Статическое и динамическое давление: Полное, статическое и динамическое давление. Измерение давления в воздуховодах систем вентиляции

Разное

Содержание

Полное, статическое и динамическое давление. Измерение давления в воздуховодах систем вентиляции

 Полное, статическое и динамическое давление

При движении воздуха по ВВ в любом поперечном сечении различают 3 вида давления:

Статическое,

Динамическое,

Полное.

Статическое давление определяет потенциальную энергию 1 м3 воздуха в рассматриваемом сечении. Оно равно давлению на стенки воздуховода. .

Динамическое давление – кинетическаяя энергия потока, отнесенная к 1 м3 воздуха.

 – плотность воздуха,    

 — скорость воздуха, м/с.

Полное давление равно сумме статического и динамического давления.

Принято пользоваться значением избыточного давления, принимая за условный ноль атмосферное давление на уровне системы. В нагнетательных воздуховодах полное и статическое избыточное давление всегда «+», т.е. давление > . Во всасывающих воздуховодах полное и статическое избыточное давление «-».

Измерение давления в воздуховодах систем вентиляции

Давление в ВВ измеряется при помощи пневмометрической трубки и какого-либо измерительного прибора: микроманометра либо др.прибора.

Для нагнетательного воздуховода:

статическое давление – трубку статического давления к бачку микроманометра;

полное давление – трубку полного давления к бачку микроманометра;

динамическое давление – трубку полного давления к бачку, а статического – к капилляру микроманометра.

Для всасывающего воздуховода:

статическое давление – трубку статического давления к капилляру манометра;


полное давление – трубку полного давления к капилляру микроманометра;

динамическое давление – трубку полного давления к бачку, а статического – к капилляру микроманометра.

Схемы измерения давления в воздуховодах.

 

Билет №10

Потери давления в системах вентиляции

При движении по ВВ воздух теряет свою энергию на преодоление различных сопротивлений, т.е. происходят потери давления.

Потери давления на трение

 – коэффициент сопротивления трения. Зависит от режима движения жидкости по воздуховоду.

 — кинематическая вязкость, зависит от температуры.

При ламинарном режиме:

при турбулентном движении  зависит от шероховатости поверхности трубы. Применяются различные формулы и широко известна формула Альтшуля:

 – абсолютная эквивалентная шероховатость материала внутренней поверхности воздуховода, мм.

Для листовой стали 0,1мм; силикатобетонные плиты 1,5 мм; кирпич 4 мм, штукатурка по сетке 10 мм

Удельные потери давления

В инженерных расчетах пользуются специальными таблицами, в которых приводят значения  для круглого воздуховода. Для воздуховодов из других материалов вводится поправочный коэффициент и  равно:

.

Значение поправочного коэффициента  приводится к справочнике в зависимости от вида материала  и от скорости перемещения воздуха по воздуховоду.

Для прямоугольных воздуховодов за расчетную величину d принимают эквивалентныйdэк, при которой потери давления в круглом воздуховоде при той же скорости будут равны потерям давления в прямоугольном воздуховоде:

 — стороны прямоугольного воздуховода.



Следует иметь в виду: расход воздуха прямоугольного и круглого воздуховодов с  при равенстве скоростей не совпадает.

Уравнение Бернулли. Статическое и динамическое давления — Студопедия

ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ г. СЕМЕЙ

Методическое пособие по теме:

Исследование реологических свойств биологических жидкостей.

Методы исследования кровообращения.

Реография.

Составитель: Преподаватель

Ковалева Л.В.

Основные вопросы темы:

  1. Уравнение Бернулли. Статическое и динамическое давления.
  2. Реологические свойства крови. Вязкость.
  3. Формула Ньютона.
  4. Число Рейнольдса.
  5. Ньютоновская и Неньютоновская жидкость
  6. Ламинарное течение.
  7. Турбулентное течение.
  8. Определение вязкости крови с помощью медицинского вискозиметра.
  9. Закон Пуазейля.
  10. Определение скорости кровотока.
  11. Полное сопротивление тканей организма. Физические основы реографии. Реоэнцефалография
  12. Физические основы баллистокардиографии.

Уравнение Бернулли. Статическое и динамическое давления.

Идеальной называется несжимаемая и не имеющая внутреннего трения, или вязкости; стационарным или установившимся называется течение, при котором скорости частиц жидкости в каждой точке потока со временем не изменяются. Установившееся течение характеризуют линиями тока — воображаемыми линиями, совпадающими с траекториями частиц. Часть потока жидкости, ограниченная со всех сторон линиями тока, образует трубку тока или струю. Выделим трубку тока настолько узкую, что скорости частиц V в любом ее сечении S, перпендикулярном оси трубки, можно считать одинаковыми по всему сечению. Тогда объем жидкости, протекающий через любое сечение трубки в единицу времени остается постоянным, так как движение частиц в жидкости происходит только вдоль оси трубки: . Это соотношение назы­вается условием неразрывности струи. Отсюда следует, что и для реальной жидкости при установившемся течении по трубе переменного сечения количество Qжидкости, проте­кающее в единицу времени через любое сечение трубы, остается по­стоянным (Q = const) и средние скорости течения в различных сече­ниях трубы обратно пропорциональны площадям этих сечений: и т . д.



Выделим в потоке идеальной жидкости трубку тока, а в ней — достаточно малый объем жидкости массой , который при тече­нии жидкости перемещается из положения А в положение В.

Из-за малости объема можно считать, что все частицы жидкости в нем находятся в равных условиях: в положе­нии А имеют давление скорость и находятся на высоте h1от нуле­вого уровня; в положении В — соот­ветственно . Сечения трубки тока соответственно S1 и S2.


Жидкость, находящаяся под дав­лением, обладает внутренней потен­циальной энергией (энергией давле­ния), за счет которой она может совершать работу. Этаэнергия Wpизмеряется произведением давления на объем V жидкости: . В данном случае перемещение массы жидкости происходит под действием разности сил давления в се­чениях Si и S2. Совершаемая при этом работа Арравняется разности по­тенциальных энергий давления в точках . Эта работа расходуется на работу по преодолению действия силы тяжес­ти и на изменение кинетической энергии массы

жидкости:

Следовательно, Ар = Ah + AD

Перегруппировав члены уравнения, получим

Положения А и В выбраны произвольно, поэтому можно утверждать, что в любом месте вдоль трубки тока сохраняется условие

разделив это уравнение на , получим

где плотность жидкости.

Это и есть уравнение Бернулли. Все члены уравнения, как легко убедиться, имеют размерность давления и называются: статистическим: гидростатическим: — динамическим. Тогда уравнение Бернулли можно сформулировать так:

при стационарном течении идеальной жидкости полное давление равное сумме статического, гидростатического и динамического давлений, остается величиной постоянной в любом поперечном сечении потока.

Для горизонтальной трубки тока гидростатическое давление ос­тается постоянным и может быть отнесено в правую часть уравнения, которое при этом принимает вид

статистическое давление обусловливает потенциальную энергию жидкос­ти (энергию давления), динамическое давление — кинетическую.

Из этого уравнения следует вывод, называемый правилом Бернулли:

статическое давление невязкой жидкости при течении по горизон­тальной трубе возрастает там, где скорость ее уменьшается, и на­оборот.

Давление — ТеплоВики — энциклопедия отопления

Материал из ТеплоВики — энциклопедия отоплении

Определение давления

Давление — это статическое давление жидкостей и газов, измеренное в сосудах, трубопроводах относительно атмосферного давления (Па, мбар, бар).

Виды давления

Статическое давление

Статическое давление — это давление неподвижной жидкости. Статическое давление = уровень выше соответствующей точки измерения +
начальное давление в расширительном баке.

Динамическое давление

Динамическое давление — это давление движущегося потока жидкости.

Давление нагнетания насоса

Это давление на выходе центробежного насоса во время его работы.

Перепад давления

Давление, развиваемое центробежным насосом для преодоления общего сопротивления системы. Оно измеряется между входом и выходом центробежного насоса.

Рабочее давление

Давление, имеющееся в системе при работе насоса.

Допустимое рабочее давление

Максимальное значение рабочего давления, допускаемого из условий безопасности работы насоса и системы.

Давление — физическая величина, характеризующая интенсивность нормальных (перпендикулярных к поверхности) сил, с которыми одно тело действует на поверхность другого (например, фундамент здания на грунт, жидкость на стенки сосуда, газ в цилиндре двигателя на поршень и т. п.). Если силы распределены вдоль поверхности равномерно, то Давление р на любую часть поверхности равно р = f/s, где S — площадь этой части, F — сумма приложенных перпендикулярно к ней сил. При неравномерном распределении сил это равенство определяет среднее давление на данную площадку, а в пределе, при стремлении величины S к нулю, — давление в данной точке. В случае равномерного распределения сил давление во всех точках поверхности одинаково, а в случае неравномерного — изменяется от точки к точке.

Для непрерывной среды аналогично вводится понятие давление в каждой точке среды, играющее важную роль в механике жидкостей и газов. Давление в любой точке покоящейся жидкости по всем направлениям одинаково; это справедливо и для движущейся жидкости или газа, если их можно считать идеальными (лишёнными трения). В вязкой жидкости под давление в данной точке понимают среднее значение давление по трём взаимно перпендикулярным направлениям.

Давление играет важную роль в физических, химических, механических, биологических и др. явлениях.

Потеря давления

Потеря давления — снижение давления между входом и выходом элемента конструкции. К подобным элементам относятся трубопроводы и арматура. Потери возникают по причине завихрений и трения. Каждый трубопровод и арматура в зависимости от материала и степени шероховатости поверхности характеризуется собственным коэффициентом потерь. За соответствующей информацией следует обратиться к их изготовителям.

Единицы измерения давления

Давление является интенсивной физической величиной. Давление в системе СИ измеряется в паскалях; применяются также следующие единицы:

Давление

Па

мм вод. ст.

мм рт. ст.

бар

кг/см2

атм.

кг/м2

м вод. ст.

psi

1 Па

 X

0,102

7,5 x 10-3

10-5

0,102 x 10-4

0,102 x 10-4

0,102

0,102 x 10-3

1,5 x 10-4

1 мм вод. ст.

9,81

7,36 x 10-2

9,81 x 10-5

10-4

10-4

1

10-3

1,5 x 10-3

1 мм рт. ст.

133,4

13,6

1,3 x 10-3

1,36 x 10-3

1,36 x 10-3

13,6

1,36 x 10-2

2 x 10-2

1 бар

105

1,02 x 104

7,5 x 102

 X

1,02

1,02

1,02 x 104

10,2

15

1 кг/см2

9,81 x 104

104

7,36

0,98

1

104

0,1

15

1 атм.

9,81 x 104

104

7,36

0,98

1

104

0,1

15

1 кг/м2

9,81

1

7,36 x 10-2

9,81 x 10-5

10-4

10-4

10-3

1,5 x 10-3

1 м вод. ст.

9,81 x 103

103

73,6

9,81 x 10-2

0,1

0,1

103

1,5

1 psi

6,67 x 103

6,67 x 102

50

6,67 x 10-2

6,67 x 10-2

6,67 x 10-2

6,67 x 102

0,667

Что такое рабочее, статическое давление в системе отопления?

Системы отопления обязательно тестируют на устойчивость к давлению

Из этой статьи вы узнаете, что такое статическое и динамическое давление системы отопления, зачем оно нужно и чем отличается. Также будут рассмотрены причины его повышения и понижения и методы их устранения. Помимо этого, речь пойдет о том, каким давлением испытывают различные системы отопления и способы данной проверки.

Виды давления в отопительной системе

Выделяют два вида:

  • статистическое;
  • динамическое.

Что такое статическое давление системы отопления? Это то, которое создаётся под воздействием силы притяжения. Вода под собственным весом давит на стенки системы с силой пропорциональной высоте, на которую она поднимается. С 10 метров этот показатель равен 1 атмосфере. В статистических системах не задействуют нагнетатели потока, и теплоноситель циркулирует по трубам и радиаторам самотеком. Это открытые системы. Максимальное давление в открытой системе отопления составляет около 1,5 атмосферы. В современном строительстве такие методы практически не применяются, даже при монтаже автономных контуров загородных домов. Это связано с тем, что для такой схемы циркуляции надо применять трубы с большим диаметром. Это не эстетично и дорого.

Динамическое давление в системе отопления можно регулировать

Динамическое давление в закрытой системе отопления создается искусственным повышением скорости потока теплоносителя при помощи электрического насоса. Например, если речь идет о многоэтажках, или крупных магистралях. Хотя, теперь даже в частных домах при монтаже отопления используют насосы.

Важно! Речь идет об избыточном давлении без учета атмосферного.

Каждая из систем отопления имеет свой допустимый предел прочности. Иными словами, может выдержать разную нагрузку. Чтобы узнать какое рабочее давление в закрытой системе отопления, надо к статическому, создаваемому столбом воды, добавить динамическое, нагнетаемое насосами. Для правильной работы системы, показания манометра должны быть стабильными. Манометр – механический прибор, измеряющий силу,  с которой вода движется в системе отопления. Он состоит из пружины, стрелки и шкалы. Манометры устанавливаются в ключевых местах. Благодаря им можно узнать какое рабочее давление в системе отопления, а также выявлять неисправности в трубопроводе во время диагностики.

Перепады давления

Чтобы компенсировать перепады, в контур встраивается дополнительное оборудование:

  1. расширительный бачок;
  2. клапан аварийного выброса теплоносителя;
  3. воздухоотводы.

Скачки рабочего давления в системе отопления могут быть спровоцированы различными причинами. В процессе эксплуатации может наблюдаться повышение или понижение давления. Рассмотрим основные причины такого явления и будем разбираться, как с этим бороться.

Причины понижения

При понижении рабочего давления циркуляция воды может просто остановиться, так отключится нагреватель. Помимо этого, низкая скорость теплоносителя приведет к тому, что на отдаленные участи контура вода будет доходить с большими теплопотерями, или, вообще, не дойдет. Причинами такого явления может быть:

  • разгерметизация;

Чтобы найти место, где протекает вода надо обследовать каждый узел. Делать это следует очень внимательно. Бывают случаи, когда утечка настолько мизерна, что незаметна визуально. Также могут образоваться микроскопические трещины на теплоносителе.

  • остановка насосов;

Если насосы перестают качать воду по трубам,  то норма давления в системе отопления не может быть соблюдена. Все насосы электрические, поэтому причиной может стать его обесточивание. В первую очередь, надо проверить его подпитку от электросети. Если все в порядке, возможно, сломался механизм. В этом случае насос придется заменить.

  • неисправность расширительного бачка;

Бачок компенсирует расширение воды при нагревании. Он состоит из двух камер, которые разделены резиновой мембраной. Одна камера с газом, вторая для воды. В газовой камере есть ниппель, через который можно подкачивать воздух обычным насосом. Падение давления может наблюдаться, если в газовой камере недостаточный объём воздуха или если порвалась мембрана. В первом случае надо открутить бачок, спустить с него воду и воздух, а потом накачать необходимое количество атмосфер. Во втором случае – только замена. Также причиной падения рабочего давления в системе отопления может быть недостаточный объём бачка. В этом случае необходимо установить дополнительный бак.

Причины повышения

Повышенное давление в открытой или закрытой системе отопления свидетельствует о ее неисправности. Почему это происходит:

  • образование воздушной пробки;

Воздушная пробка может стать причиной изменения рабочего давления

Если в трубе есть воздух, он оказывает сильное сопротивление потоку теплоносителя, не пропуская его дальше. Таким образом, горячая вода просто не доходит до некоторых участков. Вследствие – холодные радиаторы и опасность размораживания. Для удаления воздушных пробок в вероятных местах их образования устанавливаются воздухоотводы.

Они автоматически выпускают воздух наружу. Также из-за воздушной пробки рабочее давление может повыситься в радиаторах отопления. В батареях нового образца, вверху, есть клапан, через который можно вручную выпустить воздух.

Могут забиться фильтры воды, а также труба. На ее внутренних стенках образуется налет, который уменьшает диаметр трубы. Проблема решается чисткой. Если не помогает, тогда замена.

  • сбой в работе регулятора давления;

Регулятор может частично или полностью перекрывать поток теплоносителя. Есть две причины, по которым он может дать сбой: не настроен или поломан. Соответственно, его нужно или настроить, или поменять.

  • перекрытие кранов;

Если в системе перекрыт кран, движение жидкости останавливается. Обычно такое происходит по халатности.

Испытания системы отопления давлением

Испытание системы отопления под давлением – это обязательное условие ввода ее в эксплуатацию. Система должна соответствовать проекту и быть вымытой. Нагреватель и расширительные бачки должны быть отсоединены. Испытания осуществляются двумя методами:

  1. водой – гидростатический метод;
  2. воздухом – манометрический (пневмонический) метод.

Можно выделить два вида гидростатического тестирования: холодное и горячее. Гидравлические испытания системы отопления под давлением осуществляют только в теплое время года. Этот метод предполагает заполнение контура холодной жидкостью полностью. Весь воздух удаляется. Затем при помощи компрессора нагнетается давление и выдерживается какое-то время. На следующем этапе жидкость нагревается.

Манометрические испытания проводятся путем нагнетания воздуха в систему отопления. Для этого применяют специальное оборудование. Опасность такого метода заключается в том, что слабые участки могут просто разлететься в разные стороны. Зато исключается риск затопления и размораживания.

Испытания проводятся как на всей системе сразу, так и на отдельных ее участках. Перед началом следует перекрыть краны, через которые вода и воздух могут выйти наружу.

Методы проверки различных систем отопления

Водяное отопление

Тестирование воздухом – испытательное давление системы отопления повышают до 1,5 бар, затем спускают до 1 бара и оставляют на пять минут. При этом потери не должны превышать 0,1 бар.

Тестирование водой – давление повышают не менее чем до 2 бар. Возможно и больше. Зависит от рабочего давления. Максимальное рабочее давление системы отопления надо умножить на 1,5. За пять минуть потери не должны превышать 0,2 бар.

Панельное

Холодное гидростатическое тестирование – 15 минут с давлением 10 бар, потери не больше 0,1 бара. Горячее тестирование – поднятие температуры в контуре до 60 градусов на семь часов.

Паровое

Испытывают водой, нагнетая 2,5 бара. Дополнительно проверяют водонагреватели (3-4 бара) и насосные установки.

Тепловые сети

Допустимое давление в системе отопления постепенно повышается до уровня выше рабочего на 1,25, но не меньше 16 бар.

По результатам тестирования составляется акт, который является документом, подтверждающим заявленные в нем эксплуатационные характеристики. К ним, в частности, относиться рабочее давление.

 

 

Давление в движущейся жидкости — Наука и образование

В текущей жидкости различают статическое давление и динамическое давление. Причиной статического давления, как и в случае неподвижной жидкости, является сжатие жидкости. Статическое давление проявляется в напоре на стенку трубы, по которой течёт жидкость.

Динамическое давление обусловливается скоростью течения жидкости. Чтобы обнаружить это давление, надо затормозить жидкость, и тогда оно, как и. статическое давление, проявится в виде напора.

Сумма статического и динамического давлений называется полным давлением.

В покоящейся жидкости динамическое давление равно нулю, следовательно, статическое давление равно полному давлению и может быть измерено любым манометром.

Измерение давления в движущейся жидкости сопряжено с целым рядом трудностей. Дело в том, что манометр, погружённый в движущуюся жидкость, изменяет скорость движения жидкости в том месте, где он находится. При этом, конечно, изменяется и величина измеряемого давления. Чтобы манометр, погружённый в жидкость, совсем не изменял скорости жидкости, он должен двигаться вместе с жидкостью. Однако измерять таким путём давление внутри жидкости крайне неудобно. Это затруднение обходят, придавая трубке, соединённой с манометром, обтекаемую форму, при которой она почти не изменяет скорости движения жидкости. Практически для измерения давлений внутри движущейся жидкости или газа применяют узкие манометрические трубки.

Статическое давление измеряется с помощью манометрической трубки, плоскость отверстия которой расположена параллельно линиям тока. Если жидкость в трубе находится под давлением, то в манометрической трубке жидкость поднимается на некоторую высоту, соответствующую статическому давлению в данном месте трубы.

Полное давление измеряют трубкой, плоскость отверстия которой расположена перпендикулярно линиям тока. Такой прибор называется трубкой Пито. Попав в отверстие трубки Пито, жидкость останавливается. Высота столба жидкости (hполн) в манометрической трубке будет соответствовать полному давлению жидкости в данном месте трубы.

В дальнейшем нас будет интересовать только статическое давление, которое мы будем называть просто давлением внутри движущейся жидкости или газа.?

Если измерить статическое давление в движущейся жидкости в различных частях трубы переменного сечения, то окажется, что в узкой части трубы оно меньше, чем в широкой её части.

Но скорости течения жидкости обратно пропорциональны площадям сечения трубы; следовательно, давление в движущейся жидкости зависит от скорости её течения.

В местах, где жидкость движется быстрее (узкие места трубы), давление меньше, чем там, где эта жидкость движется медленнее (широкие места трубы).

Этот факт можно объяснить на основе общих законов механики.

Допустим, что жидкость переходит из широкой части трубки в узкую. При этом частицы жидкости увеличивают скорости, т. е. движутся с ускорениями в направлении движения. Пренебрегая трением, на основе второго закона Ньютона можно утверждать, что равнодействующая сил, действующих на каждую частицу жидкости, также направлена в сторону движения жидкости. Но эта равнодействующая сила создаётся силами давления, которые действуют на каждую данную частицу со стороны окружающих её частиц жидкости, и направлена вперёд, по направлению движения жидкости. Значит, сзади на частицу действует большее давление, чем спереди. Следовательно, как показывает и опыт, давление в широкой части трубки больше, чем в узкой.

Если жидкость течёт из узкой в широкую часть трубки, то, очевидно, в этом случае частицы жидкости тормозятся. Равнодействующая сил, действующих на каждую частицу жидкости со стороны окружающих её частиц, направлена в сторону, противоположную движению. Эта равнодействующая определяется разностью давлений в узком и широком каналах. Следовательно, частица жидкости, переходя из узкой в широкую часть трубки, движется из мест с меньшим давлением в места с большим давлением.

Итак, при стационарном движении в местах сужения каналов давление жидкости понижено, в местах расширения – повышено.

Скорости течения жидкости принято изображать густотой расположения линий тока. Поэтому в тех частях стационарного потока жидкости, где давление меньше, линии тока должны быть расположены гуще, и, наоборот, где давление больше, линии тока расположены реже. То же относится и к изображению потока газа.

Скважинная добыча нефти. Статическое и динамическое давление.

ИСТОЧНИКИ ПЛАСТОВОЙ ЭНЕРГИИ

§ 1. Пластовые давления

Для правильного понимания всех технологических процессов и явлений, связанных с эксплуатацией нефтяных месторождений и скважин, необходимо уяснить ряд терминов для давлений, которые определяют или влияют на эти технологические процессы.

Статическое давление на забое скважины

Статическое давление — это давление на забое скважины, устанавливающееся после достаточно длительной ее остановки. Оно равно гидростатическому давлению столба жидкости в скважине высотой (по вертикали), равной расстоянию от уровня жидкости до глубины, на которой производится измерение. Обычно за такую глубину принимается середина интервала вскрытой толщины пласта. С другой стороны, это давление равно давлению внутри пласта, вскрытого скважинами, и поэтому оно называется пластовым давлением.

Статический уровень

Уровень столба жидкости, установившийся в скважине после ее остановки при условии, что на него действует атмосферное давление, называется статическим уровнем.

Если устье скважины герметизировано, то обычно в верхней части скважины скапливается газ, создающий некоторое давление на уровень жидкости. В этом случае уровень жидкости не называется статическим, хотя соответствует статическим условиям скважины, и давление на забое скважины равно сумме гидростатического давления столба жидкости и давления газа.

Динамическое давление на забое скважины

Это давление устанавливается на забое во время отбора жидкости или газа из скважины или во время закачки жидкости или газа в скважину. Динамическое давление на забое очень часто называют забойным давлением в отличие от статического, которое называют пластовым давлением. Однако и статическое, и динамическое давления в то же время являются забойными.

Динамический уровень жидкости

Уровень жидкости, который устанавливается в работающей скважине при условии, что на него действует атмосферное давление (межтрубное пространство открыто), называется динамическим уровнем.

При герметизированном затрубном пространстве динамическое давление будет равно сумме гидростатического давления столба жидкости от уровня до забоя и давления газа, действующего на уровень. Высота столба жидкости измеряется по вертикали. Поэтому в наклонных скважинах при вычислении гидростатических давлений должна делаться соответствующая поправка на кривизну скважины.

Среднее пластовое давление

По среднему пластовому давлению оценивают общее состояние пласта и его энергетическую характеристику, обусловливающую способы и возможности эксплуатации скважин. Статические давления в скважинах, расположенных в различных частях залежи и характеризующие локальные пластовые давления, могут быть неодинаковыми вследствие разной степени выработанности участков пласта, его неоднородности, прерывистости и ряда других причин. Поэтому используют понятие среднего пластового давления. Среднее пластовое давление Рср вычисляют по замерам статических давлений Рi в отдельных скважинах.

Похожие статьи:

РЭНГМ → Учебное пособие, скважинная добыча нефти и газа

РЭНГМ → Справочник по добыче нефти. В.В. Андреев

РЭНГМ → Магистральные нефтепроводы

РЭНГМ → Справочник мастера по добыче нефти. В.М. Муравьев

РЭНГМ → Справочник мастера по добыче нефти. Бояров А.И.

Жидкость, давление, скорость – основы закона сантехники

Главная страница » Жидкость, давление, скорость – основы закона сантехники

Сантехника, казалось бы, не даёт особого повода вникать в дебри технологий, механизмов, заниматься скрупулёзными расчётами для выстраивания сложнейших схем. Но такое видение – это поверхностный взгляд на сантехнику. Реальная сантехническая сфера ничуть не уступает по сложности процессов и, также как многие другие отрасли, требует профессионального подхода. В свою очередь профессионализм – это солидный багаж знаний, на которых основывается сантехника. Окунёмся же (пусть не слишком глубоко) в сантехнический учебный поток, дабы приблизиться на шаг к профессиональному статусу сантехника.

СОДЕРЖИМОЕ ПУБЛИКАЦИИ :

Закон Паскаля

Фундаментальная основа современной гидравлики сформировалась, когда Блезу Паскалю удалось обнаружить, что действие давления жидкости неизменно в любом направлении. Действие жидкостного давления направлено под прямым углом к площади поверхностей.

Если измерительное устройство (манометр) разместить под слоем жидкости на определенной глубине и направлять его чувствительный элемент в разные стороны, показания давления будут оставаться неизменными в любом положении манометра.

То есть давление жидкости никак не зависит от смены направления. Но давление жидкости на каждом уровне зависит от параметра глубины. Если измеритель давления перемещать ближе к поверхности жидкости, показания будут уменьшаться.

Соответственно, при погружении измеряемые показания будут увеличиваться. Причём в условиях удвоения глубины, параметр давления также удвоится.

ИНСТРУМЕНТ

Закон Паскаля для жидкостиЗакон Паскаля наглядно демонстрирует действие давления воды в самых привычных условиях для современного быта

Отсюда логичный вывод: давление жидкости следует рассматривать прямо пропорциональной величиной для параметра глубины.

В качестве примера рассмотрим прямоугольный контейнер размерами 10х10х10 см., который заполнен водой на 10 см глубины, что по объёмной составляющей будет равняться 10 см3 жидкости.

Этот объём воды в 10 см3 весит 1 кг. Используя имеющуюся информацию и уравнение для расчёта, несложно вычислить давление на дне контейнера.

Например: вес столба воды высотой 10 см и площадью поперечного сечения 1 см2 составляет 100 г (0,1 кг). Отсюда давление на 1 см2 площади:

P = F / S = 100 / 1 = 100 Па (0,00099 атмосферы)

Если глубина столба воды утроится, вес уже будет составлять 3 * 0,1 = 300 г (0,3 кг), и давление, соответственно увеличится втрое.

Таким образом, давление на любой глубине жидкости равноценно весу столба жидкости на этой глубине, поделённому на площадь поперечного сечения столба.

РАЗВОДНОЙ

Давление водяного столбаДавление водяного столба: 1 — стенка контейнера для жидкости; 2 — давление столба жидкости на донную часть сосуда; 3 — давление на основание контейнера; А, С — области давления на боковины; В — прямой водяной столб; Н — высота столба жидкости

Объем жидкости, создающей давление, называется гидравлический напор жидкости. Давление жидкости благодаря гидравлическому напору, также остаётся зависимым от плотности жидкости.

Сила тяжести

Гравитация — одна из четырех сил природы. Мощь гравитационной силы между двумя объектами зависит от массы этих объектов. Чем массивнее объекты, тем сильнее гравитационное притяжение.

Когда выливается вода из контейнера, гравитация Земли притягивает воду к земной поверхности. Можно наблюдать тот же самый эффект, если на разных высотах разместить два ведра воды и соединить их трубкой.

Достаточно задать ход жидкости в трубке из одного ведра в другой, после чего сработает сила гравитации, и процесс перелива продолжится самопроизвольно.

Гравитация, приложенные силы и атмосферное давление являются статическими факторами, которые в равной степени относятся к жидкостям, находящимся в покое или в движении.

Силы инерции и трения являются динамическими факторами, которые действуют только на жидкости в движении. Математическая сумма силы тяжести, приложенной силы и атмосферного давления, представляет собой статическое давление, полученное в любой зоне жидкости и в любой момент времени.

Статическое давление

Статическое давление существует в дополнение к любым динамическим факторам, которые также могут присутствовать одновременно. Закон Паскаля гласит:

Давление, создаваемое жидкостью, действует равноценно по всем направлениям и под прямым углом к содержащимся поверхностям.

Это определение касается только жидкостей, находящихся в полном покое или практически недвижимых. Определение справедливо также только для факторов, составляющих статический гидравлический напор.

Очевидно: когда скорость движения становится фактором, в расчёт берётся направление. Сила, привязанная к скорости, также должна иметь направление. Поэтому закон Паскаля, как таковой, не применяется к динамическим факторам мощности потока жидкости.

НАСОСЫ

Скорость движения потокаСкорость движения потока зависит от многих факторов, включая послойное разделение жидкостной массы, а также сопротивление, создаваемое разными факторами

Динамические факторы инерции и трения привязаны к статическим факторам. Скоростной напор и потери давления привязаны к гидростатическому напору жидкости. Однако часть скоростного напора всегда может быть преобразована в статический напор.

Сила, которая может быть вызвана давлением или напором при работе с жидкостями, необходима, чтобы начать движение тела, если оно находится в состоянии покоя, и присутствует в той или иной форме, когда движение тела заблокировано.

Поэтому всякий раз, когда задана скорость движения жидкости, часть ее исходного статического напора используется для организации этой скорости, которая в дальнейшем существует уже как напорная скорость.

Объем и скорость потока

Объем жидкости, проходящей через определённую точку в заданное время, рассматривается как объем потока или расход. Объем потока обычно выражается литрами в минуту (л/мин) и связан с относительным давлением жидкости. Например, 10 литров в минуту при 2,7 атм.

Скорость потока (скорость жидкости) определяется как средняя скорость, при которой жидкость движется мимо заданной точки. Как правило, выражается метрами в секунду (м/с) или метрами в минуту (м/мин). Скорость потока является важным фактором при калибровке гидравлических линий.

САНТЕХНИКА

Объём и скорость жидкостиОбъём и скорость потока жидкости традиционно считаются «родственными» показателями. При одинаковом объёме передачи скорость может меняться в зависимости от сечения прохода

Объем и скорость потока часто рассматриваются одновременно. При прочих равных условиях (при неизменном объеме ввода), скорость потока возрастает по мере уменьшения сечения или размера трубы, и скорость потока снижается по мере увеличения сечения.

Так, замедление скорости потока отмечается в широких частях трубопроводов, а в узких местах, напротив, скорость увеличивается. При этом объем воды, проходящей через каждую из этих контрольных точек, остаётся неизменным.

Принцип Бернулли

Широко известный принцип Бернулли выстраивается на той логике, когда подъем (падение) давления текучей жидкости всегда сопровождается уменьшением (увеличением) скорости. И наоборот, увеличение (уменьшение) скорости жидкости приводит к уменьшению (увеличению) давления.

Этот принцип заложен в основе целого ряда привычных явлений сантехники. В качестве тривиального примера: принцип Бернулли «виновен» в том, что занавес душа «втягивается внутрь», когда пользователь включает воду.

Разность давлений снаружи и внутри вызывает силовое усилие на занавес душа. Этим силовым усилием занавес и втягивается внутрь.

Другим наглядным примером является флакон духов с распылителем, когда нажимом кнопки создаётся область низкого давления за счёт высокой скорости воздуха. А воздух увлекает за собой жидкость.

ДУШЕВАЯ

Принцип Бернулли для самолётного крылаПринцип Бернулли для самолётного крыла: 1 — низкое давление; 2 — высокое давление; 3 — быстрое обтекание; 4 — медленное обтекание; 5 — крыло

Принцип Бернулли также показывает, почему окна в доме имеют свойства самопроизвольно разбиваться при ураганах. В таких случаях крайне высокая скорость воздуха за окном приводит к тому, что давление снаружи становится намного меньше давления внутри, где воздух остаётся практически без движения.

Существенная разница в силе попросту выталкивает окна наружу, что приводит к разрушению стекла. Поэтому когда приближается сильный ураган, по сути, следует открыть окна как можно шире, чтобы уравнять давление внутри и снаружи здания.

И ещё парочка примеров, когда действует принцип Бернулли: подъем самолёта с последующим полётом за счёт крыльев и движение «кривых шаров» в бейсболе.

В обоих случаях создаётся разница скорости проходящего воздуха мимо объекта сверху и снизу. Для крыльев самолета разница скорости создаётся движением закрылков, в бейсболе — наличием волнистой кромки.

Практика домашнего сантехника на видеоролике

Полезный для получения практики сантехники видеоролик ниже демонстрирует некоторые приёмы, которые в любой момент могут потребоваться потенциальному хозяину жилища. Рекомендуется просмотр этого видео для получения актуальной информации по сантехническим манипуляциям:


Разница между статическим давлением, динамическим давлением и общим давлением?

Общий прирост давления

Общий прирост давления — это разница между полным давлением на входе (1) и на выходе (2) вентилятора. Это давление вызывает воздушный поток.

Ниже мы увидим, что общий прирост давления зависит от метода подключения.

Что такое полное давление?

Общее давление складывается из всех статических давлений и динамического давления.

Что такое статическое давление?

Статическое давление — это давление, прикладываемое воздухом к стенкам перпендикулярно воздушному потоку. Он соответствует сумме всех падений давления в системе воздуховодов и ее компонентах.

Что такое динамическое давление?

Динамическое давление — это кинетическая энергия воздуха, проходящего через вентилятор. Его наносят на стены, которые закрывают воздушный поток. Это динамическое давление напрямую зависит от воздушной скорости (c) и может быть рассчитано как:

Как видите, динамическое давление также зависит от плотности и, следовательно, от температуры.Плотность рассчитывается по формуле:

p = Атмосферное давление (стандартное 101325 Па)
R = газовая постоянная для воздуха (287 Дж / (кг · К)
T = Температура в Кельвинах (= 273,15 + t в ° C)

Из приведенных выше соотношений можно вывести следующее уравнение:

Поскольку мы можем рассматривать статическое давление на входе как вакуумное давление, его можно рассчитать как отрицательное.

.

Что такое статическое давление в гидродинамике?

Чтобы лучше понять, что такое статическое давление, нам сначала нужны некоторые сведения и пояснения по другим терминам. Термин «давление» широко используется во многих приложениях в гидродинамике и термодинамике, от аэродинамики до проектирования установок. Однако мы должны сделать вывод из контекста, если мы говорим о статическом, общем или динамическом давлении.

Большинство определений, упомянутых здесь, были взяты из книги Механика жидкостей Мерла К.Поттер, Дэвид К. Виггерт и Бассем Х. Рамадан.

Рекомендации по давлению Важные соображения перед началом вычислительного моделирования ветроэнергетики

В гидромеханике давление определяется как нормальная сила, действующая на площадь. Математически давление p на точку определяется как:

eq00

Метрическими единицами измерения давления являются ньютоны на квадратный метр (Н / м²) или, как правило, килопаскаль (кПа).Например, атмосферное давление на уровне моря составляет 101,3 кПа. Английские единицы измерения давления — фунты на квадратный дюйм (psi) или фунты на квадратный фут (psf).

Моделирование давления воздуха Абсолютное давление

Давление, как и температуру, можно измерять по разным шкалам, и для обоих свойств также есть абсолютные шкалы. В идеальном вакууме абсолютное давление достигает нуля. Таким образом, в пространстве нет молекул, оказывающих давление.Следовательно, невозможно достичь отрицательного абсолютного давления.

Все становится намного сложнее, когда мы рассматриваем относительные измерения давления. Когда дело доходит до терминологии, возникает большая путаница. Различные программы также часто рекомендуют интерпретацию своих измерений давления по-разному. Мы немного поговорим о том, как это работает с SimScale.

Моделирование атмосферного давления Относительное давление

Есть много различных измерений относительного давления.Первый и наиболее распространенный пример — это манометрическое давление , которое достигается при измерении давления относительно атмосферного. Его также обычно называют барометрическим давлением. Из этого следует, что преобразование манометрического давления в абсолютное давление получается путем прибавления его к атмосферному давлению.

Давайте теперь рассмотрим другие измерения давления, которые используются в области механики жидкости.

Моделирование давления воздуха Статическое давление

Чтобы проиллюстрировать, что такое полное давление, давайте начнем с проверки знаменитого уравнения Бернулли:

e20

, который измеряет разницу в скорости и давлении между двумя точками потока.

Давление p в этом уравнении — это статическое давление . При измерении относительно атмосферного давления статическое давление совпадает с манометрическим давлением. Однако можно измерить статическое давление, взяв за основу вакуум, так что измеренное значение будет равно абсолютному давлению.

Статическое давление измеряется, когда жидкость находится в состоянии покоя относительно измерения. Его можно измерить с помощью пьезометра, прикрепленного к стенке трубы, по которой течет жидкость.

Моделирование давления воздуха Динамическое давление

Обратите внимание, что при измерении статического давления ранее мы не принимали во внимание влияние скорости. Если не пренебрегать этими эффектами, то измеряемое давление возрастет. Это увеличение называется динамическим давлением . Динамическое давление зависит от скорости и плотности жидкости:

e30

Моделирование давления воздуха Полное давление

Общее давление , также называемое давлением торможения, измеряется путем добавления статического давления к динамическому давлению:

Общее давление обычно измеряется с помощью устройства, называемого трубкой Пито.Вы можете увидеть трубки Пито на самолетах, например, в виде небольших отверстий или металлических трубок, висящих в крыльях, как показано ниже:

pitot tube Трубка Пито на Airbus A380, Источник: Дэвид Моннио GFDL, CC-BY-SA-3.0 или CC BY-SA 2.0 fr, из Wikimedia Commons

Скорость внутри трубки Пито равна нулю, что делает ее точкой стагнации. Другое устройство, называемое статической трубкой Пито, может использоваться для непосредственного измерения динамического давления. В основном он состоит из трубки Пито с отверстием для статического давления.

В большинстве повседневных случаев полное давление очень близко к статическому. Это происходит потому, что большинство систем разработаны для обеспечения низких скоростей жидкости, как правило, для предотвращения потери напора из-за трения, которое пропорционально кинетической энергии жидкости. В этих случаях различие между общим давлением и статическим давлением может не иметь значения.

Статическое давление Давление в SimScale

Static Pressure on A Centrifugal Fan ‒ CFD Analysis Carried Out with SimScale

Статическое давление на центробежный вентилятор — CFD-анализ, проведенный с помощью SimScale Обычно при моделировании потоков жидкости мы используем уравнения Навье-Стокса.Теперь, когда мы выводим уравнения Навье-Стокса для несжимаемой жидкости, член давления имеет только математический смысл. Физический смысл имеет только градиент давления, который отвечает за движение жидкости. Другими словами, измерения давления используются в основном для проверки работоспособности решения.

Следуя этой логике, если мы изменим фиксированные граничные условия давления в нашей модели, например, суммируя постоянное значение, результирующий поток не изменится, потому что градиент давления останется прежним.

Более конкретно, для несжимаемых потоков SimScale использует удельное давление, которое определяется путем нормализации давления по плотности.

SimScale также поддерживает широкий набор граничных условий. Для получения дополнительной информации о настройке и использовании граничных условий на облачной платформе моделирования SimScale вы можете обратиться к этой странице документации. Для граничных условий входа давления используется полное давление, а для выходов давления — статическое или манометрическое давление.Если вы хотите узнать больше об облачной платформе SimScale и ее возможностях, загрузите этот обзор функций.

Чтобы узнать больше о моделировании давления воздуха, посетите этот блог.


Зарегистрируйтесь и посетите наш блог SimScale, чтобы узнать больше!


Ссылки

  • Мерл К. Поттер, Дэвид К. Виггерт и Бассем Х. Рамадан, «Механика жидкостей»

.

Динамическое давление

Динамическое давление — это кинетическая энергия текущей жидкости — жидкости или газа — на единицу объема — и может быть выражена как

p d = 1/2 ρ v 2 (1)

, где

p d = динамическое давление (Н / м 2 (Па), фунт f / фут 2 (psf))

ρ = плотность жидкости (кг / м 3 , пробок / фут 3 )

v = скорость (м / с, фут / с)

Калькулятор динамического давления — единицы СИ

Значения по умолчанию ниже приведены для воды плотностью 1000 кг / м 3 .

ρ — плотность жидкости (кг / м 3 )

v — скорость (м / с)

  • 1 Н / м 2 = 1 Па = 1.4504×10 -4 фунт фунт / дюйм 2 (фунт / кв. дюйм) = 0,02089 фунт фут / фут 2 (фунт / фут) = 1×10 -5 бар = 4,03×10 -3 в воде = 0,336×10 -3 футов вода = 0,1024 мм вода = 0,295×10 -3 мм рт. ст. = 7,55×10 -3 мм рт. ст. = 0,1024 кПа / м 2 = 0.993×10 -5 атм

Калькулятор динамического давления — имперские единицы

Значения по умолчанию ниже для воды с плотностью 1,940 пробок .

ρ — плотность жидкости ( пробок / фут 3 )

v — скорость (фут / с)

Некоторые распространенные плотности при атмосферном давлении:

  • Вода — 0 o C — 1000 кг / м 3
  • Вода — 32 o F — 1.940 шт. / Фут 3
  • Воздух — 20 o C — 1,2 кг / м 3
  • Воздух — 60 o F — 2,373 10 -3 шт. / футов 3

Пример — Динамическое давление в потоке воды

Динамическое давление в воде при — температуре 20 o C — плотности 1000 кг / м 3 и скорости 5 м / с — можно рассчитать как

p d = 1/2 (1000 кг / м 3 ) (5 м / с) 2

= 12500 Па

= 12.5 кПа

Пример — ураган и сила, действующая на стену

Динамическое давление в урагане с температурой воздуха 20 o C, плотностью воздуха 1,2 кг / м 3 и скоростью ветра 37 м / с можно рассчитать как

p d = 1/2 (1,2 кг / м 3 ) (37 м / с) 2

= 821 Па (Н / м 2 )

Сила, действующая непосредственно на стену площадью 10 м 2 , может быть рассчитана как

F = p d A

= (821 Н / м 2 ) (10 м 2 )

= 8210 N

= 8.2 кН

— почти вес малолитражки.

Примечание! — реальная сила, действующая на стену или другое препятствие на ветру, как правило, более сложно вычислить из-за сопротивления, турбулентности и других эффектов.

wind velocity and wind load on a surface

.

0 0 vote
Article Rating
Подписаться
Уведомление о
guest
0 Комментарий
Inline Feedbacks
View all comments