Пусковые токи трансформатора: Пусковой ток траснформатора: варианты защиты от профессионалов

Разное

Содержание

Пусковой ток траснформатора: варианты защиты от профессионалов

Специалисты знают, что пусковой ток трансформатора достигает параметров, в разы превышающих рабочие токи. Начальный бросок длится приблизительно 10 мсек. За этот период частота переменного тока увеличивается в несколько раз, пока напряжение не придет в норму. Сразу после включения происходит мгновенное повышение силы тока.

Какие проблемы возникают при увеличении пусковых нагрузок

На амплитуду пускового броска влияют особенности строения и то, насколько высоко качество изготовления трансформатора. Значение имеет и импеданс сети. Если он низкий, возникнет больший бросок. Катушки при пуске берут очень много электричества некоторое время, до восстановления параметров в сердечнике.

Пусковой ток нагревает элементы блока питания. Это может стать причиной их выхода из строя в результате подгорания контактов в выключателях из-за появления «дуги». Завышенный пусковой бросок сглаживается при использовании дополнительных элементов так называемого «мягкого включения». Стартовые броски и подача излишнего напряжения приходят в норму, а поэтому исключается срабатывание предохранительных приборов.

Пусковой трансформатор

Пути снижения пусковых токов

Рассмотрим, что следует предпринять для понижения стартовых бросков. Есть несколько вариантов:

  • Подключение трансформатора с пониженной индукцией. Подобная силовая характеристика значительно утяжеляет прибор, увеличивает его стоимость. Пусковой ток при включении трансформатора, понизится до значения равного номинальной величине тока или ниже без подключения активной нагрузки, если индукция меньше номинала вдвое.
  • Подача на обмотки напряжения в период, когда оно наивысшее. Эффективность этого действия достигается применением дополнительных соединительных приборов.
  • Последовательно с первичной обмоткой преобразователя подсоединяется активное сопротивление. У этого варианта есть минус – перегрев сопротивления, которое приводит к понижению коэффициента полезного действия.

Если применить сопротивление с обратным температурным коэффициентом, эффективность будет выше. Это происходит из-за того, что термистор при нагреве имеет свойство понижать свое сопротивление.

Пусковой трансформатор

Специалистам-энергетикам известно, что сейчас на рынке стали предлагать так называемые пакетники серий ESB и ESBH на предельные параметры (ампер), соответственно, 10 и 16. Работа данных приборов предполагает включение последовательно с нагрузкой сопротивления ограничивающего напряжение. Параметр этого полупроводника, как правило, 5 Ом. В описанном случае сопротивление замыкается контактными прерывателями со срабатыванием от 20 до 50 мсек.

При подсоединении преобразователя к электролинии используют элементы защиты (автоматы). Стандарты, которым должны соответствовать характеристики срабатывания следующие: IEC/МЭК 898 (отключение D) и ДИН ВДЕ 0660 (отключени K). Прерывающие элементы с указанными параметрами производятся для электрических двигателей, трансформаторов. То есть для аппаратов с большой кратностью стартового тока к номинальной величине. Выключатели D имеют кратность 15, для автоматов K этот параметр равен 10.

Что делать, если надо подсоединить трансформатор, а элементы защиты с указанными характеристиками отсутствуют? В таком случае возьмите самые распространенные выключатели, на которых стоит маркировка B, C. Помните, что такие элементы надо предусмотреть с дву- или трехкратным заделом по напряжению. Автомат сработает, если сила стартового броска превысит номинальный параметр в 2 – 3 раза, то есть основная функция защиты значительно снизится.

Пусковой трансформатор

Формула расчета стартового броска

Как мы уже выяснили, для защиты линии включения трансформатора необходимо подключить выключатель с соответствующей характеристикой. Чтобы правильно подобрать автомат, необходимо сделать расчет пускового тока трансформатора. Для этого понадобится техническая документация на прибор. Выпишите оттуда данные:

  • мощность (Pн) номинальная;
  • напряжение (UH) номинальное;
  • КПД;
  • коэффициент мощности cos φH:
  • кратность постоянного тока по отношению к номинальному значению Кп.

Трансформатор тока

Для расчета номинального значения трехфазного аппарата используется формула:

  • Iн = 1000Pн / (UH х cosφH х √КПД), А.

Следующим шагом определяем величину стартового броска. Расчет производим по следующей формуле:

  • IП = IH х Кп, А, где

IH – определенная ранее номинальная величина;

Кп – кратность постоянного тока к номинальному значению.

После произведенных расчетов, подберите подходящий по параметрам выключатель.

схема пускового тока трансформатора

Как защитить жилье от возгорания проводки

В жилом помещении электролиния должна иметь элементы защиты. Расчет параметров производится просто. Вычислите суммарный ток, который понадобится всем электрическими устройствами в квартире, если их включить одновременно. Он определяется таким образом:

  • суммируем мощности приборов;
  • полученное число делим на вольтаж сети;
  • полученный параметр исчисляется в амперах, он фиксирует значение величину, на которую следует ориентироваться при выборе защитных элементов.

У мастера, обслуживающего ваш участок, выясните предельный параметр силы тока электролинии. Если выяснится, что она предполагает меньшее потребление тока, чем вы получили при расчете необходимого величины для всех установленных в жилье электроприборов (работающих одновременно), уменьшите и параметр, на который рассчитаны защитные элементы.

Соблюдайте правило: никогда одновременно не подключайте к сети устройства (кухонный комбайн, чайник, кондиционер) потребляющие суммарный ток, превышающий максимальный параметр электролинии.

Важная информация! Когда в электророзетках соединения между кабелем и клеммами ослабли, проводка не выдержит силу тока, на которую она рассчитана. Чтобы восстановить утраченную способность, проверьте розетки и, при необходимости, подтяните клеммы. Следите за тем, чтобы не перетягивать винты, что может привести к повреждениям розетки. Работы проводятся при обесточенной проводке.

Трансформатор тока

Как рассчитать пусковой ток — советы электрика

Как правильно подобрать и рассчитать автоматический выключатель (простой расчет автомата)

Оцените статью:(голосов – 5, средний балл: 3,60 из 7)

Автоматический выключатель – это устройство, обеспечивающее защиту электропроводки и потребителей (электрических приборов) от коротких замыканий и перенагрузки электросети. Бытует ошибочное мнение, что автоматический выключатель обеспечивает защиту электроприборов от неполадок в сети. Это чушь, тут скорее наоборот, автоматический выключатель защищает проводку от самих потребителей, ведь перенагрузку электросети создают сами потребители.

У каждого автоматического выключателя есть свои технические характеристики, но чтобы сделать правильный выбор автоматического выключателя, нужно понимать и учитывать всего три: это номинальный ток, класс автомата и отключающая способность.

Разберем их по порядку.

Номинальный ток In – это сила тока, которую может пропустить через себя автомат.

При превышении номинального тока, происходит размыкание контактов автоматического выключателя, вследствие чего обесточивается участок цепи.

По стандартам, отключение автоматического выключателя должно происходить при силе тока в 145% от номинального. Самые распространенные автоматы с номинальным током в 6; 10; 16; 20; 25; 32; 40; 50; 63 А.

Класс автомата – это кратковременное значение силы тока, при котором автомат не срабатывает. Что это значит? Существует такое понятие как пусковой ток. Пусковой ток – это ток, который кратковременно потребляет электроприбор при запуске.

Обратите внимание

Пусковой ток может во много раз превосходить номинальный ток прибора. Например, при включении лампочки в 60 Вт, создается пусковой ток в 10-12 раз больше от рабочего. Это значит, что на протяжении нескольких секунд, лампочка будет потреблять не 0.27 А, а 2.7-3.3 А.

Для того чтобы компенсировать пусковые токи и используются классы автоматов.

Существуют 3 класса автоматических выключателей:

  1. класс B (превышение пускового тока в 3-5 раз от номинального)
  2. класс C (превышение пускового тока в 5-10 раз от номинального)
  3. класс D (превышение пускового тока в 10-50 раз от номинального)

Самый оптимальный класс для жилых и коммерческих помещений – это C класс.

Отключающая способность – это предельное значение тока короткого замыкания, которое может выдержать автоматический выключатель без потери работоспособности. На нашем рынке распространенны автоматические выключатели с отключающей способностью в 4,5 кА (килоампер).

Но в Европе такие автоматы к установке запрещены, там они должны быть минимум в 6 кА. Если посмотреть на практике, то вполне хватает и 4,5 кА, так как в быту ток короткого замыкания редко превышает 1 кА.

Если хотите соответствия стандартам, то выбирайте автомат на 6 кА и больше, если хотите по экономней, то автомат на 4,5 кА самое то.

Расчет автоматического выключателя

Автоматический выключатель можно рассчитывать двумя методами: по силе тока потребителей или по сечению используемой проводки.

Рассмотрим первый способ – расчет автомата по силе тока.

Первым шагом, нужно подсчитать общую мощность, которую нужно повесить на автомат. Для этого суммируем мощность каждого электроприбора. Например, нужно рассчитать автомат на жилую комнату в квартире.

В комнате находится компьютер (300 Вт), телевизор (50 Вт), обогреватель (2000 Вт), 3 лампочки (180 Вт) и еще периодически будет включаться пылесос (1500 Вт). Плюсуем все эти мощности и получаем 4030 Вт.

Вторым шагом рассчитываем силу тока по формуле I=P/U
P – общая мощность
U – напряжение в сети

Рассчитываем I=4030/220=18,31 А

Выбираем автомат, округляя значение силы тока в большую сторону. В нашем расчете это автоматический выключатель на 20 А.

Рассмотрим второй метод – подбор автомата по сечению проводки.

Этот метод намного проще предыдущего, так как не нужно производить никаких расчетов, а значения силы тока брать из таблицы (ПУЭ табл.1.3.4 и 1.3.5.)

Допустимый длительный ток для проводов и кабелей с медными жилами

Сечение токопроводящей жилы, мм2 Ток, А, для проводов, проложенных
открыто в одной трубе
двух одножильных трех одножильных четырех одножильных одного двухжильного одного трехжильного
0,5 11
0,75 15
1 17 16 15 14 15 14
1,5 23 19 17 16 18 15
2 26 24 22 20 23 19
2,5 30 27 25 25 25 21
3 34 32 28 26 28 24
4 41 38 35 30 32 27
5 46 42 39 34 37 31
6 50 46 42 40 40 34
8 62 54 51 46 48 43
10 80 70 60 50 55 50
Допустимый длительный ток для проводов и кабелей с алюминиевыми жилами

Сечение токопроводящей жилы, мм2 Ток, А, для проводов, проложенных
открыто в одной трубе
двух одножильных трех одножильных четырех одножильных одного двухжильного одного трехжильного
2 21 19 18 15 17 14
2,5 24 20 19 19 19 16
3 27 24 22 21 22 18
4 32 28 28 23 25 21
5 36 32 30 27 28 24
6 39 36 32 30 31 26
8 46 43 40 37 38 32
10 60 50 47 39 42 38

Допустим, у нас двухжильный медный провод с сечением 4 мм.кв. уложенный в стену, смотрим по первой таблице силу тока, она равна 32 А. Но при выборе автоматического выключателя эту силу тока нужно уменьшать до ближайшего нижнего значения, для того чтобы провод не работал на пределе. Получается, что нам нужен автомат на 25 А.

Так же нужно помнить, если нужен автомат на розеточную группу, то брать выше 16 А нет смысла, так как розетки больше 16 А выдержать не могут, они просто начинают гореть. На освещение самый оптимальный на 10 А.

Источник: http://SvoyRemont.net/elektromontazh/kak-pravilno-podobrat-i-rasschitat-avtomaticheskij-vyklyuchatel-prostoj-raschet-avtomata.html

Пусковой ток. Типы и работа. Применение и особенности

Пусковой ток – представляет ток, который необходим для запуска электрического или электротехнического устройства. Он больше номинального тока в разы, вследствие чего при подборе оборудования так важно учитывать данный параметр.

В качестве примера можно привести ситуацию, когда при разгоне автомобилю нужно на порядок больше топлива, чем при движении на автомагистрали с одинаковой скоростью.

Важно

Таким же образом электрический двигатель потребляет больше электрического тока при «разгоне».

Подобные явления могут наблюдаться и в ином электрическом оборудовании: электрических магнитах, лампах и так далее. Пусковые процессы в устройствах определяются параметрами рабочих органов: намагниченностью катушки, накаливающейся нитью и тому подобное. Весьма часто производители ограничивают ток пуска при помощи пускового сопротивления.

Типы

Пусковой ток появляется на небольшой период времени, что в большинстве случаев составляет доли секунд. Однако по своему значению он может быть в несколько раз выше номинального значения. Этот параметр также зависит от вида применяемого оборудования. В различных приборах указанные токи могут составлять в 2-9 раз больше номинального. Для примера можно привести следующее оборудование:

В большинстве случаев производители практически не указывают данный параметр в спецификациях. Поэтому часто приходится довольствоваться ориентировочными параметрами. Измерительные приборы бытового значения выделяются инерционностью, поэтому при помощи них затруднительно измерить кратковременный всплеск тока пуска. Лучше всего уточнить параметр тока пуска у прибора непосредственно у дилера.

Работа

При запуске любого вида электрического двигателя появляется пусковой ток, который может достигать 9 кратного значения от номинального тока. Характеристика тока пуска определяется типом двигателя, присутствием нагрузки на валу двигателя, схемы подключения, скорости вращения и тому подобное.

Ток пуска появляется вследствие того, что в период запуска требуется довольно сильное магнитное поле в обмотке, чтобы перевести ротор из статичного положения и раскрутить его. То есть это ток, который требуется, чтобы запустить электрический двигатель в рабочий режим. Именно поэтому его значение на порядок превышает рабочий ток.

В период включения мотора на обмотках наблюдается малое сопротивление, вследствие чего растет ток при постоянном напряжении. Как только двигатель начинает раскручиваться, то в обмотках появляется индуктивное сопротивление, вследствие чего ток начинает стремиться к номинальному значению.

Принцип действия

Электрические двигатели обширно применяются в разных сферах промышленности. В результате этого знание параметров пусковых характеристик важно для правильного применения электрических приводов. Основными параметрами, которые влияют на ток пуска, являются момент и скольжение на валу.

При подаче тока в обмотки наблюдается рост насыщения сердечника ротора магнитным полем, появлению эдс самоиндукции. В результате растет индукционное сопротивление в цепи. При раскручивании ротора уменьшается степень скольжения. В результате ток пуска с ростом сопротивления уменьшается до рабочего параметра.

Ток пуска важен не только для электродвигателей, но и для источников питания. В частности, это касается аккумуляторных батарей. Параметры тока пуска характеризуют мощность в наивысшем значении, которую аккумулятор может выдавать в течение некоторого времени без значительной просадки напряжения.

Ток пуска в большинстве случаев определяется емкостью батареи, в том числе условий климата. Так как при запуске движка летом требуется меньше энергии, чем зимой, то ток пуска при первом варианте будет несколько раз ниже, чем во втором.

К примеру, для запуска современной машины аккумулятору в соответствии со стандартами необходимо выдавать ток на уровне 250-300 А минимум в течении 30 секунд.

Применение

Для правильной эксплуатации электрических приводов важно учитывать их пусковые характеристики. Если этого не учитывать и не пытаться нивелировать минусы тока пуска, то возможны неприятные последствия.

Так ток пуска может негативно сказываться на другом оборудовании, которое одновременно работает с указанным электродвигателем на одной линии.

При больших значениях ток пуска может приводить к падению напряжения сети и даже вызывать поломку оборудования.

Для снижения негативного воздействия подобных процессов, могут применяться специальные приспособления или методы, позволяющие снизить ток пуска:

  • Электродвигатель запускается в холостом режиме. Только потом к нему прикладывают нагрузку, чтобы вывести на рабочий режим. К примеру, этот метод можно использовать для насосов и вентиляционного оборудования, в которых можно выполнять регулирование нагрузки на двигатель.
  • Подключение двигателя по схеме звезда – треугольник.
  • Использование автотрансформаторного запуска. В результате напряжение подается плавно через автотрансформатор.
  • Использование пусковых резисторов либо реакторов, которые позволяют ограничить пусковой ток. Здесь ток, который превышает установленное значение, тратится на выделение тепла на гасящих резисторах.
  • Использование частотных регуляторов позволяет уменьшить ток пуска двигателя. Но такой метод подходит лишь для двигателей мощностью не более 10–30 КВт. Оборудование большей мощности потребует частотных регуляторов, которые стоят очень дорого.
  • Устройства плавного пуска, выполненные на тиристорах. Снижение влияния тока пуска обеспечивается фазовым управлением.

Пусковой ток аккумулятора

  • Если Вы знаете пусковой токсвоего старого аккумулятора, и хотите поменять его на новое устройство, то важно, чтобы его величина не была ниже. Также не нужно покупать аккумулятор с меньшим параметром электрической емкости.
  • При приобретении аккумулятора необходимо учесть, что параметры тока пуска могут указываться в разных стандартах. Немцы используют DIN, американцы SAE, а европейцы EN. Чтобы не ошибиться, стоит попросить у продавца специальный лист соответствия, который позволит определить ток пуска батареи.

  • Если Вы часто эксплуатируете автомобиль в зимний период, то выбирайте аккумулятор с большим значением тока пуска при прочих равных параметрах. Благодаря этому в морозы Вы сможете без проблем запустить свой автомобиль.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/jelektrotehnika/puskovoi-tok/

Расчет возможности пуска электродвигателя 380 В

В данной статье будет рассматриваться изменение напряжения (потеря напряжения) при пуске асинхронного двигателя с короткозамкнутым ротором (далее двигатель) и его влияние на изменения напряжения на зажимах других электроприемников.

При включении двигателя пусковой ток может превышать номинальный в 5-7 раз, из-за чего включение крупных двигателей существенно влияет на работу присоединенных к сети приемников.

Это объясняется тем, что пусковой ток вызывает значительное увеличение потерь напряжения в с

Какой трансформатор нужен для пускового устройства АКБ: выбор

Если автомобиль все время в эксплуатации, то его аккумулятор заряжен. Но при длительном простое из-за саморазряда напряжение на АКБ падает ниже уровня необходимого для запуска.

Еще одной причиной пониженного тока аккумулятора является мороз. В холодном аккумуляторе повышенное сопротивление электролита и замедленные химические реакции, в результате которых батарея вырабатывает электрическое напряжение. Кроме того, холодный двигатель стартеру труднее провернуть из-за загустевшей смазки.

В этих ситуациях необходимо подать на стартер дополнительное питание. Чтобы сделать такой аппарат самостоятельно необходимо знать, какой трансформатор нужен для пускового устройства АКБ.

акб

Пусковые и зарядные устройства

Для запуска автомобиля и зарядки АКБ используются различные приспособления:

  • Зарядные. Имеют мощность до 150Вт, более сложную схему и возможность регулировки выходного тока и напряжения.
  • Пусковые. Мощность таких аппаратов более 1,5кВт при выходном напряжении 12В, конструкция не предусматривает регулировок выходных параметров.
  • Пуско-зарядные. Фактически это аппараты для зарядки, только большой мощности.

Выходные параметры пускового устройства

Ток, потребляемый стартером легкового автомобиля во время вращения коленвала, зависит от марки машины и составляет 80-100А при напряжении 12В. Однако для того, чтобы привести его в движение, стартер кратковременно потребляет ток до 200А. Поэтому в ремонтных мастерских используются для запуска двигателей легковых автомобилей устройства мощностью Р=12Вх200А=2400Вт. Необходимые параметры для пуска грузовых машин зависят от конкретной модели автомобиля.

Устройство трансформатора

В домашних условиях аппарат подключается параллельно АКБ. Мощность его достаточно выбрать 1500 Вт при токе 125А и определяется тем, какую мощность имеет трансформатор пуско-зарядного устройства. Схема намотки может быть простой или со средней точкой.

Информация! Некоторые магазинные аппараты имеют мощность всего 700Вт и ток 60А.

Устройство пусковой установки

Пусковая аппаратура состоит из трех частей:

  • понижающий трансформатор 220/12В;
  • диодный мост;
  • соединительные кабеля с клеммами.

Совет! Для подключения аппарата к АКБ допускается применение проводов “прикуривателя”.

Изготовление понижающего трансформатора

Самой сложной в изготовлении частью этого аппарата является трансформатор для пуско-зарядного устройства. Наибольшее распространение получили самодельные схемы пуско-зарядных на трансформаторе 1500 ватт.

Понижающий трансформатор

Конструкция трансформатора

В качестве него используется любой трансформатор с сечением магнитопровода не менее 36мм². Этого достаточно для мощности аппарата в 1,5 кВт.

Первичная обмотка трансформатора для пускового устройства используется готовая, если она рассчитана на напряжение 220 В или мотается заново, медным проводом сечением 1,5-2мм². При ее отсутствии необходимое число витков определяется по таблицам или при помощи онлайн-калькуляторов.

Вторичная обмотка удаляется и мотается заново нужная, медной шиной. Ее сечение зависит от используемой схемы выпрямления:

  • в обычной, с четырьмя диодами – 20 мм²;
  • в схеме из двух диодов и двух катушек со средней точкой 10 мм².

При выборе алюминиевых намоточных проводов их сечение увеличивается вдвое.

Важно! Если взять магнитопровод большего сечения, то это увеличит мощность аппарата, но приведет к пропорциональному увеличению сечения обмоточных проводов и уменьшению количества витков в катушках.

Трансформатор в зарядном устройстве

Расчет вторичной обмотки

Для намотки вторичной обмотки пускового трансформатора для автомобиля своими руками необходимо определить количество витков. Оно зависит от числа витков в первичной обмотке Nперв. Если оно известно, то необходимое количество определяется по формуле Nвтор=(Nперв/220)*12. При неизвестных параметрах число витков определяется опытным путем:

  • намотать временную вторичную катушку проводом любого сечения из 10 витков;
  • измерить выходное напряжение;
  • определить необходимое количество витков для вторичной обмотки Nвтор=(Nврем/Uврем)*12;
  • удалить временную обмотку и намотать постоянную проводом или шиной необходимого сечения.

Совет! Для упрощения работы можно намотать несколько лишних витков, а после сборки аппарата и измерения выходного напряжения их отмотать.

Вторичная обмотка трансформатора

Схема с двумя диодами

Классическая схема выпрямления однофазного напряжения состоит из четырех диодов. Но в некоторых случаях при отсутствии нужного количества диодов или провода необходимого сечения применяют схему, в которой два диода:

  • используются две одинаковых обмотки, включенных согласно – конец первой подключается к началу второй;
  • к началу первой катушки и концу второй подключаются включенные встречно-последовательно диоды, обычно установленные на общем радиаторе;
  • постоянное напряжение снимается с мест соединения диодов и соединения обмоток.

Эта схема применима также при наличии двух одинаковых аппаратов 220/12 мощностью от 700Вт. Такое пусковое зарядное из двух трансформаторов в работе не отличается от обычного аппарата.

Схема акб с двумя диодами

Пусковой аппарат из сварочного

Трансформатор для пуско-зарядного устройства своими руками можно сделать также из катушечного сварочника – определить необходимое число витков и намотать дополнительную катушку. Диоды допускается использовать уже установленные, но для пуска автомобиля они переключаются на пусковую обмотку перемычками или перекидным рубильником.

Диоды и соединительные кабеля

Кроме трансформатора, в устройстве используются диоды, выпрямляющие переменное напряжение, и кабеля, по которым к аппарату поступает переменное напряжение 220В и к автомобилю постоянное 12В.

Диоды

Устройство выпрямителя

В выпрямителе используются диоды с номинальным напряжением от 25В. Это связано с тем, что 12В – это действующее значение напряжения на клеммах вторичной обмотки. Максимальное значение в √3 выше и составляет больше 20В.

Номинальный ток диодов нужен не меньше, чем 1/2 тока устройства. Это связано с тем, что через каждый из диодов проходит только одна полуволна переменного напряжения, а вторая идет через другой диод. В пусковых агрегатах мощностью 1500 Ватт ток диодов составляет от 60А. Таких не существует, поэтому берутся более мощные элементы 100А. Для лучшего охлаждения они устанавливаются на радиаторах.

Выпрямитель

Информация! Некоторые автомобилисты для лучшего охлаждения устанавливают аппарат без корпуса. При его наличии делается перфорация для циркуляции воздуха.

Соединительные кабеля

Питание 220В подается по трехжильному кабелю, например, ПВС 3*1. Ток при запуске составляет 7-10А, поэтому этого сечения провода достаточно, третья жила необходима для заземления металлических частей. Подключать его допускается при помощи обычной вилки и розетки.

Питание к машине подается двумя проводами или двухжильным кабелем с клеммами ПВС 2*16. При использовании проводов от “прикуривателя” на корпусе аппарата устанавливаются клеммы от старого аккумулятора.

Знание того, как сделать пусковое для машины из трансформатора избавит от необходимости приобретать дорогое магазинное устройство.

Соединительный кабель

Переходные процессы при включении силового трансформатора

Хорошо известно, что при включении силового трансформатора в сеть (даже ненагруженного) возникает всплеск тока, который может превышать номинальный ток во много раз. Максимальный всплеск тока (будем называть далее «пусковой ток») необходимо учитывать при проектировании силовых трансформаторов, так как он оказывает силовое воздействие на обмотки трансформатора, а также приводит к ложному срабатыванию устройств защиты.

К сожалению, в литературе этот вопрос практически не рассматривался. В данной статье авторы попытались рассмотреть переходные процессы в силовом трансформаторе и дать рекомендации по снижению пусковых токов. В дальнейшем все рассуждения будут вестись для ненагруженного трансформатора.

Для первичной обмотки однофазного силового трансформатора можно записать [1]:

               (1)

где u(t) — мгновенное значение напряжения первичной обмотки; i(t) — мгновенное значение намагничивающего тока трансформатора; Ψ(t) мгновенное значение потокосцепления; r— активное сопротивление обмотки; Lp— индуктивность рассеяния обмотки.

Учитывая, что у тороидальных трансформаторов индуктивность рассеяния обмотки достаточно мала, можно принять Lp = 0. Кроме этого, будем предполагать, что потокосцепление Ψ(t) в уравнении (1) зависит от тока. Эта зависимость задается кривой намагничивания и имеет нелинейный характер. На основании определения потокосцепления запишем:

               (2)

где W— количество витков первичной обмотки силового трансформатора; S — сечение магнитопровода трансформатора; μ(i) — дифференциальная магнитная проницаемость. Для тороидального трансформатора по закону полного тока имеем:

                                  (3)

где l — длина средней магнитной линии. Если подставить (3) в (2) и в (1), то получим

(4)

(5)

где μ(i) — дифференциальная магнитная проницаемость. Дифференциальное уравнение (4) является основным при анализе переходных процессов в силовом трансформаторе. Как видно из этого уравнения, намагничивающий ток трансформатора имеет нелинейный характер. Анализ решения уравнения (4) невозможен без конкретной зависимости B = f(H), которую необходимо получить экспериментально. В соответствии с ГОСТ 21427.1-83 была измерена индукция электротехнической стали 3413 в переменном магнитном поле и получена зависимость B = f(H). Результаты приведены в таблице 1, а график показан на рис. 1.

Кривая намагничивания для стали 3413

Рис. 1. Кривая намагничивания для стали 3413

 

Результаты анализа

Таблица 1. Результаты анализа

На этом же рисунке показана кусочно-линейная аппроксимация кривой намагничивания двумя отрезками прямых, причем отрезки прямых выбираются так, чтобы они как можно ближе подходили к экспериментальным точкам. Тогда B = f(H) можно записать в виде функции

                (6)

где h — напряженность магнитного поля в точке перегиба кривой намагничивания; b — индукция в точке перегиба на кривой намагничивания; k — коэффициент, характеризующий степень наклона участка насыщения к оси Н. Из (6) легко получить выражение для дифференциальной магнитной проницаемости:

               (7)

С учетом (7) дифференциальное уравнение (4) может быть представлено в виде двух: уравнения для тока i1(t), соответствующего рабочему участку кривой намагничивания, и уравнения для тока i2( t ), соответствующего участку насыщения:.

                         (8)

где

Дифференциальные уравнения (8) решаются при начальных условиях

i1(0) = 0, i1(t0) = i2(t0), (9)

где t0 — момент времени, когда величина тока изменяется с i1(t) на i2(t).

Пусть на первичную обмотку силового трансформатора подано синусоидальное напряжение u(t) = umsin(ωt + φ), где um— амплитудное значение напряжения; ω— частота сети; φ — начальная фаза.

Так как в соответствии с законом электромагнитной индукции магнитный поток в сердечнике трансформатора отстает от напряжения u(t) на π/2, то максимальный всплеск тока возникает при φ=0, и потому интерес представляет именно этот случай.

Решая дифференциальные уравнения (8) при φ=0, получим:

Момент времени t0 определяется как корень трансцендентного уравнения

i1(t0) = i0 (12)

при i0 = hl/W. Выражения для токов (10) и (11) позволяют полностью рассчитать переходные токи в обмотке силового трансформатора при включении его в сеть с синусоидальным напряжением.

Для расчета был выбран трансформатор, намотанный на тороидальном магнитопроводе с размерами ОЛ100/180-60 мм. Этот силовой трансформатор имеет первичную обмотку W = 275 витков, площадь керна S = 0,0024 м2, омическое сопротивление обмотки r = 0,4 Ом и длину средней магнитной линии l = 0,44 м. Из графика, изображенного на рис. 1, можно определить параметры h = 45,3 А/м и b = 1,8 Тл.

Для расчета тока было выбрано два метода. Это расчет по формулам (10), (11) и непосредственное решение дифференциального уравнения (4). Расчет тока по уравнению (4) имеет преимущество, так как здесь при построении решения используются все экспериментальные точки, и поэтому этот подход является более точным. Включение всех точек в расчет достигается за счет сплайн-аппроксимации экспериментальных данных. Однако этот метод имеет и недостаток, который заключается в том, что нельзя получить аналитическое выражение, а значит, и нельзя проанализировать полученный результат. Расчет же по формулам (10) и (11) позволяет провести анализ результата, но менее точный, так как эти формулы основаны на грубой аппроксимации кривой намагничивания.

Возвращаясь к решению (10) и (11), заметим, что несмотря на простоту формул, проводить по ним вычисление затруднительно. В связи с этим получим грубую оценку максимальных значений токов i 1 и i2. Максимальное значение i 1 на рабочем участке достигается при таком t, которое является корнем уравнения

                                      (13)

Приблизительно вычислить первый корень уравнения (13) можно следующим образом. Из таблицы 1 определяем дифференциальную магнитную проницаемость на рабочем участке кривой намагничивания

Замерить индукцию на участке насыщения очень трудно, так как пусковые токи для мощных силовых трансформаторов составляют сотни ампер, и поэтому необходимо замерять индукцию именно при этих значениях токов. Поступим следующим образом. Экстраполируем участок, соответствующий большим значениям магнитного поля, прямой линией так, чтобы она явилась продолжением начального участка кривой намагничивания. Такую прямую линию можно построить, если выбрать μ2=0,0000164. Допустимость такой аппроксимации должны показать конкретные замеры пусковых токов и сравнения их с теоретическими вычислениями.

В большинстве практических случаев выполняется условие ωL1 >>r, что дает:

                                           (14)

но cosΨ1=r/x1 <<1, тогда Ψ1≈π/2

Из (13) следует, что cos(ω t-Ψ1)≈0, и тогда имеем ω t-Ψ1=π/2, откуда следует

t = π/ω. (15)

С учетом (15) из формулы (10) получим максимальное значение тока i 1:

                            (16)

Второе слагаемое в (10) определяет установившееся значение тока. Его амплитудное значение будет равно:

Таким образом, на рабочем участке кривой намагничивания максимальное и установившееся значения токов отличаются в два раза. Дадим численную оценку установившегося значения тока:

  (18)

В соответствии с (16) i 1max = 2i 1= 2×0,060 = = 0,120 А. Для качественной оценки этой величины следует определить допустимое значение тока намагничивания. Допустимый ток (i0) вычисляется как ток, соответствующий точке перегиба на кривой намагничивания:

                           (19)

И если i 1max > i0, то переходный процесс в трансформаторе будет протекать с большими токами.

Для вычисления пикового значения переходного тока необходимо найти магнитную индукцию для рабочего участка кривой намагничивания. Воспользуемся дифференциальным уравнением (1), переписав его в виде

                                             (20)

Подставим в (20) выражение для тока из (10) и проинтегрируем. Тогда получим

                    (21)

Принимая во внимание условие ωL1>>r и рассуждения, сделанные при выводе соотношения (16), получим:

                                                              (22)

Учитывая, что участок насыщения на кривой намагничивания достаточно линейный, на основании определения дифференциальной магнитной проницаемости можно записать:

                                                              (23)

Выберем приращение для индукции и напряженности магнитного поля в виде

Подставим значения из (24) и (25) в (23), получим:

                                           (26)

На участке насыщения кривой намагничивания для напряженности магнитного поля имеем H = Wi2/l, а на рабочем участке — b = hμ1. Подставим последние выражения в (26). В результате элементарных преобразований будем иметь:

                              (27)

Полученное выражение для тока i2позволяет грубо оценить пиковое значение переходного тока силового трансформатора при включении его в сеть с синусоидальным напряжением, когда фаза напряжения проходит через нуль (самый неблагоприятный случай). Анализируя зависимость (27), можно заметить, что на величину пускового тока наиболее сильное влияние оказывает количество витков первичной обмотки трансформатора. Увеличение сечения керна также приводит к уменьшению тока, но в меньшей степени. Еще в меньшей степени на пусковой ток влияет длина средней магнитной линии. Все это говорит о том, что на величину пускового тока можно влиять через эти параметры.

Следует заметить, что формула (27) записана для участка насыщения, на котором выполняется неравенство В>b, и если оно нарушается, то можно получить отрицательные значения тока. Физически это будет означать, что пусковой ток силового трансформатора не превышает допустимый ток и поэтому весь переходный процесс укладывается на рабочем участке кривой намагничивания. Другими словами, i2 = 0.

Для выбранного нами трансформатора рассчитаем пик пускового тока i2по формуле (27):

Таким образом, при включении силового трансформатора в сеть может возникнуть всплеск тока более 100 ампер. Точный расчет токов по формулам (10) и (11) дает i 2 = 100 A, что на 17% ниже. Это расхождение с точным расчетом будет тем меньше, чем сильней выполняется неравенство ωL2>>r, но для грубой оценки этого вполне достаточно.

Сравнение расчетов токов по формулам (10), (11) и расчета этих же токов, но через дифференциальное уравнение (4) с использованием численных методов и сплайн-аппроксимации кривой намагничивания, показало, что оба метода расчета дают очень близкий результат. В области больших токов результаты вычисления обеими методами практически совпадают. В области малых токов есть расхождения, которые связаны с неточным воспроизведением формы намагничивающего тока. Это расхождение определяется отклонением начального участка кривой намагничивания от прямой линии. Таким образом, можно с успехом использовать оба метода расчета.

Ниже произведены расчеты переходных процессов в трансформаторах с различным числом витков. Расчеты произведены через решение дифференциального уравнения (4) с использованием численного метода Рунге-Кутта 4-5-го порядка.

Из графика на рис. 2 видно, что трансформатор с первичной обмоткой в 275 витков имеет пусковой ток около 100 А. На этом же рисунке можно проследить, как влияет изменение количества витков первичной обмотки на пусковой ток.

Пусковой ток трансформатора для различного числа витков первичной обмотки

Рис. 2. Пусковой ток силового трансформатора для различного числа витков первичной обмотки

Кривая тока переходного процесса представлена на рис. 3. Из данного графика видно, что максимальный ток достигает 100 А. Этот же график позволяет оценить и постоянную времени переходного процесса.Переходный процесс в трансформаторе. Начальный участок кривой тока

На рис. 4 представлен график установившегося тока. Установившийся ток рассчитан для случая, когда начальная фаза сети равна π/2. В этом случае включение силового трансформатора проходит без переходных процессов, что видно из рис. 4. На этом же рисунке просматривается нелинейный характер тока намагничивания.

Ток установившегося режима, φ=π/2

Рис. 4. Ток установившегося режима, φ=π/2

Для подтверждения теоретических вычислений проводились испытания с несколькими силовыми трансформаторами. Включение трансформаторов проводилось на напряжение 220 В при нулевой фазе. Результаты испытаний приводятся в таблице 2.

 

Основные выводы

  1. Увеличение числа витков и сечения керна магнитопровода приводит к снижению пускового тока трансформатора. Увеличение числа витков вдвое уменьшает пусковой ток до величины, не превышающий номинальное значение тока холостого хода. Однако указанные меры приводят к увеличению потерь в проводах обмоток и стали сердечника, а также к увеличению массогабаритных показателей силового трансформатора и его стоимости.
  2. Наиболее эффективным способом уменьшения пускового тока является обеспечение подключения силового трансформатора к питающей сети в момент достижения максимального мгновенного значения напряжения, то есть при φ=π/2

Литература

  1. Касаткин А. С, Немцов М. В. Электротехника. М.: Высшая школа, 2000.

Плавный пуск трансформатора: схемы, сборка, характеристика

В момент подключения питания к первичной обмотке мощного трансформатора в ней возникает бросок тока, амплитуда которого значительно превышает его номинальное значение. Для того чтобы избежать вызываемого им срабатывания защиты существует 2 способа. Увеличить ток срабатывания защиты или использовать устройство плавного пуска трансформатора. Уменьшение чувствительности защиты ведет к росту вероятности выхода из строя трансформатора при случайном замыкании выводов вторичной обмотки, следовательно, второй способ предпочтительнее.

Общие сведения

Блок плавного пуска предназначен для ограничения тока первичной обмотки трансформатора сразу после подачи на нее напряжения питания. Отключение ограничения электропитания происходит после завершения переходных процессов и намагничивания сердечника. По способу управления изменением токовой характеристики потребителей различают 3 типа таких устройств:

  • Механические.
  • Электромеханические.
  • Электронные.

Принцип действия 2 первых типов устройств состоит в ограничении тока кратковременным включением в цепь питания первичной обмотке резистора. Электронные системы на основе тиристорных коммутаторов могут снижать пусковой ток изменением амплитуды или ширины импульсов напряжения питания.

Наиболее простой вариант ограничения пускового импульса тока – это термистор в цепи питания первичной обмотки. Однако у него есть серьезные недостатки. Во-первых, он требует подбора параметров для каждого конкретного электроприбора. Во-вторых, зарядка конденсаторов фильтра блока питания, имеющих большую емкость, может стать причиной перегрева и даже взрыва термистора.

Электромеханические устройства плавного пуска (УПП) помимо простоты конструкции имеют как минимум еще один плюс. Так как их схемные решения обходятся без полупроводниковых усилителей и формирователей импульсов, они абсолютно невосприимчивы к помехам.

Схема устройства плавного пуска сетевого трансформатора

Изображена схема простого электромеханического устройства плавного пуска со стартером люминесцентной лампы в качестве времязадающего элемента, управляющим исполнительным реле.

При желании схему можно еще немного упростить, заменив стартер перемычкой. В этом случае реле будет срабатывать по окончании пускового броска тока практически без задержки.

Сопротивление балластного резистора должно быть около двух десятков Ом. Мощность же его выбирается в соответствии с параметрами, подключаемого трансформатора. Вместо резистора, можно установить галогеновую лампу с подходящим сопротивлением нити накаливания. Реле любое с катушкой на 220 В и нормально-разомкнутыми контактами, выдерживающими номинальный ток первичной обмотки с небольшим запасом.

Схема устройства плавного пуска сетевого трансформатора

Работа схемы

Во время подачи питания контакты реле разомкнуты, и ток нагрузки ограничен резистором. После завершения переходных процессов ток обмотки уменьшается. От этого напряжение в точке соединения резистора с обмоткой возрастает и зажигает стартер. При этом реле срабатывает и, закоротив резистор, подает электропитание напрямую. Следовательно, при замыкании выходной обмотки или иной неисправности вызывающей повышение тока первичной обмотки реле не сработает.

Сборка устройства

Простота устройства позволяет собрать его своими руками. Для этого следует прикрепить гнездо стартера к корпусу реле любым доступным способом, например, пластиковым хомутом или при помощи термоклеевого пистолета. Соединения контактов и крепление резистора выполняются навесным монтажом.

Во избежание замыканий для монтажа следует применять изолированный провод. Готовое устройство размещается в подходящем по размеру корпусе из пластмассы или другого изоляционного материала и оснащается сетевым кабелем с вилкой и выходными клеммами. В качестве выхода удобно использовать накладную розетку.

При отсутствии резистора достаточной мощности балластное сопротивление можно изготовить, намотав нихромовый провод на трубчатый керамический конденсатор подходящего размера. Вентиляционные отверстия для отвода тепла из корпуса из-за небольшого времени питания устройства через балластный резистор делать необязательно.

Проверка работы

После сборки перед установкой устройства в корпус следует проверить правильность монтажа и провести пробное включение. Время срабатывания реле следует установить, в интервале 1–5 сек. Отключение питания автоматами защиты будет признаком слишком быстрого срабатывания реле. Для увеличения времени его включения стартер следует запитать через дополнительный резистор. Момент срабатывания реле можно контролировать по вспышкам стартера, а с лампочкой вместо резистора – по ее свечению.

Стоит ли усложнять схему тиристором

Коммутирующие устройства мягкого пуска с тиристорными ключами, называемые «софтстартеры» значительно сложнее и дороже электромеханических устройств. Но их возможности управлением амплитудой и фазами тока или изменением схемы включения обмоток целесообразно использовать для плавного пуска мощных электродвигателей или сварочных трансформаторов. Так как они наряду с плавным пуском двигателя могут быть использованы для регулировки частоты его вращения и корректировки момента нагрузки.

Тиристорный коммутатор

А для электрооборудования малой и средней мощности вполне достаточно кратковременного включения в цепь питания резистора, ограничивающего пусковой ток. Тогда как для плавного пуска мощных потребителей подобное оборудования будет иметь большие размеры и невысокую надежность.

Как показывает практика, устройство включающее питание при нулевом мгновенном значении переменного напряжения не оправдывает возлагаемых на него надежд. Это объясняется тем, что после подключения питания таким способом его напряжение не остается равным 0, а изменяется обычным образом. Поэтому и электроток через обмотку течет не иначе, чем при включении трансформатора в другой момент времени.

Правда и вымысел о пусковых токах светильников / Статьи и обзоры / Элек.ру

Светодиодные светильники за последние пять лет превратились из экзотических устройств для сторонников экологического стиля жизни в предметы повседневного обихода. Поэтому не удивительно, что установка таких светильников все чаще осуществляется не инженерами экстра-класса в рамках проектов государственной важности, а в самых обычных офисах рядовыми электриками или вообще людьми, имеющими об электричестве только самые элементарные представления. И каким же бывает разочарование, когда при включении вроде бы «экономичных» светодиодных светильников срабатывает защитный автомат, выбранный, вроде бы, с соблюдением всех правил. Или возникает парадоксальная ситуация, когда при замене люминесцентных светильников на светодиодные срабатывает предохранитель, который ранее без проблем «держал» очень «прожорливые» приборы еще советского производства. Самое время разувериться в экономичности светодиодных светильников. Проблемы возникают потому, что не учитывается важнейший параметр любого светильника — значение пускового тока. Причем такой подход навязывают сами производители светильников, зачастую утверждающие, что у их продукции пусковых токов просто нет.

Правда и вымысел о пусковых токах светильников

При включении электрического устройства, как правило, наблюдаются переходные процессы. Кроме этого, для запуска устройства может потребоваться большая мощность, чем в установившемся режиме. Из-за этого наблюдается такое явление как пусковой ток. Значение пускового тока равно максимальному значению входного тока при включении устройства. Пусковой ток выражается либо в абсолютных значениях, либо как кратность максимального значения входного тока к потребляемому току в установившемся режиме. Другим важным значением является длительность пускового тока — время при запуске, в течение которого входной ток устройства превышает потребляемый ток в установившемся режиме.

Наличие пускового тока характерно даже для такого «древнего» и простого источника света как лампа накаливания. Вольфрамовая нить в охлажденном состоянии имеет сопротивление в 10-15 раз меньше, чем в нагретом до температуры, когда она светится. Соответственно, пусковой ток лампы накаливания в 10-15 раз больше потребляемоготокавустановившемся режиме.

Вот, кстати, почему лампы накаливания (и похожи по принципу работы галогенные лампы) выходят из строя чаще всего при включении.

В разрядных источниках света при запуске энергия затрачивается на создание плазмы между электродами, то есть электрического разряда, дающего свечение. К таким источникам света относятся, например, натриевые, металлогалогенные и люминесцентные лампы. Данные по кратности пусковых токов и их продолжительности можно найти в таблице 1.

Таблица 1. Параметры запуска для традиционных источников света

Тип лампы

Кратность пускового тока, не более

Длительность пускового тока, не более, с

Накаливания

15

0,3

Галогенная

15

0,3

Люминесцентная

1,5

3

Металлогалогенная

1,5

600

Натриевая

1,5

900

Из таблицы видно, что лампы накаливания и галогенные лампы имеют наибольшую кратность пусковых токов. Но переходные процессы в них происходят быстрее. Время пуска разрядных ламп, особенно ДНаТ и МГЛ, гораздо больше, что вынуждает закладывать значительные запасы по току при расчете проводки.

Время-токовые характеристики защитных автоматов

Современные защитные автоматы обеспечивают размыкание цепи при наступлении хотя бы одного из двух событий — длительного превышения потребляемого тока I над номинальным значением Iн и коротком замыкании. В первом случае происходит инерционный процесс размыкания биметаллических контактов при нагреве. Размыкание происходит при действии тока 1,13 Iн более 1 часа или тока 1,45 Iн менее одного часа. Во втором случае мгновенно срабатывает электромагнит, размыкающий контакты. График зависимости времени срабатывания tc от соотношения I/Iнназывается время-токовой характеристикой.

Стандартные время-токовые характеристики защитных автоматов

Стандартные время-токовые характеристики защитных автоматов

Существующие время-токовые характеристики делятся на три основных группы: В, С и D. Классификация осуществляется по относительному значению тока Iкз, при котором происходит мгновенное срабатывание электромагнитного размыкания, то есть когда автомат обнаруживает короткое замыкание. Для группы В значение Iкз составляет от 3 до 5 Iн, для С — от 5 до 10 Iни для D — от 10 до 20 Iн. Нижняя граница соответствует времени срабатывания 0,1 с, верхняя — 0,01 с. Применительно к системам освещения используются защитные автоматы с характеристиками В и С, устройства с характеристикой D применяются для защиты мощных электродвигателей, а также на вводе у крупных потребителей электроэнергии.

При проектировании электроустановок обязательным условием является надежная защита от короткого замыкания на концах проводов. Чем меньше сечение проводов, тем больше их сопротивление и, соответственно, меньше отношение Iкз / Iн. В то же время, чем меньше сечение проводов, тем они дешевле. Вот почему при проектировании систем освещения на традиционных источниках раньше, по умолчанию, всегда использовали автоматы с характеристикой В.

Есть ли пусковые токи у светодиодов?

По своему физическому принципу работы светодиод не имеет никаких пусковых токов — он начинает давать свет практически сразу после того, как на него подали электрический ток, без каких-либо переходных процессов. Данное обстоятельство позволяет некоторым производителям светодиодных светильников утверждать о том, что их продукция якобы тоже не имеет пусковых токов. На самом деле, это не всегда так.

Пусковые токи действительно не имеют светодиодные светильники, построенные по так называемой бездрайверной схеме [Л]. Но из-за большого уровня пульсаций светового потока область применения таких светильников ограничена.

Автоматы с характеристикой В

Для защиты систем освещения на основе традиционных источников света по умолчанию использовались автоматы с характеристикой В

В светодиодных светильниках, питающихся от сети переменного тока и предназначенных для широкого применения, как правило, устанавливается конденсатор, сглаживающий пульсации. При включении светильника происходит заряд данного конденсатора, вызывающий резкое увеличение потребляемого тока. Именно таким образом понятие пусковых токов становится применимым и к светодиодным светильникам.

Расчеты показывают, что для определенных типов драйверов происходит срабатывание защитного автомата при простой замене люминесцентных светильников на светодиодные, даже если потребляемый ток в установившемся режиме после замены стал меньше. Эту проблему зачастую можно решить заменой автомата с характеристикой В на автомат с характеристикой С.

Это же можно отнести и к светодиодным лампам-ретрофитам, питающимся от сети переменного тока (за исключением самых простых бездрайверных моделей). В том случае, если в светильнике используется драйвер в виде отдельного модуля, кратность пускового тока и время действия пускового тока определяются именно этим узлом. Пусковые характеристики для некоторых драйверов от ведущих производителей приведены в таблице 2.

Таблица 2. Пусковые характеристики некоторых моделей драйверов с входным напряжением 230 В переменного тока

Модель

Номинальный потребляемый ток при полной нагрузке, А

Кратность пускового тока

Рекомендуемый производителем номинальный ток автомата на один драйвер*, А

К

Для характеристики В

Для характеристики С

Для характеристики В

Для характеристики С

Mean Well LPC-35-1050

0,7

79

4

2,3

5,7

3,3

Mean Well ELN-30-12

0,48

115

4

2

8,3

4,2

Osram Optotronic Fit 50/220

0,3

177

0,57

нет данных

1,9

нет данных

Osram Optotronic Element LD 30/220

0,15

107

0,4

нет данных

2,7

нет данных

Philips Xitanium Constant Current Xtreme

0,21

310

0,76

нет данных

3,6

нет данных

* Равен отношению рекомендуемого номинального тока защитного автомата для группы параллельно соединенных драйверов (светильников) к рекомендуемому количеству драйверов (светильников) в группе.

Из таблицы видно, что кратность пусковых токов у светодиодных светильников с драйверами превосходит традиционные светильники на один-два порядка!

Драйверы светодиодных светильников

Кратность пусковых токов драйверов светодиодных светильников составляет несколько сотен из-за наличия сглаживающих конденсаторов

К тому же, длительность пускового тока для светодиодных драйверов принято определять на уровне 50% от максимального значения. Это значение, как правило, лежит в пределах 100-500 мкс. Тем не менее, столь короткий импульс способен вызвать срабатывания электромагнитного размыкателя, но рассчитать его действие не так просто, как для пусковых токов традиционных источников света.

Автор предлагает ввести для оценки драйвера следующий коэффициент:

К = Iнд / Iп,

где Iнд — номинальный ток защитного автомата в пересчете на один драйвер, Iп — потребляемый ток драйвера в установившемся режиме при полной нагрузке.

Чем меньше К, тем меньше вероятность возникновения ситуации с ложным срабатыванием защитного автомата. Коэффициент К всегда больше I, он зависит от характеристики автомата. Для защитных автоматов с характеристикой В коэффициент К выше или равен коэффициенту для характеристики С.

А теперь выясним откуда возникает ситуация с «выбиванием пробок» при замене, например, люминесцентных светильников на более экономичные светодиодные. Предположим, что мы решаем задачу замены старых люминесцентных светильников типа ЛПО 4×18 на современные. У нас есть люминесцентный светильник с потребляемым током в установившемся режиме Iл. Проектировщики учли кратность пускового тока 1,5, тот факт, что длительность пускового тока в реальных условиях может достигать десятки секунд (например, лампа разгорается не с первого раза) и взяли дополнительно коэффициент запаса 1,25. Тогда номинальный ток защитного автомата составит

Iнл= 1,5 • 1,25 Iл= 1,875 Iл

При замене люминесцентных светильников на светодиодные с тем же световым потоком энергопотребление уменьшается примерно в 2 раза. Значит, потребляемый ток нового светильника Iс = 0,5 Iл, а номинальный ток защитного автомата Iнс = 0,5 К Iл.

Используем светильник с драйвером средней ценовой категории Mean Well LPC-35-1050. Для него при характеристике В имеем К = 5,7.

Iнс = 0,5 • 5,7 Iл = 2,85 Iл > Iнл

Это означает срабатывание защитного автомата.

Для автомата с характеристикой С имеем К = 3,3, тогда

Iнс = 0,5 • 3,3 Iл = 1,65 Iл < Iнл.

Ложного срабатывания защитного автомата при пуске не произойдет.

То есть проблему с «выбиванием пробок» можно решить, заменив автомат с характеристикой В на автомат с характеристикой С и тем же номинальным током. Но при этом следует убедиться, что после замены автомата будут соблюдаться нормы по току короткого замыкания для имеющихся проводов. Конкретная методика расчета выходит за рамки данной статьи, ее можно найти в справочных пособиях для электриков.

Ведущие производители светильников обычно предоставляют информацию о рекомендуемых типах защитных автоматах и максимальном количестве устройств, подключаемых к одному автомату. При отсутствии такой информации следует узнать модель драйвера, используемого в светильнике, и найти рекомендации на сайте производителя драйвера.

При невозможности замены автомата с характеристикой В на автомат с характеристикой С и частично переложить провода, чтобы выполнить рекомендации производителя драйвера (светильника) по максимальному числу устройств, подключенных к одному автомату.

Выбор защитного автомата

В идеале производитель сам должен указать в документации на светильник рекомендуемый тип защитного автомата и максимальное количество светильников, которые можно подключить к нему параллельно. В реальности так бывает не всегда, мало того, как уже отмечалось, производители зачастую скрывают сам факт наличия каких-либо пусковых токов у светильника. Можно запросить у производителя модель драйвера и узнать данные на сайте производителя данного узла. Производители драйверов все чаще публикуют эту информацию на своих сайтах.

Производитель может предложить на выбор использовать совместно с его драйвером автоматы с характеристиками как В, так и С. Если проект требует подключения максимального количества светильников к одному защитному автомату (например, есть сложности с прокладкой проводов или нет места для установки лишних автоматов), то предпочтение следует отдать характеристике С. Но тогда, как уже отмечалось, придется обеспечить дополнительный запас по толщине проводов.

Наличие рекомендаций производителя является важным преимуществом

Наличие рекомендаций производителя светильника или драйвера по защитным автоматам является важным преимуществом

Если для светодиодного светильника не даны рекомендации по выбору и нет возможности получить информацию о модели драйвера, приходится фактически «играть в рулетку» с непредсказуемым результатом. Но существуют всевозможные эмпирические правила, например, не подключать к одному автомату более 8 светодиодных светильников, использовать автоматы с характеристикой С вместо характеристики В и т.п. Данные меры позволяют обеспечить надежную работу системы освещения ценой введения избыточных технологических запасов. Вот почему доступность рекомендаций производителя драйвера или светильника по использованию защитных автоматов является дополнительным конкурентным преимуществом.

Борьба с высокими пусковыми токами

Постоянно обсуждаемая в специализированных интернет-форумах тема срабатывания защитных автоматов при замене светильников с традиционными источниками света на светодиодные уже привлекла внимание производители электроники. За рубежом на рынке появились всевозможные устройства, способные, по утверждению их производителей, ограничить пусковые токи. Обычно принцип работы таких устройств сводится к тому, что на время пуска последовательно со светильником включается резистор, который уменьшает пусковой ток. В результате сглаживающий конденсатор в драйвере заряжается медленнее и время пуска увеличивается, но это практически незаметно для пользователей. Недостатком является то, что такие ограничители тока совместимы далеко не со всеми драйверами.

Другой способ, который, по мнению автора статьи, является более перспективным — использование драйверов с небольшой задержкой пуска, время которой в партии различается от экземпляра к экземпляру. Время задержки для каждого драйвера при их производстве устанавливается случайным образом, либо по определенной закономерности. В результате одновременный пуск двух и более драйверов маловероятен или вообще исключается. Добавление такой функции незначительно увеличивает стоимость драйвера, но за счет экономии на монтажных работах прибавка в цене многократно окупается.

Литература

Васильев А. Бездрайверные системы: когда простота не обманчива // Электротехнический рынок, №1 (73), 2017 г., стр. 16-20.

Алексей ВАСИЛЬЕВ

Источник: Материал размещен в журнале «Электротехнический рынок», №2 (74) Март-Апрель 2017

Пусковые токи электродвигателей таблица — советы электрика

Подключение и пусковые токи асинхронного двигателя

Приветствую вас, дорогие читатели. Прежде, чем разбираться с методиками подключения и характеристиками токов моторов асинхронного типа, не лишним будет вспомнить о том, что это такое.

Движком асинхронного типа зовут машину особого вида, которая преобразует энергию электричества в механическую. Главным рабочим принципом такого устройства считают вот какие свойства. Проходя по статорным обмоткам, переменный ток, состоящий из трех фаз, создает условия для появления вращающегося магнитного поля. Это поле и заставляет ротор вращаться.

Естественно, что при подключении двигателя надо учитывать все эти факторы, ведь вращение ротора будет производиться в ту сторону, в которую вращается магнитное поле. Частота вращения ротора, однако, ниже частоты вращения возбуждающего поля. По конструкции эти машины бывают самыми различными (то есть предназначенными для работы в разных условиях).

Обратите внимание

Как рабочие, так и пусковые характеристики таких устройств на много превосходят такие же показатели моторов однофазного типа.

Любой из таких моторов имеет две основные части – подвижную (роторную) и неподвижную (статорную). На обеих частях имеются обмотки. Разница между ними может быть лишь в типе обмотки ротора: она может иметь роторные кольца, либо быть короткозамкнутой.

Подключение движков, имеющих короткозамкнутый ротор и мощность до двух сотен киловатт, производится напрямую к сети.

Моторы же большей мощности необходимо подключать, сперва, к пониженному напряжению и лишь потом переключать на номинал (с целью снижения в несколько раз пускового тока).

Подключение асинхронного двигателя

Статорная обмотка практически любого такого устройства имеет шесть выводов (из них три – начала и три – концы).

В зависимости от того, какова питающая сеть мотора, эти выводы соединяют либо в «звезду», либо в «треугольник».

С этой целью корпус каждого мотора имеет коробку, в которой выведены начальные и конечные провода обмоток (они обозначаются, соответственно, С1, С2, С3 и С4, С5, С6).

Подключение звездой

Так называют метод соединения обмоток, при котором все три обмотки имеют одну общую точку (нейтраль). Линейное напряжение такого соединения выше фазного в 1,73 раза. Положительным качеством этого вида соединений считают малые токи пуска, хотя мощностные потери при этом довольно значительны.

Метод соединения в треугольник отличается тем, что при этом методе соединение выполняется таким образом, что конец одной обмотки становится началом следующей.

Подключение треугольником

При этом, соединении фазное и линейное напряжения одинаковы, следовательно, при линейном напряжении в 220 вольт, правильным соединением обмоток будет именно треугольник. Положительной стороной этого соединения является большая мощность, тогда как отрицательной – большие токи пуска.

Для выполнения реверса (смены направления вращения) трехфазного движка асинхронного типа, достаточно поменять местами выводы двух его фаз. На производстве это делается при помощи пары магнитных пускателей с зависимым включением.

Значительные величины токов пуска у асинхронных моторов являются весьма нежелательным явлением, потому как они могут привести к эффекту нехватки напряжения для других видов оборудования, подключенного к той же сети.

Это стало причиной того, что подключая и налаживая двигатели этого типа, появляется задача минимизации токов пуска и повышения плавности запуска моторов методом использования специализированного оборудования. Наиболее эффективым типом таких приспособлений считаются софтстартеры и частотные преобразователи.

Одним из наиболее ценных их качеств считают то, что они способны поддержать ток запуска мотора довольно долгое время (обычно больше минуты).

Помимо стандартного способа включения моторов асинхронного типа, существуют и методы включения их в питающую сеть, имеющую лишь одну фазу.

Конденсаторный пуск асинхронного двигателя

Для этого, в основном, применяют конденсаторный способ включения. Конденсатор может устанавливаться как один, так и пара (один пусковой, а второй рабочий).

Пара кондеров ставится тогда, когда есть надобность в процессе пуска-работы менять емкость, что делают при помощи подключения-отключения одного из кондеров (пускового).

Для этого, как правило, применяются емкости бумажного исполнения, поскольку они не имеют полярности, а при работе на переменном токе это очень важно.

Для расчета рабочего конденсатора существует следующая формула:

Ср=4800(i/u).

Важно

Пусковой конденсатор должен иметь емкость в пару-тройку раз большую емкости рабочего и рабочее напряжение в полтора раза превышающее напряжение питания.

Пусковой и рабочий конденсаторы соединяют параллельно, причем так, что параллельно пусковому, включено шунтирующее сопротивление и одним концом пусковой кондер включается через ключ. При  пуске двигателя ключ замыкают, поднимая ток запуска, затем, размыкают.

Однако, не нужно забывать, что к однофазной сети можно подключить далеко не каждый движок. Кроме того, мощность мотора в таком подключении будет составлять лишь 0.5-0.6 мощности трехфазного включения.

Пусковые токи асинхронного двигателя

Теперь приведу таблицу допустимых значений токов холостого хода трехфазных моторов:

Мощность электромотора, кВт Ток холостого хода, в процентах от номинального,
при скорости вращения, об./мин.
3000 1500 1000 750 600 500
0.12 – 0.550.75 – 1.51.5 – 5.55.5 — 1115 – 22.522.5 — 5555 — 110 60504540302020 75706560555040 85757065605545 90807570656050 95858075706555 —908580757060

Прежде, чем производить замеры тока на двигателях, их необходимо обкатать (опробовать на холостом ходу 30-60 минут — движки мощностью меньше 100 кВт и от 2 часов движки, чья мощность выше 100 кВт). Данная таблица носит справочный характер, следовательно, реальные данные могут расходиться с этими процентов на 10-20.

Токи пуска двигателя можно вычислить, применив следующую пару формул:

Iн=1000Рн/(Uн*cosф*√nн),

где Рн — номинал мощности мотора, Uн — номинал его напряжения, nн — номинал его КПД.

Iп=Iн*Кп,

где Iн — номинал тока, а Кп — кратность постоянного тока к номиналу (обычно указана в паспорте мотора).

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.

Источник: http://podvi.ru/elektrodvigatel/podklyuchenie-i-toki-asinxronnyx-elektrodvigatelej.html

Как рассчитать пусковой ток

28.03.2018

Величина пускового тока, необходимого для приведения двигателя в действие, существенно (иногда в 8-10 раз) превышает показатели тока, который подается для работы в нормальном режиме. Результатом резкого роста потребления энергии становится падение напряжения в питающих электросетях, что может повлечь за собой:

  • проблемы с другими подключенными к сети приборами;
  • более скорый износ узлов самого двигателя (этому способствует рывок при запуске).

Свести отрицательное воздействие к минимуму возможно, используя дополнительные устройства. Параметры вспомогательного оборудования определяют, исходя из значения пускового тока для данной модели двигателя.

Разобраться, как посчитать пусковой ток электродвигателя, можно самостоятельно, ознакомившись с технической документацией к агрегату и формулами для расчета. Сначала вам потребуется определить величину номинального тока (IH, зависит от типа двигателя). Для этого предусмотрены следующие формулы (все необходимые данные есть в техпаспорте к оборудованию):

  • 1000PH/(ηHUH) для двигателей постоянного тока;
  • 1000PH/(UHcosφH√ηH) для устройств переменного тока.

Далее проводится собственно расчет значения пускового тока (IП) по формуле Кп (кратность постоянного тока к номинальному показателю, указана в техдокументации)*IH.

Способы уменьшения пускового тока

Проблема снижения пускового тока и более плавной подачи напряжения решается с помощью специального оборудования:

  • софтстартеров и устройств плавного пуска;
  • автоматических выключателей соответствующего типа отключения (B, D или C).

Грамотный подход к расчету значения пускового тока для электрического двигателя позволит вам получить точные результаты и подобрать наиболее эффективные средства защиты линии включения.

Источник:

Пусковые токи асинхронных электродвигателей | Полезные статьи — Кабель.РФ

Ток, который нужен для запуска электродвигателя, называется пусковым. Как правило, пусковые токи электродвигателей в несколько раз большие, чем токи, необходимые для работы в нормально-устойчивом режиме.

Рисунок 1.

Асинхронный электродвигатель Большой пусковой ток асинхронного электродвигателя необходим для того, чтобы раскрутить ротор с места, для чего требуется приложить гораздо больше энергии, чем для дальнейшего поддержания постоянного числа его оборотов. Стоит отметить, что, несмотря на совсем другой принцип действия, однофазные двигатели постоянного тока также характеризуются большими значениями пусковых токов.

Высокие пусковые токи электродвигателей — нежелательное явление, поскольку они могут приводить к кратковременной нехватке энергии для другого подключенного к сети оборудования (падению напряжения).

Такие мероприятия также позволяют снизить уровень затрат на пуск электродвигателя (применять провода меньшего сечения, стабилизаторы и дизельные электростанции меньшей мощности, проч.).

Совет

Одной из наиболее эффективных категорий устройств, облегчающих тяжелые условия пуска, являются софтстартеры и частотные преобразователи.

Особенно ценным считается их свойство поддерживать пусковой ток двигателей переменного тока в течение продолжительного периода — более минуты.

Расчет пускового тока асинхронного электродвигателя

Рисунок 2. Асинхронный электродвигатель с частотным преобразователем Расчет пускового тока электродвигателя может потребоваться для того, чтобы подобрать подходящие автоматические выключатели, способные защитить линию включения данного электродвигателя, а также для того, чтобы подобрать подходящее по параметрам дополнительное оборудование (генераторы, проч.).

Расчет пускового тока электродвигателя осуществляется в несколько этапов:

Определение номинального тока трехфазного электродвигателя переменного тока согласно формуле: Iн=1000Pн/(Uн*cosφ*√ηн). Рн здесь — номинальная мощность двигателя, Uн выступает номинальным напряжением, а ηн — номинальным коэффициентом полезного действия. Cosφ — это номинальный коэффициент мощности электромотора. Все эти данные можно найти в технической документации по двигателю.

Расчет величины пускового тока по формуле Iпуск=Iн*Кпуск. Здесь Iн — номинальная величина тока, а Кпуск выступает кратностью постоянного тока к номинальному значению, которая также должна указываться в технической документации к электродвигателю.

Точно зная пусковые токи электродвигателей, можно правильно подобрать автоматические выключатели, которые будут защищать линию включения.

Источник:

Расчет возможности пуска электродвигателя 380 В

Раздел: Электрооборудование

В данной статье будет рассматриваться изменение напряжения (потеря напряжения) при пуске асинхронного двигателя с короткозамкнутым ротором (далее двигатель) и его влияние на изменения напряжения на зажимах других электроприемников.

При включении двигателя пусковой ток может превышать номинальный в 5-7 раз, из-за чего включение крупных двигателей существенно влияет на работу присоединенных к сети приемников.

Это объясняется тем, что пусковой ток вызывает значительное увеличение потерь напряжения в сети, вследствие чего напряжение на зажимах приемников дополнительно снижается. Это отчетливо видно по лампам накаливания, когда резко снижается световой поток (мигание света). Работающие двигатели в это время замедляют ход и при некоторых условиях могут вообще остановиться.

Обратите внимание

Кроме того, может случиться, что сам пускаемый двигатель из-за сильной просадки напряжения не сможет развернуть присоединенный к нему механизм.

Режим пуска двигателя рассматривается при максимальной нагрузке линии, так как именно при таких условиях создаются наиболее неблагоприятные условия для работы присоединенных к сети приемников.

Чтобы проверить можно ли включать двигатель, нужно рассчитать напряжение на его зажимах во время пуска и напряжение на любом другом работающем двигателе, а также проверить напряжение у ламп.

Пример возможности пуска электродвигателя 380 В

Требуется проверить возможность пуска электродвигателя типа 4А250М2 У3 мощностью 90 кВт. От шин 6 кВ подстанции 2РП-1 питается подстанция с трансформаторами типа ТМ мощностью 320 кВА.

От подстанции 2РП-1 до трансформаторов ТМ-6/0,4 кВ с установленным ответвлением 0%, проложен кабель марки ААБ сечением 3х70 мм2, длина линии составляет 850 м.

К шинам РУ-0,4 кВ присоединен кабелем марки ААБ сечением 3х95 мм2, длиной 80 м двигатель типа 4А250М2 У3.

В момент пуска двигателя 4А250М2 У3 работает подключенный к шинам двигатель 4А250S2 У3 мощностью 75 кВт с напряжением на зажимах 365 В. Напряжение на шинах 0,4 кВ при пуске двигателя равно Uш = 380 В.

где:

  • • Ммакс/Мн – кратность максимального момента;
  • • Мп/Мн – кратность пускового момента;
  • • Мн – номинальный момент двигателя;

Расчет:

1. Определяем длительно допустимый ток двигателя Д1:

2. Определяем пусковой ток двигателя Д1:

где: • Kпуск = 7,5 – кратность пускового тока, согла

Пусковой ток трансформатора

— это … Что такое пусковой ток трансформатора?

пусковой ток трансформатора

Техника: бросок тока намагничивания в трансформаторе

Универсальный англо-русский словарь.
Академик.ру.
2011.

  • индуктивность трансформатора
  • изоляция трансформатора

Смотреть что такое «пусковой ток трансформатора» в других словарях:

  • Пусковой ток — или входной импульсный ток относится к максимальному мгновенному входному току, потребляемому электрическим устройством при первом включении.Например, лампы накаливания имеют высокие пусковые токи, пока их нити не нагреются, а сопротивление…… Википедия

  • Трансформатор — Эта статья про электрическое устройство. Для франшизы игрушечной линии см Трансформеры. Для использования в других целях, см Трансформатор (значения). Распределительный трансформатор на опоре с центральной ответвленной вторичной обмоткой. Этот тип трансформатора…… Wikipedia

  • Типы трансформаторов — Условные обозначения схем Трансформатор с двумя обмотками и железным сердечником.Понижающий или повышающий трансформатор. Символ показывает, какая обмотка имеет больше витков, но обычно не … Wikipedia

  • Электронный компонент — Различные компоненты Электронный компонент является основным электронным элементом и может быть доступен в дискретной форме с двумя или более электрическими клеммами (или выводами). Они предназначены для соединения вместе, обычно путем пайки к печатному…… Wikipedia

  • Вакуумная лампа — Эта статья про электронное устройство.Для экспериментов в откачанной трубе см свободное падение. Для транспортной системы см. Пневматическая трубка. Современные вакуумные лампы, в основном в миниатюрном стиле. В электронике, вакуумные лампы, электронные лампы (на Севере…… Википедия

  • Электродвигатель — Сведения о других типах двигателей см. В разделе «Двигатель». Для железнодорожного электрического двигателя см электровоз. Электродвигатели разные. Батарея транзистора PP3 на 9 вольт находится в центре переднего плана для сравнения размеров. Электродвигатель преобразует…… Википедия

  • Регулятор напряжения — популярный трехконтактный стабилизатор напряжения 12 В постоянного тока.Регулятор напряжения — это электрический регулятор, предназначенный для автоматического поддержания постоянного уровня напряжения. Стабилизатор напряжения может иметь простую конструкцию с прямой связью или может иметь отрицательную обратную связь… Wikipedia

  • Источник бесперебойного питания — Небольшой отдельно стоящий ИБП… Википедия

  • Двигатель переменного тока — Двигатель переменного тока — это электродвигатель, который приводится в действие переменным током. Он состоит из двух основных частей: внешнего неподвижного статора с катушками, на которые подается переменный ток для создания вращающегося магнитного поля, и внутреннего ротора, прикрепленного к…… Wikipedia

  • координация характеристик предохранителя и трансформатора — Рис.LS Industrial Systems Параллельные тексты EN RU 1 Ток полной нагрузки трансформатора Ток трансформатора при полной нагрузке 2 Самый низкий ток отключения вторичного выключателя Наименьшее значение отключаемого тока выключателя…… Справочник технического переводчика

  • Многогранный отражатель — Слева направо: MR16 с основанием GU10 и с основанием GX5.3, MR11 с основанием GU4 или GZ4 MR16 и MR11 (иногда обозначаемые как MR 16 или MR 11, редко MR8 или MR 8) являются стандартными форматы для галогенных ламп с многогранным отражателем, изготовленные различными … Wikipedia

.Пусковой ток трансформатора

— с английского на русский

См. также в других словарях:

  • Пусковой ток — или входной импульсный ток относится к максимальному мгновенному входному току, потребляемому электрическим устройством при первом включении. Например, лампы накаливания имеют высокие пусковые токи до тех пор, пока их нити не нагреются, а сопротивление…… Wikipedia

  • Трансформатор — Эта статья про электрическое устройство.Для франшизы игрушечной линии см Трансформеры. Для использования в других целях, см Трансформатор (значения). Распределительный трансформатор на опоре с центральной ответвленной вторичной обмоткой. Этот тип трансформатора…… Wikipedia

  • Типы трансформаторов — Условные обозначения цепей Трансформатор с двумя обмотками и железным сердечником. Понижающий или повышающий трансформатор. Этот символ показывает, какая обмотка имеет больше витков, но обычно не… Wikipedia

  • Электронный компонент — Различные компоненты Электронный компонент — это базовый электронный элемент, который может быть доступен в дискретной форме с двумя или более электрическими клеммами (или выводами).Они предназначены для соединения друг с другом, обычно путем пайки к печатному…… Wikipedia

  • Вакуумная лампа — Эта статья про электронное устройство. Для экспериментов в откачанной трубе см свободное падение. Для транспортной системы см. Пневматическая трубка. Современные вакуумные лампы, в основном в миниатюрном стиле. В электронике, вакуумные лампы, электронные лампы (на Севере…… Википедия

  • Электродвигатель — Информацию о других типах двигателей см. В разделе «Двигатель» (значения).Для железнодорожного электрического двигателя см электровоз. Электродвигатели разные. Батарея транзистора PP3 на 9 вольт находится в центре переднего плана для сравнения размеров. Электродвигатель преобразует…… Википедия

  • Регулятор напряжения — популярный трехконтактный стабилизатор напряжения 12 В постоянного тока. Регулятор напряжения — это электрический регулятор, предназначенный для автоматического поддержания постоянного уровня напряжения. Стабилизатор напряжения может иметь простую конструкцию с прямой связью или может иметь отрицательную обратную связь … Wikipedia

  • Источник бесперебойного питания — Небольшой отдельно стоящий ИБП… Википедия

  • Двигатель переменного тока — Двигатель переменного тока — это электродвигатель, который приводится в действие переменным током.Он состоит из двух основных частей: внешнего неподвижного статора с катушками, на которые подается переменный ток для создания вращающегося магнитного поля, и внутреннего ротора, прикрепленного к…… Wikipedia

  • координация характеристик предохранителя и трансформатора — Рис. LS Industrial Systems Параллельные тексты EN RU 1 Ток полной нагрузки трансформатора Ток трансформатора при полной нагрузке 2 Самый низкий ток отключения вторичного выключателя Наименьшее значение отключаемого тока выключателя…… Справочник технического переводчика

  • Многогранный отражатель — Слева направо: MR16 с основанием GU10 и с GX5.3 цоколя, MR11 с цоколем GU4 или GZ4 MR16 и MR11 (иногда называемые MR 16 или MR 11, редко MR8 или MR 8) являются стандартными форматами для галогенных многогранных лампочек с отражателем, производимых различными… Wikipedia

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *