые диоды, SCR (кремниевые выпрямители), вакуумные ламповые диоды, ртутные дуговые клапаны и т. Д.В наших предыдущих статьях мы подробно рассказывали о диодах, типах диодов. Но здесь мы собираемся подробно рассказать о выпрямителях, типах выпрямителей и их применениях и т. Д.

Работа с различными типами выпрямителей

Для обнаружения сигналов и выпрямления мощности, схемы диодных выпрямителей широко используются при проектировании электронных схем, которые используются в различных устройствах, таких как радиосигналы или детекторы, источники питания постоянного тока, бытовые приборы, такие как игровые системы, ноутбуки, телевизоры и т. д.

Выпрямители подразделяются на различные конструкции в зависимости от факторов, а именно, типа источника питания, конфигурации моста, используемых компонентов, характера управления и т. Д. В основном они делятся на два типа: однофазные и трехфазные выпрямители. Другие выпрямители подразделяются на три типа: неуправляемые, полууправляемые и полностью управляемые выпрямители. Давайте вкратце рассмотрим некоторые из этих типов выпрямителей.

Полупериодный выпрямитель

В этом типе выпрямителя, когда на входе подается переменный ток, на нагрузке становится виден только положительный полупериод, а отрицательный полупериод скрывается.В однофазном питании ему нужен один диод, а в трехфазном — три диода. Это невозможно, потому что только половина сигналов i / p достигает выхода. Чтобы уменьшить пульсации частоты переменного тока от o / p, требуется дополнительная фильтрация в цепи однополупериодного выпрямителя. Пожалуйста, перейдите по ссылке, чтобы узнать больше о принципе работы и характеристиках схемы полуволнового выпрямителя

Полупериодный выпрямитель

Полноволновой выпрямитель

В этом типе выпрямителя во время обоих полупериодов, когда питание переменного тока подается на i / p, ток через нагрузку течет в одном направлении.Эта схема обеспечивает более высокое стандартное выходное напряжение за счет изменения обеих полярностей формы волны i / p на пульсирующий постоянный ток. Такого рода выпрямление может быть достигнуто за счет использования хотя бы двух кристаллических диодов, проводящих ток по-разному. Во время как положительного, так и отрицательного полупериода входного переменного тока следующие две цепи, а именно двухполупериодный выпрямитель с центральным ответвлением и двухполупериодный мостовой выпрямитель, используются для получения одинакового направления тока в нагрузочном резисторе. ссылка, чтобы узнать больше о схеме двухполупериодного выпрямителя с рабочей теорией

Полнополупериодный выпрямитель

Двухполупериодный выпрямитель с центральным ответвлением

В этой схеме выпрямителя используется трансформатор с вторичной обмоткой, отводимой в центральной точке.В схему включены два диода, так что каждый из них использует половину цикла входного переменного напряжения. Для выпрямления один диод использует переменное напряжение, показывающее верхнюю половину вторичной обмотки, а другой диод использует нижнюю половину вторичной обмотки. КПД и КПД этой схемы высоки, потому что источник переменного тока обеспечивает питание обеих половин.

Двухполупериодный выпрямитель с центральным ответвлением

Полноволновой мостовой выпрямитель

Схема мостового выпрямителя — одна из эффективных форм двухполупериодного выпрямителя, в которой используются четыре диода в мостовой топологии.Вместо трансформатора с центральным ответвлением используется обычный трансформатор. Электропитание переменного тока, подлежащее выпрямлению, подается на противоположные по диагонали концы моста, а нагрузочный резистор подключается к остальным двум разным по диагонали концам моста.

Полнополупериодный мостовой выпрямитель

Сравнение выпрямителей

Сравнения между различными типами выпрямителей по разным точкам приведены в таблице ниже.

90/8 Гц
Свойства Однополупериодный выпрямитель Двухполупериодный выпрямитель с центральным ответвлением Двухполупериодный мостовой выпрямитель
Количество диодов 1 2 1
D.C Ток Im / π 2 Im / π 2 Im / π
Необходим трансформатор Нет Да Нет
475 Макс.значение тока / (rf + RL) Vm / (rf + RL) Vm / (2rf + RL)
Коэффициент пульсаций 1,21 0,482 0,482
ребро 2 ребра 2 ребра
Макс.эффективность 40.6% 81,2% 81,2%
Пиковое обратное напряжение Вм 2 Вм 2 Вм

Это несколько типов выпрямителей, которые обычно используются во многих приложениях. и электрические проекты. Мы надеемся, что читатели получили более точный ответ на вопрос, какова функция выпрямителя. Любые дополнительные вопросы относительно этой концепции или практического руководства по созданию электронных проектов вы можете прокомментировать ниже.

Принцип работы частотно-регулируемого привода

Снижение затрат на электроэнергию имеет отличный бизнес-смысл; это экономит деньги, улучшает корпоративную репутацию и помогает всем в борьбе с изменением климата.

В данном руководстве обсуждается основной принцип работы частотно-регулируемого привода (ЧРП) и то, как установка частотно-регулируемого привода в соответствующих приложениях может сэкономить электроэнергию, сократить расходы и повысить рентабельность.

Обзор технологий
Электродвигатель переменного тока работает с фиксированной скоростью и идеально подходит для приложений, где требуется постоянная выходная скорость.Однако около половины всех применений двигателей имеют различные требования к скорости, включая такие процессы, как перемещение воздуха и жидкостей (вентиляторы и насосы), намоточные барабаны и прецизионные инструменты.

Исторически в приложениях, требующих точного управления скоростью, таких как катушки для намотки бумаги, для регулирования скорости машины использовались дорогие двигатели постоянного тока (DC) или гидравлические муфты, тогда как в других приложениях процессы контролировались путем открытия и закрытия заслонок и клапанов или изменения мощности скорости с шестернями, шкивами и аналогичными устройствами, в то время как двигатель работает с постоянной скоростью.

В 1980-х и 1990-х годах на рынке электроэнергии начали появляться частотно-регулируемые приводы, предлагающие альтернативный метод управления. Частотно-регулируемый привод, также называемый преобразователем частоты, привод с регулируемой скоростью, основной принцип работы — регулировка электропитания двигателя переменного тока с соответствующим изменением частоты и напряжения в скорости и крутящем моменте двигателя.

При реализации этого типа управления может быть достигнуто очень точное соответствие между скоростью двигателя и технологическими требованиями машины, которую он ведет.

Технология частотно-регулируемых приводов в настоящее время развита и широко применяется и используется с двигателями переменного тока; Частотно-регулируемые приводы чрезвычайно универсальны и предлагают высокую степень управления двигателем, при котором скорость двигателя может быть точно изменена от нуля до 100% номинальной скорости, а крутящий момент также регулируется в соответствии с требованиями.

Доступны различные варианты для различных приложений; базовые конструкции частотно-регулируемого привода используются в простых приложениях, таких как управление вентиляторами и насосами, тогда как более сложные версии могут использоваться для очень точного управления скоростью и крутящим моментом, например, в нескольких намоточных станках или в приложениях для формовки материалов.

Размеры частотно-регулируемого привода варьируются от 0,2 кВт до нескольких МВт; они обычно доступны как автономные устройства и подключаются к источнику электропитания двигателя, однако на некоторых двигателях меньшего размера, обычно менее 15 кВт, частотно-регулируемый привод может быть встроен в двигатель и доступен как интегрированный продукт с моторным приводом.

Во многих случаях регулирование скорости может привести к значительному снижению затрат на энергию. Использование частотно-регулируемых приводов особенно эффективно в вентиляторах и насосах, где они могут использоваться для замены традиционных методов регулирования мощности; здесь существует экспоненциальная зависимость между скоростью машины (и мощностью) и потребляемой энергией.

Принцип работы частотно-регулируемого привода

Хотя существует ряд вариаций конструкции частотно-регулируемого привода; все они предлагают одну и ту же базовую функциональность, которая заключается в преобразовании входящего электрического питания фиксированной частоты и напряжения в переменную частоту и переменное напряжение, которое выводится на двигатель с соответствующим изменением скорости и крутящего момента двигателя. Скорость двигателя может изменяться от нуля до 100–120% от его полной номинальной скорости, в то время как до 150% номинального крутящего момента может быть достигнуто при пониженной скорости.Двигатель может работать в любом направлении.

Преобразователи частоты, применяемые в двигателях переменного тока, являются наиболее распространенными. Их базовая конструкция состоит из четырех элементов:

  • Выпрямитель : принцип работы выпрямителя заключается в изменении поступающего переменного тока (AC) на постоянный (DC). Доступны различные конструкции, и они выбираются в соответствии с требуемыми характеристиками частотно-регулируемого привода. Конструкция выпрямителя будет влиять на степень наведения электрических гармоник во входящем источнике питания.Он также может управлять направлением потока мощности.
  • Промежуточная цепь : выпрямленный источник постоянного тока затем кондиционируется в промежуточной цепи, обычно с помощью комбинации катушек индуктивности и конденсаторов. В большинстве преобразователей частоты, представленных в настоящее время на рынке, используется промежуточный контур постоянного напряжения.
  • Инвертор : инвертор преобразует выпрямленный и кондиционированный постоянный ток обратно в источник переменного тока переменной частоты и напряжения. Обычно это достигается за счет генерации высокочастотного сигнала с широтно-импульсной модуляцией переменной частоты и эффективного напряжения.Полупроводниковые переключатели используются для создания выхода; доступны различные типы, наиболее распространенным из которых является биполярный транзистор с изолированным затвором (IGBT).
  • Блок управления : блок управления управляет всей работой частотно-регулируемого привода; он контролирует и управляет выпрямителем, промежуточной цепью и инвертором, чтобы обеспечить правильный выходной сигнал в ответ на внешний управляющий сигнал.

Приводы с регулируемой частотой обычно имеют КПД 92–98% с потерями 2–8% из-за дополнительного рассеивания тепла, вызванного высокочастотным электрическим переключением и дополнительной мощностью, необходимой для электронных компонентов.

В двигателях, подключенных к частотно-регулируемым приводам, также возникают дополнительные потери из-за нагрева, вызванного высокочастотным электрическим переключением.

Монтаж частотно-регулируемых приводов
В электрическом отношении частотно-регулируемый привод устанавливается последовательно между сетью электропитания и двигателем. Частотно-регулируемые приводы большой мощности могут вносить электрические «загрязнения» в источник питания в виде гармоник, что может нанести ущерб другому оборудованию; в правилах Китая ограничивается допустимое количество гармоник в источнике питания; в зависимости от местных условий установщик должен будет рассмотреть возможность установки электрических фильтров или указать тип выпрямителя, чтобы обеспечить соответствие требованиям.

Большинство частотно-регулируемых приводов предлагают вычислительные возможности и могут работать с различными системами управления и датчиками. Базовый частотно-регулируемый привод сможет управлять выходом двигателей в ответ на управляющий сигнал для достижения желаемого рабочего состояния. В простейшем случае частотно-регулируемый привод соединяется с датчиком, например датчиком давления или расхода, а затем запрограммирован на поддержание заданного значения (уставки).

С другой стороны, усовершенствованные частотно-регулируемые приводы могут выполнять сложные задачи управления технологическим процессом; они могут быть связаны с рядом преобразователей, реализовывать блокировки и другие функции управления, а также взаимодействовать с современными компьютерными сетями, предоставляющими рабочие данные в реальном времени.

Преобразователи частоты, являющиеся электронным оборудованием, подвержены повреждениям из-за попадания пыли и влаги или недостаточного охлаждения. Они должны располагаться рядом с двигателем в хорошо вентилируемых помещениях или удаленно в хорошо защищенной зоне.ЧРП большего размера могут выделять много тепла, и его необходимо удалить, иначе устройство в конечном итоге перегреется и выйдет из строя.

Ниже предлагаются действия, которые следует предпринять при рассмотрении вопроса об установке частотно-регулируемого привода:

Шаг 1 : Получите представление о рассматриваемом процессе и о том, как работа системы двигателя соответствует его требованиям. Определите, насколько колеблется спрос и можно ли его снизить. Задокументируйте профиль нагрузки и определите, насколько его можно уменьшить.

Шаг 2 : Определите тип нагрузки, будь то переменный крутящий момент, постоянный крутящий момент или постоянная мощность. Определите, можно ли реализовать в системе управление частотно-регулируемым приводом или другое решение будет более подходящим.

Шаг 3 : Ищите возможности максимизировать эффективность существующей системы с помощью недорогих мер. Установка частотно-регулируемого привода в систему с низким КПД не принесет особых результатов, которую можно было бы улучшить с помощью других недорогих средств.Оцените состояние и работу системы и определите возможности экономии энергии с низкими затратами, которые могут быть реализованы до установки частотно-регулируемого привода. Это может включать техническое обслуживание оборудования или снижение нагрузки и отключение. Некоторые из этих улучшений могут быть реализованы с помощью внутренних действий, в то время как другие действия могут потребовать специальной поддержки от производителя или агента.

Шаг 4 : Отслеживайте существующее потребление энергии и оценивайте потенциал энергосбережения.Если возможно, следите за потреблением энергии, скажем, в течение одной недели, чтобы получить базовый уровень, по которому можно будет измерить любые улучшения в энергоэффективности. При необходимости обратитесь за помощью к специалисту. Получите предложения от производителей и убедитесь, что экономия и окупаемость инвестиций удовлетворительны.

Шаг 5 : Приняв во внимание пункты, описанные в разделе «Практические рекомендации», установите частотно-регулируемый привод и соответствующие органы управления. Перед тем, как приступить к работе, убедитесь, что установщик полностью проинструктирован, а система правильно введена в эксплуатацию и продемонстрирована экономия.

Шаг 6 : Продолжайте управлять своими системами для повышения энергоэффективности. Внедрите политики, системы и процедуры, обеспечивающие правильное обслуживание и эффективную работу систем, а также сохранение экономии в будущем.

Ввод в эксплуатацию частотно-регулируемого привода
Частотно-регулируемый привод должен быть правильно установлен и введен в эксплуатацию, чтобы он работал правильно и позволял добиться запланированной экономии энергии. К сожалению, нередко можно встретить установки, в которых двигатель работает постоянно на полной скорости, но об этом никто не знает.Обратите внимание на следующее до, во время и после установки:

  • Монтажник прошел соответствующее обучение и обладает компетенцией в установке частотно-регулируемых приводов.
  • Предполагаемый рабочий профиль процесса и метод управления полностью понятны и доводятся до сведения установщика частотно-регулируемого привода до начала установки.
  • Частотно-регулируемый привод правильно запрограммирован для обеспечения запланированной работы (и экономии энергии), и это демонстрируется операторам / инженерному персоналу по завершении.
  • Операторы / инженерный персонал обучены управлению частотно-регулируемым приводом и работе с ним.
  • Файл ввода в эксплуатацию, содержащий записи настроек программного обеспечения, уставок и других соответствующих параметров программы, составляется и сохраняется для использования в будущем.

Важность технического обслуживания
После того, как частотно-регулируемый привод установлен и хорошо работает, можно сохранить или улучшить экономию энергии путем проведения регулярного технического обслуживания.

Вопреки распространенному мнению, что электронное оборудование не требует регулярного обслуживания, оно имеет решающее значение для поддержания работы частотно-регулируемого привода с максимальной эффективностью. Распространенные причины потерь энергии на плохо обслуживаемых частотно-регулируемых приводах:

  • В тяжелых условиях окружающей среды, например, при высоких температурах или большой нагрузке, значительно сокращается срок службы компонентов частотно-регулируемого привода.
  • Установка неверных параметров, приводящая к плохому управлению и потерям энергии.
  • Недостаточное охлаждение, что приводит к увеличению потребления энергии. Увеличение тепла увеличивает электрическое сопротивление, автоматически вызывая увеличение тока для компенсации. Этот повышенный ток означает повышенное энергопотребление. Перегрев частотно-регулируемых приводов может привести к отказу оборудования.
  • Попадание загрязнения (от таких материалов, как вода или пыль), вызывающее неэффективность и отказ оборудования.
  • Ослабленные электрические клеммы, ведущие к перегреву и выходу из строя.

Простои производства или поломки оборудования неизбежно влекут за собой расходы, поэтому рекомендуется систематический план обслуживания частотно-регулируемого привода и оборудования, чтобы снизить вероятность отказа оборудования. Профилактическое обслуживание всегда дешевле, чем устранение неисправностей и непредвиденных поломок.

Производитель частотно-регулируемого привода может также порекомендовать график замены деталей, чтобы он работал нормально, например, ежегодную замену воздушного фильтра или четырехлетнюю замену любых уплотнений охлаждающего насоса.Хороший способ обеспечить поддержание частотно-регулируемого привода в хорошем рабочем состоянии — заключить договор на техническое обслуживание с производителем частотно-регулируемого привода.

Факт : частотно-регулируемые приводы не так дороги, как вы думаете. Установка одного из них на средний двигатель может стоить около 650 долларов, включая установку. Если учесть, что один средний двигатель (2,2 кВт) может потреблять электроэнергии на сумму более 500 долларов в год, частотно-регулируемый привод стоит вложенных средств и может иметь период окупаемости менее двух лет.

Как схемы выпрямителя работают в электронике

  1. Программирование
  2. Электроника
  3. DIY-проекты
  4. Как схемы выпрямителя работают в электронике

Автор: Дуг Лоу

Одно из наиболее распространенных применений выпрямительных диодов в электронике заключается в преобразовании переменного тока в домашнем хозяйстве в постоянный, который может использоваться в качестве альтернативы батареям. Схема выпрямителя, которая обычно состоит из набора диодов с умной блокировкой, преобразует переменный ток в постоянный.

В быту напряжение меняется с положительного на отрицательное в циклах, которые повторяются 60 раз в секунду. Если вы поместите диод последовательно с напряжением переменного тока, вы устраните отрицательную сторону цикла напряжения, так что вы получите только положительное напряжение.

Если вы посмотрите на форму волны напряжения, выходящего из этого выпрямительного диода, вы увидите, что она состоит из интервалов, которые чередуются между кратковременным повышением напряжения и периодами полного отсутствия напряжения.Это форма постоянного тока, потому что она полностью состоит из положительного напряжения. Однако он пульсирует: сначала горит, потом гаснет, потом снова горит и так далее.

В целом, напряжение, выпрямленное одним диодом, в половине случаев выключено. Таким образом, хотя положительное напряжение достигает того же пикового уровня, что и входное напряжение, средний уровень выпрямленного напряжения составляет только половину уровня входного напряжения. Этот тип выпрямительной схемы иногда называют полуволновым выпрямителем , потому что он пропускает только половину входящей формы волны переменного тока.

В более совершенной схеме выпрямителя используются четыре выпрямительных диода в специальной схеме, называемой мостовым выпрямителем .

Посмотрите, как этот выпрямитель работает с обеих сторон входного сигнала переменного тока:

  • В первой половине цикла переменного тока D2 и D4 ведут себя, потому что они смещены вперед. Положительное напряжение находится на аноде D2, а отрицательное напряжение — на катоде D4. Таким образом, эти два диода работают вместе, пропуская первую половину сигнала.

  • Во второй половине цикла переменного тока D1 и D3 проводят ток, потому что они смещены в прямом направлении: положительное напряжение находится на аноде D1, а отрицательное напряжение — на катоде D3.

В результате мостовой выпрямитель пропускает обе половины синусоидальной волны переменного тока, но отрицательная половина волны инвертируется и становится положительной.

Об авторе книги

У Дуга Лоу все еще есть набор для экспериментатора электроники, который дал ему отец, когда ему было 10.Хотя он стал программистом и написал книги по различным языкам программирования, Microsoft Office, веб-программированию и ПК (в том числе более 30 книг для чайников), Дуг никогда не забывал свою первую любовь: электронику.

Источники питания, трансформаторы и выпрямители

  • Изучив этот раздел, вы должны уметь:
  • Опишите принципы работы трансформаторов, используемых в основных источниках питания.
  • • Первичное и вторичное напряжение.
  • • Изоляция.
  • Опишите принципы выпрямления, используемые в основных источниках питания.
  • • Полуволна.
  • • Полная волна.
  • • Мост.

Трансформатор

Рис. 1.1.1 Типовой входной трансформатор

В базовом блоке питания первичная обмотка входного силового трансформатора подключена к сети (линии).Вторичная обмотка с электромагнитной связью, но электрически изолированной от первичной, используется для получения переменного напряжения подходящей амплитуды и после дальнейшей обработки блоком питания для управления электронной схемой, которую он должен питать.

Трансформаторный каскад должен обеспечивать необходимый ток. Если используется слишком маленький трансформатор, вполне вероятно, что способность источника питания поддерживать полное выходное напряжение при полном выходном токе будет нарушена. При слишком маленьком трансформаторе потери резко возрастут, поскольку на трансформатор будет возложена полная нагрузка.

Поскольку трансформатор, вероятно, будет самым дорогостоящим элементом в блоке питания, необходимо внимательно рассмотреть вопрос о балансировании стоимости с вероятным потреблением тока. Также может возникнуть необходимость в предохранительных устройствах, таких как плавкие предохранители, для отключения трансформатора в случае перегрева и в гальванической развязке между первичной и вторичной обмотками для обеспечения электробезопасности.

Ступень выпрямителя

Могут использоваться три типа выпрямительных схем на кремниевых диодах, каждый из которых имеет различное действие по способу преобразования входного переменного тока в постоянный.Эти различия показаны на рис. 1.1.2 — 1.1.6

Полуволновое выпрямление

Один кремниевый выпрямительный диод может использоваться для получения постоянного напряжения от входа переменного тока, как показано на рисунке 1.1.2. Эта система дешевая, но подходит только для довольно нетребовательных задач. Напряжение постоянного тока, создаваемое одним диодом, меньше, чем в других системах, что ограничивает эффективность источника питания, а количество пульсаций переменного тока, оставшихся на источнике постоянного тока, обычно больше.

Полупериодный выпрямитель проводит только половину каждого периода входной волны переменного тока, эффективно блокируя другой полупериод, оставляя выходную волну, показанную на рис.1.1.2. Поскольку среднее значение постоянного тока одного полупериода синусоидальной волны составляет 0,637 от пикового значения, среднее значение постоянного тока всего цикла после полуволнового выпрямления будет 0,637, деленное на 2, потому что среднее значение каждого альтернативного полупериода, в котором диод не проводит, конечно будет ноль. Это дает результат:

Впик x 0,318

Это число является приблизительным, так как амплитуда полупериодов, в течение которых диод проводит, также будет уменьшена примерно на 0,6 В из-за прямого падения напряжения (или потенциала прямого перехода) кремниевого выпрямительного диода.Это дополнительное падение напряжения может быть незначительным при выпрямлении больших напряжений, но в источниках питания низкого напряжения, где переменный ток от вторичной обмотки сетевого трансформатора может составлять всего несколько вольт, это падение 0,6 В на диодном переходе, возможно, придется компенсировать. для, имея немного более высокое вторичное напряжение трансформатора.

Полуволновое выпрямление не очень эффективно при выработке постоянного тока из входного переменного тока 50 или 60 Гц. Кроме того, промежутки между выходными импульсами диода 50 или 60 Гц затрудняют устранение пульсаций переменного тока, остающихся после выпрямления.

Полноволновое выпрямление

Если используется трансформатор с вторичной обмоткой с центральным ответвлением, можно использовать более эффективное двухполупериодное выпрямление. Вторичная обмотка с центральным отводом выдает два противофазных выхода, как показано на рис. 1.1.3.

Если каждый из этих выходов является «полуволновым выпрямителем» одним из двух диодов, причем каждый диод проводит чередующиеся полупериоды, то в каждом цикле возникают два импульса тока, а не один раз за цикл при полуволновом выпрямлении. Таким образом, выходная частота двухполупериодного выпрямителя в два раза больше входной частоты.Это фактически обеспечивает удвоенное выходное напряжение полуволновой цепи, Vpk x 0,637 вместо Vpk x 0,318, поскольку «пропущенный» полупериод теперь выпрямляется, уменьшая потери мощности в полуволновой цепи. Более высокая выходная частота также облегчает сглаживание оставшихся пульсаций переменного тока.

Хотя эта двухполупериодная конструкция более эффективна, чем полуволновая, для нее требуется трансформатор с центральным ответвлением (и, следовательно, более дорогой).

Мостовой выпрямитель

Двухполупериодный мостовой выпрямитель использует четыре диода, расположенных по мостовой схеме, как показано на рис.1.1.4 для обеспечения двухполупериодного выпрямления без использования трансформатора с центральным отводом. Дополнительным преимуществом является то, что, поскольку два диода (эффективно соединенные последовательно) проводят одновременно, диодам требуется только половина напряжения обратного пробоя, т. Е. Способность «Максимальное рабочее пиковое обратное напряжение (V RWM )» диодов, используемых для полу- и обычное двухполупериодное выпрямление. Мостовой выпрямитель может быть построен из отдельных диодов или может использоваться комбинированный мостовой выпрямитель.

Пути тока на положительном и отрицательном полупериодах входной волны показаны на рис.1.1.5 и рис. 1.1.6. Видно, что в каждом полупериоде противоположные пары диодов проводят ток, но ток через нагрузку остается с той же полярностью в течение обоих полупериодов.

Полуволновой, полноволновой выпрямитель, типы и применение

В настоящее время большинство электроэнергетических компаний распределяют электроэнергию в форме переменного тока и напряжения (AC). Фактически, линии электропередачи, трансформаторы и линии обслуживания предназначены для передачи электроэнергии переменного тока и напряжения.Однако в наших домах и офисах, где потребляется эта электроэнергия, установлены электрические приборы и устройства, потребляющие электроэнергию в виде постоянного тока и напряжения (DC). Таким образом, возникла потребность в промежуточном устройстве, которое помогает преобразовывать входящую мощность из линии в форму, которая может использоваться электрическими приборами в наших домах и офисах. Название этого устройства принято называть выпрямителем .

В этом контексте выпрямитель — это устройство, которое преобразует переменный ток, подаваемый из служебной линии или сетевой розетки, в постоянный ток и напряжение, которые можно использовать для питания электрических приборов, в частности, полупроводниковых устройств.

ТЕОРИЯ ВЫПРЯМИТЕЛЯ

Есть две основные теории выпрямления, которые используются для описания природы выходной волны. Они есть;

  1. Теория однополупериодного выпрямителя
  2. Теория двухполупериодного выпрямителя

ТЕОРИЯ ПОЛОВИННОГО ВЫПРЯМИТЕЛЯ

Полупериодный выпрямитель, если мы рассматриваем простое синусоидальное переменное напряжение, либо отрицательный полупериод, либо положительную половину Цикл сигнала может проходить мимо выпрямительной схемы.Что даст результат, показанный ниже?

Рисунок 1 Полупериодное выпрямление

ТЕОРИЯ ПОЛНОВОЛНОВОГО ВЫПРЯМИТЕЛЯ

В двухполупериодном выпрямителе, если мы рассматриваем простое синусоидальное переменное напряжение, допустимы как отрицательный полупериод, так и положительный полупериод сигнала. чтобы пройти мимо схемы выпрямителя с одной из половин, перевернутой на другую половину, так что теперь у нас есть две положительные или отрицательные половины, следующие друг за другом на выходе.

Рисунок 2 Двухполупериодное выпрямление

ТИПЫ ВЫПРЯМИТЕЛЕЙ

В прошлом выпрямители конструировались с использованием вакуумных ламп, анодных пластин и катодных пластин, но с появлением полупроводниковых устройств выпрямители разрабатывались с использованием полупроводниковых компонентов. такие как диоды и транзисторы. Однако мы кратко обсудим классический выпрямитель, который использовался до того, как полупроводниковые приборы стали повсеместными, он называется ртутно-дуговым выпрямителем. Как правило, сегодня на рынке доступно семь типов выпрямителей, но мы,
, обсудим только три из них, которые в основном используются в источниках питания постоянного тока для наших электронных систем.

Типы выпрямителей классифицируются следующим образом;

  1. Однофазный однополупериодный выпрямитель
  2. Однофазный двухполупериодный выпрямитель
  3. Двухполупериодная мостовая схема
  4. Трех (3) фазный полуволновой выпрямитель
  5. Трех (3) фазный двухполупериодный выпрямитель
  6. Шесть волновой полуволновой выпрямитель
  7. Трехфазная мостовая схема

ДУГОВОЙ ВЫПРЯМИТЕЛЬ MERCURY

Этот режим работы выпрямителя зависит от создания дуги между анодом и катодом в присутствии испаренной ртути, отсюда и название ртутный дуговый выпрямитель. .Затем атом ртути ионизируется или расщепляется на положительную (протонную) и отрицательную (электронную) компоненты. Следовательно, положительный по природе анод будет притягивать электроны, а катод — протоны. Что это за концепция, если мы хотим преобразовать синусоидальный переменный ток в постоянный ток, переменное напряжение будет подаваться на анод и катод. Анод будет проводить первую половину синусоидальной волны и не будет проводить вторую половину синусоидальной волны. Результирующий выходной сигнал показан ниже.

ОДНОФАЗНЫЙ ПОЛОВИННЫЙ ВЫПРЯМИТЕЛЬ

Схема для этого выпрямителя с резистивной нагрузкой показана на рисунке 4а.Напряжение переменного тока подается на диод, последовательно включенный с нагрузкой RL.

Принцип работы:

Во время положительного полупериода, входного напряжения переменного тока, диод смещен в прямом направлении (ВКЛ), таким образом, он проводит. Что заставляет ток проходить через него. Хотя во время отрицательного полупериода диод будет иметь обратное смещение как таковой, он не будет проводить, а это означает, что отрицательный полупериод входного напряжения не пройдет через него. Результирующий выходной сигнал от действия диода приведет к выходному напряжению, показанному на рисунке 4b.

Рисунок 4 Однофазный однополупериодный выпрямитель

ОДНОФАЗНЫЙ ПОЛНЫЙ ВЫПРЯМИТЕЛЬ

Для выпрямителя два диода работают рука об руку, создавая двухполупериодное выпрямленное входное переменное напряжение. Чаще всего двухполупериодные выпрямители, в которых используются два диода, всегда используются с трансформатором с центральным отводом. Принципиальная схема показана на рисунке 5а.

Принцип работы:

Когда основное питание включено, концы трансформатора M и N колеблются между положительным и отрицательным полупериодом.Во время положительного полупериода диод D1 будет смещен в прямом направлении, что означает, что положительная сторона напряжения питания пройдет, в то время как D2 будет иметь обратное смещение. В качестве альтернативы, во время отрицательного полупериода клемма трансформатора M и N будет переключать полярность, делая диод D2 смещенным в прямом направлении, что заставляет отрицательную составляющую
напряжения питания проходить через него. Из рисунка 5b видно, что частота выходного напряжения в два раза превышает входное напряжение.

Рис. 5 Однофазный двухполупериодный выпрямитель

ПОЛНОВолновый мостовой выпрямитель

Этот стандартный комплектный двухполупериодный выпрямитель используется в большинстве источников питания постоянного тока.Он состоит из четырех диодов, которые включаются или выключаются в зависимости от текущего полупериода питающего напряжения переменного тока. Схема показана на рисунке 6а. Трансформатор, используемый в двухполупериодном мостовом выпрямителе, не имеет центрального отвода, что делает его более эффективным, чем его 2-диодный аналог. В основном он упакован в стандартный корпус ИС с четырьмя выводами, показанными на рисунке 6c.

Принцип работы
Во время положительного полупериода на клемме M положительно, а N отрицательно, как показано на рисунке 6b, диоды D1 и D2 смещены в прямом направлении (ВКЛ), что заставляет ток течь через них.При этом диоды D3 и D4 смещены в обратном направлении, что приводит к их включению, когда эта электроэнергия потребляется, в выключенном состоянии. В качестве альтернативы, в отрицательном полупериоде M становится отрицательным, а N — положительным, эта новая схема делает диоды D3 и D4 смещенными в прямом направлении, что заставляет их проводить, и ток продолжает течь через сопротивление RL n в одном направлении в обоих полупериодах. входного источника переменного тока.

Рисунок 6 Двухполупериодный мостовой выпрямитель

ПРИМЕНЕНИЕ ВЫПРЯМИТЕЛЯ

Выпрямители применяются в основном в источниках питания постоянного тока.Его основная функция в источнике питания заключается в преобразовании входящего переменного тока и напряжения в постоянный ток, который затем фильтруется с помощью батареи конденсаторов и затем регулируется, например, до 5 В, 9 В, 12 В и т. Д. В зависимости от спецификации.

Рис. 7 Блок-схема источника питания

ПРЕИМУЩЕСТВА ВЫПРЯМИТЕЛЯ

1. С появлением дешевых полупроводников в выпрямителях, источник питания постоянного тока стал дешевле
2. Выпрямители помогут уменьшить использование трансформатора с центральным ответвлением, который означает более портативную упаковку
3.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *