Сколько литров воды в радиаторе отопления: Сколько реальных кВт тепла в одной секции радиатора
Сколько реальных кВт тепла в одной секции радиатора
Сколько кВт в 1 секции чугунного, биметаллического, алюминиевого или стального радиатора? Реальное количество киловатт, которое пишут производители, не соответствует действительности. А это очень важно! Используя завышенные данные вы не сможете рассчитать количество секций.
На рынке представлены четыре вида батарей отопления – чугунные, биметаллические, алюминиевые и стальные. Они отличаются дизайном, объемом, размерами и стоимостью. Но прежде всего вам важно знать, их теплопроизводительность – от этого зависит, насколько хорошо они будут обогревать помещение.
Что нужно знать про мощность радиаторов?
Теплоотдача радиатора зависит от температуры теплоносителя и воздуха в помещении. Чем больше эта разница, тем лучше он отдает тепловую энергию.
Наглядный пример:
Если в помещении 0 градусов, то батарея будет остывать быстрее, чем если бы в комнате было +24. Соответственно – он отдает больше тепла. Получается, при 0 градусов мощность отопительного прибора больше.
Производители часто заявляют завышенные технические характеристики. Они показывают мощность для разницы температур в 65-70 °С. А в реальности перепад температур составляет 35-50 градусов.
Поэтому, если вы видите в инструкции тепловую мощность секции в 200 Вт при ΔТ = 70, реально она составляет 150-160 Вт (ΔТ обозначает перепад температур).
Зная значение реальной мощности можно подсчитать необходимое количество секций в онлайн-калькуляторе.
Сколько кВт в одной секции алюминиевого радиатора
Тепловая мощность секции алюминиевого радиатора зависит от объема воды, которая находится в ней. Стандартные объемы – 0,35 и 0,5 л.
Алюминиевые батареи отдают тепло на 50-60% за счет излучения и на 40-50% в виде конвекции. Отсекатель воздуха усиливает конвекцию на 20-25%, что повышает теплоотдачу.
При температуре воздуха 20-24 °С и воды в контуре 65-70 °С тепловая мощность одной алюминиевой секции составляет:
- Объем 0,35 л.
, без отсекателя – 0,1-0,12 киловатт;
- Объем 0,35 л., с отсекателем – 0,12-0,13 киловатт;
- Объем 0,5 л., без отсекателя – 0,155-0,170 киловатт;
- Объем 0,5 л., с отсекателем – 0,170-0,200 киловатт.
Точное количество теплоотдачи сложно назвать – оно зависит от особенностей конструкции, диаметра труб, толщины ребер. На производительность влияет тип подключения батареи, скорость прокачки воды, загрязненность внутренних поверхностей.
Алюминиевый радиатор без отсекателей воздуха.
Сколько кВт в одной секции чугунного радиатора
Производительность тепла чугунного радиатора зависит от объема воды, толщины стенок, наличия ребер, высоты и ширины секции. Существует несколько стандартных моделей чугунных батарей, заявленная теплоотдача одной секции которых составляет:
- МС-140 – 175 Вт;
- МС 140-500 – 195 Вт;
- МС 140-300 – 120 Вт;
- МС 110-500 – 150 Вт;
- МС 100-500 – 135 Вт;
- МС 90-500 – 140 Вт.
В классификации первое число обозначает ширину вертикального чугунного протока, второе – ее высоту.
Стандартный 6-секционный чугунный радиатор МС-140-500.
Современные чугунные батареи отличаются от стандартных изделий марки МС. Они могут иметь другие размеры и дизайн, есть модели с отсекателями воздуха. Производители заявляют производительность одной секции в пределах от 150 до 220 Вт.
Если показатели тепловой мощности приводятся для разницы температур ΔТ в 60-70 градусов, они отличаются от реальных.
Для батарей с температурой воды 55-60 °С реальная производительность составит 75-85%, для батарей с температурой воды 65-70 °С – порядка 85-90% от указанной в спецификации производителя.
Сколько киловатт в одной секции биметаллического радиатора
Биметаллические радиаторы по внешнему виду сложно отличить от алюминиевых. Они также могут быть оборудованы отсекателями воздуха, а уровень теплоотдачи в основном зависит от высоты.
Как и в случае с алюминиевыми, данные в спецификациях изготовителей отличаются от реальных. Соответственно, чтобы однозначно ответить на вопрос сколько квт в 1 секции биметаллического радиатора, нужно знать все условия. Поэтому приводим информацию для температуры воды в контуре 65-70 градусов.
Тепловая мощность секции биметаллического радиатора отопления без отсекателей воздуха:
- 200 мм – 0,5-0,6 кВт;
- 350 мм – 0,1-0,11 кВт;
- 500 мм – 0,14-0,155 кВт.
Сколько кВт одной секции биметаллического радиатора с отсекателями воздуха:
- 200 мм – 0,6-0,7 кВт;
- 350 мм – 0,115-0,125 кВт;
- 500 мм – 0,17-0,19 кВт.
Радиатор стальной: сколько киловатт в 1 секции
Стальные радиаторы принципиально отличаются от чугунных, алюминиевых и биметаллических. Они изготавливаются не отдельными секциями, а в виде цельного нагревательного прибора.
Тепловая производительность стального радиатора зависит от его высоты, ширины, количества конвекторов. Различают три типа радиаторов:
- Тип 11 – один конвектор;
- Тип 22 – два конвектора;
- Тип 33 – три конвектора.
Для удобства приводим таблицу тепловой мощности стальных радиаторов (значения приведены в Вт).
Таблица теплоотдачи стальных радиаторов.
Как и в предыдущем случае, приведенные значения номинальные. Для теплоносителя температурой 55-60 °С реальная теплоотдача составит 75-85%, для 65-70 °С – 85-90%.
В статье мы приводим реальные значения, сколько киловатт тепла может давать одна секция радиатора. Они меньше чисел, указываемых производителями, но мы не обманываем наших читателей.
Не забудьте поделиться публикацией в соцсетях!
как посчитать количество воды в одной секции, видео и фото
Для автономного отопления на данный момент строительный рынок предлагает большое количество разных обогревательных приборов, в том числе – из алюминия и их мощность зависит от того, какой объем воды в алюминиевом радиаторе, то есть, от ёмкости.
Конечно, это не единственный фактор, влияющий на теплоотдачу – сюда также входит и конфигурация отопителя, но мы на данный момент говорим о секционных батареях, размер которых (количество секций) можно менять по своему усмотрению. Более подробно о таких отопителях мы поговорим ниже по тексту, а кроме того, мы ещё хотим предложить вам тематическую демонстрацию видео в этой статье.
Алюминиевые отопительные приборы
Алюминиевые отопительные приборы
Технические характеристики
Обратите внимание!
Если вы хотите приобрести качественную продукцию, то при покупке обратите внимание на его массу.
Так, инструкция указывает на то, что масса одной секции не может быть меньше килограмма, а сборка десятисекционной батареи с учётом ниппелей не может быть менее 11 кг!
Прибор в разрезе (экструзионный)
Объем одной секции алюминиевого радиатора во многом зависит от способа его изготовления, а таких способов есть только два – это литьевой и экструзивный.
- Более технологичным специалисты считают производство продукции литьевым методом – он позволяет получить цельносварной секционный корпус. Безусловно, там есть шов, но он выполняется контактной сваркой. Безусловно, цена такой продукции получается несколько выше.
- А вот метод прессования или экструзионный, представляет процесс, когда из сплава с очень высоким содержанием Al (98%) выдавливают несколько элементов. Их соединение производится механическим путём и при этом используется клей высокого качества. Продукция, полученная методом экструзии, обладает высокой устойчивостью к коррозии, а основным её недостатком (слабым местом) можно назвать механический способ соединения.
Поточная линия для покраски радиаторов в Златоусте
- Определить эксплуатационные свойства помогает не только объем воды в алюминиевом радиаторе отопления, но также его форма – ребристая и секционная. Ребристость позволяет осуществлять максимально возможный контакт с воздухом в помещении, что способствует его скорейшему нагреванию, а секции позволяют уменьшать и увеличивать прибор по мере необходимости, в зависимости от объёма отапливаемого помещения.
- Кроме того, защитой от коррозии является покраска продукции в два слоя. Малярные работы, как правило, выполняются на специализированных поточных линиях, которую обслуживают всего несколько человек (см. фото вверху). Подобные процессы осуществляются в два этапа – сначала, методом анафореза накладывается первый слой, что обеспечивает антикоррозийную защиту и цветовую устойчивость для следующего покрытия. Вторым слоем уже напыляют порошковую эмаль, что мы и видим на готовом изделии.
Наименование | Расстояние между осями (мм) | Габариты (мм) | Диаметр коллекторов (дюйм) | Коэффициент теплопередачи | Объём воды в секции (л) | Теплоотдача
(Вт) |
Масса |
GLOBAL KLASS | 800 | 80x80x882 | 1/2-3/4 | 5,58 | 0,59 | 254 | 2,16 |
700 | 80x80x782 | 1/2-3/4 | 5,83 | 0,54 | 232 | 1,91 | |
600 | 80x80x682 | 1/2-3/4 | 6,0 | 0,49 | 204 | 1,66 | |
500 | 80x80x585 | 1/2-3/4 | 6,44 | 0,44 | 187 | 1,41 | |
350 | 80x80x432 | 1/2-3/4 | 6,76 | 0,37 | 131 | 1,01 | |
GLOBAL VOX | 800 | 80x80x890 | 1/2-3/4 | 5,69 | 0,56 | 276 | 2,21 |
500 | 80x80x590 | 1/2-3/4 | 6,34 | 0,46 | 193 | 1,45 | |
350 | 80x80x440 | 1/2-3/4 | 6,79 | 0,35 | 145 | 1,12 | |
GL 200/80/D | 200 | 80x80x290 | 1/2-3/4 | 7,79 | 0,52 | 165 | 1,42 |
GL 350/80/D | 350 | 80x80x440 | 1/2-3/4 | 7,19 | 0,7 | 247 | 2,21 |
GLOBAL VIP | 500 | 80x80x590 | 1/2-3/4 | 6,37 | 0,43 | 195 | 1,62 |
350 | 80x80x440 | 1/2-3/4 | 6,73 | 0,35 | 147 | 1,3 | |
GLOBAL VIX R | 500 | 80x80x590 | 1/2-3/4 | 6,49 | 0,43 | 190 | 1,16 |
350 | 80x80x440 | 1/2-3/4 | 6,8 | 0,36 | 145 | 1,57 | |
GLOBAL ISEO | 500 | 80x80x582 | 1/2-3/4 | 6,56 | 0,44 | 180 | 1,31 |
350 | 80x80x432 | 1/2-3/4 | 6,93 | 0,34 | 152 | 1,05 | |
600 | 80x80x682 | 1/2-3/4 | 6,35 | 0,47 | 203 | 1,5 | |
700 | 80x80x782 | 1/2-3/4 | 6,16 | 0,52 | 232 | 1,68 |
Таблица: габариты, масса, теплоотдача и объем секции алюминиевого радиатора
Проводим вычисления мощности
Примечание. Для того чтобы все вычисления соответствовали действительности, важно место, куда вы собираетесь установить радиатор.
Так, как правило, это делают под окном – тёплый воздух от отопительного прибора, поднимаясь вверх, создаёт своеобразную ширму, которая защищает комнату от холодных потоков, движущихся от стекла.
Батарея под окном в режиме эксплуатации
Итак, посчитать объем воды в алюминиевом радиаторе, как вы понимаете, не составляет какой-либо проблемы – для этого достаточно знать объём одной секции и их количество, а затем сложить эти значения вместе (см. таблицу).
Точно так же вы можете определить и мощность батареи, если знаете номинальное значение одной секции и их количество, но давайте посмотрим, как рассчитать этот показатель для комнаты определённой величины.
Если высота потолков не превышает 2,7м, то вычисления можно вести по квадратуре, и мы для примера возьмём комнату с площадью (S) 4,5×5,5м, тогда S=4,5*5,5=24,75м2, и воспользуемся радиатором GLOBAL KLASS с мощностью секции 232 Вт.
Нам, для подсчёта количества секций понадобится формула S*100/P, где 100, это необходимое количество ватт на квадратный метр, а P, это мощность одной секции. Значит, Kколичество секций=S*100/P=24,75*100/232=10,66 или 11 секций (объем воды в одной секции алюминиевого радиатора здесь 0,54л, значит, 0, 54*11=54,54л).
Теперь возьмём параметры того же отопительного прибора и такую же площадь, но высоту потолков – 3м, тогда нам понадобится делать расчеты на м3, где необходимо 41Вт теплоотдачи.
Объём помещения (V) у нас получается 4,5*5,5*3=74,25м3, значит, разделим его на мощность одной секции. У нас получится Kколичество секций=V*41/P=74,25*41/232=13,1 или 14 секций, чтобы был запас.
Заключение
Как вы видите, своими руками можно не только установить, но рассчитать необходимое количество секций для подборки нужной мощности радиатора и определить, сколько вам при этом придётся греть воды.
Такие выкладки крайне необходимы при ремонте или строительстве, так как, благодаря ним, мы не просто добиваемся максимального комфорта в помещении, но и определяем наши будущие расходы, то есть, частично формируем семейный бюджет.
Какой объем воды должен быть в радиаторах отопления: таблица заполнения батарей
От автора: здравствуйте, дорогие читатели! Если вам понадобилась показывающая объем воды в радиаторе отопления таблица, то, скорее всего, вы живете в частном доме. Обитателям многоквартирников редко нужна данная информация, поскольку они никак не могут повлиять на уровень заполнения батарей — да это, собственно, и ни к чему, поскольку всем занимается соответствующая организация. Единственное знание, которое вам необходимо в данном случае — это уровень давления, который может выдерживать тот или иной радиатор. Эту информацию вы можете получить из соответствующей статьи на нашем портале.
Что касается частных домов, то здесь картина иная. Автономная система отопления, ее создание, обслуживание — все это зависит исключительно от хозяев жилища. В этом деле важна каждая деталь: материал изготовления труб, мощность отопительного котла, тип радиатора и многое другое. Все это приходится учитывать при обустройстве отопительной системы.
И не последним фактором является то, сколько теплоносителя вам понадобится для ее заполнения. От этого зависит многое:
- вес заполненного радиатора. Например, этот момент очень актуален для чугунных батарей. Они и сами по себе не отличаются низкой массой, а уж будучи заполненными теплоносителем становятся еще тяжелее. Учитывая, что батареи подвешиваются на стену, можно понять, что к их весу стоит относиться довольно трепетно,
- расчет мощности нагревательного котла и циркуляционного насоса. Естественно, эти показатели зависят от того, с каким количеством теплоносителя придется работать оборудованию. Грубо говоря, если котел рассчитан на 50 литров, а вы запустите в систему сто, то для нагрева такого объема прибору придется работать на износ, что приведет и к его быстрому выходу из строя, и к некачественному прогреву всех элементов отопительной системы,
- выбор размера радиатора. Для этого необходимо учитывать то, какой тип циркуляции будет применяться в вашей отопительной системе. В случае с естественной радиатор должен быть большим и, соответственно, помещать в себя немалое количество жидкости. В случае с принудительной циркуляцией на размер батарей можно не обращать особого внимания, поскольку насос успешно доставит теплоноситель по всем конечным целям, сохранив ему нужный уровень нагрева,
- работа с антифризом. Нередко этот состав используется для заполнения отопительной системы. О преимуществах такого подхода на нашем портале есть немало информации, и при необходимости вы легко сможете ее найти. Здесь же напомним вот о чем: для заполнения системы антифриз необходимо разводить водой. Естественно, для этого вам понадобится знать, какое именно количество готового теплоносителя пойдет в систему. Во-первых, так вы сможете закупить именно нужное количество антифриза. Во-вторых, сможете грамотно разбавить его водой так, чтобы концентрация получилась на должном уровне,
- выбор расширительного бака. Понятно, что его объем также зависит от общего количества жидкости в отопительной системе.
Естественно, для всего этого вам нужно учесть, сколько теплоносителя необходимо для заполнения каждого элемента отопительной системы: нагревательного котла, труб и батарей. В принципе, любые необходимые технические показатели вы можете взять из документации, которая прилагается ко всем этим элементам.
Проведение расчетов
Если же сопровождающие документы по каким-то причинам недоступны, то стоит знать, как провести расчеты самостоятельно. Конечно, они могут не дать абсолютно верный результат, но вам и не нужна точность вплоть до миллилитра.
Расчет обычно делается по секциям — то есть, сколько литров жидкости помещается в один сегмент батареи. Соответственно, при наращивании или удалении этих элементов вам будет легко подогнать нужное значение в соответствии с количественным изменением.
Существуют стандартные средние показатели для каждого вида радиатора. Именно на них можно опираться — берете определенное значение, умножаете на количество секций, вот и весь расчет. Изначальный показатель зависит от того, к какой разновидности принадлежит радиатор — а точнее, из какого материала он сделан. Но об этом давайте подробнее.
Алюминиевый радиатор
Одна из самых популярных разновидностей батарей делается из алюминия. Он легкий, прочный, обладает эстетичным видом и долгим сроком эксплуатации. Что касается показателей объема теплоносителя, то в каждую секцию алюминиевой батареи помещается около 450 мл жидкости.
Конечно, стоит учитывать, что данное значение приведено для батареи стандартных размеров. Если ваш радиатор отличается от обычных — например, сделан довольно маленьким для лучшей гармонизации с интерьером — то лучше все же поискать техническую документацию, которая прилагалась к изделию, или обратиться к производителю с данным вопросом.
Чугунная батарея
Чугун ничуть не уступает популярностью алюминию. Это наиболее привычная многим из нас разновидность батареи, поскольку раньше чугунные изделия устанавливались повсеместно. Грубоватый вид компенсировался высокой прочностью и долговечностью. Кроме того, чугун не ржавеет и не обрастает накипью — в общем, это один из самых подходящих вариантов для обустройства отопительной системы.
При вычислении показателя объема теплоносителя следует учитывать, какие именно изделия будут использоваться в вашем доме — старые или новые. Дело в том, что последние обладают несколько иной конструкцией. Внутри них теплоносителю отводится гораздо меньше места, чем в случае со старыми. К слову, на качестве работы изделия это никак не сказывается.
Так вот, в одну секцию новой чугунной «гармошки» помещается всего литр воды. А если вы решили использовать старые радиаторы, то вам понадобится гораздо больше теплоносителя — 1,7 литра на каждый сегмент.
Биметаллический радиатор
В производстве биметаллических агрегатов используется два вида металла: алюминий и сталь. Из первого делается корпус. А вот трубка, по которой течет теплоноситель, стальная. Стоит отметить, что в случае с биметаллом секций обычно нет, поэтому расчет жидкости идет сразу на весь радиатор. Как правило, для него достаточно 250 мл воды.
При расчетах также следует учесть, насколько новым является радиатор. Трубка, по которой течет жидкость, со временем немного сужается из-за различных отложений. Этот фактор нужно учитывать. Поэтому вам может пригодиться эта таблица:
Источник: robotyry.ru
С ее помощью вы сможете получить нужный показатель как для радиаторов, так и для всей отопительной системы в вашем доме.
Простой способ
Существует и другой способ определения объема теплоносителя, не требующий обладания какой-либо информацией. Все предельно просто. Закрываете на батарее все заглушки и наполняете ее водой с помощью мерной емкости. При этом, естественно, считаете, сколько жидкости влезло.
По окончании процедуры сливаете из радиатора все набранное. Конечно, производить все эти операции необходимо либо в ванной, либо во дворе, чтобы не затопить дом. На основании полученного показателя вы вполне можете сориентироваться по общему объему теплоносителя для вашей отопительной системы. Успехов!
для чего необходимо это знать?
Вряд ли кто-то задумывался над тем, какое количество теплоносителя заливается в батарею отопления. А ведь это важная величина, от которой зависит инерционность всей отопительной системы, время прогрева и режим ее работы. Особенно часто этот вопрос поднимается, когда дом отапливается индивидуальным котлом и от объема воды зависит не только полноценное тепло, но и подборка основного и дополнительного оборудования под СО.
Что нам дадут знания о количестве воды в радиаторе?
Если до этого момента вы не ставили перед собой задачу выяснить, сколько теплоносителя в батарее, то сейчас самое время заняться подсчетами. Причин для этого несколько:
- большое количество воды может утяжелить радиатор, а чугунные приборы и без того имеют не малый вес. Зная литраж батареи, можно без труда подобрать подходящие крепления, которые выдержат и вес оборудования и воды в нем;
- определенная мощность котла требует нужного количества теплоносителя, чтобы работа оборудования была полноценной;
- количество воды в батареи определяет выбор расширительного бачка нужного объема;
- для вычисления нужного количества концентрированного антифриза, который смешивается с определенным объемом воды;
- для выбора размера радиатора в соответствии с типом циркуляции теплоносителя — естественной или принудительной.
Если в городских квартирах вопросом расчета воды для системы отопления занимаются ответственные за это организации, то в частных домах это целиком и полностью забота хозяина. Чтобы СО работала полноценно, нужно высчитывать, сколько жидкости нужно подавать, чтобы она заполнила все контуры и секции радиаторов.
Как высчитывается количество воды?
В случае с отопительным котлом, ответ на вопрос о количестве теплоносителя можно найти в технической документации производителя оборудования. Объем для труб высчитывается в соответствии с их внутренним диаметром.
Формула для расчета литража трубы такая: S (площадь сечения трубы) х L (длина трубы) = V (объем).
К полученному результату приплюсовывают объем котла и расширительного бака. Окончательная сумма указывает на необходимое количество жидкости для всей системы отопления.
Изменяется количество теплоносителя в зависимости от типа радиатора и его высоты:
- алюминиевый 300 мм — 0,3 л/м;
- алюминиевый 500 мм — 0,5 л/м;
- биметаллический 300 мм — 0,3 л/м;
- биметаллический 500 мм — 0,39 л/м;
- чугунный импортный 300 мм — 0,5 л/м;
- чугунный импортный 500 мм — 0,6 л/м;
- чугунный МС-140 300 мм — 3 л/м;
- чугунный МС-140 500 мм — 4 л/м.
Если радиатор был создан своими руками и на него нет документации, то вычислить объем воды в нем можно следующим образом. Одно входное отверстие закрывается заглушкой и в батарею заливается вода до самого верха. После жидкость сливается и определяется ее литраж. В среднестатистический настенный котел помещается от 3 до 6 литров теплоносителя. А вот в напольное оборудование можно залить до 25 литров.
Принцип лучше меньше, чем больше в случае с радиаторами отопления не работает. Если воды в системе окажется мало, возникнут воздушные пробки и батареи будут холодными. Также с малым количеством жидкости не будет произведено достаточное давление, и отопительный котел просо не будет функционировать, как положено.
Сколько воды в одной секции алюминиевого радиатора: способы расчета объема
В наше время замена старых чугунных батарей на новые модели стала не данью моде, а жизненной необходимостью. Опасение за безопасность отопительной системы и попытки снизить стоимость коммунальных услуг привели к тому, что все больше потребителей останавливают свой выбор на алюминиевых радиаторах, которые отличаются от других видов обогревателей, как техническими характеристиками, так и ценой. Одним из важных параметров является объем радиатора отопления.
Параметры алюминиевых радиаторов
Технические характеристики батарей отопления – это первое, на что обращает внимание потребитель перед покупкой. Самыми важными показателями действительно качественного изделия являются:
- Уровень теплоотдачи одной секции, так как от него зависит:
- Во-первых, сколько элементов потребуется для обогрева одной комнаты.
- Во-вторых, насколько тепло будет в комнате благодаря радиатору.
- В-третьих, каким станет микроклимат в помещении.
- Устойчивость к гидроударам и рабочее давление алюминиевого радиатора.
- Стоимость готового изделия.
Объем одной секции алюминиевого радиатора указывает на его мощность и во многом зависит от того, каким способом он был изготовлен.
Если батарея была сделана методом литья, то такой цельносварный секционный элемент обладает высокой прочностью и устойчивостью к перепадам давления. Подобное изделие стоит несколько дороже, и по цене можно понять, произведено оно на отечественных мощностях или импортное. Как правило, вторые дороже, но и процент брака у них крайне низкий.
Если алюминиевая батарея была изготовлена методом прессования, то ее детали соединялись при помощи клея, что делает ее уязвимой. Такому радиатору нестрашна коррозия, но повышенное давление может вывести его из строя.
Емкость одной секции алюминиевого радиатора, не зависимо от того каким методом он был произведен, практически одинаковая, но то, что литая модель прочнее и долговечнее, быстрее нагревается и ее можно регулировать по размеру, ставит их на первое место по продажам.
Виды теплоносителей
Как правило, вопрос о том, какой теплоноситель используется в централизованной системе отопления, не задается, так как там всегда по теплопроводу течет вода. Другое дело автономный обогрев, где можно выбрать оптимальный вариант для конкретного дома с учетом климата региона, где он построен.
- Антифриз для отопительных систем уже много лет применяется для обогрева загородных домов и прекрасно проявил себя. Его лучшие качества (способность не замерзать при температуре до -70 градусов) особенно хороши в зданиях, где нет постоянного проживания людей. Дачники могут закрыть дом, приезжать несколько раз месяц, чтобы прогревать его, и не переживать, что с их отопительной системой что-то случится.
- Спиртсодержащие теплоносители имеют сходные с антифризом свойства, только способны не замерзать при -30 градусах. Их использование не желательно в жилых домах, так как подобные жидкости содержат в составе этиловый спирт, который не только легко воспламеняется, но и опасен для человека.
- Вода в автономных системах обогрева хороша исключительно там, где алюминиевые радиаторы находятся под присмотром, то есть люди постоянно проживают в квартире или частном доме. У нее есть один показатель, который не «нравится» алюминию – способность вызывать у металлов коррозию. Если производится слив носителя из системы на летний период, то к началу нового сезона батареи могут дать течь из-за коррозии, «съевшей» металл. Жильцам следует оставлять теплоноситель в системе, чтобы этого не произошло.
Вязкость у всех трех теплоносителей разная, а производители, указывая объем алюминиевого радиатора, подразумевают, что в нем будет вода. Покупая подобное устройство для отопительной системы, например, на антифризе, следует соотнести его характеристики с вместимостью батареи.
Почему важен объем радиатора
Расчет, сколько литров в одной секции алюминиевого радиатора важен по нескольким причинам:
- Когда устройство монтируется на настенные кронштейны, следует предусмотреть не только его вес, но и теплоносителя внутри. Рассчитать, сколько весит вода легко, сверившись с техпаспортом изделия. Если в нем заявлено, что объем, например, секции алюминиевого радиатора с межосевым расстоянием 500 равен 0.27 л, то воды в нем помещается 270 мл.
- Знание объема батареи позволит подобрать котел нужной мощности. Особенно это важно, когда теплоносителем является антифриз. Обладая достаточно высокой вязкостью, ему требуется хороший «толкач», иначе медленное продвижение носителя по системе сделает ее работу не эффективной.
- Выбор расширительного бака, на котором многие потребители экономят при установке алюминиевых батарей, так же зависит от количества теплоносителя в отопительной системе. Он берет на себя любые перепады давления, чем «спасает жизнь», как обогревателям, так и трубам. Вода, нагреваясь, увеличивается в объеме на 4%, и если не предоставить ей дополнительного места для этого, то разрыв цельности системы, это только вопрос времени.
- От объема радиатора иногда зависит способ движения теплоносителя по сети. Например, батареи с большой вместимостью хорошо подойдут для естественного типа циркуляции.
Учитывая, на какое количество факторов влияет объем батарей отопления, этот параметр следует учитывать при выборе изделий из алюминия.
Расчет объема алюминиевого радиатора
Определить вместительность батареи отопления можно двумя способами:
- При помощи расчетов. Для этого потребуется таблица, в которой указано, сколько воды вмещается в алюминиевом радиаторе отопления. Подобная информация должна присутствовать в документах изделия или иметься у продавца. В ней указывается не только межосевое расстояние, но и масса, и объем устройства. Например, алюминиевому радиатору с расстоянием 350 мм между верхним и нижним коллектором для одной секции потребуется 0.19 л воды.
- Самым универсальным является измерение объема радиатора при помощи наполнения его водой. Для этого потребуется:
- Поставить заглушки на нижние отверстия и начать набирать воду.
- Когда жидкость начнет выливаться из верхнего отверстия, на него ставится заглушка.
- Набирать воду в наливное отверстие до тех пор, пока радиатор полностью не заполниться.
- Подсчитать, сколько литров жидкости было залито в батарею.
Это, хотя и весьма трудоемкий способ, но самый надежный и точный, так как производители могут завышать или занижать параметры своих изделий в технической документации.
Подбирая тип радиатора, следует обращать внимание на разницу в параметрах отечественных и зарубежных производителей. Некоторые показатели могут выглядеть весьма привлекательно, но не подходить для централизованной советской отопительной системы. Так же нужно заранее продумать, какой теплоноситель в сети будет использоваться, и произвести расчеты с указанием его вязкости.
Подводя итоги, можно сказать, что объем алюминиевого радиатора – это важный параметр, который нужно учитывать, чтобы в дальнейшем система работала по-настоящему эффективно.
Полезное видео
Определяем объема радиатора отопления
Теплоноситель в системе отопления – это не только водопроводная вода, которая закачивается внутрь за счет своего давления. К примеру, в загородных поселках нередко воду заливают в отопление ведрами, доставая ее из колодца или близлежащего водоема. Или вообще используют незамерзающие жидкости. Второй вариант используется нечасто только из-за дороговизны материала, но тот, кто планирует проживать на даче или загородном коттедже только по выходным и праздникам, пользуется именно незамерзающими жидкостями, чтобы каждый раз не сливать теплоноситель из отопительной системы. Поэтому расчет объема теплоносителя – важный показатель, в который входит объем радиатора отопления, объем труб и отопительного котла.
Емкость котла указана в паспорте изделия. Этот показатель будет в основном зависеть от мощности агрегата и его размеров. Объем труб можно определить из специальных таблиц:
Диаметр (мм) | Объем одного погонного метра (л) |
---|---|
15 | 0,177 |
20 | 0,31 |
25 | 0,49 |
32 | 0,8 |
40 | 1,25 |
50 | 1,96 |
Чтобы определить общий объем необходимого теплоносителя, который будет помещаться только в трубы, необходимо измерить их общую длину и умножить на показатель из таблицы. Если вы пользуетесь проектом для сооружения отопительной системы, то все необходимые расчеты и замеры можно провести по нему.
Ниже рассмотрим популярные способы расчета объема радиатора отопления.
Рассчитываем объем радиатора
Итак, остается только определить объем воды в радиаторе отопления. Как это можно сделать проще всего? Советуем опять-таки воспользоваться таблицами. Обращаем ваше внимание, что производители предлагают на рынке различные модели отопительных приборов. В модельной линейке могут оказаться радиаторы не только разной конструкции, но и разных размеров. В плане размерного ряда в основе лежит межосевое расстояние, то есть, это расстояние между осями двух коллекторов (верхнего и нижнего). К тому же в настоящее время производители предлагают приборы на заказ, в которых используются индивидуальные эскизы и рисунки. С определением емкости этих батарей все намного сложнее.
Но давайте вернемся к данному показателю и покажем усредненные величины для приборов отопления. Берем модели вида 500 (межосевое расстояние).
Технические характеристики чугунных радиаторов
- Чугунный радиатор ЧМ-140 старого образца – 1,7 литра объем одной секции.
- То же самое только нового образца – 1л.
- Стальной панельный прибор тип 11 (то есть, одна панель) – 0,25 л на каждые 10 см длины прибора. Измерение типа в количественном соотношении увеличивает объем теплоносителя на 0,25 л. То есть, тип 22 – 0,5 л, тип 33 – 0,75 л.
- Алюминиевая батарея – 0,45 л на каждую секцию.
- Биметаллический – 0,25 л.
В данном списке нет стальных трубчатых радиаторов. Даже приблизительный объем у этой модели определить будет непросто. Дело все в том, что производители используют для их изготовления трубы различных диаметров, отсюда и невозможность подобрать хотя бы усредненный вариант. Поэтому рекомендуем обращать внимание на паспортные данные, где показатель объема должен быть указан.
Расчет объема опытным путем
А если такового показателя нет, что делать? Тогда рекомендуем найти объем батареи отопления практическим путем. Как это можно сделать:
- Устанавливаете три заглушки на радиатор.
- Ставите его на торец так, чтобы открытый патрубок находился сверху.
- Берете мерную емкость, к примеру, ведро или ковшик (то есть вы должны знать объем этой емкости, пусть даже приблизительный).
- Теперь заливаете вручную в батарею обычную воду, при этом считаете, сколько ведер вошло в отопительный прибор. Умножая количество на объем ведра, вы получаете объем теплоносителя в приборе.
Радиаторы отопления
Обратите внимание, что этот способ определения объема прибора отопления может быть использован для всех типов и моделей. Если в паспортных данных емкость прибора не указана, и таблицу определения вы не нашли, то опытным путем, своими руками можно достаточно точно определить данный показатель.
Теперь хотелось бы затронуть тему, как влияет емкость батареи отопления на общую теплоотдачу отопительной системы. Здесь зависимость не прямая, а косвенная. Поясним суть дела. Многое будет зависеть от того, как сам теплоноситель будет двигаться по контурам: под действием физических законов (то есть, с естественной циркуляцией) или под искусственным давлением (под действием циркуляционного насоса).
Если выбран первый вариант, то оптимальное решение – радиаторы с большим объемом. Если второй, то тут разницы никакой нет. Давление создаст условия, при которых теплоноситель будет распределяться равномерно по всей сети, а, значит, равномерно распределиться и температура.
Подробнее об определении объема радиатора отопления смотрите в видео:
Вам также будет интересно:
ToughSF: Все радиаторы
На каждом космическом корабле будут радиаторы. Такая энергия, как солнечный свет, реакторы, жилые помещения и ракетные двигатели, накапливается в виде тепла, если не удаляется с помощью излучения.
Мы рассмотрим, как работает этот важный компонент, а затем рассмотрим существующие, будущие и возможные конструкции.
Стефан Больцманн
На Земле тепло покидает транспортное средство посредством теплопроводности, конвекции и излучения. В космическом вакууме только излучение отводит избыточное тепло.
Радиаторы Международной космической станции. |
Космические корабли подвергаются воздействию солнечного света в космосе, который они поглощают в виде тепла через корпус. Различное бортовое оборудование производит отходящее тепло из-за своей различной неэффективности, с разной скоростью и температурой. Даже бригада способствует выработке отработанного тепла. Если это отработанное тепло не удалить, оно будет накапливаться и повышать температуру космического корабля, пока не расплавится. По этой причине радиаторы очень важны.
Радиаторы работают за счет излучения электромагнитной энергии. Он состоит из фотонов с длиной волны, определяемой температурой излучателя.
Угадайте, при какой температуре находится этот выпускной коллектор. |
Примеры включают инфракрасные волны, излучаемые нашим телом (300K), красно-оранжевые видимые длины волн, излучаемые расплавленным железом (1430K) и ярко-белый цвет поверхности Солнца (5800K).
В наших целях мы сосредоточимся на способности радиатора отводить энергию. Скорость измеряется в ваттах: ватты отработанного тепла, поглощаемые и производимые системами космического корабля, сравниваются с ваттами отработанного тепла, излучаемыми радиатором.-8.
Температура указана в Кельвинах.
Расчетные факторы
Используя уравнение Стефана Больцмана, мы можем быстро увидеть, что радиатор с лучшим коэффициентом излучения, большей площадью поверхности и более высокой температурой удаляет больше отработанного тепла.
Слева радиаторы 1100К. Справа радиаторы 2700К. Последний фактически потребляет в три раза больше отходящего тепла. |
На космических кораблях важно использовать самые легкие компоненты для каждой задачи.Космический корабль с более легкими радиаторами будет быстрее ускоряться и иметь больше deltaV, что означает, что он может идти дальше и делать больше при меньшем количестве топлива.
Если нам нужен легкий радиатор, мы хотим, чтобы он имел самый высокий коэффициент излучения. Мы можем добиться этого, используя естественно темные материалы, такие как графит, или закрашивая блестящие металлы черной краской.
Радиатор большего размера весит больше. Поэтому нам нужны радиаторы минимального размера. Чтобы компенсировать меньшую площадь поверхности, мы можем увеличить рабочую температуру.Небольшое повышение температуры приводит к значительному увеличению количества удаляемого отходящего тепла. Это означает, что горячие радиаторы намного легче и меньше холодных.
Дополнительные сведения
Система EAC ISS |
Типичный радиатор принимает охлаждающую жидкость от горячего компонента. Температура компонента охлаждающей жидкости на выходе — это начальная температура в радиаторе. Радиатор служит интерфейсом, который отводит тепло охлаждающей жидкости, что снижает температуру на выходе из радиатора.Охлаждающая жидкость возвращается к компоненту для завершения цикла отвода отходящего тепла.
Обратите внимание, что максимальная температура теплообменника, подаваемая на пар, является самой низкой температурой жидкого натрия в активной зоне реактора. |
Тепло течет только от горячего объекта к более холодному. Следовательно, радиатор может работать только тогда, когда температура компонента выше, чем температура охлаждающей жидкости на выходе из радиатора.Например, если ядерный реактор работает при 2000 К, радиатор должен работать при 2000 К или меньше.
Реактор от COADE. Реактор работает при температуре 2907К, а в радиатор поступает теплоноситель при 2400К. |
Разница между температурами на входе и выходе в радиаторе зависит от многих факторов, но обычно мы хотим максимально возможной разницы. Эта разница температур особенно важна для выработки электроэнергии.Большая разница означает, что от источника тепла можно извлечь больше энергии. Это также означает, что для охлаждения компонента требуется меньше охлаждающей жидкости.
Это создает проблемы с реалистичным дизайном.
Общее решение — использовать два комплекта радиаторов, работающих при разных температурах: один низкотемпературный контур и один высокотемпературный. Он отлично работает, когда ваше низкотемпературное отходящее тепло составляет несколько киловатт от систем жизнеобеспечения и авионики. Необходимо найти другие решения для компонентов, которые должны храниться при низких температурах, но при этом выделяют мегаватты отходящего тепла, например, лазеры.
Эта конструкция имеет три комплекта радиаторов с уменьшающейся площадью для различных температурных составляющих. |
Для низкотемпературных высокотемпературных компонентов необходимо использовать тепловые насосы. Они могут перемещать отходящее тепло против температурного градиента, позволяя, например, радиатору 1000K охладить компонент 500K. Однако это требует затрат энергии. Перемещение тепла от 500K до 1000K обходится насосу в 1 ватт на каждый перемещенный ватт. Реалистичный насос не будет эффективен на 100% и потребует более 1 ватта, чтобы переместить ватт отработанного тепла.
- Мощность насоса: (Отходящее тепло * Tc / (Th — Tc)) / КПД насоса
Мощность насоса — это количество ватт, потребляемых тепловыми насосами. Отработанное тепло — это количество ватт, которое необходимо отвести от компонента. Tc — температура компонента. Это температура радиатора в Кельвинах. КПД насоса — это коэффициент.
Холодильный цикл является примером теплового насоса. |
Охлаждающая жидкость обычно должна быть жидкой.Это накладывает нижний и верхний предел температуры охлаждающей жидкости; любой холоднее, он замерзнет и заблокирует трубы, любой более горячий он закипит и перестанет течь. Например, водяную охлаждающую жидкость можно использовать только при температуре от 273 до 373 К. Что еще более важно, он ограничивает разницу температур, которую можно получить от радиатора.
Большие перепады температур требуют, чтобы охлаждающая жидкость долгое время находилась внутри радиатора. Для этого требуются радиаторы большего размера или длинные обходные пути для труб. По мере того, как охлаждающая жидкость становится холоднее, она излучает более низкую скорость, а это означает, что последнее понижение температуры на 10 кельвинов может занять экспоненциально больше времени, чем первое понижение на 10 кельвинов.Есть сильная убывающая доходность.
Есть также структурные проблемы. Большие перепады температур вызывают термические нагрузки. Они могут быть слишком большими, чтобы справиться с ними. Легкие, напряженные радиаторы склонны плохо реагировать на любые боевые повреждения, что делает радиаторы слабым местом для любого военного корабля.
Опорные лонжероны радиаторов МКС. Разгоняемый космический корабль будет нуждаться в гораздо большей поддержке. |
В целом, мы должны иметь в виду, что существует ограниченный диапазон температур между горячим и холодным концом радиатора, и что его характеристики не могут быть просто получены с помощью уравнения Стефана Больцмана для максимальной температуры.2 радиаторные панели:
Мы можем видеть, что натрию требуется 17 секунд, чтобы остыть от 1000 К до точки, близкой к его температуре плавления 370 К. Любой кулер — и застынет в трубках. Если мы усредним излучаемые ватты, мы получим значение, близкое к 11,46 кВт. Это соответствует средней температуре излучения 545 К.
Наконец, радиатор подвергается нагрузкам при ускорении космического корабля. Некоторые типы радиаторов ломаются или разлетаются при сильном ускорении, поэтому перед выбором конструкции необходимо учитывать характеристики космического корабля.
Твердотельные радиаторы
Простой дизайн, используемый сегодня.
Он состоит из металлической пластины, через которую проходят полые трубки для прохождения охлаждающей жидкости. Отработанное тепло выходит из хладагента в материал радиатора, который излучает его от его открытых поверхностей.
Эта конструкция имеет довольно высокую массу на единицу площади и низкие температурные ограничения, что делает ее одной из худших по производительности. Максимальная температура — это то, что делает материалы радиатора твердыми и прочными, что важно, поскольку многие металлы быстро теряют прочность по мере приближения к своей температуре плавления.
Охлаждающая жидкость должна оставаться жидкой на протяжении всего цикла охлаждения, поэтому это ограничивает достижимую разницу температур. Использование металлов, таких как олово, или солей, таких как натрий, позволяет улучшить разницу температур, но для их перекачивания требуется специальное, иногда нереактивное, иногда энергопотребляющее оборудование.
Несколько радиаторов будут передавать тепло друг другу и терять эффективность. |
При расположении радиаторов вокруг космического корабля необходимо учитывать взаимное отражение, когда тепло одного радиатора перехватывается и поглощается другим радиатором.2, если рассматривать только открытые панели.
Пока что только радиаторы из чистого углеродного волокна, работающие на 800-1000К, достигли такой плотности.
Альтернативная конструкция обеспечивает лучшую плотность за счет удаления контуров охлаждающей жидкости и насосов. Тепловая трубка имеет горячий конец и холодный конец, разделенные вакуумом.
Тепловая трубка, отводящая отработанное тепло в радиатор. |
Твердый хладагент выкипает и затем конденсируется на холодном конце, а затем рециркулирует за счет капиллярного действия или центробежного ускорения.Этот метод допускает высокие рабочие температуры и не требует насосов движущихся частей, но высокая масса на единицу площади сводит на нет многие из его преимуществ.
На военном корабле радиаторы — слабое место. Яркие, открытые и трудно защищаемые, в них легко попасть, а после повреждения они могут вывести космический корабль из строя. Они могут убить военный корабль, даже не пробивая броню. Избыточные радиаторы налагают массовый штраф. Покрытие радиаторов пластинами из брони значительно снижает их теплопроводность между охлаждающей жидкостью и открытыми поверхностями, что, в свою очередь, снижает их эффективность.
Решения для снижения уязвимости радиаторов включают направление их ребром к противнику, перемещение их на заднюю часть корабля или использование выдвижных конструкций.
Справа радиаторы освещены огнем противника. Слева выступ корпуса защищает радиаторы от повреждений. |
Если все радиаторы убраны, космический корабль должен полагаться на радиаторы для охлаждения. Источник тепла мощностью в мегаватт может испарить тонну воды менее чем за семь минут, так что это будет работать только в течение очень коротких периодов времени.
Высокотемпературные твердотельные радиаторы сталкиваются с проблемами, такими как необходимость иметь дело с закипанием охлаждающей жидкости или необходимостью выдерживать огромное давление для поддержания жидкости в сверхкритическом состоянии. Решение — использовать твердые металлические блоки вместо охлаждающей жидкости. Запуск этих блоков, как поезд по рельсам, позволяет использовать надежные радиаторы, которые могут выдерживать сильные ускорения и температуры до точек кипения блоков охлаждающей жидкости (в некоторых случаях 4000K, если рельсы активно охлаждаются). Чем меньше блоки, вплоть до размера шариков, тем быстрее они остывают и тем короче должна быть дорожка, что приводит к экономии массы и площади.
Радиаторы подвижные
Одна из основных причин, по которой твердые радиаторы настолько массивны, заключается в том, что им нужны трубы для охлаждающей жидкости, насосы и теплообменники для отвода отработанного тепла от оборудования на открытые поверхности.
Чтобы значительно уменьшить плотность площади, мы можем разработать радиатор, не требующий громоздких контуров охлаждающей жидкости. Вместо этого перемещаем радиатор.
Движущиеся радиаторы зависят от самого материала радиатора, который перемещается через теплообменник в космос, чтобы отвести тепло, а затем обратно внутрь.2 оценки. Однако движущихся частей гораздо больше, а излучающие поверхности составляют лишь небольшую часть объема, занимаемого радиаторами. Если не будут использованы очень легкие материалы, опорная конструкция сведет на нет массовое преимущество такого радиатора.
От высокой границы. |
Диск-барабанная конструкция имеет теплообменник в форме барабана, который катится по излучающему диску. Радиатор hoola-hoop представляет собой большой диск, удерживаемый на конце барабанным теплообменником.
Петли для ремня держатся ребром к солнцу. Угловые петли будут меньше страдать от повторного поглощения излучаемого тепла на внутренних поверхностях, что более важно при более высоких рабочих температурах. |
Если колесо или петля заменяется гибким или гусеничным ремнем, его можно заставить двигаться по разным путям. «Радиатор с поясной петлей» может приблизить радиатор к космическому кораблю и снизить прочность конструкции, необходимую для выдерживания ускорений или вибраций.
Конфигурация проволочной петли использует черные углеродные волокна в качестве излучающей поверхности. Они выбрасываются из теплообменника и удерживаются на месте центростремительной силой. Использование материалов с высокой прочностью на разрыв позволяет создавать чрезвычайно легкие петли.
От высокой границы. Для изготовления проволоки используются углеродные нанотрубки. |
Ролики могут направлять провода вместо центростремительной силы, тем самым становясь еще более легкой версией ремня-радиатора.Потребуются материалы с высокой прочностью на разрыв, поскольку это позволяет роликам и двигателям удерживать провода под натяжением, чтобы предотвратить их скольжение или спутывание.
Радиатор с вращающимся диском — это подвижный радиатор, центральным компонентом которого является вращающийся диск. На ступицу разбрызгивается охлаждающая жидкость. Поверхностное натяжение жидкости с низким давлением пара заставляет ее растекаться в тонкую, ровную пленку по диску. Когда диск вращается, центростремительная сила заставляет пленку течь по мере охлаждения к желобам коллектора на краях.В этой конфигурации не используются тяжелые тепловые трубы и радиаторные насосы, но требуется использование жидкостей с очень низким давлением пара. Диск можно наклонять внутрь, наружу или наклонять, чтобы справиться с ускорением космического корабля.
Радиаторы с пузырьковой мембраной — это трехмерная версия вращающегося дискового радиатора. Горячая охлаждающая жидкость разбрызгивается на надутую мембрану, в результате чего она растекается в виде тонкой пленки, которая очень эффективно теряет тепло. Вращение мембраны заставляет пленку жидкости собираться на экваторе пузыря, где она собирается и перерабатывается.
Преимущества включают возможность использования охлаждающих жидкостей с высоким давлением пара и очень легкую конструкцию. К недостаткам можно отнести необходимость удерживать пары под высоким давлением в емкости, которая должна оставаться легкой и прозрачной.
Электрические радиаторы
В упомянутых до сих пор конструкциях используются физические конструкции для удержания радиаторов на месте. Это накладывает некоторые ограничения, такие как необходимость оставаться в пределах температурных пределов опорных конструкций, а для более крупных радиаторов требуется тяжелая опора, чтобы выдерживать даже легкие ускорения.
Решением было бы использовать магнитные силы для удержания радиаторов на месте. Сильный магнит может заменить физические опорные конструкции для значительной экономии массы.
Примеры таких радиаторов включают радиатор с флюсовыми выводами. Магнитные поля удерживают твердые компоненты радиатора на месте. Теплопроводящие ленты передают тепло к магнитным компонентам.
Однако есть сложности. Большинство металлов теряют свои магнитные свойства при нагревании, становясь совершенно нечувствительными к магнитным полям выше точки Кюри.Требуется тщательный выбор используемых материалов и контроль температуры.
Радиатор с точкой Кюри работает при температуре, при которой частицы металлической пыли теряют свой магнетизм. Железо, например, теряет ферромагнетизм при 1043К.
Вращающийся электромагнитный совок собирает железную пыль после охлаждения. |
В радиаторе с точкой Кюри используются металлические опилки или даже капли жидкости.Он нагревается до температуры выше точки Кюри и выбрасывается в космос подальше от космического корабля. Магнитное поле есть, но оно не влияет на них. Железо может выделяться при температуре до 3134К и собираться при 1043К, но кобальт имеет температуру Кюри до 1388К, естественно черный и кипит при 3400К, что делает его лучшим хладагентом. Небольшой размер частиц или капель жидкости позволяет излучать несколько мегаватт отработанного тепла на квадратный метр.
Как только частицы охлаждаются ниже точки Кюри, они восстанавливают свой ферромагнетизм.На них начинает действовать магнитное поле, и они возвращаются к космическому кораблю для сбора.
Магнитные радиаторы — отличное решение для боевых повреждений — в худшем случае противник нарушит охлаждение на несколько секунд. Однако они потребляют много энергии и требуют тяжелого оборудования для создания сильных магнитных полей. Любое неожиданное ускорение или толчок космического корабля могут рассеять весь материал, удерживаемый на месте магнитными полями.
Альтернативные электрические радиаторы используют электростатические силы для удержания заряженных частиц на месте.Одним из примеров является пылевой радиатор, заряженный ETHER. Заряженные частицы движутся по силовым линиям и совершают эллиптические орбиты между теплообменником и точкой сбора. Подобно капельному радиатору, заряженные частицы могут механически диспергироваться и эффективно собираться на другом конце с помощью ложек с противоположным зарядом.
Преимущество электростатических излучателей заключается в том, что они потребляют меньше энергии, поскольку создать сильную разность зарядов легче, чем расширить сильное магнитное поле.Оборудование легче и менее чувствительно к изменениям температуры, поскольку не используется сверхпроводящее или криогенное оборудование, а заряженные частицы могут удерживать заряд при большей разнице температур, чем они могут сохранять свои магнитные свойства.
Однако заряд, переносимый частицами, может быть нейтрализован естественным солнечным ветром или при контакте с проводником. Это означает, что им нужен чистый короткий путь между теплообменником и точкой сбора.
Жидкокапельные радиаторы
В жидкокапельных радиаторах не используются излучающие поверхности — охлаждающая жидкость подвергается прямому воздействию вакуума.Полученные в результате капли имеют невероятную площадь поверхности для своей массы, что обеспечивает быстрое охлаждение и чрезвычайно низкую поверхностную плотность.
Поскольку охлаждающую жидкость не нужно физически сдерживать, ее можно нагреть до очень высоких температур и при этом очень быстро остыть. Для жидкостей нет ограничений по термическому напряжению, поэтому изменение температуры может быть сколь угодно резким или быстрым. Они не обязаны сохранять магнитные свойства или держать заряд. Этот калькулятор может дать приблизительное представление о производительности LDR.2. Не включает массу теплообменника, каплеуловителя и коллектора.
Уже разработаны решения для таких проблем, как капли, сдуваемые солнечным ветром, сталкивающиеся и сливающиеся в более крупные капли или движущиеся с разными скоростями внутри слоя капель.
Давление пара по-прежнему вызывает беспокойство — горячие жидкости в вакууме имеют тенденцию быстро испаряться. Необходимо использовать специальные охлаждающие жидкости с низким давлением пара, такие как жидкий галлий, алюминий или олово до 1200K, литий до 1500K.Посолить эти жидкости таким материалом, как графитовая «крошка» или покрыть их черными чернилами, необходимо для достижения высокого коэффициента излучения. Наножидкости могут позволить использовать жидкости даже с более высокими температурами. Достижение более высоких температур означает принятие высоких показателей потерь теплоносителя или заключение излучающего объема в мембрану, которая конденсирует и собирает пары. Мембрана должна быть прозрачной при температурах излучения.
Варианты жидкокапельных радиаторов в основном связаны с ограничением и направлением потока охлаждающей жидкости между точками выброса и сбора.
Прямоугольный LDR имеет каплеуловитель и коллектор одинаковой длины. Коллекторный рычаг можно сделать шире эмиттера для улавливания капель, отклонившихся от их траектории из-за неожиданных движений или ошибок в формировании капель. Можно было бы перемещать коллектор выше и ниже плоскости капли, чтобы перехватывать капли, когда космический корабль ускоряется, поскольку это приведет к отклонению листа капли от плоскости.
Конструкция ICAN-II с прямоугольными жидкостными радиаторами. |
Треугольный LDR экономит массу за счет использования маленькой сборной тарелки вместо длинной руки. Однако он менее способен улавливать отклоняющиеся капли или компенсировать ускорение космического корабля.
Треугольные варианты LDR. |
В некоторых конструкциях LDR отсутствуют длинные ответвления и мембраны, а капли просто распыляются в космос. Импульс капель заставляет их следовать по траекториям, которые возвращают их обратно к коллекторам.Фонтан LDR стреляет каплями перед ускоряющимся космическим кораблем. Их собирают, когда они остынут. Этот метод диспергирования капель позволяет получить максимально легкие конструкции, но при этом существует риск потери капель.
Лучше всего работает с космическими кораблями, которые плавно ускоряются в течение длительных периодов времени, например, с ядерно-электрическими кораблями на межпланетных траекториях. LDR с душем рассеивает капли перед космическим кораблем, а коллекторы просто собирают их, как черпак. У него меньший риск рассеивания капель, чем у фонтанного LDR, но для него требуется длинная насадка для душа.
Мембраны высокого давления могут быть дополнением к любому жидкокапельному радиатору. Они заключают в себе объем, через который проходят капли. К преимуществам относится повторная конденсация паров из слишком горячих капель, улавливание случайных капель, обеспечение более высокой скорости капель и большая устойчивость к нестабильности капельного слоя. Однако они должны оставаться прозрачными для всех длин волн, на которых излучают капли, и удерживать давление пара. Это конкурирующие требования: поглощение на малых длинах волн достигается с помощью очень тонких мембран, а для высокого давления требуются толстые мембраны.
Радиаторы Advanced
Магнитно-накачиваемый и сфокусированный LDR:
Магнитно сфокусированный соплом коллектора. |
Феррожидкости при низких температурах и жидкий металл при высоких температурах могут использоваться в качестве охлаждающей жидкости в жидкокапельных радиаторах. Они реагируют на вихревые токи и магнитные поля, позволяя перекачивать хладагент без каких-либо движущихся частей посредством магнитогидродинамики.
Магнитные поля также можно использовать для восстановления капельного листа. Циклические поля могут толкать и тянуть группу капель на расстояния, пропорциональные напряженности поля. Поля с высокой напряженностью могут позволить каплям простираться на несколько десятков метров, прежде чем они будут восстановлены. Они также позволят LDR компенсировать свою уязвимость к рассеиванию и потере капель при ускорении космического корабля, удерживая капли на месте.
Вместе LDR может стать чрезвычайно легким для покрываемой области, так как никакая физическая опорная конструкция не должна перекрывать его длину.
Газовые теплоносители:
Мы рассматривали твердые тела и жидкости в качестве хладагентов. Также можно использовать газы.
Газовые теплоносители уже используются в ядерных реакторах. Двуокись углерода и гелий были выбраны, поскольку они инертны и выдерживают более высокие температуры, чем вода или натриевые охлаждающие жидкости.
В космосе главное преимущество газового хладагента заключается в том, что он может работать при гораздо более высоких температурах, чем жидкий или твердый хладагент. Тот же газ можно было запустить из ядерного реактора в трубы радиатора и обратно.Это также позволяет использовать надувные конструкции для радиаторов, которые могут быть намного легче, чем их жесткие аналоги.
Радиаторы с надувными ребрами. |
Радиаторы с несколькими выдвижными ребрами. |
Надувные мешки проще и прочнее, чем выкатные плавники, но имеют меньшую площадь поверхности. |
Однако есть ограничения и сложности. Горячий газ под давлением может быть очень химически активным. Хотя вы можете нагреть газ до температуры 3000K +, стенки труб, содержащих газ, также должны выдерживать эти температуры. Многие из сбережений массы, которые достигаются при эксплуатации радиатора при высоких температурах, теряются на попытки удержать газовый хладагент и выжить. Например, перекачка газа требует гораздо большей мощности на 1 кг перемещенного газа, чем перекачка жидкости.
Другая трудность — очень низкая скорость передачи тепла между теплообменником и газом.Горячий газ с низкой плотностью, такой как нагретый гелий, может иметь теплопроводность в сотни раз ниже, чем жидкость, такая как расплавленный натрий. Это приводит к трудностям как на границе теплообмена, так и на границе излучающей поверхности.
Многие из этих проблем могут быть решены с помощью двухфазного контура охлаждающей жидкости, что означает, что он проводит часть своего времени как жидкость, а часть своего времени как газ. До теплообменника охлаждающая жидкость находится в жидком виде. Он течет по трубам с помощью простых насосов. Теплообменник разделен на множество труб меньшего размера, чтобы увеличить площадь контакта между теплообменником и хладагентом.
За теплообменником охлаждающая жидкость расширяется. Падение давления позволяет ему закипеть в газ. Этот газ проходит через объем, закрытый герметичной мембраной. Благодаря комбинации расширения и декомпрессии и закона Стефана-Больцмана газ быстро охлаждается и конденсируется на стенках мембраны. Это образует тонкую пленку в условиях микрогравитации, которая может быть направлена к точкам сбора, где жидкость перекачивается обратно в теплообменник.
Плазменный радиатор Dusty:
В этом излучателе используется проводящая плазма, управляемая магнитными полями, для перемещения и манипулирования частицами пыли.
Частицы пыли, взвешенные в плазме, ведут себя удивительным образом, и их все еще обнаруживают в области исследований пылевой плазмы. Интересные варианты поведения включают самоорганизацию в квазикристаллическую структуру, построение мостиков, похожих на нити ДНК, через плазму или сбор в диски с пустыми центрами. Все это происходит из-за самоотталкивающих зарядов, которые частицы пыли получают внутри плазмы.
Лучшее понимание этого поведения может позволить радиатору сочетать в себе все полезные характеристики: широкий диапазон рабочих температур, очень низкую массу на квадратный метр, легкость манипулирования электромагнитными и электростатическими силами, низкую уязвимость к повреждениям и способность выдерживать сильные ускорения.
Плазма может быть довольно холодной и по-прежнему служить для манипулирования частицами пыли. Низкотемпературная плазма безопасна для манипуляций и довольно прозрачна для длин волн, на которых будут излучать частицы пыли, что означает, что она не нагревается или не уносится тепловым расширением.
В простом пылевом плазменном излучателе плазма была бы захвачена в магнитных петлях, таких как корональные петли. По этим плазменным трубкам двигалась пыль. Более совершенные пылевые плазменные излучатели будут распылять частицы пыли в плазму и заставлять ее самоорганизовываться в тонкие плоскости для получения максимальной площади излучающей поверхности.Простое изменение состояния ионизации частиц путем пропускания электрического тока через плазму позволило бы пыли слипаться и следовать линиям магнитного поля прямо обратно к коллектору.
Цеолит: теплоаккумулятор неопределенно долго сохраняет тепло, поглощает в четыре раза больше тепла, чем вода.
Этот сайт может получать партнерские комиссии по ссылкам на этой странице. Условия эксплуатации.
Держитесь за шляпу / спутника жизни / гонады. Ученые из Германии создали маленькие цеолитовые гранулы, которые могут сохранять в четыре раза больше тепла, чем вода, без потерь в течение «продолжительных периодов времени».Теоретически вы можете хранить тепло в этих гранулах, а затем извлекать точно такое же количество тепла через неопределенное время.
Цеолиты (буквально «кипящие камни») не совсем новы: этот термин был придуман в 1756 году шведским минералогом Акселем Кронштедтом, который заметил, что некоторые минералы при нагревании выделяют большое количество пара из воды, которая ранее была адсорбируется. В течение последних 250 лет ученые пытались реализовать этот процесс в системе аккумулирования тепла — и теперь Институт Фраунгофера в сотрудничестве с промышленными партнерами разработал, как это сделать.
Я попытаюсь объяснить, как это работает, но наука довольно сложна: когда цеолит Фраунгофера вступает в контакт с водой, химическая реакция адсорбирует воду и выделяет тепло. Когда к цеолиту прикладывают тепло, происходит обратный процесс и выделяется вода. Поскольку тепло удерживается в химической структуре цеолита, материал никогда не ощущается теплым — вот почему это метод хранения «без потерь».
Эти два процесса можно разделить — сначала вы заряжаете шары теплом, а потом просто добавляете воду (!), Чтобы высвободить тепло.Эта реакция происходит по всей поверхности цеолита — и, поскольку цеолиты пористые, один грамм материала имеет площадь поверхности 1000 квадратных метров (10700 квадратных футов). По этой причине цеолит Фраунгофера может сохранять в четыре раза больше тепла, чем вода.
Хотя процесс гидратации / обезвоживания хорошо изучен, основной технической проблемой было создание реальной системы аккумулирования тепла. «Сначала мы разработали технологический процесс, затем мы посмотрели вокруг, чтобы увидеть, как мы можем физически реализовать принцип аккумулирования тепла — т.е.е. как должно быть сконструировано накопительное устройство и в каких местах требуются теплообменники, насосы и клапаны », — говорит Майк Бликер, менеджер группы. Как вы можете видеть на картинке справа, настройка довольно сложна. Команда успешно построила переносной резервуар для хранения емкостью 750 литров, который в настоящее время колесит по Германии для тестирования системы хранения в реальных условиях.
В будущем это может стать важной новостью практически для каждой технологической и промышленной сферы.В настоящее время существует очень мало вариантов хранения тепла, кроме воды, которая не может хранить много тепла для данного объема и относительно быстро теряет тепло. Электростанции, биогазовые установки, сталелитейные заводы, фабрики — все они производят огромное количество тепла, которое можно (и нужно) повторно использовать. Их даже не нужно было бы использовать на месте: заряженные цеолитовые шары можно было разослать по соседним домам и офисам. В будущем Бликер предполагает, что мы могли бы со временем заменить домашние водяные баки цеолитными системами.«Было бы идеально, если бы мы смогли разработать модульную систему, которая позволила бы нам сконструировать каждое устройство хранения данных в соответствии с индивидуальными требованиями», — говорит Бликер.
Лично я надеюсь на модуль, достаточно маленький, чтобы его можно было разместить внутри каждого из моих семи компьютеров. Интересно, хватит ли этого, чтобы согреть мой душ по утрам…
Узнайте больше на сайте Fraunhofer или ознакомьтесь с решением Microsoft по утилизации тепла: печи для обработки данных
Часто задаваемые вопросы по нагреву воды — Ruud
Водяное отопление Часто задаваемые вопросы
Если у вас возник вопрос о водонагревателях по поводу любого из наших надежных водонагревательных приборов Ruud, то вы попали в нужное место.Конечно, если вы не найдете ответа на свой вопрос ниже, свяжитесь с нами через нашу страницу контактов, и мы свяжемся с вами в ближайшее время. У нас также есть подробная страница с часто задаваемыми вопросами, полностью посвященная нашим водонагревателям без резервуара, если ваш вопрос касается конкретно без резервуаров. Спасибо, что выбрали Ruud, и наслаждайтесь горячей водой!
- Что такое FVIR?
Означает стойкость к воспламенению легковоспламеняющихся паров. В июле 2003 года вступил в силу стандарт ANSI (Американский национальный институт стандартов), который предотвращает воспламенение в водонагревателе легковоспламеняющихся паров вне камеры сгорания.Это помогает защитить дома. - Все водонагреватели FVIR одинаковы?
Нет, это не так. Консорциум производителей согласовал технологию пламегасителя для создания нового поколения водонагревателей FVIR. В начале разработки исследователи Ruud в своих лабораториях в Монтгомери обнаружили, что конструкции пламегасителя могут быть уязвимы для воздействия ворса, пыли и масла — LDO. Рууд призвал пересмотреть стандарты ANSI. В результате стандарт ANSI теперь включает тестирование надежности в средах LDO.На протяжении всего процесса разработки инженеры Ruud очень внимательно относились к той роли, которую надежность LDO будет играть в надежности продукта и удовлетворенности потребителей. - Что такое водонагреватель с тепловым насосом?
HPWH имеет 10-летнюю гарантию на герметичность резервуара и 10-летнюю гарантию на детали. Он также имеет гарантию на первый год работы на дому. В этом водонагревателе используется технология теплового насоса для достижения рейтинга эффективности 2,0. (Бытовой газ составляет примерно 0,62, а бытовой электричество — примерно 0.92). HPWH также соответствует стандарту Energy Star и может обеспечить вам экономию налогов. - Как я могу определить, какой водонагреватель мне подходит?
Выбор водонагревателя зависит от размера вашей семьи и того, сколько горячей воды вы будете использовать за один непрерывный час. Мы называем это спросом в час пик. См. Технический бюллетень №1204 «Расчет водонагревателя» и технический бюллетень №1226 «Как выбрать и купить водонагреватель». - Мне нужно удалить воздух из газового водонагревателя в нескольких футах от внешней стены.Какой продукт мне больше подходит?
Есть несколько продуктов, которые могут работать в вашем приложении. Power Direct Vent — это водонагреватель прямого сгорания с уплотнением, который может быть установлен на расстоянии до 60 футов от наружной стены дома. У нас также есть постоянный пилотный воздуховод Direct Vent, который будет выходить на расстояние до 4 футов от внешней стены. - Вы производите водонагреватели, предназначенные для коммерческого использования?
Да. У нас есть полная линейка водонагревателей с постоянным запалом, прерывистого искрообразования, прямого сброса, герметичного сгорания и высокоэффективных коммерческих водонагревателей.Наши модели Xtreme обеспечат до 756 галлонов горячей воды в час; и получите содержимое резервуара всего за 8 минут! Вы можете выбрать электрическую или газовую модель.
Добавить комментарий