Сколько ватт одна секция алюминиевого радиатора: Тепловая мощность радиаторов отопления таблица

Разное

Содержание

на сколько квадратов одна секция, сколько ватт на кв метр, как рассчитать количество, сколько обогревает, отапливает


Содержание:


Несмотря на появляющиеся время от времени инновационные разработки обогревателей для жилья, самой надежной и эффективной продолжает оставаться система отопления с радиаторами. Перед ее установкой необходимо точно рассчитать количество радиаторных секций, чтобы избежать недостатка или переизбытка выделяемого тепла.


Основные критерии при расчете отопления


Наряду с общими показателями, при расчете радиаторов отопления на квадратный метр, необходимо взять во внимание ряд факторов, непосредственно влияющих на количество теплопотерь:

  • Число наружных стен. Комната с двумя наружными стенами и одним окном потребует увеличения мощности обогревающих приборов на 20%. В помещениях с двумя окнами количество теплопотерь увеличивается до 30%. Наиболее холодными считаются угловые помещения, где необходимо значительное увеличение энергоресурсов на отопление.
  • Ориентация по сторонам света. Помещения с северным или северо-восточном направлением окон по ходу расчета количества батарей на кв метр требуют добавления к полученной цифре еще 10%. Как показывает практика, потери тепла при таком расположении наиболее значительны.
  • Положение радиаторов. При самостоятельной организации отопительного контура необходимо вооружиться некоторыми принципами. Частично закрытые подоконниками батареи уменьшают свою эффективность на 3-4%. Если для установки обогревателей используются ниши, это влечет за собой увеличение потерь примерно до 7%.
  • Использование экрана. Закрывать батареи экранами – не лучшая идея: подобные действия не одобряются производителями сантехнического оборудования. Если же другого выхода нет, и экран все-таки применяется, следует учесть, что частично закрытые конструкции снижают производительность радиаторов на 7%. Полностью закрытый экран уменьшает эффективность батареи почти на 25%.


Кроме того, в учет необходимо взять число отделанных утеплителем стен, качество стеклопакетов, надежность простенков и т.п. Для того, чтобы из-за недочета количества секций радиатора на квадратный метр в итоге не получить малоэффективную систему, к итоговому результату всегда рекомендуется добавлять 15-20% мощности.

Влияние на результат материала изготовления радиатора


В настоящее время наибольшей популярностью пользуются следующие разновидности радиаторов:

  • Чугунные. Чаще всего используется чугунная батарея марки МС-140 с уровнем теплоотдачи 180 Вт. Этот показатель справедлив лишь при использовании теплоносителя с максимальной температурой. На практике такое бывает редко, поэтому фактическая мощность прибора – 60-120 Вт. Именно эти цифры рекомендуется использовать при проведении расчете ватт на квадратный метр отопления.
  • Стальные. Имеют почти такую же площадь, что и чугунные. Это же касается и параметров, точные значение которых указываются в сопроводительной документации. При этом масса стальных изделий меньше, что делает их транспортировку и монтаж более простым.
  • Алюминиевые. Дать общий ответ, сколько отапливает одна секция алюминиевого радиатора проблематично, так как подобные изделия представлены в продаже в большом количестве модификаций. Поэтому в каждом конкретном случае расчета количества секций алюминиевых радиаторов необходимо руководствоваться паспортными данными модели. В общем считается, что средним показателем, сколько обогревает одна секция алюминиевого радиатора, является 100 Вт/м2. Если заявленная мощность прибора меньше, то, скорее всего, речь идет о подделке. Также следует сказать, что уровень теплоотдачи алюминия более высокий, чем у чугуна и стали. Это также следует взять во внимание перед тем, как рассчитать количество секций алюминиевых радиаторов отопления.
  • Биметаллические. Эти изделия, совмещающие в себе высокую теплоотдачу алюминия и прочностные качества стали, в настоящее время пользуются наибольшей популярностью у покупателей (уровень мощности одной секции биметаллического радиатора идентичен тому, на сколько квадратов одна секция алюминиевой батареи). Благодаря хорошей теплоотдаче, разрешается несколько сокращать количество секций при установке. Правильный расчет биметаллических радиаторов позволяет сэкономить финансы даже несмотря на то, что биметаллические радиаторы считаются наиболее дорогими.


Максимальные значения теплоотдачи приборов не рекомендуется использовать при расчете секций алюминиевых радиаторов на квадратный метр – теплоноситель в системе обычно никогда не достигает крайних значений. Более надежный путь – использовать минимальные значения, что позволит гарантированно избежать ошибок. Обустроенная на основе расчета секций алюминиевых радиаторов отопительная система будет обеспечивать комфорт в жилище даже при сильных морозах.

Способы расчета количества секций радиатора на квадратный метр


Для подсчета числа секций батареи на 1 м2 жилища обычно применяется один из нижеперечисленных методов:

  • Чтобы узнать, сколько секций батарей нужно на квадратный метр, необходимо выполнить некоторые расчеты. Как гласят строительные нормы, 100 Вт мощности нагревательного прибора должно приходиться на 1 м2 хорошо утепленного дома. На основе этого и проводятся соответствующие вычисления. К примеру, комната на 15 м2 нуждается в 1500 Вт тепловой мощности радиатора. Для чугунных радиаторов за основу берется параметр в 100 Вт: как уже указывалось, получение максимального значения в 180 Вт на практике добиться практически нереально. В итоге получается оптимальное количество ребер – 15 шт.
  • Помещения нестандартной высоты адекватней рассчитывать по объему. В качестве примера можно взять уже знакомую комнату площадью в 15 м2 и высотой 3 метра: ее объем составит 45 м3. Для одного квадратного метра, в зависимости от особенностей помещения, необходимо 30 — 40 Вт. В панельном доме этот показатель берется, как 40: дальнейший простой расчет показывает, что для эффективного обогрева комнаты необходимо 1800 Вт тепловой мощности.
  • Помещения сложной конфигурации рассчитываются формулами с большим числом коэффициентов. Чтобы избежать этой довольно громоздкой процедуры, рекомендуется воспользоваться услугами онлайн-калькулятора. Введя в специальные графы нужные данные, можно за считанные секунды получить необходимый результат. Кроме удобства, такой способ убережет от ошибок в подсчетах, почти неизбежных при самостоятельной реализации.


После того, как наиболее удобный способ расчета выбран, и нужное значение получено, учета потребуют и все остальные факторы, упомянутые выше. Если они имеются, необходимо увеличить итоговое число на указанный процент теплопотерь. В итоге они полностью компенсируются увеличением мощности отопительной системы.


На сколько квадратов рассчитана одна секция радиатора

Трехшаговая инструкция

Продавец в магазине «Сантехника и отопление» огорошил: «Вам для комнаты нужно 26 ребер». К этому времени у меня стояло 10 чугунных ребер, и, хоть и грели они недостаточно, я понимал, что 26 ребер алюминиевого радиатора для комнаты площадью 18 квадратных метров — это слишком. Продавец либо ошибся, либо хотел, чтобы мне было очень-очень тепло. Проверять расчеты продавца не стал, а перерыл справочную литературу и нашел простую и эффективную методику расчета количества радиаторов не зависимо от того, какого они типа: медные конвекторы, алюминиевые или же металлические панели.

Расчет проведем на примере:

Имеется помещение площадью 12 квадратных метров 4 (м) * 3 (м) и высотой 2,7 метра (стандартная комната в многоэтажке советской постройки): 

Первое, что нужно узнать для расчета, — объем вашего помещения. Множим длину и ширину на высоту (в метрах) (4*3*2,7) — и получаем цифру 32,4. Это и есть объем помещения в кубических метрах.

Второе: для обогрева одного кубического метра в доме стандартной постройки (без металлопластиковых окон, утепления пенопластом и т. п. энергосберегающих мер) в климатических условиях Украины, Беларуси, Молдавии и европейской части России включительно с Москвой и Нижним Новгородом, необходим 41 Ватт тепловой мощности. 

Узнаем, сколько тепла нам потребуется, для этого умножим наш (ваш) объем V на цифру 41:

V* 41=32,4 *41 Вт = 1328,4 Вт.

Полученная цифра — то количество тепла, которое должны отдать радиаторы, чтобы нагреть вашу комнату. Округлим ее до 1300.

Но как из этой цифры «выцарапать» количество радиатров?

Очень просто: у любого радиатора на упаковке либо в комплектном вкладыше есть информация о тепловой мощности. Тепловая мощность — это количество тепла, которое способен отдать радиатор при охлаждении с температуры нагрева до комнатной — 20 градусов по Цельсию. Мощность батарей и ребер обязан знать каждый продавец специализированного магазина, либо же ее можно легко найти в интернете для интересующей вас модели.

Производители обычно завышают тепловую мощность своих изделий, об уточненном расчете я расскажу в следующем посте. Пока же нас интересует ориентировочное количество радиаторов. 

В нашем случае мы можем ограничиться стальным панельным радиатором мощностью 1300 Вт. Однако, что делать, если вдруг на улице станет ОЧЕНЬ ХОЛОДНО?

 

Для надежности стоит увеличить полученную цифру на 20 процентов. Для этого умножим 1300 на коэффициент 1,2 — получим 1560.

Расчет секций радиаторов отопления.

Радиаторов такой мощности не продают, поэтому округлим цифру в меньшую сторону — до 1500 Вт либо 1,5 киловатта.

Все, это та цифра, которая нам нужна. Радиатор любого типа: биметаллический, алюминиевый, чугунный, стальной, беленький в крапинку и черненький в полосочку обеспечит нам обогрев комнаты в любой возможный в наших широтах мороз, если он выдает 1500 ватт тепла.

К примеру, типичная мощность ребра алюминиевого или биметаллического радиатора высотой около 60 сантиметров — 150 Ватт. Таким образом, нам понадобится 10 ребер. Аналогично — для стандартных чугунных радиаторов типа МС-140

Чтобы узнать количество отопительных приборов для всей квартиры, расчет проводим для каждой комнаты отдельно.

Если квартира «холодная», с большим количеством окон, тонкими стенами, на первом либо последнем этаже и т. п., для обогрева необходимо будет 47 Ватт на метр кубический, следовательно, в расчетах подставляем эту цифру вместо 41.  

Если «теплая», с металлопластиковыми окнами, утеплением полов, стен, в доме, построенном с использованием современных утепляющих материалов — берем 30 Вт.

И, наконец, самый простой способ расчета:

Если у вас в комнате перед заменой стояли стандартные чугунные радиаторы высотой около 60 сантиметров, и вам было с ними тепло, смело посчитайте их количество и умножьте на 150 Вт — узнаете необходимую мощность новых.

Если же планируете выбрать алюминиевые ребра или биметалл — можете покупать их в расчете — на одно ребро «чугунины» — одно ребро «галюминия».

отличия, характеристики и какие радиаторы лучше выбрать?



Чугунные батареи старого образца уже практически не продаются. Владельцам частных домов и коттеджей, решая проблемы отопления, необходимо сделать выбор в пользу отопительных приборов из современных материалов. Практичный вариант для бытового применения – алюминиевые радиаторы.

В последние годы интерьеры российских домов стали стремительно приближаться к европейским стандартам, и легкие, красивые алюминиевые радиаторы удачно в них вписываются. При выборе, однако, необходимо учесть ряд важных деталей.

Сферы применения алюминиевых радиаторов

Алюминиевые радиаторы более всего подходят для автономных систем отопления в частных домах, коттеджах. Дело в том, что водоподготовка в центральных системах отопления, как правило, оставляет желать лучшего, а также возможны серьезные гидравлические удары в моменты пуска системы после профилактического обслуживания. Именно поэтому для систем центрального отопления этот вариант специалисты не рекомендуют. Если, несмотря на это, вы все-таки решили установить алюминиевый радиатор в многоквартирном доме, крайне желательно провести тест воды в системе отопления на уровень PH. Результат анализа не должен превышать заявленные производителем параметры (для алюминиевых радиаторов оптимален уровень PH от 7,0 до 8,0)

В качестве теплоносителя в таких радиаторах может использоваться как вода, так и незамерзающие жидкости, качество которых необходимо контролировать так же, как качество воды. Это возможно в основном в частных домах.

По сравнению со стальными и биметаллическими, алюминиевые радиаторы выигрывают по соотношению легкости, прочности и теплоотдачи.

Виды радиаторов из алюминия

Существует три основных вида алюминиевых радиаторов, различающихся по технологии изготовления.



  • Литые под давлением секционные радиаторы


    , изготавливаются по технологии литья под давлением. Для их производства используется сплав алюминия и кремния EN AB 46100. Европейские производители используют сертифицированный первичный сплав, который позволяет гарантированно получить требуемые прочностные характеристики и минимизировать риск коррозии. Китайские производители, как правило, используют либо вторичный алюминий, либо первичный сплав низкого качества, имеющий пористую структуру и более хрупкий по сравнению с обычным алюминием. Это в значительной степени сказывается как на прочностных характеристика радиатора, так и на его теплоотдаче. На сегодняшний день литые под давлением алюминиевые радиаторы являются самым востребованным и распространенным отопительным прибором на рынке России.


  • Экструзионные секционные радиаторы


    . Секции радиатора выдавлива

Как подсчитать количество секций алюминиевого радиатора отопления?

Одним из наиболее важных элементов любой отопительной системы является радиатор отопления, ведь именно от его работы зависит, тепло ли будет в доме в наиболее холодные зимние дни. Выбор современных радиаторов огромен: чугунные, стальные, биметаллические и алюминиевые радиаторы отопления всех форм и размеров. Именно в пользу изделий из алюминия делают свой выбор большинство потребителей. И это не удивительно – батареи из этого металла обладают высокой надёжностью, долговечностью и высокой теплоотдачей. К тому же они имеют красивый дизайн и небольшой вес. Чтобы количества тепла, поступающего в комнату, было достаточно для комфортного проживания, необходимо правильно рассчитать тепловую мощность отопительного котла, а также произвести  расчет количества секций батарей для каждого помещения.

Методика определения необходимого количества секций отопительной батареи

Величина теплоотдачи отопительной батареи обычно указана на ее упаковке

При расчете количества секций важнейшим параметром отопительного радиатора является его тепловая мощность (теплоотдача). Обычно величину теплоотдачи производитель указывает на упаковке изделия либо в техническом паспорте.

Не стоит ожидать от этой цифры высокой достоверности – производители часто указывают расчетные параметры в идеальных условиях эксплуатации. В реальности тепловая мощность радиатора отопления оказывается несколько ниже заявленной. Именно поэтому во все существующие методики расчетов вносятся поправочные коэффициенты в сторону увеличения числа секций.

Тепловая мощность алюминиевых отопительных радиаторов больше всего зависит от размера рёбер батареи и площади её поверхности. К тому же не стоит сбрасывать с чаши весов и особенности конструкции отдельных отопительных приборов. Известно, что половина энергии, которую отдает радиатор – это конвекционное тепло, которое образуется при движении нагреваемого воздуха снизу вверх через внутреннее оребрение прибора. Именно по причине высокой теплоотдачи, а соответственно низкой тепловой инерционности, алюминиевые радиаторы оставили позади стальные, чугунные и биметаллические батареи. Так, для алюминиевого радиатора с межосевым расстоянием 500мм величина теплоотдачи составляет не менее 180Вт на одну секцию, тогда как изделие из чугуна обеспечивает не более 150 Вт тепловой энергии.

Для определения количества секций алюминиевой отопительной батареи необходимо рассчитать тепловую мощность, необходимую для обогрева конкретного помещения. При этом можно воспользоваться приблизительным, стандартным или объёмным методом расчёта. Рассмотрим каждый из них подробнее.

Важное замечание: расчёт количества рёбер алюминиевого радиатора производится для каждого помещения в отдельности.

Объёмный метод определения количества секций отопительной батареи

Таблица зависимости требуемой тепловой мощности от размера помещения

Расчет количества секций объёмным методом является наиболее точным, так как он учитывает все три пространственных характеристики помещения. Необходимое количество рёбер алюминиевой батареи можно определить, разделив тепловую мощность, необходимую для обогрева помещения, на показатель теплоотдачи одной секции. Расчёт производим в следующем порядке:

  • Определяем объём помещения V, перемножив длину L, ширину A и высоту H комнаты. V(м3)=L×A×H (м). Для комнаты размером 4×5×2,5м объём равняется 50 м3.
  • Для отопления одного кубического метра помещения в стандартном доме без дополнительного утепления, который расположен в средней широте, необходим 41Вт тепловой энергии. Коэффициент 41 принимают для комнаты с одной наружной стеной и окном. Если же имеет место торцевое или угловое размещение комнаты в планировке здания, то применяют коэффициент 47. Для определения всего количества тепловой мощности P, необходимо умножить этот коэффициент на объём комнаты V. P=41×V=2050Вт.
  • 2050Вт – это та мощность, которая необходима для полноценного обогрева рассматриваемой в качестве примера комнаты. Разделив её на величину теплоотдачи одной секции, получим количество рёбер алюминиевого радиатора. Так, мощность большинства секций с межосевым расстоянием 500мм примерно равна 200Вт. В этом случае понадобится батарея с 11 ребрами (2050:200=10,25). Округляем значение в большую сторону «про запас».

Специалисты прибавляют к полученному значению требуемой тепловой мощности 20% для коррекции погрешности расчетов.

Для проведения вычислений объёмным методом можно воспользоваться таблицей, в которую сведены параметры высоты и площади помещения в метрах, а также требуемой тепловой мощности в киловаттах. Для определения количества рёбер алюминиевой батареи необходимо требуемую тепловую мощность из таблицы разделить на теплоотдачу одной секции в кВт, взятую из паспорта к изделию.

Приблизительный расчет

Меняя старые чугунные батареи, можно взять такое же количество секций новых алюминиевых радиаторов

Расчёт приблизительным методом основывается на использовании усредненного значения высоты помещений в стандартных квартирах типовых многоэтажек. Принимая во внимание тот фактор, что большинство современных отопительных радиаторов имеют схожие технические характеристики, считают, что одна стандартная секция высотой 500мм обогревает 1,8 квадратных метров площади. Для определения количества секций площадь помещения делят на 1,8. Для примера, рассмотренного в предыдущем случае, 20:1,8≈11 секций.

Для отопления помещения с одним окном и единственной наружной стеной в расчет принимают необходимую величину тепловой мощности в 1кВт на каждые 10 кв. м площади. При угловом расположении помещения внутри здания этот параметр принимают равным 1,3кВт.

Приблизительным методом пользуются чаще всего при предварительных расчетах, принимая во внимание его невысокую точность.

Подсчет количества секций стандартным методом

Стандартным методом определения необходимого количества секций отопительных батарей ранее пользовались специалисты множества проектных организаций. Его широкая популярность объяснялась просто – в этом расчёте использовались коэффициенты из СНиП жилищного домостроения, остальные же параметры, включая высоту потолков или мощность одной секции батареи, были стандартными.

Схема с указанием параметров помещений поможет при выполнении расчета тепловой мощности радиаторов

По СНиП для отопления одного квадратного метра жилой площади требуется не менее 100Вт тепловой мощности. Расчетное количество секций радиатора в таком случае находят по формуле К=S×100/P, где S – площадь комнаты, кв. м, а P – теплоотдача одной секции, Вт. При торцевом или угловом размещении комнаты в доме, применяют повышающий коэффициент 1,2, а затем полученное число секций округляют в большую сторону.

Для комнат с высотой потолков более 3м расчет выполняют по формуле К= S×H×40/P. В этом выражении S и H – соответственно площадь и высота комнаты в метрах, а Р – тепловая мощность единичной секции алюминиевого радиатора в Вт.

При выборе радиаторов специалисты рекомендуют полученное количество секций разделить на число окон в помещении. Установив батареи с меньшим количеством рёбер под каждым окном, получают тепловую завесу, позволяющую сохранять теплый воздух внутри помещения.

Если же вы просто меняете старые чугунные батареи на современные алюминиевые радиаторы, то просто посчитайте количество рёбер своих отслуживших устройств. Умножив эту величину на 150, вы получите нужную тепловую мощность новых батарей из алюминия. Почему 150? Ответ на этот вопрос очевиден: именно на такую теплоотдачу рассчитаны старые чугунные изделия. Можно вообще ничего не рассчитывать, взяв новые радиаторы с таким же количеством рёбер. Алюминиевые батареи ничуть не хуже чугунных по теплоотдаче, мало того, в большинстве случаев они превосходят их по этому параметру, так что этот вариант также имеет право на жизнь.

Дополнительные параметры для расчетов

Применение крана с терморегулятором позволит установить комфортную температуру в каждой комнате

Определяя параметры отопительной системы, важно учесть не только размеры комнаты, но и другие условия, связанные с дополнительными тепловыми потерями или использованием энергосберегающих технологий. Так, в случае монтажа радиаторов в помещениях с остеклением энергосберегающими стеклопакетами, а также в случае утепления фасада, необходимую мощность, а соответственно и количество рёбер, следует уменьшить на 15-25%.

Для монтажа батарей под окнами, разными по площади остекления, количество секций в каждой батарее определяют, исходя из соотношения размеров окон.

При установке в угловых помещениях с «холодными» стенами, требуемую теплоотдачу батарей увеличивают на 20%. При необходимости добавляют 1-2 секции для увеличения теплоотдачи, а для точной регулировки температуры в комнате используют современную термостатическую аппаратуру.

Оцените статью:

Поделитесь с друзьями!

Радиаторы отопления сколько квт 1 секция

Сколько кВт в 1 секции чугунного, биметаллического, алюминиевого или стального радиатора? Реальное количество киловатт, которое пишут производители, не соответствует действительности. А это очень важно! Используя завышенные данные вы не сможете рассчитать количество секций.

На рынке представлены четыре вида батарей отопления – чугунные, биметаллические, алюминиевые и стальные. Они отличаются дизайном, объемом, размерами и стоимостью. Но прежде всего вам важно знать, их теплопроизводительность – от этого зависит, насколько хорошо они будут обогревать помещение.

Что нужно знать про мощность радиаторов?

Теплоотдача радиатора зависит от температуры теплоносителя и воздуха в помещении. Чем больше эта разница, тем лучше он отдает тепловую энергию.

Наглядный пример:

Если в помещении 0 градусов, то батарея будет остывать быстрее, чем если бы в комнате было +24. Соответственно – он отдает больше тепла. Получается, при 0 градусов мощность отопительного прибора больше.

Производители часто заявляют завышенные технические характеристики. Они показывают мощность для разницы температур в 65-70 °С. А в реальности перепад температур составляет 35-50 градусов.

Поэтому, если вы видите в инструкции тепловую мощность секции в 200 Вт при ΔТ = 70, реально она составляет 150-160 Вт (ΔТ обозначает перепад температур).

Зная значение реальной мощности можно подсчитать необходимое количество секций в онлайн-калькуляторе.

Сколько кВт в одной секции алюминиевого радиатора

Тепловая мощность секции алюминиевого радиатора зависит от объема воды, которая находится в ней. Стандартные объемы – 0,35 и 0,5 л.

Алюминиевые батареи отдают тепло на 50-60% за счет излучения и на 40-50% в виде конвекции. Отсекатель воздуха усиливает конвекцию на 20-25%, что повышает теплоотдачу.

При температуре воздуха 20-24 °С и воды в контуре 65-70 °С тепловая мощность одной алюминиевой секции составляет:

  • Объем 0,35 л., без отсекателя – 0,1-0,12 киловатт;
  • Объем 0,35 л., с отсекателем – 0,12-0,13 киловатт;
  • Объем 0,5 л., без отсекателя – 0,155-0,170 киловатт;
  • Объем 0,5 л., с отсекателем – 0,170-0,200 киловатт.

Точное количество теплоотдачи сложно назвать – оно зависит от особенностей конструкции, диаметра труб, толщины ребер. На производительность влияет тип подключения батареи, скорость прокачки воды, загрязненность внутренних поверхностей.

Алюминиевый радиатор без отсекателей воздуха.

Сколько кВт в одной секции чугунного радиатора

Производительность тепла чугунного радиатора зависит от объема воды, толщины стенок, наличия ребер, высоты и ширины секции. Существует несколько стандартных моделей чугунных батарей, заявленная теплоотдача одной секции которых составляет:

  • МС-140 – 175 Вт;
  • МС 140-500 – 195 Вт;
  • МС 140-300 – 120 Вт;
  • МС 110-500 – 150 Вт;
  • МС 100-500 – 135 Вт;
  • МС 90-500 – 140 Вт.

В классификации первое число обозначает ширину вертикального чугунного протока, второе – ее высоту.

Стандартный 6-секционный чугунный радиатор МС-140-500

Современные чугунные батареи отличаются от стандартных изделий марки МС. Они могут иметь другие размеры и дизайн, есть модели с отсекателями воздуха. Производители заявляют производительность одной секции в пределах от 150 до 220 Вт.

Если показатели тепловой мощности приводятся для разницы температур ΔТ в 60-70 градусов, они отличаются от реальных.

Для батарей с температурой воды 55-60 °С реальная производительность составит 75-85%, для батарей с температурой воды 65-70 °С – порядка 85-90% от указанной в спецификации производителя.

Сколько киловатт в одной секции биметаллического радиатора

Биметаллические радиаторы по внешнему виду сложно отличить от алюминиевых. Они также могут быть оборудованы отсекателями воздуха, а уровень теплоотдачи в основном зависит от высоты.

Как и в случае с алюминиевыми, данные в спецификациях изготовителей отличаются от реальных. Поэтому приводим информацию для температуры воды в контуре 65-70 градусов.

Тепловая мощность секции биметаллического радиатора отопления без отсекателей воздуха:

  • 200 мм – 0,5-0,6 кВт;
  • 350 мм – 0,1-0,11 кВт;
  • 500 мм – 0,14-0,155 кВт.

Сколько кВт одной секции биметаллического радиатора с отсекателями воздуха:

  • 200 мм – 0,6-0,7 кВт;
  • 350 мм – 0,115-0,125 кВт;
  • 500 мм – 0,17-0,19 кВт.

Радиатор стальной: сколько киловатт в 1 секции

Стальные радиаторы принципиально отличаются от чугунных, алюминиевых и биметаллических. Они изготавливаются не отдельными секциями, а в виде цельного нагревательного прибора.

Тепловая производительность стального радиатора зависит от его высоты, ширины, количества конвекторов. Различают три типа радиаторов:

  • Тип 11 – один конвектор;
  • Тип 22 – два конвектора;
  • Тип 33 – три конвектора.

Для удобства приводим таблицу тепловой мощности стальных радиаторов (значения приведены в Вт).

Таблица теплоотдачи стальных радиаторов.

Как и в предыдущем случае, приведенные значения номинальные. Для теплоносителя температурой 55-60 °С реальная теплоотдача составит 75-85%, для 65-70 °С – 85-90%.

В статье мы приводим реальные значения, сколько киловатт тепла может давать одна секция радиатора. Они меньше чисел, указываемых производителями, но мы не обманываем наших читателей.

Не забудьте поделиться публикацией в соцсетях!

Радиаторы из чугуна — это радиаторы, дошедшие до нашего времени с далеких 70-х годов прошлого тысячелетия. Сегодня они более современны, их практически невозможно отличить от биметаллических или алюминиевых радиаторов, покрытых эмалью. Чугунные радиаторы способны работать с температурой теплоносителя вплоть до 1100С.

Довольно большой размер и внушительный вес компенсируется инерционностью, позволяющей регулировать температуру. Они идеально подходят для любого помещения, надежны и долговечны, могут использоваться с любыми котлами и теплоносителями. Многих интересует вопрос —  сколько киловатт в одной секции чугунного радиатора? Ответ на этот вопрос вы найдете чуть ниже.

Чугунный радиатор отопления

Основные виды

Чугунные радиаторы М-140

Радиаторы типа М-140 имеют довольно простую конструкцию и легки в обслуживании. Материал, использующийся при их изготовлении – чугун. Он имеет высокую стойкость к коррозийным процессам и может использоваться с любым теплоносителем. Невысокий уровень гидравлического давления позволяет использовать радиаторы, как для гравитационной, так и для принудительной системы циркуляции теплоносителя. Высокий порог противодействия гидравлическим ударам позволяет эксплуатировать их как в двухэтажных, так и в девятиэтажных зданиях. Плюсы М-140 – легкость в обслуживании, надежность, длительный срок службы и низкая стоимость.

Чугунные радиаторы МС-140-500

Широко используются для обогрева строений с t теплоносителя в пределах 1300С и давлением 0,9 МПа. Ёмкость одной полости – 1,45л, объём обогреваемой площади – 0,244 квадратных метра. Материал, используемый для изготовления секций – СЧ-10 (серый чугун).

Чугунные р

Свойства алюминия

Физические свойства алюминия

основной Физические свойства алюминия и алюминиевого сплава, которые пригодны для использования:

Эти свойства алюминия представлены в таблицах ниже [1]. Их можно рассматривать только как основу для сравнения сплавов и их состояний и не следует использовать для инженерных расчетов. Это не гарантированные значения, поскольку в большинстве случаев это средние значения для продуктов разных размеров, форм и способов изготовления.Следовательно, они могут не точно соответствовать товарам всех размеров и форм.

Номинальные значения популярных плотностей алюминиевых сплавов представлены в отожженном состоянии (О). Разница в плотности из-за того, что сплавы, которые имеют различные легирующие элементы в разном количестве: кремний и магний легче алюминия (2,33 и 1,74 г / см 3 ), а железо, марганец, медь и цинк — тверже (7,87; 7,40; 8,96 и 7,13 г / см 3 ).

Влияние глинозема и физических свойств, в частности его плотности, на структурные характеристики алюминиевых сплавов см.Вот.

Алюминий как химический элемент

  • Алюминий Это третий по распространенности (после кислорода и кремния) среди примерно 90 химических элементов, которые содержатся в земной коре.
  • Среди металлических элементов — он первый.
  • Этот металл обладает множеством полезных свойств, физических, механических, технологических, благодаря которым он широко используется во всех сферах жизнедеятельности человека.
  • Алюминий — ковкий металл, имеющий серебристо-белый цвет, легко обрабатывается большинством методов обработки металлов давлением: прокаткой, волочением, экструзией (прессованием), ковкой.
  • Его плотность — удельный вес — около 2,70 грамма на кубический сантиметр.
  • Чистый алюминий плавится при температуре 660 градусов по Цельсию.
  • Алюминий имеет относительно высокую теплопроводность и электропроводность.
  • В присутствии кислорода всегда покрывается тонкой невидимой оксидной пленкой. Эта пленка по существу непроницаема и обладает относительно высокими защитными свойствами. Следовательно, алюминий обычно показывает стабильность и долгий срок службы при нормальных атмосферных условиях.

Сочетание свойств алюминия и его сплавов

Алюминий и его сплавы обладают уникальным сочетанием физических и других свойств. Он изготовлен из алюминия с использованием одного из самых универсальных, экономичных и привлекательных строительных и потребительских материалов. Алюминий используется в очень широком диапазоне — от мягкой, очень пластиковой упаковочной пленки до самых сложных космических проектов. Алюминий считается вторым после стали среди множества конструкционных материалов.

низкая плотность

Алюминий — одно из самых легких промышленных сооружений. Плотность алюминия примерно в три раза ниже, чем у стали или меди. Это физическое свойство обеспечивает высокую удельную прочность — прочность на единицу веса.

Рисунок 1.1 — Удельный вес алюминия по сравнению с другими металлами [3]

Рисунок 1.2 — Влияние легирующих элементов
на прочностные свойства, твердость, хрупкость и пластичность
[3]

Рисунок 1 — Прочность алюминия на единицу плотности в сравнении с различными металлами и сплавами [3]

Рисунок 2 — Кривые растяжения алюминия в сравнении с различными металлами и сплавами [3]

Таким образом, алюминиевые сплавы широко используются в транспортном машиностроении для увеличения грузоподъемности автомобилей и экономии топлива.

  • паром-катамарана,
  • нефтяных танкеров и
  • самолетов —

Вот лучшие примеры использования алюминия на транспорте.

Рисунок 3 — плотность алюминия в зависимости от чистоты и температуры [2]

коррозионная стойкость

Алюминий обладает высокой коррозионной стойкостью за счет тонкого слоя оксида алюминия на его поверхности. Эта оксидная пленка образуется мгновенно, как только свежая поверхность алюминия входит в контакт с воздухом (рисунок 4).Во многих случаях это свойство позволяет использовать алюминий без специальной обработки поверхности. Если необходимо дополнительное защитное или декоративное покрытие, применяется анодирование или окраска поверхности.

Рисунок 4
а — естественное оксидное покрытие на сверхчистом алюминии;
б — алюминий чистотой от коррозии 99,5% с естественным оксидным покрытием
коорозионно в агрессивных средах [2]

Рисунок 5.1 — Влияние легирующих элементов на коррозионную стойкость и усталостную прочность [3]

Рисунок 5.2 — точечная коррозия (точечная коррозия) алюминиевых листов
из сплава 3103 в различных агрессивных средах [3]

Прочность

Механические свойства чистого алюминия довольно низкие (рисунок 6). Однако эти механические свойства могут сильно вырасти, если в легирующие элементы добавлен алюминий и, кроме того, он подвергается термическому (рисунок 6) или деформационному (рисунок 7) упрочнению.

Типичные легирующие элементы включают:

  • марганец,
  • Кремний

  • ,
  • медь,
  • магний,
  • и цинк.

Рисунок 6 — Влияние чистоты алюминия на его прочность и твердость [2]

Рисунок 7 — Механические свойства деформируемых высокочистых
алюминиево-медных сплавов в различных состояниях [2]
(О — отожженный, W — сразу после отпуска, Т4 — естественно состаренный, Т6 — искусственно состаренный)

Рисунок 8 — Механические свойства алюминия 99,50%
в зависимости от степени холодной деформации [2]

Рисунок 2 — Влияние легирующих элементов на плотность и модуль Юнга [3]

Стойкость при низких температурах

Известно, что сталь становится хрупкой при низких температурах.Кроме того, алюминий при низких температурах увеличивает свою прочность и сохраняет высокую вязкость. Именно это физическое свойство позволило использовать его в космических аппаратах, в условиях работы в холодном пространстве.

Рисунок 9 — Изменение механических свойств алюминиевого сплава 6061
при понижении температуры

Теплопроводность

Алюминий проводит тепло в три раза быстрее, чем сталь. Это физическое свойство очень важно в теплообменниках для нагрева или охлаждения рабочей среды.здесь — широкое применение алюминия и его сплавов в посуде, кондиционерах, примышленных и автомобильных теплообменниках.

Рисунок 10 — Теплопроводность алюминия по сравнению с другими металлами [3]

отражательная способность

Алюминий — отличный отражатель лучистой энергии во всем диапазоне длин волн. Это физическое свойство позволяет использовать его в устройствах, которые работают против ультрафиолетового спектра через видимый спектр, инфракрасного спектра и тепловых волн, а также таких электромагнитных волн, как радиоволны и радиолокационные волны [1].

Алюминий обладает способностью отражать более 80% световых волн, что обеспечивает широкое использование в осветительных приборах (рисунок 11). Благодаря своим физическим свойствам используется в теплоизоляционных материалах. например, алюминиевая кровля отражает большую часть солнечного излучения, что обеспечивает прохладу в помещении летом и в то же время сохраняет тепло в помещении зимой.

Рисунок 11 — Отражающие свойства алюминия [2]

Рисунок 12 — Эмиссионные и отражающие свойства алюминия с различной обработкой поверхности [3]

Рисунок 13 — Сравнение отражающих свойств различных металлов [3]

электрические свойства

  • Алюминий — один из двух доступных металлов, которые обладают достаточно высокой электропроводностью, чтобы применять их в качестве электрических проводников.
  • Электропроводность «электрического» алюминия марки 1350 составляет около 62% от международного стандарта IACS — электропроводность отожженной меди.
  • Однако удельный вес алюминия составляет лишь треть от удельного веса меди. Это означает, что он тратит вдвое больше электроэнергии, чем медь того же веса. Это физическое свойство обеспечивает алюминий, широко используемый в высоковольтных линиях электропередачи (ЛЭП), трансформаторах, электрических автобусах и электрических лампах.

Рисунок 14 — Электрические свойства алюминия [3]

Магнитные свойства

Алюминий не намагничивается в электромагнитных полях. Это делает его полезным для защиты оборудования от воздействия электромагнитных полей. Еще одно применение этой функции — компьютерные диски и параболическая антенна.

Рисунок 15 — Намагниченный алюминиевый сплав AlCu [3]

токсичные свойства

Это свойство алюминия — отсутствие токсичности — было обнаружено в начале его промышленного освоения.Именно это свойство алюминия позволило использовать его для изготовления кухонной утвари и техники, не оказывая вредного воздействия на организм человека. Алюминий с его гладкой поверхностью легко чистится, при готовке важно обеспечить высокую гигиену. Алюминиевая фольга и контейнеры широко и безопасно используются при упаковке прямого контакта с пищевыми продуктами.

звукоизоляционные свойства

Это свойство позволяет использовать алюминий при выполнении акустических потолков.

Способность поглощать энергию удара

Алюминий имеет модуль упругости в три раза меньше, чем сталь.Это физическое свойство делает его большим преимуществом для изготовления автомобильных бамперов и других средств защиты автомобилей.

Рисунок 16 — Автомобильные алюминиевые профили
для поглощения энергии удара при аварии

огнезащитные свойства

Алюминиевые детали не образуют искр при ударах друг о друга, а также о других цветных металлах. Это физическое свойство используется при повышенных мерах пожарной безопасности конструкции, например, на морских нефтяных вышках.

В то же время, при повышении температуры выше 100 градусов Цельсия прочность алюминиевых сплавов существенно снижается (рисунок 17).

Рисунок 17 — Предел прочности алюминиевого сплава 2014-T6
при различных температурах испытаний [3]

Технологические свойства

Легкость, с которой алюминию можно придать любую форму — технологичность, это одно из важнейших его преимуществ. Очень часто он может успешно конкурировать с более дешевыми материалами, с которыми намного сложнее обращаться:

  • Этот металл можно отливать любым способом, известным металлургу, литейному производству.
  • Его можно свернуть до толщины фольги или более тонких листов бумаги.
  • Алюминиевые пластины можно штамповать, растягивать, устанавливать и формовать всеми известными методами обработки металлов давлением.
  • Алюминий поддается любой ковке
  • Алюминиевый провод

  • , вытянутый из круглого стержня, затем может быть вплетен в электрические кабели любого типа и размера.
  • Нет никаких ограничений по форме профилей, в которых он изготовлен из данного металла методом экструзии (прессования).

Рисунок 18.1 — литье алюминия в песчаные формы

Рисунок 18.2 — Непрерывная разливка-прокатка алюминиевой полосы [5]

Рисунок 18.3 — Десантная операция при изготовлении алюминиевых банок [4]

Рисунок 18.4 — операция ковки алюминия

Рисунок 18.5 — Алюминий холодного волочения

Рисунок 18.6 — Прессование (экструзия) алюминия

Источники:

  1. Алюминий и алюминиевые сплавы.- ASM International, 1993.
  2. А. Свердлин Свойства чистого алюминия // Справочник по алюминию, Vol. 1 / под ред. G.E. Тоттен, Д.С. Маккензи, 2003 г.,
  3. ТАЛАТ 1501
  4. ТАЛАТ 3710

Ватт (Вт) электрический блок

Ватт разрешения

Ватт — это единица измерения мощности (обозначение: Вт).

Блок ватт назван в честь Джеймса Ватта, изобретателя паровой машины.

Один ватт определяется как расход энергии один джоуль в секунду.

1 Вт = 1 Дж / 1 с

Один ватт также определяется как ток в один ампер при напряжении в один вольт.

1 Вт = 1 В × 1 А

Калькулятор преобразования Ватт в мВт, кВт, МВт, ГВт, дБм, дБВт

Перевести ватт в милливатт, киловатт, мегаватт, гигаватт, дБм, дБВт.

Введите мощность в одно из текстовых полей и нажмите кнопку Преобразовать :

Таблица префиксов единиц ватт

наименование символ преобразование пример
пиковатт полувольт 1пВт = 10 -12 Вт P = 10 пВт
нановатт нВт 1нВт = 10 -9 Вт P = 10 нВт
микроватт мкВт 1 мкВт = 10 -6 Вт P = 10 мкВт
милливатт мВт 1 мВт = 10 -3 Вт P = 10 мВт
Вт Вт P = 10 Вт
киловатт кВт 1 кВт = 10 3 Вт P = 2 кВт
мегаватт МВт 1 МВт = 10 6 Вт P = 5 МВт
гигаватт GW 1GW = 10 9 Вт P = 5 ГВт

Как преобразовать ватт в киловатт

Мощность P в киловаттах (кВт) равна мощности P в ваттах (Вт), деленной на 1000:

P (кВт) = P (Вт) /1000

Как преобразовать ватт в милливатт

Мощность P в милливаттах (мВт) равна мощности P в ваттах (Вт), умноженной на 1000:

P (мВт) = P (Вт) ⋅ 1000

Как преобразовать ватт в дБм

Мощность P в децибел-милливаттах (дБм) равна десятикратному логарифму мощности P в милливатт (мВт), деленному на 1 милливатт:

P (дБм) = 10 log 10 ( P (мВт) /1 мВт)

Как перевести ватты в амперы

Ток I в амперах (A) равен мощности P в ваттах (Вт), деленной на напряжение V в вольтах (В):

I (A) = P (W) / V (V)

Как преобразовать ватты в вольты

Напряжение V в вольтах (В) равно мощности P в ваттах (Вт), деленной на ток I в амперах (A):

V (V) = P (W) / I (A)

Как преобразовать ватты в Ом

R (Ом) = P (Вт) / I (A) 2

R (Ом) = В (В) 2 / P (Ш)

Как преобразовать ватт в BTU / час

P (БТЕ / час) = 3.412142 ⋅ P (Ш)

Как преобразовать ватт в джоули

E (Дж) = P (Ш) т (с)

Как преобразовать ватт в мощность

P (л.с.) = P (Вт) /746

Как преобразовать ватт в кВА

Реальная мощность P в ваттах (Вт) равна 1000-кратной полной мощности S в киловольт-амперах (кВА), умноженной на коэффициент мощности (PF) или косинус фазового угла φ:

Как настроить пассивный радиатор — с помощью WinISD

Конструкция корпуса пассивного радиатора

Давайте узнаем, как настроить пассивный радиатор.Прежде всего, вы должны знать все основные сведения о пассивных радиаторах. Насколько они похожи с фазоинвертором и так далее. Больше информации в этой статье. В предыдущей упомянутой статье мы говорили о принципах, лежащих в основе дизайна PR, а также о различных настройках, когда активный драйвер идентичен пассивному драйверу (без двигателя, конечно).

Хотя в этой статье мы будем использовать согласованные динамики (активный и пассивный драйвер), мы не будем использовать выравнивание.Вместо этого мы будем использовать программное обеспечение, такое как WinISD.

Пример корпуса

Чтобы служить примером конструкции корпуса пассивного радиатора, я разработал небольшую коробку для портативной колонки. Не зацикливайтесь на нем, это всего лишь тестовый корпус, только один канал (поэтому и есть только один твитер).

Несмотря на это, давайте сосредоточимся на том, как спроектировать корпус. После этого давайте переключимся на настройку пассивного радиатора. Тестируемые драйверы:

Их обоих 3.5-дюймовые драйверы. И для целей этого теста твитер ни к чему не подключен. Мы фокусируемся на драйверах, которые важны для нашего проекта. В данном случае, поскольку я пытаюсь сделать портативную колонку, пассивный радиатор — отличный выбор. Поскольку корпус такой маленький, длина порта будет слишком велика, чтобы разместить его внутри корпуса. В результате пассивный радиатор решает эту проблему.

Чтобы помочь нам в разработке корпуса, мы будем использовать WinISD.

Дизайн корпуса с использованием WinISD

Пойдем прямо в WinISD.Первое, что вам нужно сделать, это нажать «Создать новый проект» и выбрать «Добавить новый». Никогда не используйте ничего из существующего списка. Вы не можете быть уверены в точности этих параметров. Иногда в списке содержится нужный драйвер, но это могут быть старые версии того же драйвера. В результате всегда вручную вводите параметры динамика. После того, как вы ввели название и модель, перейдите на вкладку «Параметры».

Как спроектировать громкоговорители — видеокурсы

Убедитесь, что в этом разделе установлен флажок «Автоматически вычислять неизвестные» и не вводите все параметры.Остальное пусть вычислит автоматически. В противном случае, когда вы загрузите этот драйвер, вы получите ошибку несоответствия параметров. Так, например, если вы вводите Qes и Qms, пусть он вычислит Qts. Введите значения и используйте «Tab» для переключения между параметрами. Он будет рассчитывать автоматически, где это возможно. Я ввел только эти параметры:

  • Qes
  • Qms
  • Fs
  • Vas
  • мм
  • Le
  • Xmax

Список параметров выглядел так:

После сохранения драйвера вы хотите «Создать новый проект».Выберите только что созданный драйвер и нажмите «Далее». У нас 2 драйвера в штатной конфигурации. После этого выберите «Пассивный радиатор». Теперь нам нужно ввести параметры пассивного радиатора. Не волнуйтесь, что у нас 2 радиатора, мы изменим это при разработке корпуса. Эти параметры вы найдете в спецификации, предоставленной производителем. Обратите особое внимание на единицы:

  • Vas = 1,5 литра = 0,0015 м³
  • Qms = 6.15
  • Fs = 53,8 Гц
  • Sd = 31,2 см² = 0,00312 м²
  • Xmax = 9 мм = 0,009 м

Затем вы просто выбираете без выравнивания, даете проекту имя и создаете новый проект.

Частота настройки корпуса

Когда дело доходит до настройки резонансной частоты коробки, у нас есть несколько вариантов:

  • Изменить объем ящика. Увеличение громкости снижает резонансную частоту.
  • Изменение подвижной массы пассивного радиатора. В следующем разделе мы увидим, как настроить пассивный радиатор. Добавление массы снижает резонансную частоту.
  • Добавление дополнительных пассивных радиаторов. Если вы хотите добавить конусу массы, это несложно. Однако что, если вы хотите вычесть, а вычитать нечего? Вы просто добавляете еще один пассивный радиатор. Для каждого дополнительного пассивного излучателя частота настройки увеличивается.

Прежде чем мы начнем что-либо делать, давайте изменим некоторые числа, которые явно неверны.Объем корпуса по умолчанию установлен на 50 литров. Поскольку мы разрабатываем небольшую портативную колонку, давайте уменьшим ее до 1,5 литра.

Как видите, теперь у нас есть кривая, которая выглядит более подходящей. Далее нам нужно изменить количество пассивных радиаторов. По умолчанию установлено значение 1, однако у нас 2 штуки.

Если вы вернетесь в секцию коробки, вы увидите, что наша резонансная частота повысилась. Обеими действиями: уменьшением объема и добавлением дополнительного пассивного радиатора.Резонансная частота коробки изменилась с 54,6 Гц до 93,18 Гц. Это хорошая вещь. Так как у нас есть маленькие драйверы, которые имеют небольшой выход на низких частотах, не рекомендуется настраивать коробку слишком низко. Пассивные излучатели не могут воспроизводить низкие частоты, если их изначально нет. В этом конкретном случае лучше всего будет стремиться к еще более высокой частоте настройки (120 — 140 Гц).

Как настроить пассивный радиатор

Наше маленькое текстовое поле имеет размер 1.42 литра, давайте изменим это в WinISD.

После того, как мы уменьшили громкость, резонансная частота поднялась до 95,38 Гц. В этом случае оба пассивных радиатора не утяжеляются. Давайте сделаем быстрое обследование импеданса, чтобы подтвердить наши результаты.

Частота настройки бокса задается самой низкой точкой между пиками. Итак, 94,88 Гц. Очень удивлен, что программное обеспечение для моделирования настолько хорошо работает. Теперь давайте посмотрим, что произойдет, когда мы добавим массу пассивным радиаторам.В нашем случае мы действительно не хотим уменьшать частоту настройки, но мы делаем это просто для примера. В настройке сабвуфера вы, вероятно, захотите уменьшить резонансную частоту.

Теперь давайте добавим немного веса пассивному излучателю, чтобы уменьшить резонансную частоту корпуса.

Я добавлю один диск (2 доступны) плюс гайку, которую можно затянуть рукой. На картинке выше вы можете использовать PR только с одним диском, который не прикручен до упора.Если я подниму шкалу:

Мы видим, что в сумме они составляют 10,7 грамма. Давайте введем это в WinISD:

А теперь проверим резонансную частоту коробки.

Понизилась до 62,51 Гц. Для нашего маленького оратора вы никогда не захотите этого делать. Он настроен слишком низко. Мы только хотим проверить эффекты. Давайте посмотрим на график импеданса.

Измерение показывает 62,58 Гц. Впечатляющая точность этого WinISD-приложения.

Увеличение частоты настройки

Как я уже говорил, если вы избавитесь от всех весов, вы не сможете увеличить резонансную частоту.Можно, если использовать больше пассивных радиаторов. Однако есть и другие творческие способы настройки пассивного радиатора.

Я использовал дремель, чтобы отрезать стержень с резьбой.

Делая это, мы потеряем дополнительно 1,1 грамма движущейся массы, поэтому резонансная частота немного повысится.

Вот как выглядит пассивный радиатор без стержня. Сделав это, я также устранил некоторые проблемы с зазором, потому что мне пришлось сделать корпус глубже, чем он должен был быть.В противном случае стержень пассивного радиатора может ударить по активным драйверам спереди.

Заключение

Теперь мы знаем, как настроить пассивный радиатор. Добавить вес проще, чем похудеть, но вы также можете добавить больше радиаторов. Однако у Dayton Audio есть изящная реализация для увеличения веса. С некоторыми производителями вам может не повезти. Вам нужно будет найти несколько творческих решений, как приклеить что-нибудь к конусу, увеличить его вес и уменьшить резонансную частоту.

Сколько ватт делают 5,000

Обычно мы выбираем кондиционер в зависимости от БТЕ и размера комнаты. Однако, когда мы пытаемся оценить затраты на электроэнергию, очень полезно знать , сколько ватт использует наш конкретный кондиционер.

Мощность кондиционера — не самая простая информация.

Не знать, сколько ватт потребляет кондиционер на 5000 БТЕ, на самом деле вполне нормально. Что касается снижения температуры воздуха, вам нужно только знать, что он имеет 5000 БТЕ и его размер соответствует вашей комнате / пространству.

В среднем кондиционер на 5000 БТЕ потребляет 500 Вт энергии, работая на полную мощность.

Вы можете оценить, сколько ватт потребляет кондиционер с известной мощностью (BTU), с помощью этого калькулятора мощности переменного тока:

Есть 3 способа проверить, сколько ватт потребляет ваш кондиционер:

  1. Проверить лист технических характеристик ватт. Вы найдете мощность или мощность (в ваттах) в том же разделе, что и сила тока (в амперах) и напряжение (в вольтах).
  2. Проверьте спецификацию ампер и вольт. Мощность рассчитывается просто умножением количества ампер на количество вольт (что-то вроде 10А * 120В = 1200Вт) .
  3. Используйте рейтинг в БТЕ и EER, чтобы рассчитать, сколько энергии потребляет ваш кондиционер. Вы можете разделить BTU на рейтинг EER (что-то вроде 5000 BTU / 10 EER = 500 Вт) .

Ниже вы найдете таблицу, в которой показано, сколько ватт используют разные кондиционеры — от 5000 до 18000 БТЕ.

Эмпирическое правило для оценки того, сколько ватт энергии используют разные кондиционеры, состоит в том, чтобы разделить число БТЕ на 10. Таким образом, вы можете легко оценить, что блоки переменного тока мощностью 5000 БТЕ используют 500 Вт энергии.

Сколько мощности потребляют кондиционеры?

Отношение между BTU и мощностью (в ваттах) кондиционера определяется показателем энергоэффективности EER. Хороший рейтинг EER, например, равен 10. Это означает, что 500 Вт дадут нам 5 000 БТЕ охлаждающего эффекта.Если бы у кондиционера был более высокий рейтинг EER (например, 12), мощность 500 Вт дала бы нам 6000 БТЕ охлаждающего эффекта.

В приведенной выше таблице мы предполагаем, что рейтинг EER всех блоков переменного тока составляет от 8 до 12. Вот почему вы увидите диапазон мощности кондиционеров с тем же номером BTU:

BTU : Вт:
Сколько ватт потребляет 5000 БТЕ переменного тока? 417 — 625 Вт
Сколько ватт потребляет 6000 БТЕ переменного тока? 500 — 750 Вт
Сколько ватт потребляет 8000 БТЕ переменного тока? 667 — 1000 Вт
Сколько ватт потребляет 10000 БТЕ переменного тока? 833 — 1250 Вт
Сколько ватт потребляет 12000 БТЕ переменного тока? 1000-1500 Вт
Сколько ватт потребляет 15000 БТЕ переменного тока? 1250 — 1875 Вт
Сколько ватт потребляет 18000 БТЕ переменного тока? 1500 — 2250 Вт

Как видно из таблицы выше, кондиционер 12 000 БТЕ может использовать 1500 Вт (рейтинг 8 EER) или 1000 Вт (рейтинг 12 EER).Короче говоря, наличие кондиционера с высокой энергоэффективностью и высоким рейтингом EER окупается. Мы собрали здесь самые энергоэффективные портативные блоки переменного тока.

Лучшие генераторы для кондиционеров

Если у вас нет легкодоступного источника электроэнергии, вам, скорее всего, понадобится генератор, который будет производить около:

  • 500 Вт для блока переменного тока мощностью 5000 БТЕ.
  • 1000 Вт для блока переменного тока мощностью 10 000 БТЕ.
  • 1500 Вт для блока переменного тока 15000 БТЕ.

Мы получили много вопросов о том, какие генераторы лучше всего подходят для определенной мощности кондиционера.Вот некоторые из генераторов, которые вы можете использовать:

Все эти поколения будут обеспечивать базовую мощность, необходимую для питания вашего кондиционера.

Стоимость эксплуатации кондиционера мощностью 1000 Вт (оценка)

Кондиционеры высокой мощности стоят дороже в эксплуатации. Например, блок переменного тока мощностью 1000 Вт расходует 1 киловатт-час электроэнергии в час . Блок мощностью 1500Вт, для сравнения, тратит 1,5 кВтч электроэнергии в час.

Учитывая, что средняя цена 1 кВтч в США составляет 0,1319 доллара США, вы можете немного сэкономить, если вложите средства в энергоэффективный кондиционер выше среднего уровня.

Таким образом, средняя стоимость эксплуатации кондиционера мощностью 1000 Вт составляет 0,1319 доллара в час. Это составляет около 1 доллара на кондиционер, если вы используете такое устройство в течение 8 часов в день.

ИЗМЕРИТЕЛЬНЫЕ УСТРОЙСТВА И ПРИБОРЫ

Любой прибор, который измеряет электрические параметры, называется измерителем. Амперметр измеряет ток в амперах. Аппарат назван в честь французского ученого Андре Мари Ампера, открывшего множество фактов об электричестве более ста лет назад.Аббревиатура ампера — amp. Вольтметр измеряет напряжение и разность потенциалов в вольтах. Вольт назван alter Алессандро Вольта, итальянский ученый.

Ток в проводнике определяется двумя факторами: напряжением на проводнике и сопротивлением проводника. Каждый материальный объект оказывает некоторое сопротивление проходящему через него электронному току. Хорошие проводники, такие как металлы, медь, серебро и алюминий, обладают очень низким сопротивлением, в то время как непроводники, такие как стекло, дерево и бумага, обладают очень высоким сопротивлением.Единица измерения сопротивления называется Ом . Сопротивление на практике измеряется омметром. Ваттметр измеряет электрическую мощность в ваттах.

Ответьте на вопросы:

1. Что называется счетчиком?

2. Что измеряет амперметр?

3. Чем определяется сила тока?

4. Что можете сказать о непроводниках?

ТЕКСТ 16

Прочтите и переведите текст со словарем, проанализируйте слова и определите формы времени.

КОРОБКА ПРЕДПОЧТИТЕЛЬНОГО СОПРОТИВЛЕНИЯ

Этот блок сопротивления состоит из четырех отдельных переключателей, которые выбирают сопротивление в предпочтительном диапазоне значений 10%. Наберите 1 резистор от 100 Ом до 820 Ом. Набрать 2 резистора от 1 кОм до 8,2 кОм. Набрать 3 резистора из 10 кОм. Набрать 4 резистора от 100 Ом до 820 кОм.

Отдельные резисторы изготовлены из высокостабильного углерода с точностью до 1%.

Каждая шкала — это индивидуально, подключена к и экранирована от трех других циферблатов в коробке, так что отдельных шкал могут использоваться в разных коробках одной и той же цепи без соединения. Подключение коаксиальным разъемом. Все находится в металлическом корпусе.

Рейтинг: 1 ватт.

Ответьте на вопросы:

1. Из чего состоит ящик сопротивления?

2.Какие бывают отдельные резисторы?

3. Каким образом подключается и экранируется каждый циферблат?

ТЕКСТ 17

Прочтите и переведите текст со словарем, проанализируйте слова и определите формы времени.

ИСТОЧНИК ПИТАНИЯ С ДВОЙНЫМ ТРАНЗИСТОРОМ, ТИП 423

Источник питания типа 423 производится на открытом шасси и предназначен для встраивания в профессиональное оборудование , но с таким же успехом может использоваться на лабораторном столе.

Устройство обеспечивает двумя полностью независимыми и изолированными источниками, а мощность может легко регулироваться покупателем. Приведенные напряжения соответствуют напряжениям, обычно используемым разработчиками транзисторных схем.

СПЕЦИФИКАЦИЯ

(следующая спецификация относится к обоим расходным материалам)

Выходные напряжения: 10-12 В, 15-18 В и 24 В.

Выходной ток: 0-1А.

Пульсации и шум: (при 1 А) Менее 5 мВ пик.

Напряжение питания: 100/220 В

Размеры:

Высота 5,0 дюйма (12,70 см)

Ширина 6,0 дюйма (15,24 см)

Масса 8,0 фунта (3,6 кг)

Ответьте на вопросы:

1. Как можно использовать источник питания Тип 423?

2. Что дает установка?

3. Какое напряжение подается?

4. Каковы размеры?

ТЕКСТ 18

Прочтите и переведите текст со словарем, проанализируйте слова и определите формы времени.

АВТОТРАНСФОРМАТОРЫ

Эффект трансформатора можно также получить с помощью одной ответвленной обмотки вместо отдельных первичной и вторичной обмоток. Устройство называется автотрансформатором. Если первичная обмотка представляет собой всю катушку, вторичное напряжение будет практически такой же пропорцией от приложенного напряжения, как пропорция между витками до вторичного ответвления и общим количеством витков.Путем изменения напряжения так, чтобы питание было подключено к меньшему количеству витков, напряжение, превышающее напряжение питания, появляется на всей катушке. Таким образом, автотрансформатор можно использовать для получения более высокого или более низкого напряжения, чем напряжение питания, как в случае обычного трансформатора с двумя отдельными обмотками.

На практике использование автотрансформаторов ограничивается относительно небольшими отношениями напряжений, одна из причин заключается в том, что если разрыв происходит где-либо во вторичной части обмотки, первичное напряжение подается на устройство, подключенное ко вторичной обмотке.При высоком первичном напряжении это может создать опасные условия. Основное применение автотрансформаторов — в. c. регулирование напряжения и для нечастого обслуживания, такого как запуск асинхронных двигателей при низком напряжении.

Ответьте на вопросы:

1. Как получить эффект трансформатора?

2. Как называется договоренность?

3. Где в основном используются автотрансформаторы?

ТЕКСТ 19

Прочтите и переведите текст со словарем, проанализируйте слова и определите формы времени.

ПРЕЦИЗИОННЫЙ УСИЛИТЕЛЬ ПОСТОЯННОГО ТОКА.

Это прецизионный прибор, предназначенный для измерения небольших постоянных токов, всего 10 -13 ампер, напряжения и малых приращений заряда. Он также обеспечит стабилизированное напряжение 105 вольт постоянного тока. h.t. источник питания для поляризации связанной ионной камеры.

Кремниевые транзисторы

используются везде, где это возможно, в интересах надежности и стабильной работы. Индикация обеспечивается измерителем на передней панели и предусмотрена возможность работы с внешним измерителем или записывающим устройством.

Строительство

В первом каскаде усилителя используется клапан электрометра , который вместе с переключателем диапазона и резисторами высокого номинала помещен в прочный герметичный корпус, который защищен от воздействия влаги эксикатором. Остальные каскады усилителя установлены на печатной плате , подключение к которой осуществляется с помощью двух быстроразъемных многокомпонентных вилок и розеток.Таким образом, в случае поломки можно легко и быстро заменить один или оба блока электрометра и печатную плату.

Шкаф изготовлен из листовой стали , покрытой серой эмалью, и выдерживает условия, характерные для лабораторий и школ.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *