Расход пара в зависимости от диаметра и давления таблица: Формула расчета расхода пара — Измерения

Разное

2 + 0.4983 * P + 0.1065, где

ρ — плотность насыщенного пара, кг/м3

P — абсолютное давление, бар

Точность у этой аппроксимации очень хорошая

Собственно, вот..

Заметьте, что температура нигде не фигурирует. Это объясняется первым допущением, что в котле пар насыщен и соответственно нам известна его плотность. Но меня терзают сомнения на счет второго допущения о том, что пар расширяется по адиабате.

Вычисления будут производиться в ПЛК в реальном времени (10 раз в секунду). Когда доберусь до объекта — не знаю… Потестируйте пжлст, если у кого есть возможность..

Содержание

Расчет расхода жидкости через сечение. Как рассчитать расход воды по диаметру трубы – теория и практика

Потеря давления в трубопроводе, кроме прочего, зависит от расхода скорости потока и вязкости среды протекания. Чем больше количество пара, проходящего через трубопровод определённого номинального диаметра, тем выше трение о стенки трубопровода. Иными словами, чем выше скорость пара, тем выше сопротивление или потери давления в трубопроводе.

На сколько высоки могут быть потери давления определяется назначением пара. Если перегретый пар подается через трубопровод к паровой турбине, то потери давления должны быть по возможности минимальными. Такие трубопроводы значительно дороже обычных, причём больший диаметр, в свою очередь, приводит к значительно большим затратам. Инвестиционный расчёт основывается на времени возврата (срок окупаемости) инвестиционного капитала в сравнении с прибылью от работы турбины.

Этот расчёт должен основываться не на средней нагрузке турбины, а исключительно на ее пиковой нагрузке. Если, например, в течении 15 минут набрасывается пиковая нагрузка в 1000 кг пара, то трубопровод должен иметь пропускную способность 60/15x 1000 = 4000 кг/ч.

Расчёт

В главе далее — Работа с конденсатом, поясняется методика расчёт диаметра конденсатопроводов. В расчётах паро- воздухо- и водопроводов действуют примерно те же исходные принципы. В завершении этой темы в этом разделе будут приведены расчеты для определения диаметра паро- воздухо- и водопроводов.

В расчётах диаметров в качестве основной применяется формула:

Q = расход пара, воздуха и воды в м 3 /с.

D = диаметр трубопровода в м.

v = допустимая скорость потока в м/с.

D = диаметр конденсатопровода в мм.

Q = расход в м 3 /ч.

V = допустимая скорость потока в м/с.

Расчет трубопроводов всегда ведется по объёмному расходу (м 3 /ч), а не по массовому (кг/ч). Если известен только массовый расход, то для пересчёта кг/ч в м 3 /ч необходимо учитывать удельный объём по таблице пара.

Удельный объем насыщенного пара при давлении 11 бар составляет 0,1747 м 3 /кг. Таким образом, объемный расход от 1000 кг/ч насыщенного пара при 11 бар будет составлять 1000 * 0,1747 = 174,7 м 3 /ч. Если речь будет идти о таком же количестве перегретого пара при давлении 11 бар и 300 °С, то удельный объём составит 0,2337 м 3 /кг, а объемный расход 233,7 м 3 /ч. Таким образом это означает, что один и тот же паропровод не может одинаково подходить для транспорта одного количества насыщенного и перегретого пара.

Также для случая воздуха и других газов расчет необходимо повторить с учетом давления. Производители компрессорного оборудования указывают производительность компрессоров в м 3 /ч, под которым понимается объем в м 3 при температуре 0 °С.

Если производительность компрессора 600 мп 3 /ч и давление воздуха 6 бар, то объемный расход составляет 600/6 = 100 м 3 /ч. в этом также заключается основа расчета трубопроводов.

Допустимая скорость потока

Допустимая скорость потока в системе трубопроводов зависит от многих факторов.

  • стоимость установки: низкая скорость потока приводит к выбору большего диаметра.
  • потеря давления: высокая скорость потока позволяет выбрать меньший диаметр, однако вызывает большую потерю давления.
  • износ: особенно в случае конденсата высокая скорость потока приводит к повышенной эрозии.
  • шум: высокая скорость потока увеличивает шумовую нагрузку, напр. Паровой редукционный клапан.

В ниже приведенной таблице представлены данные норм относительно скорости потока для некоторых сред протекания.

Назначение

Скорость потока в м/с

Конденсат

Заполненный конденсатом

Конденсато-паровая смесь

Питательная вода

Трубопровод всаса

Трубопровод подачи

Питьевого качества

Охлаждение

Воздух под давлением

* Трубопровод всаса насоса питательной воды: из-за низкой скорости потока низкая потеря давления, что препятствует образованию пузырьков пара на всасе питательного насоса.

Расчет диаметра трубопровода для воды при 100 м 3 /ч и скорости потока v = 2 м/с.

D = √ 354*100/2 = 133 мм. Выбранный номинальный диаметр DN 125 или DN 150.

b) Воздух под давлением

расчет диаметра трубопровода для воздуха при 600 м 3 /ч, давление 5 бар и скорости потока 8 м/с.

Перерасчет с нормального расхода 600 м 3 /ч на рабочий м 3 /ч 600/5 = 120 м 3 /ч.

D = √ 354*120/8 = 72 мм. Выбранный номинальный диаметр DN 65 или DN 80.

В зависимости от назначения воды или воздуха выбирается трубопровод DN 65 или DN 80. Необходимо иметь ввиду, что расчет диаметра трубопровода усреднен и не предусматривает случая наступления пиковой нагрузки.

c) Насыщенный пар

Расчет диаметра трубопровода для насыщенного пара при 1500 кг/ч, давлении 16 бар и скорости потока 15 м/с.

В соответствии с таблицей пара удельный объем насыщенного пара при давлении 16 бар составляет v = 0,1237 м 3 /кг.

D = √ 354*1500*0,1237/15 = 66 мм.

И здесь должен быть решен вопрос DN 65 или DN 80 в зависимости от возможной пиковой нагрузки. В случае необходимости предусматривается также возможность расширения установки в будущем.

d) Перегретый пар

Если в нашем примере пар перегреет до температуры 300 °С, то его удельный объем изменяется на v = 0,1585 м 3 /кг.

D = √ 354*1500*0,1585/15 = 75 мм, выбирается DN 80.

Изображение 4.9 в форме номограммы показывает, как можно произвести выбор трубопровода без проведения расчета. На изображении 4-10 этот процесс представлен для случая насыщенного и перегретого пара.

е) Конденсат

Если речь идёт о расчёте трубопровода для конденсата без примеси пара (от разгрузки), тогда расчёт ведётся как для воды.

Горячий конденсат после конденсатоотводчика, попадая в конденсатопровод, разгружается в нём. В главе 6.0 Работа с конденсатом поясняется, как определить долю пара от разгрузки.

Правило к проведению расчёта:

Доля пара от разгрузки = (температура перед конденсатоотводчиком минус температура пара после конденсатоотводчика) х 0,2. При расчёте конденсатопровода необходимо учитывать объём пара от разгрузки.

Объём оставшейся воды в сравнении с объёмом пара от разгрузки настолько мал, что им можно пренебречь.

Расчёт диаметра конденсатопровода на расход 1000 кг/ч сконденсированного пара 11 бар (h2 = 781 кДж/кг) и разгруженного до давления 4 бар (h» = 604 кДж/кг,v = 0,4622 м 3 /кг и r — 2133 кДж/кг).

Доля разгруженного пара составляет: 781 — 604/ 100 % = 8,3%

Количество разгруженного пара: 1000 х 0,083 = 83 кг/ч или 83 х 0,4622 -38 м 3 /ч. Объёмная доля разгруженного пара составляет около 97 %.

Диаметр трубопровода для смеси при скорости потока 8 м/с:

D = √ 354*1000*0,083*0,4622/8 = 40 мм.

Для сети атмосферного конденсата (v“ = 1,694 м 3 /кг) доля разгруженного пара составляет:

781 — 418/2258*100 % = 16 % или 160 кг/ч.

В этом случае диаметр трубопровода:

D = √ 354*1000*0,16*1,694/8 = 110 мм.

Источник
: «Рекомендации по применению оборудования ARI. Практическое руководство по пару и конденсату. Требования и условия безопасной эксплуатации. Изд. ARI-Armaturen GmbH & Co. KG 2010»

Для более верного выбора оборудования можно обратиться на эл. почту: [email protected]сайт

Добавить в закладки

Эксперт отвечает:

При проектировании инженерных коммуникаций, таких как отопление, водоснабжение и канализация, необходимо учитывать принятые нормы, приведенные в соответствующей документации.

Расчет расхода воды по сечению трубы — довольно сложный инженерный процесс, требующий специальных знаний. Но в случаях, когда индивидуальное строительство ведется собственными силами, без привлечения строительных фирм, многие расчеты приходится делать самостоятельно.

Чем больший объем воды проходит через трубу в единицу времени, тем больше получается расход.
Существует довольно много критериев, которые влияют на этот показатель. Основные из них следующие:

  • диаметр внутреннего сечения;
  • материал, из которого изготовлен водопровод;
  • скорость течения жидкости, которая, в свою очередь, зависит от давления;
  • наличие поворотов и затворов в водопроводной системе.

Однако размер сечения трубы действительно достаточно сильно влияет на расход воды в трубопроводе. Если пренебречь дополнительными факторами, можно предложить для расчета следующую формулу:

q = π×d²/4 ×V;

где q — расход воды, л/с;

d — диаметр внутреннего сечения трубы, см;

V — скорость течения воды, м/с.

Если питание системы водоснабжения осуществляется из водонапорной башни, без дополнительного нагнетания с помощью насоса, то скорость течения будет в пределах примерно от 0,7 до 1,9 м/с. Если же используется какой-либо нагнетатель, то в его паспорте должно указываться создаваемое давление и скорость прохождения жидкости.

В дополнение к вышеприведенной формуле отметим, что довольно большое влияние на производительность трубопровода оказывает сопротивление внутренних стенок. Пластиковые трубы имеют более гладкую поверхность, чем стальные, поэтому коэффициент сопротивления в них ниже. К тому же они не подвержены коррозии, что тоже положительно влияет на их пропускную способность.

Предприятия и жилые дома потребляют большое количество воды. Эти цифровые показатели становятся не только свидетельством конкретной величины, указывающей расход. Помимо этого они помогают определить диаметр трубного сортамента. Многие считают, что расчет расхода воды по диаметру трубы и давлению невозможен, так, как эти понятия совершенно не связаны между собой.

Но, практика показала, что это не так. Пропускные возможности сети водоснабжения зависимы от многих показателей, и первыми в этом перечне будут диаметр трубного сортамента и давление в магистрали.

Выполнять все расчеты рекомендуют еще на стадии проектирования строительства трубопровода, потому, что полученные данные определяют ключевые параметры не только домашнего, но и промышленного трубопровод. Обо всем этом и пойдет далее речь.

Какие факторы влияют на проходимость жидкости через трубопровод

Критерии, оказывающие влияние на описываемый показатель, составляют большой список. Вот некоторые из них.

  1. Диаметр, который имеет внутреннее сечение.
  2. Скорость передвижения потока, которая зависит от давления в магистрали.
  3. Материал, взятый для производства трубного сортамента.

Определение расхода воды на выходе магистрали выполняется по диаметру трубы, ведь эта характеристика совместно с другими влияет на пропускную способность системы. Так же расчитывая количество расходуемой жидкости, нельзя сбрасывать со счетов толщину стенок, определение которой проводится, исходя из предполагаемого внутреннего напора.

Можно даже заявить, что на определение «трубной геометрии» не влияет только протяженность сети. А сечение, напор и другие факторы играют очень важную роль.

Помимо этого, некоторые параметры системы оказывают на показатель расхода не прямое, а косвенное влияние. Сюда относится вязкость и температура прокачиваемой среды.

Подведя небольшой итог, можно сказать, что определение пропускной способности позволяет точно установить оптимальный тип материала для строительства системы и сделать выбор технологии, применяемой для ее сборки. Иначе сеть не будет функционировать эффективно, и ей потребуются частые аварийные ремонты.

Расчет расхода воды по диаметру
круглой трубы, зависит от его размера
. Следовательно, что по большему сечению, за определенный промежуток времени будет выполнено движение большего количества жидкости. Но, выполняя расчет и учитывая диаметр, нельзя сбрасывать со счетов давление.

Смотреть видео

Если рассмотреть этот расчет на конкретном примере, то получается, что через метровое трубное изделие сквозь отверстие в 1 см пройдет меньше жидкости за определенный временной период, чем через магистраль, достигающей в высоту пару десятков метров. Это закономерно, ведь самый высокий уровень расхода воды на участке достигнет максимальных показателей при самом высоком давлении в сети и при самых высоких размера ее объема.

Вычисления сечения по СНИП 2.04.01-85

Прежде всего, необходимо понимать, что расчет диаметра водопропускной трубы является сложным инженерным процессом. Для этого потребуются специальные знания. Но, выполняя бытовую постройку водопропускной магистрали, часто гидравлический расчет по сечению проводят самостоятельно.

Данный вид конструкторского вычисления скорости потока для водопропускной конструкции можно провести двумя способами. Первый – табличные данные. Но, обращаясь к таблицам необходимо знать не только точное количество кранов, но и емкостей для набора воды (ванны, раковины) и прочего.

Только при наличии этих сведений о водопропускной системе, можно воспользоваться таблицами, которые предоставляет СНИП 2.04.01-85. По ним и определяют объем воды по обхвату трубы. Вот одна из таких таблиц:

Если ориентироваться на нормы СНИП, то в них можно увидеть следующее – суточный объем потребляемой воды одним человеком не превышает 60 литров. Это при условии, что дом не оборудован водопроводом, а в ситуации с благоустроенным жильем, этот объем возрастает до 200 литров.

Однозначно, эти данные по объему, показывающие потребление, интересны, как информация, но специалисту по трубопроводу понадобятся определение совершенно других данных – это объем (в мм) и внутреннее давление в магистрали. В таблице это можно найти не всегда. И более точно узнать эти сведениям помогают формулы.

Формула для вычисления

Смотреть видео

Уже понятно, что размеры сечения системы влияют на гидравлический расчет потребления. Для домашних расчетов применяется формула расхода воды, которая помогает получить результат, имея данные давления и диаметра трубного изделия. Вот эта формула:

В формуле: q показывает расход воды. Он исчисляется литрами. d – размер сечению трубы, он показывается в сантиметрах. А V в формуле – это обозначение скорости передвижения потока, она показывается в метрах на секунду.

Если сеть водоснабжения питается от водонапорной башни, без дополнительного влияния нагнетающего насоса, то скорость передвижения потока составляет приблизительно 0,7 – 1,9 м/с. Если подключают любое нагнетающее устройство, то в паспорте к нему имеется информация о коэффициенте создаваемого напора и скорости перемещения потока воды.

Данная формула не единственная. Есть еще и многие другие. Их без труда можно найти в сети интернета.

В дополнение к представленной формуле нужно заметить, что огромное значение на функциональность системы оказывают внутренние стенки трубных изделий. Так, например, пластиковые изделия отличаются гладкой поверхностью, нежели аналоги из стали.

По этим причинам, коэффициент сопротивления у пластика существенно меньше. Плюс ко всему, эти материалы не подвергаются влиянию коррозийных образований, что также оказывает положительное влияние на пропускные возможности сети водоснабжения.

Определение потери напора

Расчет прохода воды производят не только по диаметру трубы, он вычисляется по падению давления
. Вычислить потери можно посредством специальных формул. Какие формулы использовать, каждый будет решать самостоятельно. Чтобы рассчитать нужные величины, можно использовать различные варианты. Единственного универсального решения этого вопроса нет.

Но прежде всего, необходимо помнить, что внутренний просвет прохода пластиковой и металлопластиковой конструкции не поменяется через двадцать лет службы. А внутренний просвет прохода металлической конструкции со временем станет меньше.

А это повлечет за собою потери некоторых параметров. Соответственно, скорость воды в трубе в таких конструкциях будет разной, ведь по диаметру новая и старая сеть в некоторых ситуациях будут заметно отличаться. Так же будет отличаться и величина сопротивления в магистрали.

Так же перед тем, как рассчитать необходимые параметры прохода жидкости, нужно принять к сведению, что потери скорости потока водопровода связанны с количеством поворотов, фитингов, переходов объема, с наличием запорной арматуры и силой трения. Причем, все это при вычисления скорости потока должны проводиться после тщательной подготовки и измерений.

Расчет расхода воды простыми методами провести нелегко. Но, при малейших затруднениях всегда можно обратиться за помощью к специалистам. Тогда можно рассчитывать на то, что смонтированная сеть водопровода или отопления будет работать с максимальной эффективностью.

Смотреть видео

Расчет диаметра трубы по формулам для водоснабжения

В этой статье я расскажу вам о том, как профессионально посчитать диаметр . Будут указаны полезные формулы. Вы узнаете какой диаметр трубы вам нужен для водопроводных труб. Также очень важно не путать, расчет подбора диаметра для , от расчета для . Так как для отопления бывает достаточно низкого потока движения воды. Формула расчета диаметра труб кардинально отличаются, так как для водоснабжения необходимы большие скорости потока воды.

Что касается таблиц для расчета диаметра , то об этом будет рассказано в других статьях. Скажу лишь то, что данная статья вам поможет найти диаметр труб без таблиц, по специальным формулам. А таблицы придуманы просто, упростить процесс вычисления. К тому же в этой статье Вы поймете, из чего складывается весь результат необходимого диаметра.

Посмотрите видео:

Чтобы получить расчет диаметра трубы для водоснабжения, необходимо иметь готовые цифры:

Что касается расхода потребления воды
, то тут примерно есть приблизительно готовый цифровой стандарт. Возьмем к примеру смеситель в ванной. Я опытным путем проверил, что для комфортного потока воды на выходе примерно равно: 0,25 литров в секунду. Эту величину и возьмем для стандарта по подбору диаметра для водного потока.

Есть еще одна не маловажная цифра. В квартирах это обычно стандарт. У нас в стояках для примерно стоит давление напора: Около 1,0 до 6,0 Атмосфер. В среднем это 1,5-3,0 атмосфер. Это зависит от этажности многоквартирного дома. В многоэтажных домах свыше 20 этажей, стояки могут быть разделены по этажности, чтобы не перегружать нижние этажи.

Что касается потери напора, то я объяснял в других ранних статях: Гидравлический расчет на потерю напора или как рассчитать потери давления в трубе .

А теперь давайте приступим к алгоритму расчета необходимого диаметра для водоснабжения. В этом алгоритме есть неприятная особенность, это то, что нужно делать расчет циклично подставляя в формулу диаметр и проверяя результат. Так как в формуле потерь напора существует квадратичная особенность и в зависимости от диаметра трубы резко изменяется результат потерь напора. Я думаю, больше трех циклов нам не придется делать. Также еще зависит от материала трубопровода. И так приступим!

«Расчет диаметра трубы»

Приведем вариант:

Вот некоторые формулы, которые помогут найти скорость потока:

0,25л/с=0,00025м 3 /с

V=(4*Q)/(π*D 2)=(4*0,00025)/π*0,012 2 =2,212 м/с

Re=(V*D)/ν=(2,212*0.012)/0,00000116=22882

ν=1,16*10 -6 =0,00000116. Взято из таблици. Для воды при температуре 16°С.

Δ э =0,005мм=0,000005м. Взято из таблици, для металлопластиковой .

У меня подпадает в первую область и я принимаю для расчета формулу Блазиуса.

λ=0,3164/Re 0,25 =0,3164/22882 0,25 =0,0257

h=λ*(L*V 2)/(D*2*g)=0,0257*(10*2,212 2)/(0,012*2*9,81)=5,341 м.

И так: На входе у нас 2 атмосферы, что равно 20 метрам напора.

Если полученый результат 5,341 метров меньше входного напора, то результат нас удовлетворяет и диаметр трубы с внутренни диаметром 12мм подходит!

Если нет то необходимо увеличивать диаметр .

Но имейти ввиду, если в расчет брать трубу, которая из подвала идет по стоякам к вам на пятый этаж, то результат возможно будет не удовлетворительным. А если у вас саседи будут отбирать поток воды, то и соответственно входной напор может уменьшится. Так что имейти ввиду про запас в два три раза уже хорошо. В нашем случае запас в четыре раза больше.

Давайте попробуем так ради эксперимента.
У нас в трубе 10 метров в пути, имеются четыре угольника (колена). Это и они называются местными гидравлическими сопротивлениями. Для колена в 90 градусов имеется формула расчета:

h=ζ*(V 2)/2*9,81=0,249 м.

Так как у нас 4 угольника, то полученый результат умножаем на 4 и получаем 0,996 м. Почти еще один метр.

Задача 2:

Стальная (железная) труба проложена длиной 376 метров с внутренним диаметром 100 мм, по длине трубы имеются 21 отводов (угловых поворотов 90°С). Труба проложена с перепадом 17м. То есть относительно горизонта идет вверх на высоту 17 метров. Характеристики насоса: Максимальный напор 50 метров (0,5МПа), максимальный расход 90м 3 /ч. Температура воды 16°С. Найти максимально возможный расход в конце трубы.

Дано:

Найти максимальный расход = ?

Решение:

Для решения необходимо знать график насосов: Зависимость расхода от напора.

Я выбрал визуально похожий график всех насосов, от реального может отличаться на 10-20%. Для более точного расчета необходим график насоса, который указан в паспорте насоса.

В нашем случае будет такой график:

Смотрите, прерывистой линией по горизонту обозначил 17 метров и на пересечение по кривой получаю максимально возможный расход: Qmax.

По графику я могу смело утверждать, что на перепаде высоты, мы теряем примерно: 14 м 3 /час. (90-Qmax=14 м 3 /ч).

Не существует прямой формулы, которая дает прямой расчет нахождения расхода, а если и существует, то она имеет ступенчатый характер и некоторую логику, которая способна Вас запутать — окончательно.

Ступенчатый расчет получается потому, что в формуле существует квадратичная особенность потерь напора в динамике (движение).

Поэтому решаем задачу ступенчато.

Поскольку мы имеем интервал расходов от 0 до 76 м 3 /час, то мне хочется проверить потерю напора при расходе равным: 45 м 3 /ч.

Находим скорость движения воды

Q=45 м 3 /ч = 0,0125 м 3 /сек.

V = (4 0,0125)/(3,14 0,1 0,1)=1,59 м/с

Находим число рейнольдса

ν=1,16 10 -6 =0,00000116. Взято из таблици. Для воды при температуре 16°С.

Re=(V D)/ν=(1,59 0,1)/0,00000116=137069

Δэ=0,1мм=0,0001м. Взято из таблицы, для стальной (железной) .

У меня попадает на вторую область при условии

λ=0,11(Δэ/D + 68/Re) 0.25 =0,11 (0,0001/0,1 + 68/137069) 0,25 =0,0216

h=λ (L V 2)/(D 2 g)= 0,0216 (376 1,59 1,59)/(0,1 2 9,81)=10,46 м.

Как видите, потеря составляет 10 метров. Далее определяем Q1, смотри график:

Теперь делаем оригинальный расчет при расходе равный 64м 3 /час

Q=64 м 3 /ч = 0,018 м 3 /сек.

V = (4 0,018)/(3,14 0,1 0,1)=2,29 м/с

Re=(V D)/ν=(2,29 0,1)/0,00000116=197414

λ=0,11(Δэ/D + 68/Re) 0.25 =0,11 (0,0001/0,1 + 68/197414) 0,25 =0,021

h=λ (L V 2)/(D 2 g)= 0,021 (376 2,29 2,29)/(0,1 2 9,81)=21,1 м.

Отмечаем на графике:

Qmax находится на пересечении кривой между Q1 и Q2 (Ровно середина кривой).

Ответ: Максимальный расход равен 54 м 3 /ч. Но это мы решили без сопротивления на поворотах.

Для проверки проверим:

Q=54 м 3 /ч = 0,015 м 3 /сек.

Re=(V D)/ν=(1,91 0,1)/0,00000116=164655

Итог: Мы попали на Н пот =14,89=15м.

А теперь посчитаем сопротивление на поворотах:

Формула по нахождению напора на местном гидравлическом сопротивление:

ζ-Это коэффициент сопротивления. Для колена он равен примерно одному, если диаметр меньше 30мм. Для больших диаметров он уменьшается. Это связано с тем, что влияние скорости движения воды по отношению к повороту уменьшается.

Возьмем ζ = 1.

Скорость 1,91 м/с

h=ζ (V 2)/2 9,81=(1 1,91 2)/(2 9,81)=0,18 м.

Это значение умножаем на количество отводов и получаем 0,18 21=3,78 м.

Ответ: при скорости движения 1,91 м/с, получаем потерю напора 3,78 метров.

Давайте теперь решим целиком задачку с отводами.

При расходе 45 м 3 /час получили потерю напора по длине: 10,46 м. Смотри выше.

При этой скорости (2,29 м/с) находим сопротивление на поворотах:

h=ζ (V 2)/2 9,81=(1 2,29 2)/(2 9,81)=0,27 м. умножаем на 21 = 5,67 м.

Складываем потери напора: 10,46+5,67=16,13м.

Отмечаем на графике:

Решаем тоже самое только для расхода в 55 м 3 /ч

Q=55 м 3 /ч = 0,015 м 3 /сек.

V = (4 0,015)/(3,14 0,1 0,1)=1,91 м/с

Re=(V*D)/ν=(1,91 0,1)/0,00000116=164655

λ=0,11(Δэ/D + 68/Re) 0.25 =0,11 (0,0001/0,1 + 68/164655) 0,25 =0,0213

h=λ (L V 2)/(D 2 g)= 0,0213 (376 1,91 1,91)/(0,1 2 9,81)=14,89 м.

h=ζ (V 2)/2 9,81=(1 1,91 2)/(2 9,81)=0,18 м. умножаем на 21 = 3,78 м.

Складываем потери: 14,89+3,78=18,67 м

Рисуем на графике:

Ответ:
Максимальный расход=52 м 3 /час. Без отводов Qmax=54 м 3 /час.

Теперь я думаю вам понятно как происходит сопротивление движению потока. Если не понятно, то я готов услышать ваши коментарии по данной статье. Пишите коментарии.

Если Вы желаете получать уведомления
о новых полезных статьях из раздела:
Сантехника, водоснабжение, отопление,
то оставте Ваше Имя и Email.

Определение диаметра трубопровода

Потеря давления в трубопроводе, кроме прочего, зависит от расхода скорости потока и вязкости среды протекания. Чем больше количество пара, проходящего через трубопровод определённого номинального диаметра, тем выше трение о стенки трубопровода. Иными словами, чем выше скорость пара, тем выше сопротивление или потери давления в трубопроводе.

На сколько высоки могут быть потери давления определяется назначением пара. Если перегретый пар подается через трубопровод к паровой турбине, то потери давления должны быть по возможности минимальными. Такие трубопроводы значительно дороже обычных, причём больший диаметр, в свою очередь, приводит к значительно большим затратам. Инвестиционный расчёт основывается на времени возврата (срок окупаемости) инвестиционного капитала в сравнении с прибылью от работы турбины.

Этот расчёт должен основываться не на средней нагрузке турбины, а исключительно на ее пиковой нагрузке. Если, например, в течении 15 минут набрасывается пиковая нагрузка в 1000 кг пара, то трубопровод должен иметь пропускную способность 60/15x 1000 = 4000 кг/ч.

Расчёт

В главе далее — Работа с конденсатом, поясняется методика расчёт диаметра конденсатопроводов. В расчётах паро- воздухо- и водопроводов действуют примерно те же исходные принципы. В завершении этой темы в этом разделе будут приведены расчеты для определения диаметра паро- воздухо- и водопроводов.

В расчётах диаметров в качестве основной применяется формула:

, где:

Q = расход пара, воздуха и воды в м3/с.

D = диаметр трубопровода в м.

v = допустимая скорость потока в м/с.

В практике рекомендуется вести расчет по расходу в м3/ч и по диаметру трубопровода в мм. в этом случае выше приведённая формула расчёта диаметра трубопровода изменяется следующим образом:

, где:

D = диаметр конденсатопровода в мм.

Q = расход в м3/ч.

V = допустимая скорость потока в м/с.

Расчет трубопроводов всегда ведется по объёмному расходу (м3/ч), а не по массовому (кг/ч). Если известен только массовый расход, то для пересчёта кг/ч в м3/ч необходимо учитывать удельный объём по таблице пара.

Пример:

Удельный объем насыщенного пара при давлении 11 бар составляет 0,1747 м3/кг. Таким образом, объемный расход от 1000 кг/ч насыщенного пара при 11 бар будет составлять 1000 * 0,1747 = 174,7 м3/ч. Если речь будет идти о таком же количестве перегретого пара при давлении 11 бар и 300 °С, то удельный объём составит 0,2337 м3/кг, а объемный расход 233,7 м3/ч. Таким образом это означает, что один и тот же паропровод не может одинаково подходить для транспорта одного количества насыщенного и перегретого пара.

Также для случая воздуха и других газов расчет необходимо повторить с учетом давления. Производители компрессорного оборудования указывают производительность компрессоров в м3/ч, под которым понимается объем в м3 при температуре 0 °С.

Если производительность компрессора 600 мп3/ч и давление воздуха 6 бар, то объемный расход составляет 600/6 = 100 м3/ч. в этом также заключается основа расчета трубопроводов.

Допустимая скорость потока

Допустимая скорость потока в системе трубопроводов зависит от многих факторов.

  • стоимость установки: низкая скорость потока приводит к выбору большего диаметра.

  • потеря давления: высокая скорость потока позволяет выбрать меньший диаметр, однако вызывает большую потерю давления.

  • износ: особенно в случае конденсата высокая скорость потока приводит к повышенной эрозии.

  • шум: высокая скорость потока увеличивает шумовую нагрузку, напр. Паровой редукционный клапан.

В ниже приведенной таблице представлены данные норм относительно скорости потока для некоторых сред протекания.

Среда

Назначение

Скорость потока в м/с

пар

До 3 бар

10 – 15

3 – 10 бар

15 – 20

10 – 40 бар

20 – 40

Конденсат

Заполненный конденсатом

2

Конденсато-паровая смесь

6 – 10

Питательная вода

Трубопровод всаса

0,5 – 1

Трубопровод подачи

2

Вода

Питьевого качества

0,6

Охлаждение

2

Воздух

Воздух под давлением

6 – 10

* Трубопровод всаса насоса питательной воды: из-за низкой скорости потока низкая потеря давления, что препятствует образованию пузырьков пара на всасе питательного насоса.

Нормы для определения скорости потока

Примеры:

a) Вода

Расчет диаметра трубопровода для воды при 100 м3/ч и скорости потока v = 2 м/с.

D = √ 354*100/2 = 133 мм. Выбранный номинальный диаметр DN 125 или DN 150.

b) Воздух под давлением

расчет диаметра трубопровода для воздуха при 600 м3/ч, давление 5 бар и скорости потока 8 м/с.

Перерасчет с нормального расхода 600 м3/ч на рабочий м3/ч 600/5 = 120 м3/ч.

D = √ 354*120/8 = 72 мм. Выбранный номинальный диаметр DN 65 или DN 80.

В зависимости от назначения воды или воздуха выбирается трубопровод DN 65 или DN 80. Необходимо иметь ввиду, что расчет диаметра трубопровода усреднен и не предусматривает случая наступления пиковой нагрузки.

c) Насыщенный пар

Расчет диаметра трубопровода для насыщенного пара при 1500 кг/ч, давлении 16 бар и скорости потока 15 м/с.

В соответствии с таблицей пара удельный объем насыщенного пара при давлении 16 бар составляет v = 0,1237 м3/кг.

D = √ 354*1500*0,1237/15 = 66 мм.

И здесь должен быть решен вопрос DN 65 или DN 80 в зависимости от возможной пиковой нагрузки. В случае необходимости предусматривается также возможность расширения установки в будущем.

d) Перегретый пар

Если в нашем примере пар перегреет до температуры 300 °С, то его удельный объем изменяется на v = 0,1585 м3/кг.

D = √ 354*1500*0,1585/15 = 75 мм, выбирается DN 80.

Изображение 4.9 в форме номограммы показывает, как можно произвести выбор трубопровода без проведения расчета. На изображении 4-10 этот процесс представлен для случая насыщенного и перегретого пара.

е) Конденсат

Если речь идёт о расчёте трубопровода для конденсата без примеси пара (от разгрузки), тогда расчёт ведётся как для воды.

Горячий конденсат после конденсатоотводчика, попадая в конденсатопровод, разгружается в нём. В главе 6.0 Работа с конденсатом поясняется, как определить долю пара от разгрузки.

Правило к проведению расчёта:

Доля пара от разгрузки = (температура перед конденсатоотводчиком минус температура пара после конденсатоотводчика) х 0,2. При расчёте конденсатопровода необходимо учитывать объём пара от разгрузки.

Объём оставшейся воды в сравнении с объёмом пара от разгрузки настолько мал, что им можно пренебречь.

Расчёт диаметра конденсатопровода на расход 1000 кг/ч сконденсированного пара 11 бар (h2 = 781 кДж/кг) и разгруженного до давления 4 бар (h’ = 604 кДж/кг,v = 0,4622 м3/кг и r — 2133 кДж/кг).

Доля разгруженного пара составляет: 781 – 604/ 100 % = 8,3%

Количество разгруженного пара: 1000 х 0,083 = 83 кг/ч или 83 х 0,4622 -38 м3/ч. Объёмная доля разгруженного пара составляет около 97 %.

Диаметр трубопровода для смеси при скорости потока 8 м/с:

D = √ 354*1000*0,083*0,4622/8 = 40 мм.

Для сети атмосферного конденсата (v“ = 1,694 м3/кг) доля разгруженного пара составляет:

781 – 418/2258*100 % = 16 % или 160 кг/ч.

В этом случае диаметр трубопровода:

D = √ 354*1000*0,16*1,694/8 = 110 мм.

Источник: «Рекомендации по применению оборудования ARI. Практическое руководство по пару и конденсату. Требования и условия безопасной эксплуатации. Изд. ARI-Armaturen GmbH & Co. KG 2010»

Для более верного выбора оборудования можно обратиться на эл. почту: [email protected]

Расходомер пара. Промышленный учет пара на производстве

НАСЫЩЕННЫЙ И ПЕРЕГРЕТЫЙ ПАР, ОБЩИЕ ВОПРОСЫ, АСПЕКТЫ И ОСОБЕННОСТИ УЧЕТА

Учет пара — непростая задача, прежде всего, из-за его высокой температуры и давления. При этом температура насыщенного и перегретого пара влияет на другие параметры измеряемой среды

Например, когда степень сухости насыщенного пара падает ниже 70%, вследствие изменения параметров рабочего процесса, среда становится двухфазной.

Причины могут быть в повреждении теплоизоляции трубопровода или в превышении требуемого размера диаметра трубы. Это ведет к снижению температуры или давления.

Еще один фактор – коррозия и накипь, которые способствуют появлению в потоке механических включений. Кроме того, вероятно возникновение термоударов и гидроударов. Следовательно, средство измерения должно быть рассчитано на высокие перегрузки. В соответствии с требованиями нормативных документов по измерению пара расходомер должен иметь возможность коррекции показаний по температуре и давлению.

ИЗМЕРЕНИЕ ПАРА, ПРИМЕНЯЕМЫЕ МЕТОДИКИ И НОРМАТИВЫ

При всем разнообразии существующих методов измерения, выбор расходомеров для учета пара ограничен. В данной статье предлагаем рассмотреть два основных способа – с помощью сужающих устройств и вихревых расходомеров.

Первый метод предусматривает установку в трубопроводе сужающего устройства (СУ). Преимущественно в качестве СУ используются диафрагмы, но также возможно применение сопел, труб Вентури и других местных гидравлических сопротивлений.

При прохождении потока через диафрагму характер его течения меняется. Непосредственно перед сужающим устройством давление среды возрастает, а после него – снижается. Чем больше разница давления до диафрагмы и после неё, тем выше расход. 

Давление среды, а также его перепад на сужающем устройстве измеряют методами и СИ, соответствующими требованиям ГОСТ 8.586.5. Учет пара данным методом также регламентируется ГОСТ Р 8.586.1 – 2005, в котором, в частности, прописано, что по условиям применения стандартных сужающих устройств, контролируемая среда должна быть однофазной и однородной по физическим свойствам (п. 6.2.2), а её расход должен быть постоянным или медленно изменяющимся во времени. (п. 6.3.1)

Второй метод с помощью вихревых расходомеров основан на эффекте фон Кармана. За телом обтекания по обеим его сторонам в потоке происходит поочередное образование вихрей. Частота вихреобразования пропорциональна скорости потока. Измерив пульсацию давления, возникающего в потоке вихрей за телом обтекания, возможно узнать расход.

При учете пара вихревыми расходомерами, помимо расхода в рабочих условиях, также необходимо дополнительно измерять давление и температуру среды. Измеренные параметры поступают в тепловычислитель, который рассчитывает значение массы пара либо тепловой энергии.

Отметим, что для измерения массы насыщенного пара достаточно только одного внешнего датчика на выбор, поскольку определенное значение давления соответствует значению температуры.

Таблица температуры и давления насыщенных паров здесь

Алгоритмы расчета теплофизических свойств пара прописаны в методике Государственной службы стандартных справочных данных ГСССД МР 147-2008.

Как правило, в составе средств измерения указанные выше алгоритмы являются принадлежностью вычислителя или контроллера. Однако, применительно к вихревым расходомерам торговой марки «ЭМИС», такие алгоритмы являются составной частью программного обеспечения электронного блока вторичного преобразователя самого счетчика – расходомера.

В соответствии с данными алгоритмами «ЭМИС»-ВИХРЬ 200» самостоятельно осуществляет коррекцию и вычисления, благодаря возможностям электронного блока с функцией вычислителя («ВВ»), предусматривающего подключение внешних датчиков давления и температуры.

Прибор рассчитывает следующие параметры: мгновенный и массовый расход пара, его плотность, энтальпию и накопленную энергию.

Таблица: Параметры алгоритмов расчета

При этом важно отметить, что при поверке функции «ВВ» расходомера в момент его выпуска из производства данная процедура должна осуществляться с применением датчика давления и температуры.

Помимо встроенных аттестованных алгоритмов, в соответствие с ГСССД, в числе преимуществ вихревых расходомеров также следующие возможности:

-удаленная передача данных, в том числе беспроводная;
-цифровая фильтрация сигнала;
-имитационная поверка без снятия с трубопровода;
-бесплатное фирменное сервисное и диагностическое ПО «ЭМИС»-Интегратор».

Вместе с тем необходимо заметить, что при требовании или желании заказчика может поставляться узел учета тепловой энергии «ЭМИС-Эско 2210», в состав которого также будет входить вычислитель, как отдельное средство СИ.

ПРЕОБРАЗОВАТЕЛИ ПАРА, ТЕХНОЛОГИЧЕСКИЕ ТРЕБОВАНИЯ

Учитывая тот факт, что зачастую значение расхода пара изменяется, в зависимости от объемов производства и других факторов, существенную роль играет диапазон измерений. У вихревого расходомера этот показатель составляет от 1:20 до 1:40. Если же в качестве средства измерения используется сужающее устройство, то в комплектации с интеллектуальными датчиками давления его динамический диапазон с приемлемой для заказчика погрешностью будет в пределах 1:10. При этом стоимость комплекса будет сопоставима с вихревыми расходомерами.

Еще один важный момент, который надо учесть, это максимальная температура пара, которая может быть от +100 до +600 градусов. Расходомеры перепада давления способны работать во всем обозначенном диапазоне, предел для вихревых расходомеров составляет +450 градусов.

При этом прибор имеет конструктивные особенности и исполнения: перфорированную стойку, которая не допускает перегрева преобразователя, а также два датчика пульсации давления, расположенных за телом обтекания по обе стороны от него без выступления в проточную часть. Эти датчики также содержат пьезоэлементы, которые преобразуют пульсации давления в электрические сигналы.

Что касается температуры окружающей среды, то для вихревых расходомеров допускается эксплуатация при -60 градусах, в то время как в неотапливаемом помещении комплексы учета на сужающем устройстве требуют повышенного внимания: обеспечения подогрева и продувки импульсных линий во избежание их замерзания.

УЗЛЫ УЧЕТА ПАРА НА БАЗЕ ДИАФРАГМЫ

В 2020 году в продуктовой линейке компании «ЭМИС» ожидается появление измерительных комплексов на базе сужающих устройств, в качестве которых используется диафрагма, что стало закономерным шагом в связи с запуском в 2018 году производства интеллектуальных датчиков давления «ЭМИС»-БАР». Их основная приведенная погрешность составляет от ±0,04 %, что позволяет осуществлять учет методом перепада давления с требуемой точностью.

По запросу заказчиков, компания «ЭМИС» готова поставлять полностью укомплектованные комплексы, включающие диафрагму, интеллектуальные датчики абсолютного и дифференциального давления «ЭМИС»-БАР», термопреобразователь, откалиброванные прямолинейные участки, фланцы, импульсные трубки, клапанные блоки, конденсационные и уравнительные сосуды и другие комплектующие для монтажа.

Узлы учета пара на базе вихревых расходомеров.

Как уже говорилось ранее, для измерения пара компания «ЭМИС» по требованию или желанию заказчика может поставлять измерительные комплексы «ЭМИС-Эско 2210» как средство измерения (внесены в Госреестр СИ под №72830-18), в состав которых входят: вихревой расходомер «ЭМИС»-ВИХРЬ 200», датчик давления «ЭМИС»-БАР», тепловычислитель и первичный преобразователь температуры утвержденного типа.

При использовании узла учета «ЭМИС-Эско 2210», в составе которого имеется контроллер, сохраняются ранее перечисленные преимущества вихревых расходомеров, но при этом появляются и дополнительные:

  • архив глубиной не менее: часового – 60 суток, суточного – 6 месяцев, месячного– 36 месяцев;
  • часы реального времени;
  • соответствие Правилам коммерческого учета тепловой энергии, теплоносителя, утвержденным Постановлением Правительства РФ от  18.11.2013 №1034 (далее Правила).

Наилучшим подтверждением надежности измерений с использованием вихревых расходомеров является многолетний опыт эксплуатации. В частности, расходомеры «ЭМИС»-ВИХРЬ 200» уже более 10 лет безотказно выполняют задачи по учету теплоносителей на предприятии «Магнезит». В своём отзыве заказчик отмечает, что с 2010 года по настоящее время для учета перегретого пара используются три измерительных узла на базе приборов «ЭМИС»-ВИХРЬ 200». Замечаний по их работе не выявлено. В процессе эксплуатации расходомеры показали себя надежным средством измерения, полностью соответствующим заявленным производителем параметрам.

Положительные отзывы поступили от многих заказчиков, в числе которых также специалисты «Уральского электрохимического комбината», входящего в госкорпорацию «Росатом»:

«Службой Главного энергетика АО «УЭХК» более 10 лет на коммерческих узлах учета пара используются преобразователи расхода вихревые «ЭМИС»-ВИХРЬ 200» Ду – 25, 50, 150. Приборы установлены как в помещениях, так и на улице. Общее количество – 14 штук. За время эксплуатации замечаний к их работе не зафиксировано, отрицательных результатов поверки не отмечено».

УЗЛЫ УЧЕТА АИП НА БАЗЕ «ЭМИС»-ВИХРЬ 200″ И ДИАФРАГМЫ

Обратная связь от заказчиков и их пожелания зачастую становятся стимулом к поиску новых задач измерения расхода. Так по запросу одной из нефтедобывающих компаний в 2011 году инженерный центр ЗАО «ЭМИС» первым в России разработал и запатентовал узел учета пара с автономным источником питания.

Измерительный комплекс запитывается от теплогенератора (ТЭГ), тепловая энергия преобразуется в электрическую, а показатели измеряемых параметров передаются оператору по GSM-каналу.

Принцип действия ТЭГ основан на эффекте Пельтье. Генератор устанавливается на трубопроводе ниже по потоку после расходомера, датчиков давления и температуры. Питание с ТЭГ посредством специального преобразователя напряжения передается на измерительные приборы, расположенные в шкафу. Сигналы с них поступают на расчетно-измерительный преобразователь или в электронный блок вихревого расходомера, который осуществляет вычисления и архивирует результаты. Также он обеспечивает связь с ПК для конфигурирования и передачи любых измеренных параметров по каналам связи общего пользования GSM/GPRS с помощью контроллера.

По желанию заказчиков термоэлектрический генератор может быть применен в качестве автономного источника питания и для узла учета на базе диафрагмы. Сигналы с датчиков давления и температуры будут поступать на вычислитель, далее при помощи передающего контроллера измеренные и вычисленные значения будут передаваться в сеть по GSM/GPRS/.

ЗАО «ЭМИС», предлагая различные варианты технических решений по учету пара, стремится максимально удовлетворить все требования и пожелания Заказчика, руководствуясь при этом основными принципами:

  • целесообразности применения конкретного технического решения;
  • экономической выгоды Заказчика;
  • промышленной безопасности при эксплуатации.

Если у вас остались вопросы по работе расходомеров или узлов учета, вы можете задать свой вопрос инженерам компании “ЭМИС”:

Расчет сужающих устройств в программе КИП и А

Расчет сужающих устройств в программе КИП и А

Программа КИП и А

Общие положения

Блок расчета сужающих устройств (СУ) для измерения расхода среды впервые добавлен в программу КИП и А в версии 1.12, и будет совершенствоваться далее по мере развития программы и учета креативных замечаний ⁄ пожеланий пользователей программы.

Полностью основан на материалах ГОСТ 8.586.1-5-2005.

Расчеты абсолютно прозрачны, промежуточные результаты расчета выводятся в удобный отчет в виде WEB страницы. Примеры отчетов представлены в таблице:

Блок расчета сужающих устройств вызывается из списка главного меню при выбора пункта «Сужающие устройства». При этом появляется доступный перечень типов сужающих устройств для расчета расхода среды – диафрагмы, сопла ИСА 1932, эллипсные сопла и сопла Вентури. На рисунке 1 видно, что каждый тип сужающего устройства в свою очередь содержит виды сред, для которых производятся вычисления расхода. После выбора нужного типа СУ и измеряемой среды, появляется новое окно – карточка сужающего устройства для измерения расхода выбранной среды.

На рисунке 2 показано, что в качестве сужающего устройства выбрана диафрагма, а среда – природный газ.

Рисунок 1
Меню выбора типа сужающего устройства для расчета

Рисунок 2
Карточка сужающего устройства (диафрагма, природный газ)

При открытии карточки СУ, она заполняется предустановленными входными данными для данного типа сужающего устройства и измеряемой среды.
Расчет расхода при этом производится автоматически.

Необходимые данные для расчета расхода измеряемой среды

Для того, чтобы рассчитать сужающее устройство для расхода измеряемой среды, необходимо знать конструктивные особенности СУ и параметры среды, расход которой рассчитывается.
Подробно это описано в ГОСТ 8.586.1-5-2005, а кратко:

Конструктивные особенности устройства:

  • Диаметр сужающего устройства — d при температуре 20° – Измеряется или берется из паспортных данных на сужающее устройство.
  • Диаметр измерительного трубопровода — D при температуре 20° – Измеряется или берется из паспортных данных на сужающее устройство.
  • Материал сужающего устройства – сталь СУ – Паспортные данных на сужающее устройство.
  • Материал измерительного трубопровода – сталь ИТ – Паспортные данных на сужающее устройство.
  • Конструкция измерительного трубопровода – Паспортные данных на сужающее устройство.

  Только для диафрагм:

  • Начальный радиус кромки диафрагмы [rн] – Измеряется. Для новой принимаем 0,04 мм
  • Время эксплуатации диафрагмы с момента определения [rн] (лет)
  • Способ отбора давления – (угловой, трехрадиусный, фланцевый)

Параметры измеряемой среды:

  • Температура среды – предполагается или измеряется.
  • Атмосферное давление — предполагается или измеряется. Обычно 100 кПа.
  • Избыточное давление среды на входе сужающего устройства (то, что показывает манометр) — предполагается или измеряется.
  • *Динамическая вязкость – измеряется или вычисляется по таблицам ГСССД.
  • *Плотность в рабочих условиях (жидкость, пар) — вычисляется по таблицам ГСССД.
  • *Плотность в стандартных условиях (газ, смеси) — вычисляется по таблицам ГСССД.
  • *Показатель адиабаты (пар, газ) — вычисляется по таблицам ГСССД.
  • *Коэффициент сжатия (газ, смеси) — вычисляется по таблицам ГСССД.

(*) Для большинства популярных сред, параметры отмеченные звездочкой можно найти в учебном пособии: В.Г. Зезин, В.А. Лазуков «ОПРЕДЕЛЕНИЕ РАСХОДА СПЛОШНЫХ СРЕД МЕТОДОМ ПЕРЕМЕННОГО ПЕРЕПАДА ДАВЛЕНИЯ». Также, для расчета расхода пара и воды, в версии программы «КИП и А Professional» эти параметры расчитываются автоматически.

Работа с программой

Как уже было сказано выше, при открытии какой либо карточки сужающего устройства, она заполняется предустановленными данными из базы данных, которые нельзя удалить, или изменить в базе данных. Зато можно редактировать, сохранить под другим именем, дублировать, а потом открывать, закрывать и менять как угодно.

После заполнении данными карточки, сразу же происходит расчет сужающего устройства и формируется отчет, который можно посмотреть выбрав соответствующее действие из меню карточки СУ.

Можно посчитать расход измеряемой среды, в зависимости от перепада давления, параметров среды и конструкции сужающего устройства, а можно и наоборот,- посчитать обратно перепад давления на СУ в зависимости от расхода и параметров среды и конструкции.
Такая гибкость обеспечивается тем, что расчет сразу же производится при изменении какого либо параметра и нажатии кнопки ВВОД (на клавиатуре), или при изменении параметров сужающего устройства в списке выбора значений.

Итак:

  • При редактировании перепада давления на СУ, параметра среды, конструкции СУ – рассчитывается расход среды.
  • При редактировании параметра расхода – рассчитывается перепад давления на СУ.

Посмотрим на рисунки ниже:

Рисунок 3
Меню карточки сужающего устройства

Рисунок 4
Список сохраненных расчетов

На рисунке 3 показано меню карточки сужающего устройства. Оно имеет пункты:

  • Посмотреть отчет – просмотр параметров расчета, подробное описание всех входных, промежуточных и рассчитанных величин. Имеет форму WEB страницы.
    Примеры отчетов, формируемых программой приводились вначале статьи.
  • Справка он-лайн – вызов справки которую Вы сейчас смотрите
  • Открыть – открывается окно списка сохраненных отчетов, показанное на рисунке 4.
  • Сохранить – сохраняет редактируемую карточку сужающего устройства. (Кроме предустановленной)
  • Сохранить как — сохраняет карточку сужающего устройства с редактируемыми параметрами под другим именем. Но сохраненная карточка не становится при этом активной. Ее сначала нужно открыть, вызвав окно показанное на рисунке 4.

Необходимо отметить, что если нарушаются границы применения условий расчета (конструктивные СУ, параметры измеряемой среды), то после расчета выводится всплывающее предупреждение об ошибке, а в отчете соответствующее предупреждение красного цвета.

 

Расход пара — Энциклопедия по машиностроению XXL







Рассмотрим, например, принцип работы регулятора уровня воды в барабане котла. Регулятор, непрерывно измеряя расходы пара и питательной воды, поддерживает их равенство. Возникающая при изменении режима работы котла разница между расходами используется в качестве импульса для воздействия на регулирующий клапан питательной воды. Однако из-за неизбежной неточности выполнения этой операции возможно накопление ошибки, для устранения которой обязательно применяется коррекция по уровню воды в барабане.  [c.162]











Определить расход пара в пароводяном теплообменнике, рассмотренном в задаче 12-6, если расход воды составляет Oi== = 8 т/ч. Считать, что переохлаждение конденсата отсутствует.  [c.218]

Расход пара 02 = 4310 кг/ч поверхность иагрева F=2Q м количество трубок п = 200 высота трубок Я=2,5 м.  [c.226]

Найдем расход пара G2. При р= 127,5 кПа /а= 106,6° С i»= -2685 кДж/кг i = 447 кДж/кг  [c.226]

Теоретический массовый удельный расход пара на 1 Мдж составляет  [c.301]

Потери от необратимости, уменьшая полезную работу, увеличивают удельный расход пара  [c.301]

Влияние начального давления пара. При увеличении начального давления пара и одном и том же конечном давлении в конденсаторе термический к. п. д. паротурбинной установки значительно увеличивается, а удельный расход пара уменьшается.  [c.301]

Одновременно с увеличением начальной температуры уменьшается удельный расход пара. В настоящее время используют пар с температурой до 565° С и осваивается пар с температурой до  [c.302]

Массовый удельный расход пара на 1 Мдж равен  [c.304]

Расход пара на 1 будет  [c.307]

Расходы пара в местах отбора определяем из уравнений балансов тепла подогревателей, для которых принимается, что температура питательной воды й конденсата в каждом подогревателе равна температуре насыщения проходящего через него пара. Например, в первый подогреватель входит вода из второго подогревателя в количестве (/ — i) кг с энтальпией /о, а также пар из отбора турбины в количестве кг с энтальпией выходит же из подогревателя 1 кг питательной воды с энтальпией г п.в. Тогда уравнение теплового баланса первого подогревателя можно записать так  [c.307]

Аналогично рассуждая, можно определить расход пара в местах любого отбора.  [c.307]

Пример Т9-3. Паротурбинная установка работает по циклу Ренкина с перегретым паром при начальных параметрах pi = 20 бар, ti = 400° С и конечном давлении-рз = 0 05 бар. Определить термический к. п. д. цикла и удельный расход пара.  [c.316]

Расход пара на 1 Мдж составляет  [c.317]

Термический к. п. д. цикла и удельный расход пара определяют по уравнениям (19-2) и (19-3)  [c.320]

Найти диаметр паропровода, по которому протекает пар при давлении р = 1,2 МПа и температуре t = = — 260° С. Расход пара М = 350 кг/ч, скорость пара щ = 50 м/с.  [c.182]

Найти площади минимального н выходного сечений сопла, а также скорости истечения в этих сечениях, если расход пара М кг/с. Процесс расширения пара в сопле принять адиабатным.  [c.224]

Влажный пар при р, — 15,7 МПа и ж, = 0,95 вытекает из сопла Лаваля в среду с давлением == = 1,96 МПа. Расход пара А1 = 6 кг/с.  [c.224]












Найти площади минимального и выходного сечений сопла Лаваля, если известны параметры пара перед соплом Pi = 0,1 МПа, /j = 300° С. Давление за соплом Ра = 0,25 МПа. Расход пара через сопло Л4 = 720 кг/ч. Скоростной коэффициент ср = 0,94.  [c.228]

Удельный расход пара и теплоты при осуществлении идеального цикла Ренкина определяется следующим образом  [c.233]

Удельный расход пара в регенеративном цикле  [c.240]

Найти термический к. п. д. и мощность паровой машины, работающей по циклу Ренкина, при следующих условиях при впуске пар имеет давление Р1 — 1,5 МПа и температуру П = 300° С давление пара при выпуске Ра = 0,01 МПа часовой расход пара составляет 940 кг/ч.  [c.244]

Следовательно, расход пара паровой турбиной О = 2,77-12 000 = 33 240 кг/ч.  [c.244]

Удельный расход пара определяем по формуле (242)  [c.250]

Часовой расход пара, потребляемого турбинами,  [c.250]

Удельный расход пара на турбину  [c.251]

Определить термический к. п. д. установки, удельный расход пара и теплоту и улучшение термического к. п. д. в сравнении с такой же установкой, но работающей без регенеративного подогрева.  [c.253]

Удельный расход пара по формуле (242) составит  [c.254]

Легко видеть, что удельный расход пара без регенерации меньше, чем при регенеративном подогреве. Однако эта величина не характеризует экономичности процесса.  [c.254]

Определяем расход пара на подогрев питательной воды. Для этого находим ах и по формулам (257) и (258)  [c.256]

Следовательно, удельный расход пара  [c.256]

При вдувании через пористую стенку расход газа-охладителя ничем не ограничен и является независимым параметром системы. При испарении и сублимации увеличение расхода пара с поверхности сопровождается, с одной стороны, увеличением затраты теплоты на превращение жидкого или твердого вещества в пар, с другой стороны, — уменьшением интенсивности теплообмена между основным потоком и поверхностью из-за вдувания пара в пограничный слой основного потока. Поэтому стационарный процесс испарения или сублимации при заданных условиях течения внешнего потока наступает при такой скорости испарения, при которой интенсивность теплообмена обеспечивает баланс теплоты  [c.423]

При установке турбины с противодавлением каждый килограмм пара совершает полезную работу /,ех==Л —/l2 и отдает тепловому потребителю количество leiuiortJ = — h -2. Мощность установки по выработке электро-энергии Nn = (h[ — h.-i)D и ее тепловая мощность Qr. = (A2 —й ) О пропорциональны расходу пара О, т. с. жестко связаны. Это неудобно на практике, ибо графики потребности в электроэнергии и теплоте почти никогда не совпадают.  [c.66]

На паропроводе перегретого пара диаметром rf = 400 мм установлена измерительная диафрагма, которая должна быть специально иротарироваиа, т. е. должна быть найдена зависимость Ap = f(G), где Ар —перепад статических давлений в диафрагме, Па G — расход пара, кг/с.  [c.54]

Расход пара на 1 м трубки первого ряда Gi = ayip».S 3600 = = 35.0,0668 -1,25 — 0,016 -3600 = 168 кг/(м. ч).  [c.172]

Как изменятся среднелогарифмический температурный папор и расход пара для условий задач 12-6 и 12-7, если данление и.ч-ра повысить до р = 7-10 Па  [c.218]

Из рассмотрения цикла на рис. 19-11 следует, что использованная теплота на участке 2-3 для подогрева воды в процессе 4-5 уменьшает удельную полезиу]0 работу пара в регенеративном цнкле по сравнению с обычным циклом, т. с. рсгенеративн1.гй никл характеризуется большим удельным расходом пара.  [c.304]

Как определить термический к. п. д. и удельный расход пара в цикле Репкнна  [c.315]

Формулы (241)—(244) определяют термический к. п. д. и удельные расходы пара и теплоты в идеальном цикле паросиловой установки. Действительный цикл сопровождается неи збежными потерями, вследствие чего удельные расходы пара и теплоты увеличиваются. Так, в паровой турбине процесс расширения пара сопровождается потерями, связанными главным образом с трением.  [c.233]

Удельный расход пара и теплоты при отсутствии реге-Е1ерацни соответственно составит  [c.254]

Определить термический к. п. д. установки, улучшение термического к. п. д. по сравнению с циклом Ренкипа и часовой расход пара через каждый отбор.  [c.255]


ГОСТ Р 12.3.047-98. Приложение Н / Pozhproekt.ru

Приложение Н

(рекомендуемое)

МЕТОД РАСЧЕТА ПРОТИВОПОЖАРНЫХ ПАРОВЫХ ЗАВЕС

Н.1 Общие требования

Противопожарная паровая завеса предназначена для предотвращения контакта горючих газовых смесей, образующихся при авариях на предприятиях нефтехимической и газовой промышленности, с источниками зажигания (например нагревательными печами). Завеса должна обладать достаточными плотностью и дальнобойностью, исключающими проскок горючей смеси в защищаемую зону объекта. Выполнение этих требований достигается оптимальной компоновкой конструкции устройства, воспроизводящего завесу, и расчетом параметров завесы. Метод включает только расчет устройства, воспроизводящего паровую завесу. Расчет магистрального паропровода проводится по общеизвестным методам.

1 — защищаемый объект; 2 — ограждение; 3 — опора коллектора; 4 — коллектор; 5 — дренажный вентиль; h — высота верхней кромки ограждения над коллектором; hб — высота опоры; X— расстояние от коллектора до защищаемой стороны объекта; Х1расстояние от ограждения до коллектора

Рисунок H.1 — Схема устройства для создания паровой завесы

H.1.1 Устройство для создания паровой завесы (рисунок Н.1) представляет собой кольцевой трубчатый коллектор, вдоль оси которого по всей верхней части просверлены отверстия одинакового диаметра на равном расстоянии друг от друга. Диаметр и длину коллектора, количество и диаметр отверстий определяют расчетом.

Н.1.2 Коллектор располагается на металлических, бетонных или кирпичных опорах, высота которых должна быть не менее 0,2 м.

Н.1.3 Расстояние от коллектора до защищаемого объекта определяют расчетом.

Н.1.4 Коллектор должен иметь дренажные вентили для спуска конденсата или атмосферных осадков.

Н.1.5 Вдоль оси коллектора устанавливают жесткое газонепроницаемое ограждение (листовое железо или кирпичная стена) для предотвращения проскока горючей смеси между отдельными струями в начальном участке завесы. Верхняя кромка ограждения должна быть на 0,4—0,6 м выше коллектора. Расстояние между коллектором и ограждением определяют расчетом. Проемы в ограждениях должны быть постоянно закрыты плотными дверями.

Н.1.6 Траектория струи завесы должна превышать защищаемую зону. Высоту завесы над защищаемой зоной определяют расчетом. Для высоких объектов завеса может быть выполнена многосекционной в вертикальном направлении.

Н.1.7 Для обеспечения равномерной раздачи пара по длине коллектора необходимо, чтобы отношение суммарной площади отверстий к площади поперечного сечения коллектора было меньше или равно 0,3.

Н.1.8 Температуру воздуха при расчете принимать равной средней для наиболее холодного (зимнего) периода времени, характерного данному географическому району.

Н.1.9 Скорость ветра при расчете принимать равной средней скорости для наиболее ветренного периода, характерного данному географическому району.

 

Н.2 Порядок расчета параметров паровой завесы

Исходными величинами для расчета параметров завесы принимают:

— давление и удельный объем пара в коллекторе завесы;

— скорость ветра;

— плотность (температура) воздуха;

— высота и периметр защищаемой зоны объекта;

— высота верхней кромки ограждения над коллектором;

— высота опоры коллектора.

Рассчитывают следующие величины.

Н.2.1 Расстояние X, м, от коллектора завесы до защищаемого объекта

 

Х=0,25Н, (Н.1)

где Н— высота защищаемой зоны объекта, м.

Н.2.2 Длина коллектора Lкол, м

Lкол = Р + 8X, (Н.2)

где Р — периметр защищаемого объекта, м.

Н.2.3 Удельный расход пара из отверстий коллектора r 0 W0, кг/(м2 · с)

, (Н.3)

где r 0 — плотность пара, кг/м3;

W0 скорость выхода пара, м/с;

р1 — давление пара в коллекторе. Па;

V1 — удельный объем пара в коллекторе, м3/кг;

p2 — атмосферное давление, Па;

К — показатель адиабаты пара (для перегретого пара принять К = 1,3, для насыщенного пара К = 1,135).

Н.2.4 Диаметр отверстий на коллекторе d0, м

, (Н.4)

где r в — плотность воздуха, кг/м3;

Wв скорость ветра, м/с.

Если по условиям расчета задается диаметр отверстий, то следует определить высоту завесы Нз, м

, (Н.5)

Н.2.5 Расстояния между отверстиями l, м

(Н.6)

где h — высота верхней кромки ограждения над коллектором, м.

Н.2.6 Количество отверстий n, шт.

, (Н.7)

Н.2.7 Диаметр коллектора Dкол, м

, (H.8)

Н.2.8 Расход пара Gп, кг/с:

. (H.9)

где j — коэффициент расхода пара через отверстие (j от 0,6 до 0,8).

Н.2.9 Общая высота ограждения hогр, м:

hогр = h + hб. (Н.10)

где hб — высота опоры коллектора, м.

Н.2.10 Расстояние от ограждения до коллектора Х1, м:

Х1 = 0,25А. (Н.11)

Н.2.11 Длина ограждения Lогр, м:

Lогр = Lкол +8X1. (H.12)

Указанный порядок расчета проводят после ориентировочного выбора значений давления пара и диаметра отверстий в коллекторе по таблице Н.1.

Таблица Н.1— Изменение высоты завесы в зависимости от диаметра отверстий и давления пара

Р1 105Па d0, мм
  3 4 5 6 7 8 9 10
Wв =2м/с
3 3,30 4,05 4,7 5,3 5,9 6,5 7,0 7,5
4 4,00 4,80 5,5 6,3 7,0 7,6 8,2 8,7
5 4,50 5,40 6,3 7,2 7,9 8,7 9,3 10,0
6 4,85 5,80 6,7 7,7 8,5 9,3 10,0
7 5,25 6,30 7,3 8,3 9,2 10,0
8 5,50 6,60 7,6 8,7 9,5
9 5,75 7,00 8,0 9,2 10,0
10 6,15 7,40 8,5 9,8
12 6,70 8,00 9,3 11,0
14 7,10 8,50 10,0
16 7,50 9,00
Wв = 3 м/с
4 2,60 3,20 3,70 4,20 4,60 5,0 5,5 5,80
5 3,00 3,60 4,15 4,80 5,25 5,7 6,2 6,60
6 3,20 3,90 4,50 5,15 5,70 6,2 6,7 7,15
7 3,50 4,20 4,85 5,50 6,10 6,7 7,2 7,70
8 3,65 4,40 5,20 5,80 6,40 7,0 7,6 8,10
10 4,10 5,00 5,70 6,50 7,20 7,9 8,5 9,10
12 4,40 5,40 6,20 7,00 7,80 8,5 9,2 9,80
16 5,00 6,00 6,90 7,80 8,70 9,5 10,3
Wв = 4 м/с
4 2,40 2,80 3,1 3,50 3,8 4,1 4,4
5 2,80 3,10 3,5 3,90 4,3 4,6 5,0
6 2,42 2,92 3,36 3,8 4,25 4,6 5,0 5,4
7 2,60 3,16 3,60 4,1 4,60 5,0 5,4 5,8
8 2,70 3,30 3,80 4,3 4,80 5,2 5,6 6,0
9 2,90 3,45 4,00 4,5 5,00 5,5 5,9 6,3
10 3,10 3,74 4,30 4,9 5,40 5,9 6,4 6,8
12 3,30 4,10 4,70 5,1 5,90 6,4 6,9 7,4
15 3,60 4,40 5,00 5,7 6,30 6,9 7,4 8,0
Wв = 6 м/с
4 1,84 2,10 2,30 2,54 2,75 2,90
6 1,95 2,25 2,57 2,82 3,10 3,34 3,60
8 2,20 2,52 2,90 3,20 3,50 3,80 4,00
10 2,10 2,50 2,85 3,16 3,60 4,00 4,30 4,60
12 2,20 2,65 3,06 3,40 3,85 4,20 4,60 4,90
15 2,42 2,90 3,86 3,82 4,25 4,60 .5,00 5,35

В вертикальной графе даны значения давления пара, в горизонтальной — диаметры отверстий, а в пересечении горизонтальных и вертикальных граф высоты паровых завес (высота защищаемых зон) в метрах.

Таблица составлена для скоростей ветра 2, 3, 4 и 6 м/с. При больших скоростях ветра указанные величины следует принимать такими же, что и для 6 м/с. Таблица дает возможность оценить необходимое значение давления пара и соответствующий ему диаметр отверстий для обеспечения требуемой высоты завесы (высоты защищаемого объекта).

Для одного и того же давления пара высота завесы будет тем больше, чем больше диаметр отверстий. Однако с увеличением диаметра будет увеличиваться расход пара. Следует подбирать давление пара и диаметр отверстий таким образом, чтобы были обеспечены требуемая высота завесы и наиболее экономичный отбор пара. Диаметр отверстий следует принимать наименьшим из возможного (но не менее 3 мм) для каждого давления пара.

Пример — Расчет параметров паровой завесы для технологической трубчатой печи (радиантно-конвекционной с вертикальным движением газов).

Данные для расчета

Периметр защищаемой зоны Р = 20 м, высота защищаемой зоны Н = 6 м. В коллектор завесы имеется возможность подать перегретый пар давлением до р1 = 12 · 105 Па. Средняя температура наиболее холодного периода времени tв = — 15 °С (r в = 1,36 кг/м3). Атмосферное давление р2 » 105 Па. Скорость ветра Wв =2 м/с. Коллектор завесы удобно расположить на бетонных опорах высотой hб = 0,2 м, а высоту верхней кромки ограждения над коллектором завесы принять равной h = 0,5 м.

Расчет

Используя данные таблицы Н.1, определяем, что для защищаемой зоны высотой 6 м и давлением пара до 12 · 105 Па при скорости ветра 2 м/с целесообразно принять: р1 = 106 Па и d0 = 3 мм (в таблице для высоты завесы 6,15 м соответствует наименьший диаметр отверстия d0 = 3 мм и давление p1 = 106 Па). Удельный объем пара при р1 = 106 Па равен V1 = 0,2 м3/кг.

Расстояние Х от коллектора до защищаемого объекта:

Х = 0,25 Н = 0,25 · 6= 1,5 м.

Длина коллектора завесы Lкол:

Lкол= р + 8X = 20 + 8 · 1,5 = 32 м.

Удельный расход пара из отверстий коллектора r 0 W0:

Диаметр отверстий на коллекторе d0:

м = 3 мм.

Расстояние между отверстиями l:

м = 250 мм.

Количество отверстий п:

= 129 шт.

Диаметр коллектора завесы Dкол

м = 63 мм.

Расход пара Gп:

кг/с.

Общая высота ограждения hогр:

hогр = h + hб = 0,5 + 0,2 = 0,7 м.

Расстояние от ограждения до коллектора Х1:

X1 = 0,25h = 0,25 · 0,5 = 0,125 м.

Длина ограждения Lогp:

Lогp = Lкол+1 = 32 + 8 · 0,125 = 33 м.

Размер паровых труб (фунт / ч)

Приведенную ниже таблицу можно использовать для быстрого расчета паровых труб сч. 80.

  • в целом — 80 футов / сек. — рекомендуемая скорость пара

Для полного стола с большими размерами — поверните экран!

8

8 8

901 09 1132

90 109 1587

Производительность (фунт / ч)
Манометрическое давление
(фунт / кв. Дюйм)
Скорость пара
(фут / с)
Размер трубы (дюйм)
1/2 « 3/4″ 1 « 1 1/4″ 1 1/2 « 2″ 2 1/2 « 3″ 4 « 5 « 6″ 8 « 10″ 12 «
Внутренний диаметр (дюйм)
0.55 0,74 0,96 1,28 1,5 1,94 2,32 2,9 3,83 4,81 5,76 7,63 9,56 11,38
15 27 45 80 110 184 263 411 716 1130 8020 2810 4410 2810 44109 24 43 72 128 176 294 421 657

657

2593 4550 7142 10121
120 35 64 108 192 264 441 631 986 9010 9010

10713 15181
10 50 18 33 55 97 134 224 320 500 5438 7705
80 29 52 88 156 214

8

214

8 358 512

1396 2203 3159 5542 8701 12329
120 43 78 132 32 234 2095 3304 4738 8313 13051 18493
20 50 25 45 76 186109 186109 1210 1909 2737 4803 7540 10684
80 40 72

122 72

122

497 710 9010 8

1110 1936 3054 4379 7685 12064 17095
324 445 745 1066 1665 2904 4581 6569 11527 18096 25642
25642
170 234 391 559 873 1522 2401 3443 6042 9485 13440
13440
900

153 272 90 108

374 625 894 1396 2436 3842 5509

966104

120 75 136 230 408 560 937 1341 2095 3654 5762 8264 8264 8264 80 61 900 12 110 185 329 452 756 1081 1689

8

2947 2947 11694 18358 26013
120 91 165 278 494 678 9010 6971 9997 17541 27537 39020
60 50 51 92 155 275 378 275 378 3889 5577 9787 15364 21771
80 81 147 248 441 605

605 2262 3946 6223 8924 15659 24582 34833
120 908 1518 2172 3393 5918 9334 13386 23488 36873 52250
80 473 791 1768 3084 4864 6975 12239 19213 27225
80 102

102

757 1266 1810 2829 4934 7782 11160

8

11160

8

8

120 153 276 465 827 1135 1899 2716 4243 7401 111073

7401 1110108

100 50 90 108

76 138 233 413 568 950 1358 2122 3702 5839 8373 122 221 372 662 909 1520 2173 33109 3396 13397 23508 36905 52294
120 183 332 558 992 558 992 992 8885 14014 2 0096 35262 55358 78442
120 50 89 161 271 482 661 9752 17112 26864 38066
80 142 258 433 771 9011

771 9011

2531 3955 6899 10881 15603 27379 42982 609021

650 1156 2655 3797 5933 10348 16321 23405 41069 64473
150

806 1349 1929 3013 5256 8290 11888 20859 32747 46402

939 1290 2158 3086 4821 8409 13264 13264 9

13264 9 74243
120 260 471 793 1409 1935 3236 4628 7232 12614 198108 12614 198108
200 50 139 251 423 752 1032 1727 2469 3858 6730 10614 10614
80 222 402 676 1203 1652 2763 3951109

16982 24353 42732 67084 95058
120 333 603 1015 9010

16151 25473 36529 64098 100627 142588

Пример — определение размеров паропроводов

A 4 дюйма сорт.80 стальная труба с давлением пара 100 psi имеет производительность 5923 фунт / ч при скорости пара 80 футов / с .

Размеры паровых труб (кг / ч)

Пар — это сжимаемый газ, массовая пропускная способность трубопроводов которого зависит от давления пара. Размеры паропроводов можно выбрать по таблице и диаграмме ниже — давление в бар , скорость в м / с и производительность кг / ч .

Скорость пара 25 м / с в целом достаточна для большинства применений с насыщенным паром.

Для полноценного стола с большими размерами — поверните экран!

8

8

5

9009

12109

90 109 29

9010 9 256

900

110108

9010 9 1630

9

9010

144

9010 9 659

53109 229

90 021

Паропроизводительность (кг / ч)
Манометрическое давление
(бар)
Скорость пара
(м / с)
Номинальный размер трубы (мм)
15 20 25 32 40 50 65 80 100 125 150
Внутренний диаметр (мм)
15 .8 20,9 26,6 35,0 40,9 52,5 62,7 77,9 102,3 128,2 154,1
0,4 15 9 42 57 95 135 208 359 564 815
25 14

96 158 225 347 598 940 1358
112 153 252 360 5 55 958 1504 2173
0.5 15 9 16 26 45 61 101 144 222 383 602 869
27 43 75 102 168 240 370 638

638
40 24 43 69 120 163 269 384 592 1021 1604 2318

9007 15 10 18 29 51 69 113 162 250 431 676 97712
30 49 84 115 189 270 416 718

718
40 27 48 78 135 184 302 431 666 1148 1803
15 11 20 32 56 76 126 179 277 478 750 1084
33 54 93 127 210 299 462 796
40 30 53 86 149 204 335 478 738 1274 2000 21 34 59 80 132 188 291 501 787 1137
25 20 35 57 9810

314 484 835 1312 1895
40 32 56 91 502 775 1336 2099 3032
2 15 17 31 50 86 117 1151 1663
25 51 83 143 195 322 459 708 708

11

2771
40 47 82 133 229 312 515 734 1133 1954 23 40 65 113 153 253 361 557 960 1508 2178

109 188 421 601 928 1600 2513 3631
40 300 409 674 962 1485 2560 4021 5809
4 15 28 50 445 687 1185 1860 2688
25 47 83 134 23210

23210 742 1145 1974 3101 4480
40 75 132 214 371 505 832 9010 11109

7168
5 15 34 59 95 165 225 371 529 816 14010 900 900

900 56 98 159 275 375 618 881 1360

5321
40 9 0108

90 157 254 440 600 988 1409 2176 3752 5892 8514
9010 9 9010 9010 9010

191 260 429 611 944 1628 2556 3693
25 65 65 434 714 1019 1573 2713 4260 6155
509 694 1143 2517 4340 6816 9848
7 15 44 77 125 217 295 9010 2901 4192
25 73 129 209 361 492 492

1785 3079 4835 6986
40 118 206 334 578 7810 7736 11178
8 901 08

15 49 86 140 242 330 544 776 1198 2066 3245 4612
234 404 550 907 1294 1997 3444

3444 5

40 131 231 374 646 881 1451 2070 3195 5510 8653 170 294 400 940 1451 2502 3930 5678
25 99 175 283

1098 1567 2418 4171 6550 9464
40 159 9010
1758 2507 3869 6673 10480 15142
14 15 80 141 3371 5295 7650
25 134 235 381 659 898 1480 8 21109 8 21109 8 21109 8 21109 8825 12750
40 214 376 610 1055 1437 2368 33109

Приведенные выше значения рассчитаны для стальных труб средней толщины сортамента 40.При использовании других стандартов с другим внутренним диаметром указанные выше значения следует компенсировать.

Пример — пропускная способность

50 мм паровая труба

Производительность паропровода 50 мм с давлением 10 ba r и скоростью пара 25 м / с составляет 1098 кг / ч .

Правильный подбор паропроводов

Размер паровых труб или правильный размер паропроводов снижает падение давления и радиационные потери.
Паровая труба меньшего диаметра вызывает большой перепад давления и приводит к паровому голоданию в месте использования.Напротив, паровые трубы увеличенного диаметра никоим образом не наносят вреда работе установки, но приводят к ненужному увеличению капитальных затрат на установку. Кроме того, трубы большого размера также увеличивают эксплуатационные расходы из-за потерь на излучение.

Подбор размеров паропровода можно выполнить двумя способами, а именно:

A. Скорость

B. Падение давления

A. Размер трубы на основе скорости

Расчет размеров паропровода основывается на удельном объеме пара при использовании скоростного метода.Для линий сухого насыщенного пара рассматриваемые скорости находятся в диапазоне 25-35 м / с. или 80-120 футов / сек. Для перегретого пара скорость может достигать 40 м / сек.

Иллюстрация

Рассмотрим паропровод с паром, проходящим через него под давлением 5 бар и расходом 2000 кг / час. Плотность пара при давлении 5 бар составляет 3,11 кг / м3. Учтите, что пар движется со скоростью 25 м / с. Следовательно, размер трубы можно рассчитать по формуле:

D = 4 XQ / (π X V X ρ)

Где,

D = Диаметр трубы (мм)

Q = Расход пара (кг / час)

В = скорость пара (м / с)

Ρ = плотность пара (кг / м3)

Используя формулу,

Размер трубы = 100 мм

Однако определение размеров паропроводов на основе скорости не учитывает длину паропроводной сети и ход.Чем длиннее сеть, тем больше будет падение давления, и, следовательно, это снизит доступное давление в точке использования.

B. Определение размеров трубы на основе падения давления

Размеры паропровода можно рассчитать на основе падения давления по следующей формуле

(P 11.9375 — P 2 1.9375) / L = Q 1.853 / 0,0103063 * D4.987

Где,

P1 = начальное давление (бар абс.)

P2 = Конечное давление (бар)

L = Длина трубы (м)

Q = Расход пара

D = внутренний диаметр трубы (мм)

Иллюстрация

Рассмотрим, например, паропровод, имеющий давление на входе 8 бар абс. И давление на выходе 7 бар абс.Учтите, что длина трубы составляет 3 м, и она рассчитана на расход пара 3000 кг / час. По приведенной выше формуле размер трубы равен 80 мм.

Калькулятор диаметра трубы и расхода, онлайн

Когда применим этот калькулятор?

Расчет диаметра трубы с помощью калькулятора диаметра трубы очень прост.
Вы можете использовать калькулятор диаметра трубы и расхода для быстрого расчета диаметра трубы.
в замкнутых, круглых, прямоугольных (только версия онлайн-калькуляторов) и заполненных трубах с жидкостью или чистым газом.

Если система, которую вы анализируете, имеет более одной трубы, вы можете использовать
калькулятор расчета трубопроводной сети

Для расчета диаметра трубы с помощью этого калькулятора вы должны знать и ввести скорость потока.
Если скорость потока неизвестна, вы должны использовать
падение давления
калькулятор для расчета диаметра трубы. Вы можете использовать калькулятор падения давления, когда перепад давления
между началом и концом трубопровода (потеря напора) доступна как известное значение.

С помощью калькулятора диаметра трубы внутренний диаметр трубы рассчитывается по формуле
простое соотношение между расходом, скоростью и площадью поперечного сечения (Q = v · A).

Для расчета внутреннего диаметра трубы вам следует ввести только расход и скорость в
соответствующие поля в калькуляторе и нажмите кнопку «Рассчитать», чтобы получить результаты.

Другие значения, помимо внутреннего диаметра трубы, также могут быть рассчитаны.Вы можете рассчитать скорость потока для данного расхода жидкости.
и внутренний диаметр трубы. Поскольку скорость разная в разных местах трубы
площади поперечного сечения, средняя скорость потока рассчитывается на основе
уравнение неразрывности.

Расход, используемый в калькуляторе, может быть массовым или объемным.

Преобразование между массовым и объемным расходом доступно для данной плотности жидкости.Кроме того, для идеальных газов преобразование объемного расхода для различных условий потока.
(давления и температуры), поэтому вы можете быстро рассчитать объемный расход
от определенного давления или определенной температуры в трубе, например, после редукционных клапанов.

Если текущая жидкость представляет собой идеальный газ, вы можете рассчитать объемный расход этого газа при
различное давление и температура. Например, если вам известен объемный расход
некоторый идеальный газ при некотором заданном давлении и температуре (например, при нормальном
условия p = 101325 Па и T = 273.15 K), вы можете рассчитать фактический объемный расход
для давления и температуры, которые фактически находятся в трубе (например,
реальное давление и температура в трубопроводе p = 30 psi и t = 70 F).
Объемный расход идеального газа в этих двух условиях различен.
Узнать больше о
нормальные условия

по давлению и температуре.

С помощью этого калькулятора вы можете преобразовать объемный расход из стандартного или другого
предопределенные условия к фактическим условиям и наоборот.В калькуляторе используется закон сохранения массы.
для расчета объемного расхода для этих двух условий, что означает постоянство массового расхода,
несмотря на это, условия, например, давление и температура меняются.

Закон сохранения массы применим, только если поток
в закрытой трубе, без добавленного или вычитаемого потока, если поток не
изменение во времени и ряд других условий.Узнать больше о массе

сохранение массы.

Так когда это не применимо?

Этот калькулятор имеет практически безграничное применение, но некоторые функции зависят от нескольких
условия.

Как упоминалось выше, расчет диаметра трубы с помощью этого калькулятора невозможен, если вы не
уверен в скорости потока и объемном / массовом расходе.Если что-то из этих двух отсутствует, вам следует
использовать
Калькулятор падения давления.

Вы должны знать плотность жидкости, если доступен массовый расход вместо объемного расхода.
Если плотность жидкости недоступна, и известен только массовый расход, то требуется объемный расход.
расчет диаметра трубы невозможен.

Для идеальных газов плотность жидкости не является обязательной, если вы знаете давление, температуру и газовую постоянную для
проточный газ.Калькулятор использует уравнение идеального газа для расчета плотности.
Однако, если текущая текучая среда является газом, но не идеальным (идеальным) газом, то есть, если это давление, температура и плотность не связаны в соответствии с
закон идеального газа, этот калькулятор не применим, если вы
пытаются вычислить эту плотность газа для известного давления и температуры.

Что нужно знать, чтобы рассчитать диаметр трубы?

Чтобы рассчитать диаметр трубы, вы должны знать скорость потока и расход.Если вам известен массовый расход, то необходимо знать плотность жидкости.

Если текущая жидкость представляет собой газ, то вместо плотности вы должны знать газовую постоянную, абсолютное давление и температуру. Плотность рассчитывается по уравнению для идеального газа.

Что нужно знать, чтобы рассчитать скорость потока?

Чтобы рассчитать скорость потока, вы должны знать скорость потока и внутренний диаметр трубы.Если вам известен массовый расход, то необходимо знать плотность жидкости.

Если текущая жидкость представляет собой газ, то вместо плотности вы должны знать газовую постоянную, абсолютное давление и температуру. Плотность рассчитывается по уравнению для идеального газа.

Как производится расчет?

При вычислении диаметра трубы и скорости потока используется уравнение неразрывности, которое дает соотношение между скоростью потока, скоростью потока и внутренним диаметром трубы.

Для потока газа уравнение идеального газа используется для расчета плотности на основе газовой постоянной, абсолютного давления и температуры.

Завод Инжиниринг | Пять распространенных ошибок при выборе размеров паропровода

Так как пар является сжимаемым газом; давление и объем обратно пропорциональны. По мере увеличения давления пара объем занимаемого им пространства (удельный объем) уменьшается. Таблицы пара и графики давления / удельного объема (рис.1) полезны для правильного количественного определения отношения между давлением пара и объемом к размеру трубопровода.

Размеры трубопровода следует выбирать с учетом скорости жидкости и перепада давления. Для скорости соотношение между скоростью насыщенного пара, удельным объемом и диаметром трубы составляет:

В = (2,4QVs) / A

где:

В = Скорость, фут / мин

Q = Расход пара, фунт / час

VS = удельный объем при давлении потока, фут3 / фунт

A = Площадь внутреннего сечения трубы, дюйм3

Для определения размера по перепаду давления используйте вариант уравнения Д’Арси, который рассчитывает потерю давления из-за трения для прямой трубы постоянного диаметра для жидкостей с достаточно постоянной плотностью.

dP = (pfLv 2 ) / (144D2g)

где:

dP = Перепад давления, фунт / кв. Дюйм

p = Плотность жидкости, фунт / фут3

f = коэффициент трения (безразмерный, см. Таблицу на предыдущей странице)

L = Длина трубы, фут

v = Скорость потока, фут / сек

D = Внутренний диаметр трубы, фут

г = Гравитационная постоянная (32.2 фут / сек2)

Поскольку значения «f» сложны, они обычно берутся из таблиц.

Постоянная скорость после PRV

Площадь поперечного сечения нижнего трубопровода должна быть больше в том же соотношении, что и изменение объема. Обратитесь к таблицам пара для определения удельного объема насыщенного пара для двух давлений, затем рассчитайте отношение давления на выходе к давлению на входе (всегда больше 1).

Используйте уравнение скорости для определения площади поперечного сечения стороны высокого давления для расчетной скорости и расхода.Затем умножьте площадь поперечного сечения на коэффициент, чтобы определить, какой должна быть площадь поперечного сечения стороны низкого давления. Используйте таблицы размеров труб, чтобы найти диаметр трубы для используемой спецификации труб.

Трубопровод после ловушек

С учетом пара мгновенного испарения, трубопровод для конденсата должен быть рассчитан с учетом двухфазного потока (наличие пара и конденсата). Часть трубы будет занята паром мгновенного испарения, а остальная часть — конденсатом.

Для линий возврата конденсата и вентиляционных труб рекомендуется не более 50–66 футов / сек.Доступны программы определения размеров и номограммы, которые объединяют расчеты размеров для размера емкости мгновенного испарения, линии конденсата и линии выпуска пара мгновенного испарения в одной таблице (рис. 2). Это может помочь правильно определить размер всех компонентов двухфазного потока.

Трубопроводы возврата конденсата

Размер конденсатной линии

можно проверить с помощью легко доступных диаграмм или программ, коррелирующих скорость потока, скорость потока, падение давления и диаметр трубы. Примените к этим результатам потери на трение на длину участка трубопровода и эквиваленты трения (на прямой длине трубы) различных тройников, колен и других фитингов на линии.

Проверить производительность установленных конденсатных насосов по отношению к расходу в обратной линии. Электрические насосы обычно имеют мощность перекачки 2

.

Помимо калибровки труб

Правильный выбор размеров паропровода важен не только для энергоэффективности, но и для безопасности. Подача пара хорошего качества при требуемом потреблении и давлении пользователя. Используя соответствующие инструменты, паровую систему можно настроить для оптимальных условий с минимальными потерями тепла и вниманием к техническому обслуживанию.

Эти соображения по выбору размеров подчеркивают важность периодического аудита паровой системы, особенно при изменении технологического оборудования, а также при изменении характеристик котла или рабочих условий. Этот недорогой процесс и связанные с ним меры по оптимизации могут сохранить эффективность, ремонтопригодность и безопасность предприятия.

Подробнее:

Вопросы о размерах паропровода следует направлять по телефону 800-833-3246. Для получения дополнительной информации о допуске пара мгновенного испарения в трубопроводе см. «Проектирование соединений гидравлических систем», Spirax Sarco, Inc., 12-е изд. Статью отредактировал Джозеф Л. Фощ, старший редактор, 630-288-8776, [email protected]

Данные о трении трубы

Размер трубы , дюйм 1 1/ 1 2 2 4 5 6 8-10 12-16 18-24
Коэффициент трения , f 0,027 0.025 0,023 0,022 0,021 0,019 0,018 0,017 0,016 0,015 0,014 0,013 0,012

5 типичных проблем с размером трубы:

Распределительный трубопровод неправильного размера из-за неоптимальной скорости пара.

Негабаритный распределительный трубопровод из-за изменившихся условий эксплуатации котла

Трубопроводы меньшего размера после редукционных клапанов из-за того, что не учитываются изменения скорости пара и удельного объема.

Трубопровод конденсата меньшего размера после ловушек без учета наличия двухфазного потока.

Линии возврата конденсата неправильного размера из-за невозможности отличить сжатый конденсат от перекачиваемого.

% PDF-1.6
%
7295 0 объект
>
эндобдж

xref
7295 73
0000000016 00000 н.
0000003834 00000 н.
0000003973 00000 н.
0000004178 00000 н.
0000004308 00000 п.
0000004896 00000 н.
0000005659 00000 н.
0000005950 00000 н.
0000006587 00000 н.
0000007063 00000 н.
0000007404 00000 н.
0000007530 00000 н.
0000007608 00000 н.
0000007903 00000 н.
0000008174 00000 н.
0000008834 00000 н.
0000009373 00000 п.
0000009486 00000 н.
0000009601 00000 п.
0000009750 00000 н.
0000010391 00000 п.
0000010677 00000 п.
0000010796 00000 п.
0000010945 00000 п.
0000011315 00000 п.
0000013433 00000 п.
0000013557 00000 п.
0000013714 00000 п.
0000013744 00000 п.
0000015668 00000 п.
0000017220 00000 п.
0000017943 00000 п.
0000018088 00000 п.
0000018117 00000 п.
0000020003 00000 п.
0000020627 00000 н.
0000020763 00000 п.
0000021391 00000 п.
0000021420 00000 н.
0000021760 00000 п.
0000022011 00000 п.
0000023476 00000 п.
0000025225 00000 п.
0000025512 00000 п.
0000026110 00000 п.
0000026605 00000 п.
0000026696 00000 п.
0000028175 00000 п.
0000029879 00000 н.
0000034118 00000 п.
0000034237 00000 п.
0000035581 00000 п.
00000 00000 п.
00000 00000 н.
0000096132 00000 п.
0000096246 00000 п.
0000096359 00000 н.
0000096614 00000 п.
0000101198 00000 н.
0000101282 00000 н.
0000101339 00000 н.
0000101435 00000 п.
0000101533 00000 н.
0000110106 00000 п.
0000167530 00000 н.
0000167602 00000 н.
0000167808 00000 н.
0000168078 00000 н.
0000168151 00000 н.
0000210433 00000 п.
0000211075 00000 н.
0000003547 00000 н.
0000001813 00000 н.
трейлер
] >>
startxref
0
%% EOF

7367 0 объект
> поток
6.! vhTto8? Hb:

Калькулятор расхода газа | AP Tech

Одноступенчатые регуляторы давления для цилиндров в точках использования. Входное давление находится в диапазоне от вакуума до 4500 фунтов на квадратный дюйм (310 бар), а выходное давление — от абсолютного до 500 фунтов на квадратный дюйм (34 бар). Номинальный расход составляет от нескольких кубических сантиметров до 5000 л / мин N2 при размерах трубопровода от дюйма до 1 дюйма.

Компактные одноступенчатые регуляторы давления для приложений с ограниченным пространством, например, внутри технологического инструмента.Доступны конфигурации IGS, уплотнения C и W в дополнение к обычному торцевому уплотнению. Абсолютное давление до 7 бар (100 фунтов на кв. Дюйм) при расходе от нескольких кубических футов в минуту до 100 л / мин.

Широкий спектр одноступенчатых регуляторов давления с пневматическим приводом (PA) для регулирования давления вместо обычного ручного нагружения пружины.

Одноступенчатые регуляторы давления для более высоких давлений — до 10 000 фунтов на кв. Дюйм (690 бар) на входе и выходе.Эти преимущественно поршневые устройства являются предпочтительными регуляторами для давлений нагнетания выше 300 фунтов на кв. Дюйм (20 бар) и размеров трубопроводов от до ½ дюйма.

Регуляторы давления, у которых нет смачиваемой тарельчатой ​​пружины. Доступны четыре модели: от мини-регулятора, цилиндрического регулятора среднего расхода до линейного регулятора, который может подавать 300 л / мин N2.

Одноступенчатый регулятор для аналитических приложений, требующих испарения поступающей пробы.Пар используется для передачи тепла для испарения.

Регуляторы давления, которые обеспечивают двухступенчатое снижение давления за счет объединения двух одноступенчатых регуляторов в общем корпусе. Доступны две модели, отвечающие большинству требований к двухступенчатым регуляторам. Двухступенчатый регулятор — это интегрированный блок, в отличие от двух отдельных одноступенчатых регуляторов, соединенных последовательно, которые также обеспечивают двухступенчатое регулирование.

Системы автоматического переключения баллонов, которые обеспечивают переключение баллона с пустого на полный баллон на основе давления.

Регулятор противодавления — это в основном прецизионное устройство сброса давления, которое используется для регулирования максимального давления в газовой системе. Доступна единственная модель.

Доступен широкий диапазон мембранных клапанов с пневматическим приводом с рабочим давлением до 4 500 фунтов на кв. Дюйм (310 бар) со смесью нормально закрытых (NC) и нормально открытых (NO) конфигураций.

Доступен широкий диапазон ручных клапанов с номинальным давлением до 4 500 фунтов на кв. Дюйм (310 бар) с размерами трубопроводов до 1 дюйма.Широкий выбор типов срабатывания в сочетании с опциями блокировки / фиксации (LOTO), размерами и номинальными значениями давления обеспечивает клапан для большинства требований.

Мембранные клапаны, герметизирующие металл по отношению к металлу, без мягкого пластикового седла.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *