Расчет жб плиты: Расчет монолитной плиты перекрытия

Разное

Содержание

Расчет монолитной плиты перекрытия


Невзирая на высокий ассортимент готовых плит, железобетонные монолитные плиты не утратили своей актуальности, продолжая пользоваться спросом. Особенно актуальным их применение является при строительстве малоэтажной загородной недвижимости, которой характерна индивидуальная планировка с различным размером комнат или в тех случаях, когда для строительства не используются подъемные краны. Такой вариант возведения зданий позволит сэкономить средства на доставке материалов и сократить затраты на монтаж. При этом возрастет время на осуществление подготовительных работ, которые будут связаны с возведением опалубки. Впрочем, этот факт не отпугивает застройщиков, которые не видят трудности в покупке бетона и арматуры. Гораздо сложнее произвести правильный расчет плит перекрытий, определить марку необходимого бетона, вид арматуры, значение действующей нагрузки и прочие связанные с прочностью и надежностью характеристики.


Принцип расчета


Монолитная плита перекрытия представляет собой один из компонентов каркаса здания, который воспринимает на себя вертикальные нагрузки, вступая одновременно в качестве элемента жесткости всей конструкции. Расчет параметров железобетонных конструкций осуществляется в соответствии с регламентом строительных норм и правил СП 52-101-2003 и СНиП 52-01-2003. Процесс ручного расчета конструкций представляет собой ряд этапов, в ходе которых производится подбор таких параметров, как класс бетона и арматуры, поперечного сечения, достаточного для того чтобы избежать разрушения при воздействии максимальных сил нагрузки. В случае использования ПЭВМ находят применение специализированные программные комплексы.


Как показывает практика применения железобетонных плит перекрытия, для упрощения задачи можно пренебречь сложными вычислениями таких величин, как расчет на раскрытие трещин и деформацию, сил кручения и поперечных сил, а также продавливания и местного сжатия. При обычном строительстве в этом нет необходимости, сосредоточив свое внимание на вычислении изгибающего момента, действующего на поперечное сечение.

Характеристики монолитной плиты


Реальная длина плиты может отличаться от расчетного значения пролета, которым принято считать расстояние между стенами, выступающими в виде опор. Стены выполняют функцию поддержки плиты. Таким образом, пролет – это размер помещения в длину и в ширину. Для его измерения можно использовать простую рулетку, с помощью которой можно измерить расстояние между стенами. При этом реальное значение длины монолитной плиты должно быть обязательно больше. В качестве опор для плиты выступают стены, материалом для которых может послужить распространенный кирпич или шлакоблок, камень, керамзитобетон, газо- или пенобетон. Необходимо учитывать прочность стен, которые должны выдерживать массу плиты. В случае с камнем, шлакоблоком и кирпичом можно не сомневаться в несущей способности, тогда как пенобетонные конструкции должны быть рассчитаны на определенную массу. Для примера произведем расчет однопролетной схемы перекрытия с опорой на две стены, расстояние между которыми составляет 5000 мм.


Геометрические размеры толщины и ширины плиты задаются. Как правило, наиболее часто в загородном строительстве применяют плиты толщиной 0,1 м с условной шириной равной одному метру. Принимаем за основу конструкцию с армированием плиты перекрытия при помощи арматуры марки А400 при заливке бетона В20. В дальнейшем плита при расчете рассматривается как балка.

Выбор типа опоры


Во время расчета плита перекрытия может по-разному опираться на несущие стены, в зависимости от типа использованного при их возведении материала. Различают следующие варианты опоры:

  • жестко защемленная на опорах балка;
  • балка консольного типа шарнирно-опертая;
  • бесконсольная шарнирно-опертая балка.


Вид опоры определяет принцип расчета. Рассмотрим пример расчета для наиболее распространенного вида конструкции плиты перекрытия с шарнирно-опертой балкой бесконсольного типа.


Определение нагрузки


В процессе строительства, а впоследствии при эксплуатации на балку воздействую различные виды нагрузок. При расчете нас интересуют, прежде всего, динамические и статистические нагрузки, возникающие вследствие передвижения или давления сил временного характера, вызванного перемещением людей, транспорта, работы механизмов и постоянные составляющие, обусловленные массой строительных элементов. При проведении расчета, для получения необходимого запаса прочности, можно пренебречь разницей между данными видами нагрузок.


По характеру нагрузки дифференцируются на:

  • распределенные хаотически и неравномерно;
  • точечные;
  • равнораспределенные.


При расчете плиты перекрытия достаточно ориентироваться на равномерные нагрузки. Для сосредоточенной нагрузки усилия измеряются в ньютонах, килограммах (кг), либо килограммсилах (кгс).



В случае с равным распределением актуально апеллировать данными о нагрузке, воздействующей на метр. Для жилых домов параметр равнораспределенной нагрузки составляет в среднем 400 Н/м2. При толщине плиты в 10 см ее масса создаст нагрузку около 250 кг/м2, а с учетом стяжки или использовании керамической плитки она может возрасти до 350 кг/м2. Таким образом, нагрузка рассчитывается с коэффициентом запаса в 20%, составляя:


Q = (400+250+100)*1. 2 = 900 Н/м


Данная величина нагрузочной способности обеспечит прочность при различных вариациях статических и динамических нагрузок. При наличии лестниц или бетонных маршей опирающихся на плиту перекрытия, необходимо брать в расчет их массу и не упускать из виду динамическую нагрузку во время эксплуатации. Проектировка загородных домов должна предусматривать инсталляцию крупных объектов на плите, например, каминов, масса которых может варьироваться от 1 до 3 тонн. Для обеспечения прочности в таких случаях используется местное усиление – армирование или предусматривается отдельная балка.

Расчет изгибающего момента


Для бесконсольного типа балки при наличии равномерно распределенной нагрузки, которая сосредоточена на опорах шарнирного вида показатель максимально изгибающего момента определяется по формуле:


Мmax = (Q * L²) / 8, где


L – длина балки.


При расчете имеем:


Мmax = (900*5²) / 8 = 225 кг/м.


Основания для расчета


Для бетонных плит перекрытий сопротивление материала растяжению практически равно нулю. Такой вывод можно сделать на основании анализа и сопоставления нагрузок на растяжение, которые испытывает арматура и бетон. Разница между этими данными составляет три порядка, что свидетельствует о том, что всю нагрузку берет на себя арматурный каркас. С нагрузками на сжатие ситуация обстоит иначе: силы равномерно распределяются вдоль вектора силы. Как следствие, сопротивление на сжатие принимаем равным расчетному значению.


Для выбора арматуры необходимо определить значение по формуле:


ER = 0,8/ 1+RS/700 , где


RS – расчетное значение сопротивления арматуры, МПа.


Имея значение данные о расстоянии между нижней частью балки и центром окружности, сформированной плоскостью поперечного сечения арматуры, ее марку выбирают исходя из таблицы.



Правильный подбор арматуры обеспечит надежное сцепление с бетоном, которое гарантирует предел прочности без деформаций и растрескиваний. При этом максимальное растягивающее усилие арматуры не должно превышать полученное расчетным путем значение.


При армировании на один погонный метр, как правило, уходит не менее чем пять стержней, которые располагаются равномерно на одинаковых расстояниях. Точное число стержней зависит от нагрузки и определяется по СНиП 52-01-2003. Формируется каркас чаще всего из нескольких слоев стержней, которые могут иметь различное сечение. Сетка скрепляется заранее хомутами или фиксируется при помощи сварки. В качестве элементов армирования чаще всего применяется ненапрягаемая арматура Ат-IIIС и Ат-IVС с наличием термического упрочнения.



Таким образом, расчет железобетонной конструкции плиты перекрытия включает в себя следующие стадии:

  • составление схемной реализации перекрытия с компоновкой элементов. При возведении многоэтажек расстояния между колоннами должны быть кратные 3000 мм в диапазоне величин от 6 до 12 метров. Значение высоты одного этажа может находиться в пределах от 3,6 до 7,2 метра с дискретностью 600 мм. Данные условия помогут упростить вычисление и обеспечить стандартный автоматический расчет;
  • прочностный конструкционный расчет монолитной плиты. К расчетной части должна прилагаться графическая часть в виде составленного подробного чертежа, который можно составить самостоятельно или доверить его реализацию специалистам из проектных организаций. При этом необходимо произвести расчет элементов перекрытия и главной балки. Выбор бетона при проектировании осуществляется по классу материала на сжатие по заданной прочности, исходя из норм и табличных значений. Как правило, балка и монолит проектируются из одной марки бетона;
  • в зависимости от архитектурных особенностей строения может понадобиться расчет колонны, а также ригеля или второстепенной балки;


  • на основании всех произведенных расчетов, полученных масс и нагрузок формируется фундамент. Монолитное основание представляет собой подземную конструкцию, с помощью которого нагрузка от здания передается на грунт. Общий чертеж должен отображать конструкцию здания в целом с учетом изображения положения плит перекрытий, несущих стен и основания.


Расчетная часть строительного проекта для любого здания является необходимой документаций, которая содержит информацию о размерах архитектурного объекта, его особенностях, технологии возведении. При этом именно на основе проекта составляется строительная расходная ведомость, в которую включаются необходимые для возведения здания материалы, определяются трудозатраты. А основе расчета осуществляется планирование материалов, этапов выполнения строительных работ, их объемов и сроков. Прочность и надежность здания во многом зависят от правильности расчетов, качества используемых материалов и соблюдения технологии строительства на каждом из отдельно взятых этапов.

Преимущества применения плит перекрытий


Технология возведения перекрытий в виде армированных бетонных плит обладает целым рядом преимуществ, среди которых:

  • возможность сооружения перекрытий для зданий и сооружений с практически любыми габаритами, независимо от линейных размеров. Единственным нюансом являются конструктивные особенности зданий. При слишком большой площади покрытия для устойчивости перекрытий, отсутствия провисаний устанавливаются дополнительные опоры. Для домов и сооружений, стены которых выполнены на основе газобетона для установки плиты железобетонного перекрытия осуществляют монтаж дополнительных опор, изготовленных из стали или бетона;
  • отсутствие необходимости масштабных отделочных работ на внутренней части поверхности, которая, как правило, благодаря технологии монолитного литья имеет гладкую и ровную форму;
  • высокая степень звукоизолирующих свойств. Принято считать, что плита перекрытия толщиной 140 мм обладает высокой степенью шумоподавления, обеспечивающего комфортность проживания в доме для человека;
  • конструктивно данная технология обладает гибкими инструментами для строительства различных архитектурных форм и объектов. Так, например, загородный дом можно с легкостью оборудовать балконом на втором этаже, который будет иметь необходимые размеры и конфигурацию;
  • высокий уровень прочности и долговечности строительной конструкции перекрытии в целом, который обусловлен набором прочностных характеристик армированного бетона.


считаем нагрузку и подбираем материалы для строительства

Монолитная плита перекрытия всегда была хороша тем, что изготавливается без применения подъемных кранов – все работы ведутся прямо на месте. Но при всех очевидных преимуществах сегодня многие отказываются от такого варианта из-за того, что без специальных навыков и онлайн-программ достаточно сложно точно определить такие важные параметры, как сечение арматуры и площадь нагрузки.

В этой статье мы поможем вам изучить расчет плиты перекрытия и его нюансы, а также познакомим с основными данными и документами. Современные онлайн-калькуляторы – дело хорошее, но если речь идет о таком ответственном моменте, как перекрытие жилого дома, советуем вам перестраховаться и лично все пересчитать!

Давайте начнем с того, что монолитная железобетонная плита перекрытия – это конструкция, которая лежит на четырех несущих стенах, т.е. опирается по своему контуру.

И не всегда плита перекрытия представляет собой правильный четырехугольник. Тем более, что сегодня проекты жилых домов отличаются вычурностью и многообразием сложных форм.

В этой статье мы научим вас рассчитывать нагрузку на 1 кв. метр плиты, а общую нагрузку вам нужно будет вычислять по математическим формулам. Если сложно – разбейте площадь плиты на отдельные геометрические фигуры, рассчитайте нагрузку каждой, затем просто суммируйте.

Теперь рассмотрим такие основные понятия, как физическая и проектная длина плиты. Т.е. физическая длина перекрытия может быть любой, а вот расчетная длина балки уже имеет другое значение. Ею называют минимальное расстояние между наиболее удаленными соседними стенами. По факту физическая длина плиты всегда длиннее, чем проектная длина.

Вот хороший видео-урок о том, как производится расчет монолитной плиты перекрытия:

Важный момент: несущий элемент плиты может быть как шарнирная бесконсольная балка, так и балка жесткого защемления на опорах. Мы будем приводить пример расчета плиты на бесконсольную балку, т.к. такая встречается чаще.

Чтобы рассчитать всю плиту перекрытия, нужно рассчитать один ее метр для начала. Профессиональные строители используют для этого специальную формулу. Так, высота плиты всегда значится как h, а ширина как b. Давайте рассчитаем плиту с такими параметрами: h=10 см, b=100 см. Для этого вам нужно будет познакомиться с такими формулами:

Плиту перекрытия легче всего рассчитать, если она имеет квадратную форму и если вы знаете, какая нагрузка запланирована. При этом какая-то часть нагрузки будет считаться длительной, которую определяет количество мебели, техники и этажности, а другая – кратковременной, как строительное оборудование во время стройки.

Кроме того, плита перекрытия должна выдерживать и другого рода нагрузки, как статистические и динамические, при этом сосредоточенная нагрузка всегда измеряется в килограммах или в ньютонах (например, нужно будет ставить тяжелую мебель) и распределительная нагрузка, измеряемая в килограммах и силе. Конкретно сам расчет плиты перекрытия всегда нацелен на определение распределительный нагрузки.

Вот ценные рекомендации, какой должна быть нагрузка на плиту перекрытия в плане расчета на изгиб:

Еще один немаловажный момент, который тоже нужно учитывать: на какие стены будет опираться монолитная плита перекрытия? На кирпичные, каменные, бетонные, пенобетонные, газобетонные или из шлакоблока? Вот почему так важно рассчитать плиту не только с позиции нагрузки на нее, но и с точки зрения ее собственного веса. Особенно если ее устанавливают на недостаточно прочные материалы.

Сам расчет плиты перекрытия, если мы говорим о жилом доме, всегда нацелен на нахождение распределительной нагрузки. Она рассчитывается по формуле: q1=400 кг/м². Но к этому значению добавьте вес самой плиты перекрытия, а это обычно 250 кг/м², а бетонная стяжка и чистовой пол дадут еще дополнительные 100 кг/м². Итого имеем 750 кг/м².

Учитывайте при этом, что изгибающее напряжение плиты, которая по своему контуру опирается на стены, всегда приходится на ее центр.

Именно монолитную плиту перекрытия, в отличие от деревянных или металлических балок, рассчитывают по поперечному сечению. Ведь бетон само по себе – неоднородный материал, и его предел прочности, текучести и других механических характеристик имеет значительный разброс.

Что удивительно, даже при изготовлении образцов из бетона, даже из одного замеса получаются разные результаты. Ведь здесь много зависит от таких факторов, как загрязненность и плотности замеса, способов уплотнения и других технологических факторов, даже так называемой активности цемента.

При расчете монолитной плиты перекрытия всегда учитывается и класс бетона, и класс арматуры. Само сопротивление бетона принимается всегда на значение, на какое идет сопротивление арматуры. Т.е., по сути, на растяжение работает именно арматура. Сразу оговоримся, что здесь существует несколько расчетных схем, которые учитывают разные факторы. Например, силы, которые определяют основные параметры поперечного сечения по формулам, или расчет относительно центра тяжести сечения.

Разрушение в плитах перекрытия происходит тогда, когда арматура достигает своего предела прочности при растяжении или текучести. Т.е. почти все зависит от нее. Второй момент, если прочность бетона уменьшается в 2 раза, тогда и несущая способность армирования плиты уменьшается с 90 на 82%. Поэтому доверимся формулам:

Происходит армирование при помощи обвязки арматуры из сварной сетки. Ваша главная задача – рассчитать процент армирования поперечного профиля продольными стержнями арматуры.

Как вы наверняка не раз замечали, самые распространенные ее виды сечения – это геометрические фигуры: форма круга, прямоугольника, трапеции. А расчет самой площади сечения происходит по двум противоположным углам, т.е. по диагонали. Кроме того, учитывайте, что определенную прочность плите перекрытия придает также дополнительное армирование:

Если рассчитывать арматуру по контуру, тогда вы должны выбрать определенную площадь и просчитывать ее последовательно. Далее, на самом объекте проще рассчитывать сечение, если взять ограниченной замкнутой объект, как прямоугольник, круг или эллипс и производить расчет в два этапа: с использованием формирования внешнего и внутреннего контура.

Например, если вы рассчитываете армирование прямоугольного монолитного перекрытия в форме прямоугольника, тогда нужно отметить первую точку в вершине одного из углов, затем отметить вторую и произвести расчет всей площади.

Согласно СНиПам 2.03.01-84 «Бетонные и железобетонные конструкции» сопротивление растягивающим усилиям в отношении арматуры А400 составляет Rs=3600 кгс/см², или 355 МПа, а вот для бетона класса B20 значение Rb=117кгс/см² или 11.5 МПа:

Согласно нашим вычислениям, для армирования 1 погонного метра понадобится 5 стержней с сечением 14 мм и с ячейкой 200 мм. Тогда площадь сечения арматуры будет равняться 7.69 см². Чтобы обеспечить надежность по поводу прогиба, высоту плиты завышают до 130-140 мм, тогда сечение арматуры составляет 4-5 стержней по 16 мм.

Итак, зная такие параметры, как необходимая марка бетона, тип и сечение арматуры, которые нужны для плиты перекрытия, вы можете быть уверены в ее надежности и качестве.

Расчет монолитной плиты перекрытия на примере квадратной и прямоугольной плит, опертых по контуру

При создании домов с индивидуальной планировкой дома, как правило, застройщики сталкиваются с большим неудобством использования заводских панелей. С одной стороны, их стандартные размеры и форма, с другой – внушительный вес, из-за которого не обойтись без привлечения подъемной строительной техники.

Для перекрытия домов с комнатами разного размера и конфигурации, включая овал и полукруг, идеальным решением являются монолитные ж/б плиты. Дело в том, что по сравнению с заводскими они требуют значительно меньших денежных вложений как на покупку необходимых материалов, так и на доставку и монтаж. К тому же у них значительно выше несущая способность, а бесшовная поверхность плит очень качественная.

Почему же при всех очевидных преимуществах не каждый прибегает к бетонированию перекрытия? Вряд ли людей отпугивают более длительные подготовительные работы, тем более что ни заказ арматуры, ни устройство опалубки сегодня не представляет никакой сложности. Проблема в другом – не каждый знает, как правильно выполнить расчет монолитной плиты перекрытия.

Преимущества устройства монолитного перекрытия ↑

Монолитные железобетонные перекрытия причисляют к категории самых надежных и универсальных стройматериалов.

  • по данной технологии возможно перекрывать помещения практически любых габаритов, независимо от линейных размеров сооружения. Единственное при необходимости перекрыть больших пространств возникает необходимость в установке дополнительных опор;
  • они обеспечивают высокую звукоизоляцию. Несмотря на относительно небольшую толщину (140 мм), они способны полностью подавлять сторонние шумы;
  • с нижней стороны поверхность монолитного литья – гладкая, бесшовная, без перепадов, поэтому чаще всего подобные потолки отделывают только при помощи тонкого слоя шпаклевки и окрашивают;
  • цельное литье позволяет возводить выносные конструкции, к примеру, создать балкон, который составит одну монолитную плиту с перекрытием. Кстати, подобный балкон значительно долговечнее.
  • К недостаткам монолитного литья можно отнести необходимость использования при заливке бетона специализированного оборудования, к примеру, бетономешалок.

Внимание!

Устраивать монолитное перекрытие в доме из газобетона можно исключительно после установки дополнительных опор из бетона или железа. Что же касается деревянных построек, то использование такого типа литья запрещено.

Для конструкций из легкого материала типа газобетона больше подходят сборно-монолитные перекрытия. Их выполняют из готовых блоков, к примеру, из керамзита, газобетона или других аналогичных материалов, после чего заливают бетоном. Получается, с одной стороны, легкая конструкция, а с другой – она служит монолитным армированным поясом для всего строения.

Виды ↑

По технологии устройства различают:

  • монолитное балочное перекрытие;
  • безбалочное – это один из самых распространенных вариантов, расходы на материалы здесь меньше, поскольку нет необходимости закупать балки и обрабатывать перекрытия.
  • имеющие несъемную опалубку;
  • по профнастилу. Наиболее часто такую конструкцию используют для создания терасс, при строительстве гаражей и других подобных сооружений. Профлисты играют роль несгибаемой опалубки, на которую заливают бетон. Функции опоры будет выполнять каркас из металла, собранный из колонн и балок.

Обязательные условия получения качественного и надежного монолитное перекрытие по профнастилу:

  • чертежи, в которых указаны точнейшие размеры сооружения. Допустимая погрешность – до миллиметра;
  • расчет монолитной плиты перекрытия, где учтены создаваемые ею нагрузки.

Профилированные листы позволяют получить ребристое монолитное перекрытие, отличающееся большей надежностью. При этом значительно сокращаются затраты на бетон и стержни арматуры.

На заметку

Все монтажные работы выполняются по специально составленным технологическим картам на устройство монолитного перекрытия. Его еще называют основным технологическим документом, предназначенным как для строительных организаций и проектных бюро, так и для мастеров , непосредственно связанных с выполнением монолитных ж/б работ.

Расчет безбалочного перекрытия ↑

Перекрытие этого типа представляет из себя сплошную плиту. Опорой для нее служат колонны, которые могут иметь капители. Последние необходимы тогда, когда для создания требуемой жесткости прибегают к уменьшению расчетного пролета.

Полезно

Экспериментально было установлено, что для безбалочной плиты опасными нагрузками можно считать сплошную, оказывающую давление на всю площадь и полосовую, распределенную через весь пролет.

Расчет монолитной плиты, опертой по контуру ↑

Параметры монолитной плиты ↑

Понятно, что вес литой плиты напрямую зависит от ее высоты. Однако, помимо собственно веса она испытывает также определенную расчетную нагрузку, которая образуется в результате воздействия веса выравнивающей стяжки, финишного покрытия, мебели, находящихся в помещении людей и другое. Было бы наивно предположить, что кому-то удастся полностью предугадать возможные нагрузки или их комбинации, поэтому в расчетах прибегают к статистическим данным, основываясь на теории вероятностей. Таким путем получают величину распределенной нагрузки.

К примеру:

Здесь суммарная нагрузка составляет 775 кг на кв. м.

Одни из составляющих могут носить кратковременный характер, другие – более длительный. Чтобы не усложнять наши расчеты, условимся принимать распределительную нагрузку qв временной.

Как рассчитать наибольший изгибающий момент ↑

Это один из определяющих параметров при выборе сечения арматуры.

Напомним, что мы имеем дело с плитой, которая оперта по контуру, то есть, она будет выступать в роли балки не только относительно оси абсцисс, но и оси аппликат (z), и будет испытывать сжатие и растяжение в обеих плоскостях.

Как известно, изгибающий момент по отношению к оси абсцисс балки с опорой на две стены, имеющей пролет ln вычисляют по формуле mn = qnln2/8 (для удобства за ее ширину принят 1 м). Очевидно, что если пролеты равны, то равны и моменты.

Если учесть, что в случае квадратной плиты нагрузки q1 и q2 равны, возможно допустить, что они составляют половину расчетной нагрузки, обозначаемой q.  Т. е.

Иначе говоря, можно допустить, что арматура, уложенная параллельно осям абсцисс и аппликат, рассчитывается на один и тот же изгибающий момент, который вдвое меньше, нежели тот же показатель для плиты, которая в качестве опоры имеет две стены. Получаем, что максимальное значение расчетного момента составляет:

Что же касается величины момента для бетона, то если учесть, что он испытывает сжимающее воздействие одновременно в перпендикулярных друг другу плоскостях, то ее значение будет больше, а именно,

Как известно, для расчетов требуется единая величина момента, поэтому в качестве его расчетного значения берут среднее арифметическое от Ма и Мб, которое в нашем случае равно 1472.6 кгс·м:

Как выбрать сечение арматуры ↑

В качестве примера произведем расчет сечения стержня по старой методике и сразу отметим, что конечный результат расчета по любой другой дает минимальную погрешность.

Какой бы способ расчеты вы ни выбрали, не надо забывать, высота арматуры в зависимости от ее расположения относительно осей x и z будет различаться.

В качестве значения высот предварительно примем: для первой оси h01 = 130 мм, для второй – h02 = 110 мм. Воспользуемся формулой А0n = M/bh20nRb. Соответственно получим:

  • А01 = 0.0745
  • А02 = 0.104

Из представленной ниже вспомогательной таблицы найдем соответствующие значения η и ξ и посчитаем искомую площадь по формуле Fan= M/ηh0nRs.

Получаем

  • Fa1 = 3,275 кв. см.
  • Fa2 = 3,6 кв. см.

Фактически, для армирования 1 пог. м необходимо по 5 арматурных стержня для укладки в продольном и поперечном направлении с шагом 20 см.

Для выбора сечения можно воспользоваться нижележащей таблицей. К примеру, для пяти стержней ⌀10 мм получаем площадь сечения, равной 3,93 кв. см, а для 1 пог. м она будет в два раза больше – 7,86 кв. см.

Сечение арматуры, проложенной в верхней части, было взято с достаточным запасом, поэтому число арматуры в нижнем слое можно уменьшить до четырех. Тогда для нижней части площадь, согласно таблице составит 3,14 кв. см.

На заметку

Для расчета подобной плиты в панельном доме согласно имеющимся методикам расчета обычно применяют корректирующий коэффициент для учета также пространственной работы конструкции. Он позволяет примерно на 3–10 процентов сократить сечение. Однако многие специалисты считают, что, в отличие от заводских, для монолитных плит его использование не столь уж обязательно, поскольку при таком подходе возникает необходимость в ряде дополнительных расчетов, к примеру, на раскрытие трещин и прочих. И потом, если центральную часть армировать стержнями большего диаметра, то прогиб посередине будет изначально меньше. При необходимости его можно достаточно просто устранить или скрыть под финишной отделкой.

Пример расчета монолитной плиты перекрытия в виде прямоугольника ↑

Очевидно, что в подобных конструкциях момент, действующий по отношению к оси абсцисс, не может равняться его значению, относительно оси аппликат. Причем чем больше разброс между ее линейными размерами, тем больше она будет похожа на балку с шарнирными опорами. Иначе говоря, начиная с какого-то момента, величина воздействия поперечной арматуры станет постоянной.

На практике неоднократно была показана зависимость поперечного и продольного моментов от значения λ = l2 / l1:

  • при λ > 3, продольный больше поперечного в пять раз;
  • при λ ≤ 3 эту зависимость определяют по графику.

Допустим, требуется рассчитать прямоугольную плиту 8х5 м. Учитывая, что расчетные пролеты это и есть линейные размеры помещения, получаем, что их отношение λ равно 1.6. Следуя кривой 1 на графике, найдем соотношение моментов. Оно будет равно 0.49, откуда получаем, что m2 = 0.49*m1.

Далее, для нахождения общего момента значения m1 и m2 необходимо сложить. В итоге получаем, что M = 1.49*m1. Продолжим: подсчитаем два изгибающих момента – для бетона и арматуры, затем с их помощью и расчетный момент.

Теперь вновь обратимся к вспомогательной таблице, откуда находим значения η1, η2 и ξ1, ξ2. Далее, подставив найденные значения в формулу, по которой вычисляют площадь сечения арматуры, получаем:

  • Fa1 = 3.845 кв. см;
  • Fa2 = 2 кв. см.

В итоге получаем, что для армирования 1 пог. м. плиты необходимо:

  • продольная арматура:пять 10-миллиметровых стержней, длина 520 -540 см, Sсеч. – 3.93 кв. см;
  • поперечная арматура: четыре 8-миллиметровых стержня, длина 820-840 см, Sсеч. – 2.01 кв.см.


© 2021 stylekrov.ru

Самостоятельный расчет плиты перекрытия: параметры и правила

Бетонные пустотные плиты уже много лет используют для обустройства межэтажных перекрытий при строительстве зданий из любых строительных материалов: железобетонных панелей, стеновых блоков (газобетонных, пенобетонных, газосиликатных), а также при возведении монолитных или кирпичных сооружений. Нагрузка на пустотную плиту перекрытия – одна из основных характеристик таких изделий, которую необходимо учитывать уже на этапе проектирования будущего строения. Неправильный расчет этого параметра негативно скажется на прочности и долговечности всего строения.

Разновидности пустотных плит перекрытия

Пустотные плиты наиболее широко применяют при обустройстве перекрытий при строительстве жилых домов, общественных и промышленных сооружений. Толщина таких панелей составляет 160, 220, 260 или 300 мм. По типу отверстий (пустот) изделия бывают:

  • с круглыми отверстиями;
  • с пустотами овальной формы;
  • с отверстиями грушевидной формы;
  • с формой и размерами пустот, которые регламентируются техусловиями и специальными стандартами.

Самые востребованные на современном строительном рынке – изделия с толщиной 220 мм и отверстиями цилиндрической формы, так как они рассчитаны на значительные нагрузки на каждую пустотную плиту перекрытия, а ГОСТ предусматривает их применение для обустройства перекрытий практически всех типов зданий. Различают три типа таких конструкционных изделий:

  • Плиты с цилиндрическими пустотами Ø=159 мм (маркируют символами 1ПК).
  • Изделия с круглыми отверстиями Ø=140 мм (2ПК), которые изготавливают только из тяжелых видов бетона.
  • Панели с пустотами Ø=127 мм (3ПК).

На заметку! Для малоэтажного индивидуального строительства допустимо применение панелей толщиной 16 см и отверстиями Ø=114 мм. Важный момент, который надо учитывать, выбирая изделие такого типа, уже на этапе проектирования сооружения – максимальная нагрузка, которую выдержит плита.

Характеристики пустотных плит перекрытий

К основным техническим характеристикам пустотных плит относятся:

  • Геометрические размеры (стандартные: длина – от 2,4 до 12 м; ширина – от 1,0 до 3,6 м; толщина – от 160 до 300 мм). По желанию заказчика производитель может изготовить нестандартные панели (но только при строгом соблюдении всех требований ГОСТа).
  • Масса (от 800 до 8600 кг в зависимости от размеров панели и плотности бетона).
  • Допустимая нагрузка на плиту перекрытия (от 3 до 12,5 кПа).
  • Тип бетона, который использовали при изготовлении (тяжелый, легкий, плотный силикатный).
  • Нормированное расстояние между центрами отверстий от 139 до 233 мм (зависит от типа и толщины изделия).
  • Минимальное количество сторон, на которые должна опираться панель перекрытия (2, 3 или 4).
  • Расположение пустот в плите (параллельно длине либо ширине). Для панелей, предназначенных для опоры на 2 или 3 стороны, пустоты необходимо обустраивать только параллельно длине изделия. Для плит, опирающихся на 4 стороны, возможно расположение отверстий параллельно как длине, так и ширине.
  • Арматура, использованная при изготовлении (напрягаемая или ненапрягаемая).
  • Технологические выпуски арматуры (если таковые предусмотрены проектным заданием).

Маркировка пустотных плит

Марка панели состоит из нескольких групп букв и цифр, разделенных дефисами. Первая часть – тип плиты, ее геометрические размеры в дециметрах (округленные до целого числа), количество сторон опоры, на которое рассчитана панель. Вторая часть – расчетная нагрузка на плиту в кПа (1 кПа = 100 кг/м²).

Внимание! В маркировке указана расчетная, равномерно распределенная нагрузка на бетонное перекрытие (без учета собственной массы изделия).

Дополнительно в маркировке указывают тип бетона, примененного для изготовления (Л – легкий; С – плотный силикатный; тяжелый бетон индексом не обозначают), а также дополнительные характеристики (например, сейсмологическую устойчивость). Например, если на плиту нанесена маркировка 1ПК66.15-8, то это расшифровывается следующим образом:

1ПК – толщина панели – 220 мм, пустоты Ø=159 мм и она предназначена для установки с опорой на две стороны.

66.15 – длина составляет 6600 мм, ширина – 1500 мм.

8 – нагрузка на плиту перекрытия, которая составляет 8 кПа (800 кг/м²).

Отсутствие в конце маркировки буквенного индекса указывает на то, что для изготовления был применен тяжелый бетон.

Еще один пример маркировки: 2ПКТ90.12-6-С7. Итак, по порядку:

2ПКТ – панель толщиной 220 мм с пустотами Ø=140 мм, предназначенная для установки с упором на три стороны (ПКК означает необходимость установки панели на четыре стороны опоры).

90.12 – длина – 9 м, ширина – 1,2 м.

6 – расчетная нагрузка 6 кПа (600 кг/м²).

С – означает, что она изготовлена из силикатного (плотного) бетона.

7 – панель может быть использована в регионах с сейсмологической активностью до 7 баллов.

Достоинства и недостатки пустотных плит

По сравнению со сплошными аналогами пустотные панели обладают рядом несомненных преимуществ:

  • Меньшей массой по сравнению со сплошными аналогами, причем без потери надежности и прочности. Это значительно уменьшает нагрузки на фундамент и несущие стены. При монтаже можно использовать технику меньшей грузоподъемности.
  • Меньшей стоимостью, так как для их изготовления необходимо значительно меньшее количество строительного материала.
  • Более высокой тепло- и звукоизоляцией (за счет пустот в «теле» изделия).
  • Отверстия могут быть использованы для прокладки различных инженерных коммуникаций.
  • Изготовление плит осуществляют только на крупных заводах, оснащенных современным высокотехнологичным оборудованием (производство их в кустарных условиях, практически, невозможно). Поэтому можно быть уверенным в соответствии изделия заявленным техническим характеристикам (согласно ГОСТ).
  • Многообразие стандартных типоразмеров позволяет осуществлять строительство сооружений самых различных конфигураций (доборные элементы перекрытий можно изготовить из стандартных панелей или заказать у производителя).
  • Быстрый монтаж перекрытия по сравнению с обустройством монолитной железобетонной конструкции.

К недостаткам таких плит можно отнести:

  • Возможность монтажа только с применением грузоподъемной техники, что приводит к удорожанию постройки при индивидуальном строительстве жилого дома. Необходимость свободного места на частном участке для маневрирования подъемного крана при монтаже перекрытий.

На заметку! Деревянные перекрытия, которые очень популярны в индивидуальном строительстве, устанавливают на балки, для монтажа которых также необходимо применение техники достаточной грузоподъемности.

  • При использовании стеновых блоков необходимо обустройство железобетонного армопояса.
  • Невозможность изготовления своими руками.

Примерный расчет предельной нагрузки на пустотную плиту перекрытия

Для того чтобы самостоятельно рассчитать, какую максимальную нагрузку могут выдерживать плиты перекрытия, которые вы планируете использовать при строительстве, необходимо учесть все моменты. Допустим, что для обустройства перекрытий вы хотите использовать панели 1ПК63.

12-8 (то есть, величина расчетной нагрузки, которую выдерживает одно изделие, составляет 800 кг/м²: для дальнейших расчетов обозначим ее буквой Q₀).

Рассчитав сумму всех динамических, статических и распределенных нагрузок (от веса самой плиты; от людей и животных, мебели и бытовой техники; от стяжки, утеплителя, финишного напольного покрытия и перегородок), которую обозначаем QΣ, можно определить, какую нагрузку выдерживает ваша конкретная плита. Основной момент, на который надо обратить внимание: в результате всех расчетов (разумеется, с учетом повышающего коэффициента прочности) должно получиться, что QΣ ≤ Q₀.

Для того чтобы определить равномерно распределенную нагрузку от собственного веса плиты, необходимо знать ее массу (M).

Можно воспользоваться либо величиной массы, указанной в сертификате завода-изготовителя (если его предоставили в месте продажи), либо справочной величиной из таблицы ГОСТ-а, которая составлена для изделий, изготовленных из тяжелых видов бетона со средней плотностью 2500 кг/м³. В нашем случае справочный вес плиты составляет 2400 кг.

Сначала вычисляем площадь плиты: S = L⨯H = 6,3⨯1,2 = 7,56 м². Тогда нагрузка от собственного веса (Q₁) составит: Q₁ = M:S = 2400:7,56 = 317,46 ≈ 318 кг/м².

В некоторых строительных справочниках рекомендуют при расчетах использовать суммарное усредненное значение полезной нагрузки на перекрытие жилых помещений – Q₂=400 кг/м².

Тогда суммарная нагрузка, которую необходимо выдерживать плите перекрытия, составит:

QΣ = Q₁ + Q₂ = 318 + 400 = 718 кг/м² ˂ 800 кг/м², то есть основной момент QΣ ≤ Q₀ соблюден и выбранная плита пригодна для обустройства перекрытий жилых помещений.

Для точных расчетов будут необходимы значения удельной плотности (стяжки, теплоизолятора, финишного покрытия), значение нагрузки от перегородок, вес мебели и бытовой техники и так далее. Нормативные показатели нагрузок (Qн) и коэффициенты надежности (Үн) указаны в соответствующих СНИП-ах.

В заключении

На современном строительном рынке представлены пустотелые плиты с расчетными нагрузками от 300 до 1250 кг/м². Если подойти к моменту расчета необходимой предельной нагрузки ответственно, то можно выбрать изделие, удовлетворяющее именно вашим требованиям, не переплачивая за излишнюю прочность.

Источник: https://zamesbetona.ru/zhelezobetonnye-izdelija/nagruzka-na-plitu-perekrytija-pustotnuju.html

Сбор нагрузок на плиту перекрытия

  • 26-12-2013
  • 17365 Просмотров

Железобетонные монолитные плиты перекрытия, несмотря на то, что имеется достаточно большое количество готовых плит, по-прежнему востребованы. Особенно если это собственный частный дом с неповторимой планировкой, в котором абсолютно все комнаты имеют разные размеры либо процесс строительства ведется без использования подъемных кранов.

Монолитные плиты достаточно востребованы, особенно в строительстве загородных домов с индивидуальным дизайном.

В подобном случае устройство монолитной железобетонной плиты перекрытия дает возможность значительно сократить затраты денежных средств на приобретение всех необходимых материалов, их доставку либо монтаж.

Однако в данном случае большее количество времени может уйти на выполнение подготовительных работ, в числе которых будет и устройство опалубки.

Стоит знать, что людей, которые затевают бетонирование перекрытия, отпугивает вовсе не это.

Заказать арматуру, бетон и сделать опалубку на сегодняшний день несложно. Проблема заключается в том, что не каждый человек может определить, какая именно арматура и бетон понадобятся для того, чтобы выполнить подобные работы.

Данный материал не является руководством к действию, а несет чисто информационный характер и содержит исключительно пример расчета.

Все тонкости расчетов конструкций из железобетона строго нормированы в СНиП 52-01-2003 «Железобетонные и бетонные конструкции.

Основные положения», а также в своде правил СП 52-1001-2003 «Железобетонные и бетонные конструкции без предварительного напряжения арматуры».

Монолитная плита перекрытия представляет собой армированную по всей площади опалубку, которая заливается бетоном.

Касательно всех вопросов, которые могут возникать в процессе расчета железобетонных конструкций, следует обращаться именно к данным документам. В данном материале будет содержаться пример расчета монолитного железобетонного перекрытия согласно тем рекомендациям, которые содержатся в данных правилах и нормах.

Пример расчета железобетонной плиты и любой строительной конструкции в целом будет состоять из нескольких этапов. Их суть — подбор геометрических параметров нормального (поперечного) сечения, класса арматуры и класса бетона, чтобы плита, которая проектируется, не разрушилась под воздействием максимально возможной нагрузки.

Пример расчета будет производиться для сечения, которое перпендикулярно оси х.

На местное сжатие, на действие поперечных сил, продавливание, на кручение (предельные состояния 1 группы), на раскрытие трещин и расчет по деформациям (предельные состояния 2 группы) производиться не будут.

Заранее стоит предположить, что для обыкновенной плоской плиты перекрытия в жилом частном доме подобных расчетов не требуется. Как правило, так оно и есть на самом деле.

Следует ограничиться лишь расчетом нормального (поперечного) сечения на действия изгибающего момента. Те люди, которым не нужно давать пояснения касательно определения геометрических параметров, выбора расчетных схем, сбор нагрузок и расчетных предпосылок, могут сразу перейти к разделу, в котором содержится пример расчета.

Источник: https://1popotolku.ru/perekrytie/raschet-plity-perekrytiya.html

Расчет монолитного перекрытия: что нужно предусмотреть

При постройке частного дома приходится либо придерживаться строгих стандартов в проектировании, исходя из типовых габаритов бетонных плит, либо выполнить расчет монолитного перекрытия.

Для чего нужен расчет монолитного перекрытия

От прочности стен зависит надежность всей конструкции здания, и этот факт неоспорим, но не меньшее значение для безопасности проживающих в частном доме (равно как и в многоквартирном) имеют перекрытия.

Крепкий пол под ногами – это очень важно для того, чтобы чувствовать себя в помещениях комфортно.

Но, если плиты из бетона на этапе проектирования вынуждают придерживаться определенных рамок, поскольку параметры их являются константой, то расчет монолитного перекрытия, наоборот, приходится делать, исходя из желаемой планировки дома. И ошибки при этом крайне нежелательны.

Любое перекрытие способно выдержать только строго определенную (выраженную в килограммах) нагрузку на квадратный метр. Не зная эту величину, и превысив ее, к примеру, изменяя планировку путем установки перегородок, можно спровоцировать возникновение трещин в структуре бетона.

Как следствие, залитое монолитное основание этажа будет ослаблено, и впоследствии может разрушиться.

Во избежание расчет нужно делать так, чтобы иметь запас прочности перекрытия, принимая во внимание характеристики используемой марки бетона, диаметр и количество прутков для арматуры, и их суммарный вес.

В некоторых случаях для усиления монолитного наливного основания можно изготавливать схожим образом горизонтальные железобетонные балки под перекрытием, которые будут играть роль ребер жесткости.

Для их расчета нужно лишь заранее определить габариты, которые складываются из высоты, ширины и длины. В этом и состоит основная разница между балкой и перекрытием, для расчета которого нужно использовать такие параметры, как площадь и толщина бетонной заливки.

Далее мы рассмотрим основные нормы, которых следует придерживаться при заливке плит, чтобы их прочность была достаточно высокой.

На чем основывается расчет железобетонных конструкций

В первую очередь следует учитывать, что сборное перекрытие, полученное из готовых плит дешевле приблизительно на 15-20 %, чем наливное монолитное основание.

Причиной тому невысокая себестоимость выпускаемых на заводах типовых железобетонных конструкций, в сравнении с залитым в собранную на месте опалубку замешанным вручную или на арендованной бетономешалке раствором.

Ведь для того, чтобы монолитное основание получилось надежным, недостаточно просто залить цементную смесь, сначала необходимо связать каркас из арматуры, что требует немалых трудозатрат. По прочности готовые плиты и наливные перекрытия получаются одинаковыми при равной толщине.

Рассмотрим все составляющие монолитного основания, на которых строится расчет железобетонных конструкций. В первую очередь, сооружается опалубка, которая должна быть добротной, чтобы заливка получилась качественной.

Не желательно использовать обрезные доски, поскольку нижняя, потолочная часть плиты, должна быть идеально ровной. Следовательно, в качестве основы для опалубки лучше выбрать толстую фанеру, желательно, ламинированную (к ней бетон пристает несколько хуже, чем к обычной).

Боковины также делаются из фанерных полос, а вот подпорки лучше установить из бруса, сечением не менее чем 100х100 миллиметров.

Далее из металлических прутков, связанных проволокой, собираются верхняя и нижняя армирующие сетки, соединенные посредством коротких поперечин в каркас.

Слишком частыми ячейки делать не рекомендуется, поскольку это придаст лишнюю массу монолитному основанию, увеличив собственную нагрузку плиты. Обычно используется арматура с профилем А-II или А-III.

Диаметр прутка для однорядной вязки требуется не менее 12, а для двухрядной – не меньше 10 миллиметров. Для поперечин используются стержни диаметром около 8 миллиметров. Шаг между арматурой достаточно соблюдать порядка 0.12 метра.

Для того, чтобы узнать, какой запас прочности необходимо придать монолитному основанию, обратимся к СНиП. Нормативная нагрузка на перекрытие в жилом доме по стандартам должна соответствовать 150 килограммам, кроме того, не следует забывать про коэффициент запаса, соответствующий 1.3.

  В итоге получаем величину 150х1.3=195 кг/м2. Соотношение толщины плиты и ее площади должно иметь пропорции 1:30, иными словами, для монолитного основания 3х2 метра хватит толщины в 20 сантиметров.

Арматуру желательно погрузить в раствор так, чтобы крайние прутки были покрыты бетоном не менее чем на 3 сантиметра.

Рассматриваем расчет заливки плиты на примере

Итак, предположим, что площадь загородного дома должна составить 50 м2, причем оба этажа будут одинаковы по размерам. Для нижнего изготавливается фундамент, который может быть столбчатым или ленточным (если полы будут уложены на деревянные лаги).

Стены, сложенные из строительных блоков, могут выдержать различную нагрузку в зависимости от используемого материала.

Так, возводя перегородки из газобетона, их лучше заключить в устроенную по периметру комнат систему вертикальных и горизонтальных железобетонных балок, которые должны выдержать нагрузку стен второго этажа.

Вертикальные балки заливаются поэтапно, порционно, иначе застывание бетона заняло бы слишком много времени. А вот горизонтальные опорные системы могут отливаться вместе с перекрытием, главное – грамотно собрать опалубку. Исходя из площади монолитного основания второго этажа, понадобится арматурная сетка соответствующей площади.

Для защиты торцов будущей плиты от промерзания по внешнему периметру этажа устанавливаются борта из того же материала, какой будет использован для стен. С внутренней стороны укладывается прокладка из твердого утеплителя. Только затем монтируется армирующая сетка.

Двухслойная, если толщина перекрытия больше 15 сантиметров, и однослойная, если меньше.

Теперь коснемся расхода компонентов для бетонного раствора. Объем перекрытия получаем по формуле V = S x H, где два последних параметра площадь и толщина соответственно.

Чем прочнее будет основание, тем лучше, поэтому желательно получение бетона марки 400, для чего понадобится цемент марки от 400 до 600, от значения будет зависеть коэффициент водоцементного соотношения.

Подробнее разобраться в тонкостях вам поможет калькулятор цемента.

Для нашей же плиты несложно подсчитать объем по уже имеющимся данным, с учетом пропорций цемента, песка и щебня, например, 1:4:5. Связующий компонент возьмем марки 600, толщина перекрытия пусть будет 20 сантиметров, в итоге объем раствора должен быть 500. 000 см2 х 20 см = 10.000.

000 см3 или 10 кубометров. Исходя из вышеприведенной пропорции, получим приблизительно 1 тонну цемента, 4 тонны песка и 5 тонн щебня. Воды потребуется исходя из коэффициента В/Ц = 0.60, 1000 кг х 0.60 = 600 литров, опять же примерно. Разумеется, расчеты замеса гораздо более сложны.

Источник: https://remoskop.ru/raschet-monolitnogo-perekrytija-zhelezobetonnyh-konstrukcij.html

Расчет параметров плиты перекрытия

Несмотря на изобилие готовых плит, монолитные железобетонные плиты по-прежнему пользуются спросом. Особенно, если цель постройки – частный дом, которому присуща своя планировка, с комнатами разных размеров или же в процессе строительства не используются подъемные краны.

В подобных случаях монтаж монолитных железобетонных плит перекрытия позволит существенно уменьшить затраты на материалы, их установку или доставку. Однако стоит учитывать, что при этом подготовительные работы, в том числе связанные с опалубкой, займут больше времени.

Но не это отпугивает энтузиастов, замышляющих бетонирование перекрытия, ведь изготовление опалубки, заказ арматуры и бетона в наше время не представляют трудностей, гораздо сложнее определить тип необходимого для строительства бетона и арматуры.

Со всеми вопросами, связанными с расчетом железобетонных конструкций, необходимо обратиться за помощью к этим документам. Далее будет рассмотрен расчет железобетонной конструкции – плиты, согласно этим двум приведенным выше нормам и правилам.

Самостоятельный расчет каких-либо строительных конструкций в целом и железобетонных плит в частности делится на несколько этапов, назначение которых заключается в подборе оптимальных параметров, таких как поперечное сечение, класс арматуры или класс бетона, чтобы избежать разрушения железобетонной плиты под действием максимальной нагрузки.

Вычисления будут производиться для поперечного сечения, перпендикулярного оси X.

Расчет местного сжатия, продавливания, расчет действия поперечных сил, сил кручения (которые носят название предельных состояний первой группы), расчет на деформацию и раскрытие трещин (называемые еще предельными состояниями второй группы) в данном руководстве производиться не будет, исходя из предположения, подтверждающегося практикой, что для обычной железобетонной плиты перекрытия в условиях жилого дома в таком расчете нет необходимости. Исходя из вышесказанного, стоит ограничиться лишь расчетом, где на поперечное (нормальное) сечение действует изгибающий момент.

Расчетная длина плиты

Размеры плиты –  это расстояние от стены до стены.

Действительная длина железобетонной плиты может иметь любые значения, тогда как значение расчетной длины или же, выражаясь техническим языком, пролета балки (плиты перекрытия) будет совершенно другим. Пролетом называется расстояние между двумя стенами, поддерживающими плиту. То есть пролет представляет собой длину или ширину помещения.

Определить его довольно просто: достаточно измерить рулеткой это расстояние, меряя от стены и до стены. Реальная длина монолитной железобетонной плиты, разумеется, будет больше. Опорой для плиты перекрытия могут служить стены из кирпича, камня, шлакоблока, пено-, газо- или керамзитобетона.

Учитывая характер наших расчетов, материал стен кажется не столь важным, но если прочность материалов недостаточная для плиты (в случае шлакоблока, керамзитобетона, пенобетона и газобетона), то стены должны быть рассчитаны для соответствующих нагрузок. Ниже будет рассмотрена однопролетная длина перекрытия, опорой для которой служат две стены.

Расчет плиты, опирающейся на четыре несущие стены (по контуру), в этой части рассматриваться не будет.

Чтобы лучше усвоить всю приведенную выше информацию, примем какое-то конкретное значение длины, например, 4 м.

Геометрические параметры плиты, класс бетона и арматуры

Для расчета перекрытия нужно определить ее геометрические параметры: класс бетона и арматуры

Вышеперечисленные параметры пока являются неизвестными для нас, но с целью проведения расчета можно их предварительно задать.

Пусть высота плиты будет h = 0.1 м, а условная ширина b = 1 м.

Условность в рассматриваемом случае будет означать, что плита перекрытия расценивается как балка высотой 0,1 м и шириной 1 м и получившиеся результаты расчета будут применяться для всей ширины плиты.

То есть если расчетная длина плиты будет 4 м и ширина 6 м, то для каждого ее метра будут применяться параметры, которые определялись для нашего расчетного 1 метра.

Итак, принимаемое значение высоты – 0.1 м, ширины – 1 м, класс арматуры – A400, класс бетона – В20.

Выбор опоры

Железобетонные балки служат для поддержания всей конструкции перекрытия.

В зависимости от того на какую ширину плита перекрытия опирается на стену, а кроме того, от типа материала, из которого состоит несущая стена, ее веса, существуют такие методы рассматривания железобетонной плиты перекрытия: шарнирно-опертая бесконсольная балка, шарнирно-опертая консольная балка или балка с жестким защемлением на опорах. Тип опоры играет огромную роль при расчетах.

Ниже будет рассмотрена шарнирно-опертая бесконсольная балка, так как это самый распространенный случай инсталляции.

Нагрузка на балку

Существуют самые разнообразные виды нагрузок на балку. Через призму строительной механики любой объект, который лежит, приклеен, прибит или подвешен на плите, представляет собой статическую нагрузку, и нагрузка эта чаще всего постоянная.

Все же объекты, способные ходить, ползать, бегать, ездить и даже падать на поверхность балки, представляют собой динамические нагрузки, которые, как правило, являются временными.

При произведении расчета в данном примере разницей между динамической и статической нагрузкой можно будет пренебречь.

Кроме того, нагрузки делятся на равномерно распределенные, сосредоточенные, неравномерно распределенные и т.д., но тем не менее нет нужды настолько сильно углубляться в подробное рассмотрение, как именно сочетаются всевозможные нагрузки.

В примере расчета достаточно будет ограничиться равномерным распределением нагрузки. Этот тип нагрузки железобетонных плит наиболее часто встречается в жилых домах.

Сосредоточенную нагрузку измеряют в килограммах, или в ньютонах и кг-силах (кгс).

Равномерно распределенную нагрузку измеряют в Н/м. Стоит заметить, что в жилых домах плиты перекрытия обычно рассчитаны на величину распределенной нагрузки, равную 400 Н/м2. Если высота плиты равна 0.1 м, ее собственный вес прибавит около 250 кг/м2 к приведенной выше нагрузке, керамическая плитка и стяжка способны добавить еще 100 кг/м2.

Такая величина распределенной нагрузки учитывает практически все возможные сочетания конструктивных нагрузок на бетонные перекрытия в жилых помещениях, но, конечно, никто не запретит рассчитывать перекрытия на большие нагрузки, тем не менее пока что ограничимся таким значением. Можно на всякий случай умножить его на так называемый коэффициент надежности ?, равный 1.

2, если все-таки, выполняя расчет, что-то упустим:

q = (400 Н/м + 250 Н/м +100 Н/м)1.2 = 900 Н/м

так как рассчитываются параметры для плиты шириной 0.1 м, то эту распределенную нагрузку можно рассматривать как плоскую нагрузку, действующую на плиту вдоль оси у и измеряемую в Н/м.

Максимальный изгибающий момент на поперечное сечение

Нагрузка на балки достаточно большая, около 2000 кг.

Для нашей бесконсольной балки с действующей на нее равномерно распределенной нагрузкой и, как уже было обусловлено, находящейся на опорах шарнирного типа, в данном случае плиты перекрытия, положенной на стены, значение максимального изгибающего момента:

Мmax = (q * l2) / 8

и прикладываться он будет посередине балки. Для пролета длиной 4 м он равен:

Мmax = (900 * 42)/ 8 = 1800 кг.м

Основы расчета

Схема сборно-монолитного перекрытия СМП-200

Основой для расчета железобетонных плит перекрытия в согласованности с СП 52-101-2003 и СНиП 52-01-2003 служат такие расчетные предпосылки:

Сопротивление бетона силам растяжения считается равным нулю.

Подобное допущение сделано на том основании, что, по сравнению с сопротивлением к растяжению арматуры, сопротивлением бетона к растяжению можно пренебречь (разница между сопротивлениями этих двух элементов порядка 100).

По этой причине в зоне, на которую действуют растягивающие силы, из-за разрыва бетона появляются трещины, поэтому в поперечном сечении балки на растяжение может работать только арматура (схема 1).

Сопротивление, которое бетон оказывает сжатию, принимаем распределяющимся равномерно вдоль зоны сжатия. В итоге для сопротивления бетона к сжатию принимаем значение не больше Rb – расчетного сопротивления.

Для максимального, растягивающего в арматуре напряжения также принимается значение, не превышающее расчетное сопротивление Rs;

В качестве основания для подобных предпосылок используется такая расчетная схема:

Схема 1. Распределение усилий, действующих на прямоугольное поперечное сечение железобетонной плиты

Для избегания возможного обрушения конструкции в результате эффекта образования пластического шарнира, существующее соотношение между ?, высотой зоны сжатия бетона y и расстоянием между центром тяжести арматуры и верхом балки h0, ? = у/ho (6. 1) не должно превышать определенное предельное значение ?R, которое можно определить по такой формуле:

Приведенная формула является эмпирической, основанной на опыте, полученном при проектировании конструкций из железобетона, где Rs — сопротивление арматуры, полученное расчетным путем, измеряемое в мПа, хотя на данном этапе можно ограничиться табличными значениями параметров:

Важно: Если расчет выполняют проектировщики, не обладающие достаточным опытом, рекомендуется использовать заниженное в 1.5 раза значение ?R.

Где аR – расстояние между центром окружности, образованной плоскостью поперечного сечения арматуры и нижней частью балки. Необходимость в этом расстоянии продиктована обеспечением надежного сцепления арматуры с материалом бетона. Чем больше значение а, тем лучший обхват у прутьев арматуры, но стоит заметить, что при этом полезное значение параметра h0 уменьшается.

Принимаемые значения а обычно тесно связаны с диаметром арматуры, причем расстояние между низом балки (в нашем случае представленной в качестве плиты перекрытия) и нижней частью арматуры не должно быть меньше диаметра арматуры и не менее 0. 01 м, в случае если диаметр арматуры меньше этой величины. Для дальнейших расчетов примем значение а, равное 0.02 м.

При условии ? ? ?R и если арматура отсутствует в зоне действия сил сжимания, то прочность бетона следует проверять по этой формуле:

M < Rbbу (h0 – 0.5у)

Полагаем, что физический смысл вышеприведенной формулы ясен. Любой момент можно представить как силу, действующую с определенным плечом, поэтому необходимо, чтобы для бетона соблюдалось условие, описанное в приведенной выше формуле.

— Прочность прямоугольных сечений при ? ? ?R и наличии одиночной арматуры проверяется по формуле:

M ?RsAs (h0 – 0.5у)

Перекрытие армируют для большей несущей способности.

Пояснение формулы: опираясь на расчет, арматура должна выдержать нагрузку, идентичную той, что выдерживает бетон, так как к арматуре приложена та же сила с тем же плечом, что и к бетону.

Примечание: приведенная выше расчетная схема предполагает, что сила действует вдоль плеча, равного (h0 — 0. 5у), дает возможность сравнительно легко и просто определить основные параметры, характерные для поперечного сечения, как будет показано в последующих формулах, логичным путем выведенных из M < Rbbу (h0 — 0.

5у) и M ?RsAs (h0 — 0,5у).

Однако это не единственная расчетная схема, ниже будет рассмотрен также альтернативный расчет по отношению к центру тяжести приведенного сечения, но, в отличие от балок из дерева и металла, расчет железобетона по предельным растягивающим или сжимающим напряжениям, локализованным в нормальном (поперечном) сечении балки, довольно сложен. Сам по себе железобетон как материал сложный, обладающий неоднородной структурой, и даже это еще не все сложности. Данные, полученные в результате многочисленных экспериментов, показали, что такие параметры, как предел текучести, модуль упругости, предел прочности и другие, обладают весьма значительным разбросом.

К примеру, в ходе определения такого параметра бетона, как предел прочности на сжатие, оказалось, что результаты различались между собой, даже когда бетон был представлен образцами одного замеса.

Единственное объяснение этому факту заключается в том, что прочность бетона зависит от большого количества факторов: активности цемента, качества (учитывая и степень загрязнения), крупности, способа уплотнения и других технологических факторов.

Принимая все вышесказанное во внимание, необходимо понимать, что предел прочности железобетона, будучи результатом случайных факторов, тоже по своей природе будет обладать определенной случайностью.

Ситуация с другими стройматериалами: древесиной, кирпичной кладкой или полимерными композитными материалами – будет аналогичной. Даже в случае таких, казалось бы, классических материалов, как алюминиевые сплавы или сталь, есть хорошо заметный разброс для различных прочностных параметров.

Для того чтобы описать такие случайные величины, используют разнообразные вероятностные характеристики, определяемые в результате проведения статистического анализа данных многочисленных опытов. Самые простые из них – это коэффициент вариации, который еще называют коэффициентом изменчивости и математическое ожидание.

Коэффициент вариации – это результат от деления среднеквадратического разброса на математическое ожидание случайной величины. Согласно нормам проектирования конструкций из железобетона, коэффициент вариации учитывается при расчете коэффициента надежности для бетона.

В связи с этим сложно найти идеальную схему расчета для железобетона, но тем не менее вернемся к дальнейшим расчетам.

Высота сжатой зоны для бетона при условии отсутствия в ней арматуры определяется согласно следующей формуле:

Чтобы определить сечение арматуры, предварительно определяем коэффициент am:

Если выполняется условие аm < aR , то в сжатой зоне нет необходимости использовать арматуру, значение аR можно определить, используя значения из приведенной выше таблицы.

При условии, что в сжатой зоне нет арматуры, ее сечение определяется исходя из следующей формулы:

Альтернативный пример расчета железобетонной конструкции

Выполняя расчет железобетонных плит и других конструкций, могут оказаться полезными такие предпосылки:

Для упрощения расчетов момент сопротивления арматуры по отношению к своему же центру тяжести, ввиду своей незначительности по сравнению с таким же моментом сопротивления, но взятым относительно общего центра масс. Тем не менее, попробуем учесть его в наших расчетах. Итого, формула для расчетов будет выглядеть следующим образом:

Wp = Wa + Fa. (h0-y) = MRa

Когда производился расчет по предельным напряжениям для прямоугольного сечения, расчетное сопротивление делилось на 2, однако, если учесть максимально близкое расположение арматуры к нижней части сечения, в делении на 2 нет необходимости, так как только одна единица арматуры работает на растяжение и, учитывая относительно большое расстояние между центром сечения арматуры и центром тяжести самого сечения, все возникающие в арматуре нормальные напряжения, растягивающие арматуру, можно рассмотреть как равномерно распределяющиеся.

К примеру, используемый класс арматуры – А400 и ее расчетное сопротивление напряжению – Rр , все чаще обозначаемое как Rs= 0. 36 кг/ м2. Тем не менее будем придерживаться обозначения Ra – для ясности, что относится оно к арматуре.

WрRа = М / 2

Исходя из этого:

Wa + Fa. (h0-y) = М /2Rа

Fa = М /(2Rа(h0 -y)) – Wa /(h0 – y)

Если при необходимости изменить значения исходных параметров для арматуры, сохраняя при этом основные параметры, изменится размещение центра тяжести данного сечения.

По мере увеличения диаметра арматуры соответственно изменится площадь ее поперечного сечения, а центр тяжести будет смещаться ниже, в результате чего высота сжатой зоны бетона уменьшится. Увеличивая класс арматуры и тем самым смещая центр тяжести ее сечения ниже, мы увеличиваем высоту сжатой зоны бетона.

И напротив, уменьшая класс арматуры, мы сместим центр тяжести сечения выше, и, соответственно, уменьшится высота сжатой зоны бетона. В случае если по каким-то конструктивным соображениям поперечное сечение арматуры гораздо больше требуемого (на 1/3 и больше), то необходимо повторно выполнить расчет для сечения.

Возможно, нужно будет уменьшить класс бетона. Наоборот, уменьшая необходимую площадь сечения для арматуры, необходимым средством будет увеличение класса бетона, притом что остальные параметры останутся без изменений.

Источник: http://o-cemente.info/raschet-rashoda-betona/raschet-parametrov-plity-perekrytiya.html

Допустимая нагрузка на плиту перекрытия

При возведении любых строительных конструкций, многоэтажных жилых домов, частных строений, спортивных комплексов или стадионов, наиболее практичным, надежным и востребованным материалом для сооружения межэтажных (несущих конструкций) перекрытий являются плиты перекрытия.

Существует множество разновидностей плит перекрытия, которые отличаются между собой по качественным, эксплуатационным параметрам, размеру, уровню максимальной нагрузки и многим другим аспектам. От их веса зависит устойчивость и жесткость любого строения.

Все технические характеристики и параметры материала, в том числе и допустимая нагрузка на плиту перекрытия, должны быть указаны на маркировке изделий.

Чтобы избежать ошибок при выборе, перед приобретением строительного материала очень важно внимательно ознакомится с маркировкой, при этом наиболее важным критерием является индекс допустимой статической и динамической нагрузки.

Маркировка плит перекрытия

Как уже было отмечено, плиты, которые изготовлены в заводских условиях с соблюдением технологического процесса, должны в обязательном порядке иметь маркировку (закодированную информацию).

Стандартная маркировка имеет следующий вид – ПК60-12-9, где:

  • ПК обозначает тип плиты.
  • 60 – параметр длины в дециметрах.
  • 12 – значение ширины.
  • 8 – индекс допустимой нагрузки, а именно, сколько килограммов способен выдержать 1м2 плиты перекрытия, включая ее собственную массу.

Стоит отметить, что практически для всех плит перекрытия стандартный индекс нагрузки равен 800 кг на метр квадратный. Также в продаже можно найти изделия, которые способны выдерживать нагрузку в 1000 и более кг. Их индекс равен 10.2 и 12.5. Значение высоты у всех плит всегда одинаково и равно 22 см. Длина плит может быть от 1.18 до 9.7 метров, ширина – от 0.98 до 3.5 м.

Классификация и разновидности плит перекрытия

Плиты перекрытия имеют высокие качественные и эксплуатационные параметры, изготавливаются только в заводских условиях с соблюдением температурного режима и времени, которое необходимо для полного их затвердения. Плиты перекрытия классифицируют на:

  1. 1. Пустотные.
  2. 2. Многопустотные (облегченные).
  3. 3. Полнотелые.
  4. 4. Монолитные – самые прочные из всех существующих вариантов.
  5. 5. Ребристые, которые могут быть с проемами или сплошными, отличаются своеобразным рельефным профилем, что позволяет выдерживать большие нагрузки на изгиб.

Как правило, при возведении большинства строительных конструкций применяют пустотные плиты перекрытия, так как полнотелые имеют больший вес, соответственно увеличивая нагрузку на фундамент и в отличие от первого варианта, более высокую стоимость.

Именно поэтому их применяют только при строительстве особо важных промышленных строительных объектов.

Плиты монолитные и пустотного типа применяют при строительстве многоэтажных строений, хозяйственных построек, частных и монолитных объектов, а также при создании конструкционных элементов – чердачных перекрытий или перегородок.

Помимо этого плиты данного типа подходят для обустройства несущего каркаса зданий. Из них также довольно часто возводят гаражи, так как плиты для конструкции такого типа могут выполнять роль стен. Учитывая большую массу изделий, монтаж плит проводят строительными кранами.

Изготавливают плиты из высококачественного тяжелого силикатного и легкого конструкционного бетона плотной структуры марки М 300 или М 400. Маркировка цемента обозначает, какую нагрузку выдерживает бетон. К примеру, бетон М 400 может выдерживать 400 кг на 1см3 в секунду.

Плиты, изготовленные из бетона с маркировкой М 300, имеют более легкую массу по сравнению с изделиями, для изготовления которых применяли бетон М 400, к тому же отличаются большей гибкостью, не проламываются, не деформируются и способны выдерживать достаточный уровень нагрузки.

Больший уровень прочности, более высокую несущую способность изделиям придает армирование бетона с применением нержавеющей стали, которая обладает устойчивостью к воздействию коррозии и не подвержена температурным перепадам.

Так как плиты перекрытия в процессе эксплуатации постоянно будут подвергаться различному уровню нагрузок, они должны отвечать установленным требованиям. К основным параметрам качественных изделий можно отнести:

  1. Предельный уровень жесткости и прочности.
  2. Способность выдерживать не только нагрузки от предметов, установленных на них, но и нагрузки от самого здания.
  3. Плиты не должны прогибаться, так как это приведет к их растрескиванию и деформации всей конструкции строения.
  4. Обладать высокими звуко- газо- водо- и теплоизоляционными параметрами.

Виды нагрузок

Независимо от типа, любое перекрытие состоит из:

  1. Верхней части – напольное покрытие, утепление полов, бетонные стяжки, если сверху расположен жилой этаж.
  2. Нижней части, которая создается из обшивочных материалов, штукатурки, плиточных покрытий, к примеру, отделка потолка и подвесные конструкции, если снизу находится жилой этаж.
  3. Конструкционной части, состоящей из монолитных или сборных плит.

Конструкционной частью является любой тип плит перекрытия, при этом верхняя и нижняя часть создают определенную статическую (перегородки, подвесные потолки, мебель) и динамическую нагрузку (нагрузка от перемещающихся по полу людей, домашних питомцев). Помимо этого также существуют точечные нагрузки и распределенные. Для жилых строений, помимо статических и динамических рассчитывают распределенные нагрузки, которые измеряются в килограмм-силах или Ньютонах на метр (кгс/м).

Как провести расчет предельно допустимых нагрузок на плиту перекрытия

Чтобы избежать разрушения строительных конструкций очень важно правильно рассчитать и знать, какая должна быть допустимая нагрузка на плиту перекрытия. Как уже было отмечено, нагрузки на плиты перекрытия рассчитываются исходя из динамических и статических нагрузок.

Чтобы произвести необходимые расчеты потребуется: строительный уровень, рулетка, калькулятор и длинная линейка. Перед тем как производить расчеты, нужно составить план-схему, проект будущего строения или подробный чертеж.

Также необходимо рассчитать приблизительный вес, который будет нести само строение, а именно: гипсобетонные перегородки, плиточное или любой другой вид напольных и настенных покрытий, цементные стяжки, утепления полов.

После этого общий вес допустимых нагрузок делят на количество плит, которые должны понести этот вес.

Чтобы максимально точно произвести все расчеты и узнать, какую максимальную нагрузку способна выдержать плита перекрытия, важно знать ее вес. Рассмотрим на наглядном примере пустотную плиту ПК-60-15-8, масса которой составляет 2850 кг.

Первым делом нужно рассчитать площадь несущей поверхности, которая в нашем случае будет составлять 9 м2 (6 м × 1,5 м = 9 кв.м). На следующем этапе необходимо рассчитать какую предельную нагрузку в килограммах может вынести одна плита.

Умножаем полученное значение площади на индекс допустимой нагрузки на 1 м2. Теперь нужно узнать, сколько килограммов нагрузки эта поверхность может вынести: 9 м2 × 800 кг/кв.м = 7200 кг, после чего отнимаем массу плиты.

Таким образом, получаем значение 4350 кг, которое и указывает на то, сколько кг выдерживает плита перекрытия.

Теперь необходимо произвести расчет, сколько кг заберет утепление полов, бетонная стяжка и напольное покрытие. Как правило, мастера стараются уложить напольный «пирог» чесом не более 150 кг/м2. Умножаем площадь плиты на это значение (9 кв.м × 150 кг/кв.

м = 1350 кг) и вычитаем полученное число из значения, которое мы получили ранее, при расчете нагрузки (4350 кг – 1350 кг = 3000 кг). Таким образом на 1 кв.м получается 333 кг/кв.м, что обозначает полезную нагрузку, которую можно разместить на плите перекрытия.

Это значение должно включать как статические, так и динамические нагрузки. Оставшееся значение – 183 м2 можно будет использовать для монтажа перегородок или установки декоративных элементов (333 кг/м2 -150 кг/м2 = 183 кг/м2).

Если предельный вес устанавливаемых перегородок будет превышать полученное значение, в этом случае нужно выбрать более легкий тип напольного покрытия.

При проведении ремонтных работ в домах старых конструкций, в обязательном порядке демонтировать старый слой утепления полов. стяжку, напольное покрытие и примерно оценить их массу в кг. Подбирая новые облицовочные материалы и перегородки нужно учитывать, чтобы их вес и допустимая нагрузка на пол не превышала массы старого, демонтированного покрытия.

Не стоит устанавливать в старых домах слишком массивную сантехнику или другие предметы, которые приведут к утяжелению конструкции. Помимо этого статические нагрузки со временем могут накапливаться, что в свою очередь может привести к прогибам и провисанию плит перекрытия. Чтобы не ошибиться в измерениях, рекомендуется пригласить специалиста для проведения детальных расчетов.

Расчеты должны соответствовать установленным нормам (СНиПу).

Источник: http://legkoe-delo.ru/remont-doma/kvartira/44844-dopustimaya-nagruzka-na-plitu-perekrytiya

Какую нагрузку обычно выдерживает плита перекрытия

Отделочный материал выбирается по принципу, какую нагрузку выдерживает плита перекрытия. Этот показатель будет влиять на обустройство крыши здания. В основном, когда строится любое здание или объект, в первую очередь соблюдается жесткость каркаса, его устойчивость. Все эти характеристики напрямую зависят от прочности создаваемого перекрытия.

Основные характеризующие моменты

Установка плиты перекрытия на несущую конструкцию кровли позволяет заниматься возведением многоэтажных домов. Чтобы правильно выполнить проект здания, необходимо точно знать, какое давление выдержит выбранная плита перекрытия. Необходимо хорошо разбираться в разнообразии плит.

Прежде чем приступать к возведению многоэтажного здания, необходимо провести расчет нагрузки. От будущего веса будет зависеть подбор конструкции здания, от нагрузки зависит, какую нужно устанавливать плиту.

Полнотелые системы отличаются большой массой, они стоят очень дорого. Такая конструкция применяется в строительстве серьезных объектов, которые относятся к социально значимым.

При строительстве жилых домов в основном используется пустотная плита. Надо сказать, что основные технические параметры такой плиты соответствуют всем стандартам строительства жилого помещения:

Плиту отличает:

  • высокая надежность;
  • малый вес.

Важнейшим преимуществом этих изделий можно назвать низкую стоимость. Это дало возможность применять такую систему намного чаще, если сравнивать ее с другими.

Для расчета перекрытия учитывается местонахождение пустот. Они располагаются таким образом, чтобы несущие характеристики изделия не были нарушены. Пустоты влияют также на звукоизоляцию помещения, его теплоизоляционные свойства.

Плита изготавливается самых разных размеров. Ее длина может достигать максимально 9,7 м при максимальной ширине — 3,5 м.

Расчет на продавливание плиты межэтажного перекрытия.

При строительстве зданий чаще всего применяются конструкции с габаритами 6 х1,5 м. Этот размер считается стандартным и наиболее востребованным. Данную систему применяют для возведения:

  • высотных зданий;
  • многоэтажек;
  • коттеджей.

Так как вес данных плит не очень высок, их легко монтировать, для чего применяется пятитонный кран.

Источник: https://tolkobeton.ru/perekryitiya/kakuyu-nagruzku-vyderzhivaet-plita-perekrytiya.html

Расчет монолитной плиты перекрытия пример

Частные строители в процессе возведения своего дома часто сталкиваются с вопросом: когда необходимо произвести расчет монолитной железобетонной плиты перекрытия, лежащей на 4 несущих стенах, а значит, опертой по контуру? Так, при расчете монолитной плиты, имеющей квадратную форму, можно взять в расчет следующие данные.

Кирпичные стены, возведенные из полнотелого кирпича, будут иметь толщину 510 мм. Такие стены образуют замкнутое пространство, размеры которого равны 5х5 м, на основания стен будет опираться железобетонное изделие, а вот опорные площадки по ширине будут равны 250 мм. Так, размер монолитного перекрытия будет равен 5.5х5.5 м.

Расчетные пролеты l1 = l2 = 5 м.

Например, по плите, высота которой равна 15 сантиметрам, будет производиться выравнивающая стяжка на основе цемента, толщина стяжки при этом равна 5 сантиметрам, на поверхность стяжки будет укладываться ламинат, его толщина равна 8 миллиметрам, а финишное напольное покрытие будет удерживать мебель, расставленную вдоль стен.

Общий вес мебели при этом равен 2000 килограммов вместе со всем содержимым. Предполагается также, что помещение иногда будет умещать стол, вес которого равен 200 кг (вместе с закуской и выпивкой). Стол будет умещать 10 человек, общий вес которых равен 1200 кг, включая стулья.

Но такое предусмотреть чрезвычайно сложно, поэтому в процессе расчетов используют статистические данные и теорию вероятности. Как правило, расчет плиты монолитного типа жилого дома производят на распределенную нагрузку по формуле qв = 400 кг/кв.м. Данная нагрузка предполагает стяжку, мебель, напольное покрытие, людей и прочее.

Эта нагрузка условно может считаться временной, т. к. после строительства могут осуществляться перепланировки, ремонты и прочее, при этом одна из частей нагрузки считается длительной, другая — кратковременной. По той причине, что соотношения кратковременной и длительной нагрузок неизвестны, для упрощения процесса расчетов можно считать всю нагрузку временной.

Определение параметров плиты

По причине, что высота монолитной плиты остается неизвестной, ее можно принять за h, этот показатель будет равен 15 см, в этом случае нагрузка от своего веса плиты перекрытия будет приблизительно равна 375 кг/кв.м = qп = 0.15х2500.

Приблизителен этот показатель по той причине, что точный вес 1 квадратного метра плиты будет зависеть не только от диаметра и количества примененной арматуры, но и от породы и размеров мелкого и крупного наполнителей, которые входят в состав бетона.

Будут иметь значение и качество уплотнения, а также другие факторы. Уровень данной нагрузки будет постоянным, изменить его смогут лишь антигравитационные технологии, но таковых на сегодняшний день нет.

Таким образом можно определить суммарную распределенную нагрузку, оказываемую на плиту. Расчет: q = qп + qв = 375 +400 = 775 кг/м2.

В процессе расчета следует взять во внимание, что для плиты перекрытия будет использован бетон, который относится к классу В20. Этот материал обладает расчетным сопротивлением сжатию Rb = 11.5 МПа или 117 кгс/см2. Будет применена и арматура, относящаяся к классу AIII. Ее расчетное сопротивление растяжению равно Rs = 355 МПа или 3600 кгс/см2.

При определении максимального уровня изгибающего момента следует учесть, что в том случае, если бы изделие в данном примере опиралось лишь на пару стен, то его можно было бы рассмотреть в качестве балки на 2-х шарнирных опорах (ширина опорных площадок на данный момент не учитывается), при всем при этом ширина балки принимается как b = 1 м, что необходимо для удобства производимых расчетов.

Расчет максимального изгибающего момента

В вышеописанном случае изделие опирается на все стены, а это означает, что рассматривать лишь поперечное сечение балки по отношению к оси х будет недостаточно, так как можно рассматривать плиту, которую отражает пример, так же как балку по отношению к оси z.

Таким образом, растягивающие и сжимающие напряжения окажутся не в единой плоскости, нормальной к х, а сразу в 2-х плоскостях. Если производить расчет балки с шарнирными опорами с пролетом l1 по отношению к оси х, тогда получится, что на балку будет действовать изгибающий момент m1 = q1l12/8. При всем при этом на балку с пролетом l2 будет действовать такой же момент m2, т.

к. пролеты, которые отображает пример, равны. Однако расчетная нагрузка одна: q = q1 + q2, а если плита перекрытия имеет квадратную форму, то можно допустить, что: q1 = q2 = 0. 5q, тогда m1 = m2 = q1l12/8 = ql12/16 = ql22/16.

Это значит, что арматура, которая укладывается параллельно оси х, и арматура, укладываемая параллельно z, может быть рассчитана на идентичный изгибающий момент, при этом момент окажется в 2 раза меньше, чем для той плиты, которая опирается только на 2 стены.

Так, уровень максимального расчета изгибающего момента окажется равен: Ма = 775 х 52/16 = 1219.94 кгс.м. Но такое значение может быть использовано лишь при расчете арматуры.

По той причине что на поверхность бетона станет действовать сжимающие напряжения в двух взаимно перпендикулярных плоскостях, то значение изгибающего момента, применимое для бетона, следующее: Мб = (m12 + m22)0.5 = Mа√2 = 1219.94.1.4142 = 1725.25 кгс.м.

Так как в процессе расчета, который предполагает данный пример, необходимо какое-то одно значение момента, можно взять во внимание среднее расчетное значение между моментом для бетона и арматуры: М = (Ма + Мб)/2 = 1. 207Ма = 1472.6 кгс.м.

Следует брать во внимание, что при отрицании такого предположения можно рассчитать арматуру по моменту, который действует на бетон.

Источник: https://1pobetonu.ru/raschet/primer-monolitnoj-plity-perekrytiya.html

Онлайн калькулятор для расчета монолитной плиты перекрытия

Доступ к самому калькулятору и всем расчетам в личном кабинете системы только после регистрации

Перекрытие фундамента

Выбор нужно шаблона

Набор основных списков в перекрытии ограничен всего двумя – тип перекрытия и тип блока из которого будет сделана кладка по периметру. При этом не обязательно выбирать тот материал из которого будет возведены стены дома. Например, если стены дома из арболита, керамики или газобетон, то пояс перекрытия может быть выполнен как из материала, из которого стены, так и из кирпича. Если блок для кладки по периметру не будет применяться, то выберите любой вариант, а далее вы можете отказаться от применения данного блока (см. ниже).

Параметры плиты

Основные

Данные параметры аналогичны параметрам фундаментной монолитной ж/б плите, но с небольшими дополнениями:

  • Лаз – это квадратура, которая будет вычитаться из общей квадратуры плиты. Лаз подразумевает то, что монолитная плита перекрытия применяется либо к цокольному этажу, либо к ленточному с подвалом или погребом.
  • Глубина выкопки – толщина слоя, который будет сниматься внутри фундамента. Если вы это сделали на этапе выкопки котлована, то введите в данное поле значение «0».
  • Толщина подбетонки – слой тощего бетона для гидроизоляции, которая включена в данный расчет по умолчанию. Если вы хотите отказаться от гидроизоляции, то введите в данное поле значение «0» и в принудительном порядке скройте всё что связано с гидроизоляцией в стоке услуг и материалов (внизу расчета).

Узел сопряжения перекрытия с несущей стеной

Здесь вы можете выбрать применять вам доборный блок и утеплитель для периметра монолитной плиты перекрытия ил нет.

На изображении ниже показаны основные комбинации того, что предлагает наш калькулятор. В качестве доборного блока мы выбрали газобетон. При выборе любого другого материала решения по данному узлу сопряжения со стеной будут аналогичны.

На изображение показан лишь один вариант монолитного связывающего пояса дома, который просчитывается в шаблонах коробки дома. Пояс имеет аналогичные решения как и у перекрытия, а также его ещё можно выполнить из кирпича.

Периметр утепления и/или кладки доборных блоков

Если периметр плиты, который требует облицовки блоком и/или утепления, равен общему периметру плиты и при условии, что применяется доборный блок, то опалубки по периметру плиты не будет. Если же периметр плиты, требующий облицовки блоком и/или утепления, меньше общего периметра плиты, как это показано на примере ниже, то опалубка будет просчитана только для того участка, где заливка идет по внешнему периметру наружных стен.

Параметры ленты

Введите параметры стен дома. Если у вас только один тип внутренних несущих стен, то дополнительно к наружным стенам заполните «Внутренние стены (1 тип)». Перегородки не нужно вводить во «Внутренние стены (2 тип)», т.к. этот набор данных предназначен для внутренних несущих стен второго типа , что встречается достаточно редко, но встречается.

Межэтажное перекрытие

Параметры плиты

Основные

В отличии от перекрытия фундамента, набор пунктов для межэтажного немного скромнее. Тут уже нет лаза, т.к. площадь плиты необходимо вводить с учетом проёмов, вентканалов и дымоходов, а также второго света. Площадь необходимо считать по внешнему периметру дома, это позволит более точно просчитать объём работ и материалов.

Узел сопряжения и параметры ленты стен аналогичны перекрытию фундамента.

Программы для расчета плит перекрытия

Для частных застройщиков создано большое количество полезных инструментов, один из них — программа для расчета перекрытия. Простые калькуляторы и сложные технические инструменты архитекторов помогут правильно рассчитать нагрузки и не ошибиться при постройке дома.

Интерфейс программы для расчета плит перекрытия

Вернуться к оглавлению

Содержание материала

Перекрытия: принцип и важность расчетов

Перед тем как использовать программу для расчета перекрытия, надо определиться с материалом конструкции.
При частном строительстве используют три основных типа перекрытия:

Деревянное

Несущими балками при устройстве деревянного перекрытия выступают: брус (бревно), металлический профиль (швеллер, двутавр, уголок) или железобетонные элементы. Балки застилаются досками, образуя плиты перекрытия. Основываясь при вычислениях на строительных нормах, сечение несущей балки определяется путем суммирования её веса и нагрузки эксплуатационной. Примерная нагрузка межэтажного деревянного перекрытия 400кг/ м². Если не предполагается активная эксплуатация данной зоны, например, в случае создания и обустройства чердака или пространства под крышей, принимаемая во внимание нагрузка может быть уменьшена.

Схема устройства плит перекрытия из дерева

В длину каждой балки из дерева закладывается минимум 24 см, необходимых для её крепления. Важный элемент расчета деревянных конструкций – прогиб балки. Правильные вычисления помогут выбрать оптимальное сечение элемента при заданной длине. Это предотвратит изменение геометрии помещения, и повысит безопасность перекрытия.

Количество необходимых балок рассчитывается, исходя из монтажного шага. Укладку производят, перекрывая узкий пролет, с интервалом от двух с половиной до четырех метров. В свою очередь, шаг зависит от ширины расположения каркасных стоек.

Железобетонные монолитные

В качестве несущих при устройстве монолитных ж/б конструкций перекрытий в доме используются металлические профили или ж/б балки. Плиты перекрытия формируются из монолитных железобетонных деталей. Это позволяет выдерживать большие нагрузки, перевязывать широкие прогоны.

Расчет монолитного перекрытия в специальной программе

При вычислении нагрузки на двутавровую балку её вес без учета стяжки рассчитывается исходя из значения 350 кг/ м², а учитывая стяжку – 500 кг/ м². Монтажный шаг при укладке принято делать равным 1 метру.

При создании ж/б перекрытия работает правило: длина проема должна быть в 20 раз больше высоты балки. Это допустимый минимум. Высота и ширина ж/б элемента так относится друг к другу, как 7 к 5. При расчете перекрытия также необходимо учитывать вероятный изгиб, геометрию плит, выбор армирования и характеристики бетона. В видео показан процесс расчета монолитного перекрытия.

Железобетонные сборные

Элементы для изготовления подобных перекрытий имеют стандартные размеры и специальных расчетов не требуют. Необходимо определиться с их количеством и нагрузкой на общее основание строения.

Предварительный подсчет поможет значительно сэкономить при закупке строительных материалов. Кроме финансовых выгод вычисления нагрузок дадут гарантию безопасности строения.

Если прочность перекрытия не учитывать, постройка может обвалиться и привести не только к дополнительным затратам, но и к ещё более плачевным последствиям. Правильный предварительный расчет – основа безопасности строения.

Вернуться к оглавлению

Программы для архитекторов

Профессиональная работа по проектированию зданий и сооружений невозможна без использования технических программ для расчета перекрытия. Если строительство домов является основным занятием, стоит приложить усилия и изучить инструменты по проектированию.

Интерфейс программы ArchiCad для расчета перекрытия

Самыми распространенными техническими инженерными программами в проектных организациях являются ArchiCad, AutoCad, Лира, NormCAD и SCAD.

Плюсы инженерных программ по проектированию:

  1. Универсальность. Любая из программ может быть использована для построения и расчета всех видов перекрытий.
  2. Точность. При подсчете учитывается большое количество факторов, способных повлиять на нагрузку и прочность конструкции. Такая детальность в подсчетах позволяет получить максимально точные данные.
  3. Визуализация. Получив результат, строитель наглядно видит, что и как он должен смонтировать, чтобы получить гарантированный результат.
  4. Подготовка проектной документации. Для профессиональных застройщиков с помощью инженерных программ можно подготовить документацию, которая принимается всеми проверяющими органами.

Недостатки инженерных программ по проектированию:

  1. Утверждение, что подобные инструменты легко освоить — неверно. Зачастую для их использования необходимо специальное техническое образование, знание сопромата и унифицированных строительных норм.
  2. Объем информации: для работы с инженерными программами требуется обладать большим количеством данных, в противном случае можно получить неожиданный результат вычислений.
  3. Ограничение доступа: программы лицензированные, для использования необходима покупка прав на использование.

Вернуться к оглавлению

Калькуляторы и бесплатные программы для проектирования

Для постройки собственного дома тратить время на изучение сложных программ для расчета перекрытия излишне. Специально для тех, кто строит дом своими руками, разработаны несложные инструменты.

Чертеж плиты перекрытия созданный в специальной программе

Среди подобного софта есть платный и бесплатный, предназначенный для скачивания, и работающий on-line. Программы для расчета деревянных перекрытий. Если дом, который предстоит построить, деревянный, то для расчета перекрытия удобнее воспользоваться простым софтом.

Ultralam

Инструмент для подсчета нагрузки балок из клееного и профилированного бруса. Основное направление – многопролетные элементы.

Расчет деревянных балок Владимира Романова

Простая программа, считающая нагрузки на деревянные балки. При частном строительстве домов, инструмент помогает подобрать элемент правильно.

Программы для расчета металлических и железобетонных перекрытий

Среди инструментов для вычисления ж/б перекрытий много предложений программного обеспечения.

Интерфейс программы Ultralam для расчета перекрытия

Часть софта необходимо купить для персонального использования. Но также в сети есть возможность скачать бесплатно программы для расчета плит перекрытия.

СИТИС: Форт

Форт — российская разработка ООО «Ситис», предназначенная для подсчета ж/б перекрытия плитами свободной геометрии.
Особенности программы:

  • удобный интерфейс, простой в освоении;
  • конструкция, не требуется самостоятельного построения схемы — вычисление производится автоматически, на основании запрошенных у пользователя данных;
  • удобная цветовая визуализация результата;
  • возможность выбирать уровень точности расчетов;
  • учет характеристик бетона и возможность пополнения библиотеки материалов.

Способ основан на требованиях актуальных СНиП, сертифицирован ГОССТРОЕМ РОССИИ. Предоставляется этот софт на платной основе.

Перекрытия

Инструмент предназначен для исчисления замены нагрузок на плиты перекрытия.

С её помощью возможно вычисление общей нагрузки как на одну плиту, так и на конструкцию в целом. Для расчета монолитного перекрытия программа не рассчитана.
Позволяет:

  • задавать точечные нагрузки;
  • редактировать предыдущие проекты и их детали;
  • работать с большими площадями перекрытий.

Версии программы периодически обновляются, добавляя ей дополнительный функционал. Скачанный софт необходимо оплатить.

Beam

Инструмент для расчета нагрузки на металлические многопролетные балки:

  • определяет прочность несущей конструкции;
  • позволяет подобрать верное сечение элемента;
  • задает параметры максимальных и минимальных напряжений, углов поворота и прогибов.

Программа является частной разработкой, не сертифицирована. Человек, скачавший её, имеет право бесплатного ознакомления в течение 5 дней.

Интерфейс программы Beam для расчета балок перекрытия

В дальнейшем пользование полным функционалом платное.

Balka

Инструмент для вычисления нагрузки на однопролетные балки:

  • определяет жесткость и прочность элементов конструкции;
  • помогает с выбором сечения балок.

Является бесплатной версией Beam, поэтому имеет ряд ограничений.

Строитель + расчет железных балок

Программа от частного разработчика, позволяющая рассчитать нагрузку на ж/б ригели.

EURYDICE

Инструмент для расчета и проектирования ж/б перекрытий, предназначенный для сборно-монолитных конструкций.

Балка v2-0-2

Белорусская программа для проектирования любых видов балок перекрытия. Для использования в России подойдут расчеты по металлическим балкам. Белорусские СНиП идентичны российским. Программа лицензированная, платная.

Для домов из дерева большинство программ представляют собой on-line калькуляторы, которые можно найти в открытом доступе Интернета.

Также в сети существуют программы для перекрытий из металла и железобетона. Чтобы воспользоваться этими инструментами, следует ввести в поисковую строку фразу «программа для расчета перекрытия» или «программа для перекрытий». Останется только подобрать подходящий инструмент и воспользоваться им.

Расчет монолитной железобетонной плиты перекрытия

Железобетонное монолитное перекрытие по-прежнему пользуется широкой популярностью, несмотря на то что на данный момент на строительном рынке представлено огромное множество готовых плит. Особенно, если ваш дом имеет неповторимую планировку (комнаты имеют различные размеры) или строительство не подразумевает наличие подъемных кранов. В данном случае устройство железобетонной плиты перекрытия дает возможность значительно снизить расходы на материалы и их доставку, более того, на их монтаж.

Схема размеров плиты перекрытия.

При этом на подготовительные работы уйдет большее количество времени, особенно на устройство опалубки. Но людей, которые планируют делать перекрытия, отпугивает совсем не этот факт, ведь сделать хорошую опалубку, купить бетон и арматуру – это не проблема. Намного сложнее определить марку бетона и арматуры, которые понадобятся в конкретном случае, и рассчитать объем необходимых материалов.

Расчет монолитной железобетонной плиты

Расчет любого строительного объекта, в том числе и плиты перекрытия, состоит из этапов.

В эти этапы входит подбор геометрических параметров поперечного сечения, класс арматуры и бетона. Это необходимо для того, чтобы плита в дальнейшем не разрушилась при максимальных нагрузках. Более того, для произведения работ понадобится чертеж, который будет включать все этапы строительства, материалы, которые понадобятся в процессе работы. Для того чтобы составить грамотный чертеж, необходимо не только произвести верный расчет, но и правильно сконструировать перекрытие и само здание. Иными словами, чертеж необходим как для правильных расчетов, так и для обозначения фронта работ.

I этап. Расчетное определение длины плиты

Схема железобетонной плиты перекрытия: B – Ширина, L – Длина, H – Высота.

Ребристая плита может иметь различную длину, однако расчетная длина (пролет балки или плиты перекрытия) – совершенно другое дело. Пролетом называется расстояние между стенами несущего типа. Иными словами, это ширина или длина помещения. Вследствие этого вычислить пролет, который имеет ребристая плита, достаточно просто, ведь это расстояние можно измерить при помощи рулетки или других подручных средств. Ребристая монолитная плита в реальности имеет большую длину перекрытия, так как она будет опираться на стены, выложенные из шлакоблока, керамзитобетона, кирпича, камня, пено- или газобетона. Если несущая стена выложена из материалов с недостаточной прочностью, к примеру, из керамзитобетона, пенобетона или газобетона, то следует рассчитать нагрузки на остальные стены.

В примере будет рассматриваться расчет однопролетного монолитного перекрытия, которое опирается на 2 несущие стены.Возьмем значение расчетной длины монолитного перекрытия, равное 4 м.

II этап. Определение параметров плиты, класса бетона и арматуры

Данные параметры неизвестны, однако их можно задать, чтобы было из чего считать. Пусть ребристая плита имеет высоту 10 см и ширину 100 см. То есть это плита железобетонного перекрытия. Соответственно, полученные результаты нужно применить для оставшихся сантиметров ширины монолитного перекрытия.

Итак,высота равно 10 см, ширина – 100 см, арматура класса А400, бетон класса В20.

III этап. Определение опор

Опоры определяются в зависимости от ширины монолита, материала и от веса несущих стен. Монолит может выступать в качестве шарнирно опертой бесконсольной балки, шарнирно опертой консольной балки, балки с жесткими защемлениями на опорах. Самым распространенным вариантом является шарнирно опертые бесконсольной балки.

IV этап. Монолитная ребристая плита перекрытия: расчет нагрузки

Схема укладки железобетонной плиты перекрытия.

Нагрузка может быть самой разнообразной: постоянной, временной, равномерно и неравномерно распределенной, сосредоточенной и так далее. Однако ограничимся только равномерно распределенной нагрузкой, ведь она является наиболее распространенной. Измеряется равномерная нагрузка в кг/м2.

В основном ребристая плита перекрытия в жилом доме рассчитается на нагрузку 400 кг/м2. При высоте железобетонного перекрытия 10 см его вес даст еще 250 кг/м2 нагрузки, а стяжка и напольное покрытие могут добавить до 100 кг/м2. Данная нагрузка учитывает все сочетания возможных нагрузок на перекрытие в жилом доме. Но никто не запрещает производить расчет конструкции на более высокие нагрузки, однако в примере можно взять это значение, но для перестраховки умножить на коэффициент надежности, равный 1,2.

Иными словами, равномерно распределенная нагрузка будет равна (400+250+100)*1,2=900 кг/м2.

Ребристая плита имеет ширину 100 см, поэтому полученный результат будет рассматриваться в качестве плоской нагрузки, которая действует на перекрытие по оси У и измеряется в кг/м2.

V этап. Расчет изгибающего момента, который действует на поперечное сечение балки

Расчет производится таким образом:

Максимальный изгибающий момент равен распределенной нагрузке в квадрате, разделенной на 8.

То есть, максимальная нагрузка равна=(900 х 42)/8=1800 кг/м2.

VI этап. Расчетные предпосылки

Правильный расчет железобетонной конструкции и элементов основывается на таких расчетных предпосылках:

Схема монтажа плит перекрытия.

  • бетон имеет сопротивление растяжению, равное 0;
  • бетон имеет сопротивление сжатию. Оно равномерно распределено по зоне сжатия. Этот показатель не должен быть больше расчетного сопротивления;
  • максимальное растягивающее напряжение арматуры должно быть не больше расчетного.

Иными словами, расчет железобетонной конструкции подразумевает такие этапы:

  1. Компоновка схемы перекрытий, то есть чертеж (составление общей схемы). Для многоэтажных зданий принимаются расстояния между колоннами, кратные 300 см и равные 6-12 м. Высота этажей должна быть кратна 60 см и равна 3,6-7,2 м. Для того чтобы обеспечить более автоматический расчет, применяются готовые таблицы и формулы.
  2. Конструирование и расчет монолита. Конструирование подразумевает подробный чертеж, его наличие или составление. Чертеж можно спроектировать самостоятельно или доверить это дело специалистам. Если же вы хотите сделать все своими руками, то и чертеж лучше делать самостоятельно. Далее идет расчет элементов перекрытия: ребристая поверхность, второстепенная и главная балки рассчитываются отдельно. Расчет производится по строительным нормам и стандартам. Класс бетона на сжатие по прочности при проектировании принимается согласно имеющихся таблиц и норм. Ребристая плита должна соответствовать условиям эксплуатации сооружения. Монолит и балки проектируются из бетона, имеющего один класс. А класс арматуры выбирают в основном S500 и S400.
  3. Расчеты второстепенной балки или ригеля. При вычислении нагрузок конструкции ребристая поверхность рассматривается в разрезе. Размер ребра второстепенной балки определяется в зависимости от пролета.
  4. Конструирование и расчет железобетонной колонны. В монолитных конструкциях сжатые элементы, в том числе и ребристая поверхность, рассчитываются в качестве внецентренно сжатых. Конечно, для этого вам также потребуется чертеж, в котором будет все предельно ясно расписано. Если чертеж составлен грамотно и правильно, то трудностей возникнуть не должно.
  5. Вычисление центрального железобетонного монолитного фундамента. Фундамент – это подземная конструкция, которая предназначена для передачи нагрузки от здания на грунт, вернее на почвенное основание. Чертеж должен отображать не только конструкцию здания и железобетонных перекрытий, но и строение фундамента. Чертеж должен быть составлен с учетом несущей способности основания, а это зависит от этажности сооружаемого здания.

Схема установки монолитной плиты перекрытия.

Именно поэтому, прежде чем приступить к строительству, необходимо все грамотно спланировать, спроектировать и произвести все расчеты. Причем не только вычислить нагрузку железобетонного перекрытия на здание, стены и фундамент, но и количество строительных материалов, которые понадобятся в процессе работы.Следовательно, к данному вопросу нужно подойти тщательно, внимательно и обосновано.

Конечно, с первого взгляда кажется, что осуществить все расчеты невозможно, однако не все так сложно. При обнаружении каких-то неточностей, не нужно искать ошибку, лучше все считать заново, так как в поисках ошибки можно запутаться, процесс может затянуться еще на неопределенное количество времени.

После расчета всех нагрузок можно приступать к вычислению количества материала. Сколько арматуры и бетона понадобится для железобетона, в каких пропорциях замешивать раствор и др. На чертежах у вас будут отражены необходимые размеры, в соответствии с которыми следует производить вычисления. Потом можно будет приступать к покупке материала и строительству. Закупать материал и оборудование необходимо в специализированных магазинах и базах. Компетентные продавцы дадут вам исчерпывающую консультацию при возникновении вопросов. Также необходимо обращать внимание на информацию, которая содержится на этикетке. Это поможет избежать ненужных возвратов.

Перед тем как приступить к подготовке площадки для строительства, нужно еще раз проверить все расчеты, так как корректировка их в ходе работы может быть финансово невыгодна.

Руководство по проектированию железобетонных перекрытий

Основы проектирования железобетонных перекрытий

Плиты

обычно проектируются исходя из предположения, что они состоят из нескольких балок шириной «один метр».

1. Эффективный пролет перекрытия

Эффективный пролет плиты с простой опорой принимается меньшим из следующих значений:

  1. Расстояние между центрами подшипников,
  2. Пролет в свету плюс эффективная глубина

2.Толщина плиты

В следующей таблице приведены максимальные значения отношения пролета к глубине.

Тип плиты Отношение пролета к глубине
Простая опора и разворот в одном направлении 30
Непрерывный и односторонний 35
Простая опора и охват в двух направлениях 35
Непрерывный и двухсторонний 40
Консольные плиты 12

3.Арматура для плиты

Минимальная арматура в любом направлении должна составлять 0,15 процента от общей площади поперечного сечения. Основная арматура, рассчитанная на максимальный изгибающий момент, должна составлять не менее 0,15% общей площади сечения. Шаг основных стержней не должен превышать:

  1. В три раза больше эффективной глубины плиты и
  2. 45 см.

Распределительные стержни проходят под прямым углом к ​​основной арматуре, и шаг не должен превышать

  1. В пять раз больше эффективной глубины плиты и
  2. 45 см.

Диаметр основных стержней может быть от 8 мм до 14 мм. для распределительных стержней обычно используется сталь 6 мм или 8 мм.

4. Арматура Крышка

Минимальное покрытие за пределами основных стержней не должно быть меньше следующего:

  1. 15 мм и
  2. Диаметр основного стержня.

5.

Методика проектирования бетонных перекрытий

Шаги, которые необходимо соблюдать при проектировании плиты

  1. Предполагая подходящие подшипники (не менее 10 см), найдите пролет плиты между центрами подшипников.
  2. Принять толщину плиты (принимать 4 см на метр пролета).
  3. Найдите эффективный пролет, который меньше (i) расстояния между центрами подшипников и (ii) свободного пролета и эффективной глубины.
  4. Найдите статическую и временную нагрузки на квадратный метр плиты.
  5. Определите максимальный изгибающий момент для полосы плиты шириной один метр.

Максимальный изгибающий момент на метр ширины плиты,

Где w = общая интенсивность нагрузки на квадратный метр плиты.

  1. Приравнять сбалансированный момент сопротивления к максимальному изгибающему моменту

Найдите эффективную глубину «d» по приведенному выше уравнению.

  1. Рассчитать основную арматуру на метр ширины

Для бетона M15, плечо рычага = 0,87 d

Расстояние между стержнями =

Проектирование непрерывной плиты

Предположим, что плита поддерживается на концах, а также в промежуточных точках балок, максимальные моменты провисания и раскалывания, которым подвергается плита из-за равномерно распределенной нагрузки, можно рассчитать следующим образом:

Пусть

= интенсивность статической нагрузки на квадратный метр

= интенсивность динамической нагрузки на квадратный метр.

Изгибающий момент от статической и временной нагрузки можно принять следующим образом (IS: 456-2000)

Страница не найдена для basics_of_reinforced_concrete_slab_design

Имя пользователя*

Электронное письмо*

Пароль*

Подтвердить Пароль*

Имя*

Фамилия*

Страна

Выберите страну … Аландские острова IslandsAfghanistanAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelauBelgiumBelizeBeninBermudaBhutanBoliviaBonaire, Санкт-Эстатиус и SabaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийского океана TerritoryBritish Virgin IslandsBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканского RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongo (Браззавиль) Конго (Киншаса) Кук IslandsCosta RicaCroatiaCubaCuraÇaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Южный ТерриторииГабонГамбияГрузияГерманияГанаГибралтарГрецияГренландияГренадаГваделупаГватемалаГернсиГвинеяГвинея-БисауГайанаГайтиОстров Херд и острова МакдональдГондурасХо нг КонгВенгрияИсландияИндияИндонезияИранИракОстров МэнИзраильИталия Кот-д’ИвуарЯмайкаЯпонияДжерсиИорданияКазахстанКенияКирибатиКувейтКиргизияЛаосЛатвияЛебанЛезотоЛиберияЛибияЛихтенштейнЛихтенштейнЛитва ЮжныйAR, ChinaMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth KoreaNorwayOmanPakistanPalestinian TerritoryPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarRepublic из IrelandReunionRomaniaRussiaRwandaSão Tomé и PríncipeSaint BarthélemySaint HelenaSaint Китса и NevisSaint LuciaSaint Мартин (Голландская часть) Сен-Мартен (французская часть) Сен-Пьер и MiquelonSaint Винсент и GrenadinesSan MarinoSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Грузия / Sandwich ОстроваЮжная КореяЮжный СуданИспанияШри-ЛанкаСуданСуринамШпицберген и Ян-МайенСвазилендШвецияШвейцарияСирияТайваньТаджикистанТанзанияТаиландТимор-ЛештиТогоТокелауТонгаТринидад и ТобагоТунисТурция ТуркменистанТуркс и Острова КайкосТувалуУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобритания (Великобритания) США (США) УругвайУзбекистанВануатуВатиканВенесуэлаВьетнамУоллис и ФутунаЗападная СахараЗападное СамоаЙеменЗамбияЗимбабве

Captcha *

Регистрируясь, вы соглашаетесь с Условиями использования и Политикой конфиденциальности. *

Страница не найдена для 3_reinforcement_for_slab

Имя пользователя*

Электронное письмо*

Пароль*

Подтвердить Пароль*

Имя*

Фамилия*

Страна

Выберите страну … Аландские острова IslandsAfghanistanAlbaniaAlgeriaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelauBelgiumBelizeBeninBermudaBhutanBoliviaBonaire, Санкт-Эстатиус и SabaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийского океана TerritoryBritish Virgin IslandsBruneiBulgariaBurkina FasoBurundiCambodiaCameroonCanadaCape VerdeCayman IslandsCentral африканского RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongo (Браззавиль) Конго (Киншаса) Кук IslandsCosta RicaCroatiaCubaCuraÇaoCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland IslandsFaroe IslandsFijiFinlandFranceFrench GuianaFrench PolynesiaFrench Южный ТерриторииГабонГамбияГрузияГерманияГанаГибралтарГрецияГренландияГренадаГваделупаГватемалаГернсиГвинеяГвинея-БисауГайанаГайтиОстров Херд и острова МакдональдГондурасХо нг КонгВенгрияИсландияИндияИндонезияИранИракОстров МэнИзраильИталия Кот-д’ИвуарЯмайкаЯпонияДжерсиИорданияКазахстанКенияКирибатиКувейтКиргизияЛаосЛатвияЛебанЛезотоЛиберияЛибияЛихтенштейнЛихтенштейнЛитва ЮжныйAR, ChinaMacedoniaMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesiaMoldovaMonacoMongoliaMontenegroMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorth KoreaNorwayOmanPakistanPalestinian TerritoryPanamaPapua Новый GuineaParaguayPeruPhilippinesPitcairnPolandPortugalQatarRepublic из IrelandReunionRomaniaRussiaRwandaSão Tomé и PríncipeSaint BarthélemySaint HelenaSaint Китса и NevisSaint LuciaSaint Мартин (Голландская часть) Сен-Мартен (французская часть) Сен-Пьер и MiquelonSaint Винсент и GrenadinesSan MarinoSaudi ArabiaSenegalSerbiaSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSouth Грузия / Sandwich ОстроваЮжная КореяЮжный СуданИспанияШри-ЛанкаСуданСуринамШпицберген и Ян-МайенСвазилендШвецияШвейцарияСирияТайваньТаджикистанТанзанияТаиландТимор-ЛештиТогоТокелауТонгаТринидад и ТобагоТунисТурция ТуркменистанТуркс и Острова КайкосТувалуУгандаУкраинаОбъединенные Арабские ЭмиратыВеликобритания (Великобритания) США (США) УругвайУзбекистанВануатуВатиканВенесуэлаВьетнамУоллис и ФутунаЗападная СахараЗападное СамоаЙеменЗамбияЗимбабве

Captcha *

Регистрируясь, вы соглашаетесь с Условиями использования и Политикой конфиденциальности. *

Примерная методика расчета железобетонных плит защиты откосов на волновые нагрузки

  • 1.

    СНиП II-57-75. Строительные спецификации и правила. Pt. II, гл. 57. Нагрузки и воздействия на гидротехнические сооружения (волны, лед и корабли).

  • 2.

    СНиП II-Б.3-62. Строительные спецификации и правила. Pt. II, п. B, гл. 3. Фундаменты гидротехнических сооружений. Нормы дизайна.

  • 3.

    В. П. Лихачев, С. В. Лузан, А. В. Михайлов и др., Методы расчета устойчивости и прочности гидротехнических сооружений, Стройиздат, Москва (1966).

    Google ученый

  • 4.

    СНиП II-I. 14-69. Строительные спецификации и правила. Pt. II, п. Я, гл. 14. Бетонные и железобетонные конструкции гидротехнических сооружений. Нормы дизайна.

  • 5.

    СНиП II-56-77.Строительные спецификации и правила, п. II, гл. 56. Бетонные и железобетонные конструкции гидротехнических сооружений, Москва.

  • 6.

    Справочник по проектированию бетонных и железобетонных конструкций из тяжелого бетона (без предварительного напряжения), Стройиздат, Москва (1977).

  • 7.

    Горбунов-Посадов М.И., Майликова Т. Расчет конструкции на упругом основании. М .: Стройиздат, 1977.

    Google ученый

  • 8.

    Г. В. Крашенинникова, Расчет балок на упругом основании конечной глубины, Энергия, Москва-Ленинград (1964).

    Google ученый

  • 9.

    А.Д. Шабанов, Н.Я. Кичигина, Расчет железобетонных плит на динамические волновые нагрузки, Куйбышевский гос. Ун-т. (1977).

  • 10.

    А.Шабанов Д. Расчет и проектирование железобетонных опорных плит верхних откосов земляных сооружений. Куйбышев: КуИСИ, 1975.

    Google ученый

  • Расчет плоских железобетонных плит, усиленных постнапряженной арматурой в двух направлениях.


    Журавский Александр 1 * к.э.н., доцент
    Тимощук Владислав 1 Ph. Н., Доцент
    1 Кафедра железобетонных и каменных конструкций Киевского национального университета строительства и архитектуры, Воздухофлотский проспект, 31, Киев, 03680, Украина;
    Поступила: 20.11.2018, Принята: 29.12.2018, доступна онлайн: 29.12.2018.
    DOI: https://doi.org/10.32557/useful-2-4-2018-0007
    HDL: https: // hdl.handle.net/20.500.12334/91
    * Электронная почта автора, ответственного за переписку: [email protected]
    Под лицензией Creative Commons. Том 2, выпуск 4, 2018 г., страницы: 63-69.
    Плагиат проверен Grammarly



    Автор Ключевые слова: усиление, плоская железобетонная плита, внешнее армирование, деформация, прочность.


    Abstarct

    Целью диссертационного исследования является проведение теоретических расчетов и экспериментальное подтверждение возможности усиления плоских железобетонных плит внешней напряженной арматурой и влияния такого усиления на последующую эксплуатацию плиты. при повышенной нагрузке.

    Приведены результаты теоретических исследований расчета усиления плоских железобетонных плит внешней напряженной арматурой в линейной и нелинейной постановке задач, а также сопоставлены результаты двух вариантов расчета.

    1. Введение.

    При устройстве плоских монолитных железобетонных крыш возникают проблемы с чрезмерным прогибом и трещинами. Они могут возникать как во время эксплуатации, так и во время строительства. К причинам, вызывающим чрезмерные прогибы, можно отнести: отклонение от технологии изготовления, ошибки конструкции и т. Д. Для больших пролетов монолитных плит (более 6 м) рекомендуется использовать предварительно напряженную арматуру. Для армирования железобетонных плит можно использовать внешнюю растягивающую арматуру, которая будет служить внешней арматурой.В последние 30-40 лет в странах Европы и США использование предварительного напряжения с растяжением на бетоне (пост-напряжение) становится все более и более успешным, что позволяет эффективно предварительно напряженный монолит из строительство. В нашей стране эта технология получила широкое распространение при возведении монолитных путепроводов и мостов, в то время как гражданское строительство применяется очень редко. Отчасти это связано с отсутствием норм и рекомендаций по расчету и проектированию этих конструкций.В практике современного строительства все больше и больше используются предварительно напряженные в двух направлениях железобетонные конструкции из плит. К ним относятся межэтажные перекрытия и покрытия общественных и промышленных зданий, стен и крыш резервуаров.

    Однако изучение таких конструкций, работающих в условиях сложного напряженного состояния, не является исчерпывающим. Существующие нормы не дают конкретных рекомендаций по расчету такого класса конструкций.


    Источники

    [1] Лира 9.4. Руководство пользователя. Основы: учеба. Путь. / [ЯВЛЯЕТСЯ. Б. Стрелец-Стрелецкий, В. Годовис, Ю.В. Гензерский и др.]. Киев: ФАКТ, 2008. 164 с. (в Украине).

    [2] Глуховский А.Д. Железобетонные плоские перекрытия многоэтажных домов. М., 1956. 62 с. (на русском).

    [3] Михайлов В.В. Предварительно напряженные железобетонные конструкции. М .: Стройиздат, 1978. 383 с. (на русском).

    [4] Леонхардт Ф. Напряженно-железобетон и его практическое применение./ пер. Житомирский В. К. М .: Стройиздат, 1957. 588 с. (на русском).

    [5] Журавский О.Д., Тимощук В.А. Расчет плоских железобетонных плит, усиленных внешней напряженной арматурой. Строительные конструкции. Теория и практика. Киев, KNUCA, 2017. Т. 1. С. 193-198, (на Украине).



    Цитируйте как: О. Журавский, В. Тимощук «Расчет плоских железобетонных плит, усиленных предварительно напряженной арматурой в двух направлениях.»ПОЛЕЗНЫЙ интернет-журнал, т. 2, вып. 4, pp. 63–69, декабрь 2018 г. DOI: https://doi.org/10.32557/useful-2-4-2018-0007


    Эта статья была обновлена ​​30 декабря 2018 г.

    Reinforced Бетонная плита — обзор

    10.4.1.3 Расчет конструкции и проектирование железобетонной плиты перекрытия

    Расчет конструкций был выполнен с помощью программного обеспечения TOWER 7 на основе конечных элементов (Radimpex Software, 2012).

    Критерии проектирования для обеих бетонных смесей NAC и RAC были приняты в соответствии с Еврокодом 2 — Часть 1 и EN 1992-1-2 (CEN / TC250, 2004b).В дальнейшем EN 1992-1-2 упоминается как Еврокод 2 — Часть 2.

    Расчетные значения предельного момента и сопротивления сдвигу больше или, по крайней мере, равны расчетным значениям изгибающего момента и сдвига. силу соответственно.

    Предельное значение ширины трещины составляет:

    wmax = 0,4 мм для XC1

    wmax = 0,3 мм для XC3

    Предельное значение прогибов для квазипостоянной нагрузки составляет: vmax7 =

    l250

    , где l — пролет перекрытия;

    Был принят расчетный срок службы 50 лет («нормальный» надзор во время выполнения и «нормальный» осмотр и техническое обслуживание во время использования).

    Нормой огнестойкости REI 60 было принято решение из-за ограниченных размеров здания; следовательно, в соответствии с Еврокодом 2 — Часть 2 для непрерывных сплошных плит:

    hs, min = 80 мм

    amin = 10 мм

    , где h s — толщина плиты, а a — расстояние между осями арматуры. сталь к ближайшей открытой поверхности.

    Все свойства и уравнения, использованные при проектировании плит перекрытия, сведены в Таблицу 10. 5. Обозначения и значения параметров в таблице 10.5 полностью соответствуют обозначениям и уравнениям, используемым в Еврокоде 2 — части 1 и 2.

    Таблица 10.5. При проектировании железобетонной плиты перекрытия использовались положения Еврокода

    NAC RAC
    Свойства f ck, 28 дней fck = fcm − 8.0 (МПа) f ctm, 28 дней 0,3 · fck2 / 3 (МПа)
    E см, 28 дней 22 (fcm / 10) 0.3 (ГПа) Ур. (10.7), Лай и др. (2016)
    φ ( t , t 0 ) Приложение B, Еврокод 2 — Часть 1 Ур. (10.8) и (10.9), Lye et al. (2016)
    Расчетные уравнения Прочность Изгиб:
    MEd≤MRd = 0,810 · b · x · fcd · z; z = d − 0,416 · x
    As = (0,810 · b · x · fcd) / fyd
    Сдвиг (без усиления сдвига):
    VEd≤VRd, c = CRd, c · k · (100 · ρl · fck) 1/3 · b · d
    VRd, c, min = 0. 035 · k3 / 2 · fck1 / 2 · b · d
    Удобство обслуживания Ширина трещины:
    wd≤wmax = 0,3 (0,4) мм
    wd = sr, max (εsm − εcm)
    sr, max = k3 · c + k1 · k2 · k4 · ϕ / ρp, eff
    εsm − εcm = ((σs − kt (fct, eff / ρp, eff) (1 + αe · ρp, eff)) / Es)
    Прогиб:
    vd (t) ≤vmax (t) = l / 250 = 570/250 = 2,28 см
    Ec, eff = 1,05 · Ecm1 + φ (t, t0)
    ζ = 1 − β (Mcr / (Mcr · Mmax)) 2
    vd (t) = (1 − ζ) · vI, d (t) + ζ · vII , d (t)
    Прочность Расчетный срок службы 50 лет, плита ⇒ Структурный класс S3:
    cnom = cmin + Δcdev; cmin = max {cmin, b; cmin, dur}; Δcdev = 10 мм
    Низ Верх Низ Верх
    Связка: Связка: Связка: Связка:
    cmin, b = ϕ = 10 мм cmin, b = ϕ = 10 мм cmin, b = ϕ = 10 мм cmin, b = ϕ = 10 мм
    Долговечность: Долговечность (XC1 и XC3):
    XC1 : cmin, dur = 10 мм cmin, dur = cmin, dur, NAC (fcm, NAC / fcm, RAC) 2. 7
    XC3: cmin, dur = 20 мм
    Огнестойкость hs≥hs, мин; cnom = cmin + Δcdev; cmin≥a − ϕ / 2; Δcdev = 10 мм
    REI 60 ⇒ hs, min = 80 мм; a = 10 мм, Еврокод 2 — Часть 2

    NAC , Бетон на натуральном заполнителе; RAC , Бетон из переработанного заполнителя.

    Измеренная прочность бетона в выбранных испытаниях была принята как средняя прочность бетона на сжатие f см .Для смесей NAC характерная прочность на сжатие за 28 дней f ck , прочность на разрыв f ctm , модуль упругости E см и коэффициент ползучести φ ( t , t 0 ) рассчитывались в соответствии с положениями части 1 Еврокода 2, таблица 10.5. Для смесей RAC, 28-дневная нормативная прочность на сжатие f ck и прочность на разрыв f ctm также были рассчитаны в соответствии с положениями Еврокода 2 — Часть 1. В предыдущих обширных исследованиях было показано, что взаимосвязь между прочностью на сжатие и растяжение, указанная в этом стандарте, действительна с таким же уровнем надежности для смесей RAC (Silva et al., 2015).

    Однако сейчас хорошо известно, что смеси RAC имеют более низкий модуль упругости и большую ползучесть по сравнению с сопутствующими смесями NAC. Различные предложения по моделям прогнозирования были опубликованы в литературе, а модели прогнозирования представлены в Lye et al. (2016) для модуля упругости RAC и коэффициента ползучести RAC были выбраны в данной работе.Так, для модуля упругости было получено следующее соотношение (Lye et al., 2016):

    (10,7) Ecm, RAC1,2 = 0,82Ecm, NAC1,2

    , а для коэффициента ползучести (Lye et al., 2016):

    (10,8) φ (, 28) RAC1 = 1,37φ (∝, 28) NAC1

    (10,9) φ (∝, 28) RAC2 = 1,39φ (∝, 28) NAC2

    где E см , NAC1, 2 и φ (∞, 28) NAC1, 2 — модуль упругости и коэффициент ползучести смесей NAC с одинаковой характеристической 28-дневной кубической прочностью, соответственно.

    На основе статистического анализа обширной базы данных прочности на изгиб и сдвиг балок RAC и сопутствующих балок NAC (Tošić et al., 2016) был сделан вывод, что прочность на изгиб и сдвиг (без скоб) балок RAC может быть рассчитана с использованием действующие положения Еврокода 2 — Часть 1 без изменений. Такое же предположение было принято для расчета плит RAC в этой работе, Таблица 10.5.

    Для расчета ширины трещины и длительного прогиба положения Еврокода 2 — Часть 1 использовались как для смесей NAC, так и для смесей RAC с учетом их различных свойств, Таблица 10.5. Другими словами, предполагалось, что могут использоваться одни и те же модели прогнозирования, то есть различное поведение плиты NAC и RAC при эксплуатации было вызвано только различными свойствами бетона, а не различным поведением конструкции. Это предположение было подтверждено экспериментальными результатами по прочности сцепления и жесткости при растяжении смесей RAC, опубликованными в литературе. Большинство исследований, проведенных в отношении прочности связи RAC, показали, что относительная прочность связи (соотношение прочности связи и прочности на сжатие) RAC со 100% -ным профилем RCA была больше или, по крайней мере, очень похожа на NAC (Xiao and Falkner, 2007; Malešev и другие. , 2010; Ким и Юн, 2013; Принс и Сингх, 2013 г.). Однако были также исследования, в которых сообщалось о более низкой относительной прочности связи RAC, как, например, в Butler et al. (2011). Недавние экспериментальные исследования жесткости RAC при растяжении, хотя и с 50% -ным содержанием RCA, показали, что использование RCA не повлияло на итоговые характеристики бетона, в результате на поведение при растяжении и взаимодействие стали с бетоном (Rangel et al., 2017).

    Что касается прочности, были проанализированы два XC для бетона внутри зданий: XC1 и XC3.Плиты 1–4 этажа проектировались для класса XC1 (жилища, низкая влажность воздуха), а плита первого этажа — для класса XC3 (умеренная или высокая влажность воздуха, так как парковочное место располагалось под цокольным этажом). ). Оба XC связаны с коррозией арматуры, вызванной карбонизацией.

    Устойчивость RAC к карбонизации широко исследовалась. Результаты исследований (Silva et al., 2015) показали, что можно коррелировать сопротивление карбонизации с прочностью на сжатие, и что на эту взаимосвязь незначительно влияет уровень замены, тип и размер переработанных заполнителей. Взаимосвязь между глубиной карбонизации RAC и NAC при аналогичном дизайне смеси может быть рассчитана с использованием следующего уравнения (Silva et al., 2016):

    (10,10) xc, RACxc, NAC = (fcm, NACfcm, RAC) 2,7

    , где x c, RAC и x c, NAC — глубина карбонизации RAC и NAC, соответственно. Отношения [Ур. (10.10)] справедливо только для бетонных смесей с цементом CEM I, что и было в данной работе. Это соотношение использовалось для соотнесения требуемой глубины покрытия RAC и смеси NAC для обеспечения равной прочности, Таблица 10.5.

    Что касается огнестойкости, предыдущие исследования показали, что бетон с заполнителем, полностью или частично замененным на крупнозернистый RCA, показал хорошие характеристики при повышенных температурах, а также механические свойства и долговечность после пожара, которые были сопоставимы или даже лучше, чем у обычного бетона. (Vieira et al., 2011; Sarhat, Sherwood, 2013; Xiao et al., 2013; Kou et al. , 2014). Следовательно, не должно быть различий в конструктивном пожарном расчете между смесями RAC и NAC, и к обеим бетонным смесям применялись одинаковые требования Еврокода 2 — Часть 2, Таблица 10.5.

    При определении глубины бетонного покрытия было принято, что коэффициент скорости карбонизации ( k -фактор) равен 0 на верхней поверхности плиты в соответствии с рекомендациями CEN / TC229 / WG5-N012 (2016) для элементов внутри зданий в сухом климате и покрытых плиткой, паркетом и ламинатом. Таким образом, минимальное верхнее покрытие было определено для удовлетворения требований к сцеплению ( c мин, b ) и огнестойкости, которые предполагались одинаковыми как для NAC, так и для RAC.Предполагалось, что нижняя поверхность плиты не имеет дополнительного покрытия, поэтому минимальное нижнее покрытие было определено для обеспечения сцепления ( c мин, b ), прочности ( c мин, dur ) и огнестойкости. требования, см. Таблицу 10.5. Значение c мин, dur для RAC было рассчитано на основе c min, dur для NAC в соответствии с требованиями Еврокода 2 — Часть 1 и уравнением [Ур. (10.10)]. Во всех случаях минимальное покрытие было увеличено, чтобы учесть отклонение со значением Δ c dev = 10 мм.

    Согласно Еврокоду 2 — Часть 1, минимальная 28-дневная нормативная прочность на сжатие для классов XC1 и XC3 составляет 25 и 30 МПа соответственно. Требование XC3 не было выполнено в случаях NAC1 и RAC2. Немного более низкая характеристическая прочность (менее 10%) в этих случаях считалась незначительной.

    Результаты расчетных значений представлены в таблице 10.6, где обозначение конкретной плиты (S) включает тип бетонной смеси и качество заполнителя (NAC или RAC; 1 для высокого качества RCA и 2 для низкого качества RCA) и XC (XC1 или XC3).Все плиты, независимо от того, изготовлены ли они из NA, высокого или низкого качества RCA и подвержены воздействию XC1 или XC3, соответствуют требованиям Еврокодов по прочности, удобству обслуживания, долговечности и огнестойкости. Таким образом, была достигнута полная функциональная эквивалентность. Количества компонентов компонентов в таблице 10.6 представляют собой исходные потоки и исходные данные для сравнительной оценки жизненного цикла.

    Таблица 10.6. Расчетные значения железобетонной плиты перекрытия для различных параметров

    9002

    900_39

    900_39

    2 9999 , Бетон на натуральном заполнителе; RAC , Бетон из переработанного заполнителя; XC , Класс экспозиции.

    % PDF-1.5
    %
    1 0 obj>
    endobj
    2 0 obj>
    endobj
    3 0 obj>
    endobj
    4 0 obj> / Metadata 966 0 R / Outlines 967 0 R / Pages 8 0 R / StructTreeRoot 269 0 R >>
    endobj
    5 0 obj>
    endobj
    6 0 obj>
    endobj
    7 0 obj>
    endobj
    8 0 obj>
    endobj
    9 0 obj>
    endobj
    10 0 obj>
    endobj
    11 0 obj>
    endobj
    12 0 объект> / MediaBox [0 0 481.92 708.6] / Parent 8 0 R / Resources> / Font> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] / Properties >>> / StructParents 0 / Tabs / S >>
    endobj
    13 0 obj>
    endobj
    14 0 obj>
    endobj
    15 0 obj>
    endobj
    16 0 obj>
    endobj
    17 0 obj>
    endobj
    18 0 obj>
    endobj
    19 0 obj>
    endobj
    20 0 obj>
    endobj
    21 0 объект>
    endobj
    22 0 obj>
    endobj
    23 0 obj>
    endobj
    24 0 obj>
    endobj
    25 0 obj>
    endobj
    26 0 obj>
    endobj
    27 0 obj>
    endobj
    28 0 obj>
    endobj
    29 0 obj>
    endobj
    30 0 obj>
    endobj
    31 0 объект>
    endobj
    32 0 obj>
    endobj
    33 0 obj>
    endobj
    34 0 obj>
    endobj
    35 0 obj>
    endobj
    36 0 obj>
    endobj
    37 0 obj>
    endobj
    38 0 obj>
    endobj
    39 0 obj>
    endobj
    40 0 obj>
    endobj
    41 0 obj>
    endobj
    42 0 obj>
    endobj
    43 0 obj>
    endobj
    44 0 obj>
    endobj
    45 0 obj>
    endobj
    46 0 obj>
    endobj
    47 0 obj>
    endobj
    48 0 obj>
    endobj
    49 0 obj>
    endobj
    50 0 obj>
    endobj
    51 0 объект>
    endobj
    52 0 obj>
    endobj
    53 0 obj>
    endobj
    54 0 obj>
    endobj
    55 0 obj>
    endobj
    56 0 obj>
    endobj
    57 0 obj>
    endobj
    58 0 obj>
    endobj
    59 0 obj> / BS> / F 4 / Rect [144. 31 71.347 217.1 84.682] / StructParent 8 / Subtype / Link >>
    endobj
    60 0 obj>
    endobj
    61 0 obj>
    endobj
    62 0 obj>
    endobj
    63 0 obj> / MediaBox [0 0 481.92 708.6] / Parent 8 0 R / Resources> / Font> / ProcSet [/ PDF / Text / ImageB / ImageC / ImageI] / Properties >>> / StructParents 1 / Tabs / S> >
    endobj
    64 0 obj>
    endobj
    65 0 obj>
    endobj
    66 0 obj>
    endobj
    67 0 obj>
    endobj
    68 0 obj>
    endobj
    69 0 obj>
    endobj
    70 0 obj>
    endobj
    71 0 obj>
    endobj
    72 0 obj>
    endobj
    73 0 obj>
    endobj
    74 0 obj [78 0 R]
    endobj
    75 0 obj>
    endobj
    76 0 obj>
    endobj
    77 0 obj>
    endobj
    78 0 obj>
    endobj
    79 0 obj>
    endobj
    80 0 obj>
    endobj
    81 0 объект>
    endobj
    82 0 obj>
    endobj
    83 0 obj>
    endobj
    84 0 obj>
    endobj
    85 0 obj>
    endobj
    86 0 obj>
    endobj
    87 0 obj>
    endobj
    88 0 obj>
    endobj
    89 0 obj>
    endobj
    90 0 obj>
    endobj
    91 0 obj>
    endobj
    92 0 obj>
    endobj
    93 0 объект>
    endobj
    94 0 obj [98 0 R]
    endobj
    95 0 obj>
    endobj
    96 0 obj>
    endobj
    97 0 obj>
    endobj
    98 0 obj>
    endobj
    99 0 obj>
    endobj
    100 0 obj>
    endobj
    101 0 объект>
    endobj
    102 0 объект>
    endobj
    103 0 obj>
    endobj
    104 0 obj>
    endobj
    105 0 obj>
    endobj
    106 0 объект>
    endobj
    107 0 obj>
    endobj
    108 0 obj>
    endobj
    109 0 объект> / MediaBox [0 0 481.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *

    Высота c низ c верх Reinf. бот Reinf. верх Reinf. всего w d a v d b
    мм мм мм см

    2

    см / м кг / м 3 мм мм
    S_NAC1_XC1 150 20 20 4. 85 6,23 69,58 0,147 21,13
    S_RAC1_XC1 160 20 20 4,30 5,84 59,70 0,151 21.22
    20 20 3,43 6,30 61,10 0,162 21,54
    S_RAC2_XC1 170 30 20 4.00 5,59 53,14 0,208 21,34
    S_NAC1_XC3 160 30 20 5,04 6,08 65,47 0,213 20,01 0,213 20,01
    30 20 4,30 5,74 55,63 0,202 19,76
    S_NAC2_XC3 160 30 20 3.63 6,35 58,76 0,196 19,94
    S_RAC2_XC3 180 45 20 4,85 5,52 54,27 0,254 19,97