Таблица световой поток галогенных ламп: Световой поток типичных источников света (лм) и световая отдача (эффективность) (лм/ватт). Для ламп накаливания, газоразрядных, люминесцентных, галогенных, газоразрядных, светодиодных….

Разное

Содержание

Световой поток типичных источников света (лм) и световая отдача (эффективность) (лм/ватт). Для ламп накаливания, газоразрядных, люминесцентных, галогенных, газоразрядных, светодиодных….

Навигация по справочнику TehTab.ru:  главная страница  / / Техническая информация / / Физический справочник / / Свет и цвет.  / / Световой поток типичных источников света (лм) и световая отдача (эффективность) (лм/ватт). Для ламп накаливания, газоразрядных, люминесцентных, галогенных, газоразрядных, светодиодных….

Световой поток типичных источников света (лм) и световая отдача (эффективность) (лм/ватт). Для ламп накаливания, газоразрядных, люминесцентных, галогенных, газоразрядных, светодиодных….

Люмен (русское обозначение: лм; международное: lm) — единица измерения светового потока в Международной системе единиц (СИ) >.

Один люмен равен световому потоку, испускаемому точечным изотропным источником, c силой света, равной одной канделе, в телесный угол величиной в один стерадиан: 1 лм = 1 кд × ср (= 1 лк × м2). Полный световой поток, создаваемый изотропным источником, с силой света одна кандела, равен 4π люменам.





























Тип Световой поток (люмен) Световая отдача (лм/ватт)
Лампа накаливания 5 Вт 20 4
Лампа накаливания 10 Вт 50 5
Лампа накаливания 15 Вт 90 6
Лампа накаливания 25 Вт 220 8
Лампа накаливания 40 Вт 420 10
Лампа накаливания 60 Вт 710 11
Лампа накаливания 75 Вт 935 12
Лампа накаливания 100 Вт 1350 13
Лампа накаливания 150 Вт 1800 12
Лампа накаливания 200 Вт 2500 13
Галогенная лампа накаливания 230В 42 Вт 625 15
Галогенная лампа накаливания 230В 55 Вт 900 16
Галогенная лампа накаливания 230В 70 Вт 1170 17
IRC-галогенная лампа накаливания 12 В 1700 26
Люминесцентная лампа 40 Вт 2000 50
Люминесцентная лампа 200 Вт 11400 57
Люминесцентная лампа 105W E27/E40 4500K 105 Вт 7350 70
Металлогалогенная газоразрядная лампа (ДРИ) 250 Вт 19500 78
Металлогалогенная газоразрядная лампа (ДРИ) 400 Вт 36000 90
Металлогалогенная газоразрядная лампа (ДРИ) 2000 Вт 210000 105
Индукционная лампа 40 Вт 2800 90
Газоразрядная лампа 35 Вт («автомобильный ксенон») 3000—3400 93
Натриевая газоразрядная лампа 430 Вт 48600 113
Светодиод 40-80 Вт 6000 115
Светодиодная лампа (цокольная) 4500K, 10 Вт 860 86
Солнце 3,63•1028 93
Идеальный источник света   683,002

Нашли ошибку? Есть дополнения? Напишите нам об этом, указав ссылку на страницу.

TehTab.ru

Реклама, сотрудничество: [email protected]

Обращаем ваше внимание на то, что данный интернет-сайт носит исключительно информационный характер. Информация, представленная на сайте, не является официальной и предоставлена только в целях ознакомления. Все риски за использование информаци с сайта посетители берут на себя. Проект TehTab.ru является некоммерческим, не поддерживается никакими политическими партиями и иностранными организациями.

Светодиодные лампы световой поток

Мощность светового потока светодиодных ламп. Как определить световой поток лампы?

Световой поток – количество видимого света, который образуется его источником.

В чём измеряется световой поток светодиодных ламп?

Первый вопрос, который возникает при выборе LED лампы – в чём измеряется световой поток светодиодных ламп?

Световой поток измеряется в «Люменах», сокращённо «Лм» международное обозначение «Lm», это основной показатель количества света производимого не только светодиодной лампой, но и любым источником света (газоразрядная дуга, нить накала и т д).

При выборе светодиодных ламп первое, на что обращает внимание покупатель – мощность светового потока. Мощность привычных, нам бытовых лапочек накаливания мы определяли довольно просто – количеством ватт, мы имели представление, как светит 40 ватная лампочка и 100 ватная.

Что касается светодиодных ламп, то тут всё немного иначе, количество ватт не основной показатель мощности светового потока и некоторые недобросовестные производители ламп этим пользуются, например указывая на упаковке мощность 7 Вт, аналог лампы накаливания 70 Вт, а световой поток лампы при этом составляет 500 Лм.

При покупке такой лампы мы ориентируемся на показатель мощности:

Светодиодная лампа на 7Вт = мощности лампы накаливания 70Вт.

Но на самом деле эта LED лампа на 7 Вт выдаёт 500 Люменов, а лампа накаливания на 70Вт по сути выдаёт — 800 Лм.

И в результате при покупке такой светодиодной лампы мы получаем световой поток намного слабее, чем ожидали.

Световой поток ламп накаливания и светодиодных ламп.

На таблице предоставлены сравнительные характеристики светового потока ламп накаливания и светодиодных ламп.

Также следует учитывать, что у лампы накаливания угол излучения 360 градусов, а угол светового потока светодиодных ламп до — 180 градусов.

Теперь сравним световой поток люминесцентных ламп или как их ещё называют энергосберегающие лампы со светодиодными лампами.

Световой поток люминесцентных и светодиодных ламп.

Сравнительные характеристики светового потока люминесцентных и светодиодных ламп таблица.

Галогенные лампы также часто используются в современных люстрах и точечных светильниках.

Сравнительные характеристики светового потока галогенных и LED ламп.

Ещё один показатель эффективности источника света – светоотдача.

Светоотдача — это соотношение светового потока (Лм) к мощности (Вт), светоотдача измеряется в (Лм/Вт).

Как определить световой поток лампы?

Чтобы узнать световой поток лампы нужно умножить мощность лампы (Вт) на светоотдачу (Лм/Вт).

Примеры:

Для светодиодной лампы нужно умножить мощность лампы (Вт) на 95 Лм/Вт и в результате вы получите световой поток (Лм).

Определить световой поток люминесцентной лампы – умножить мощность лампы (Вт) на 70Лм/Вт.

Чтобы узнать световой поток филаментной лампы умножьте мощность лампы (Вт) на 100 Лм/Вт.

Световой поток ламп таблица.

Поделиться в соц. сетях

Мощность лампочек различного типа | Каталог цен E-Katalog

Мощность лампы и стандарты освещения помещений



Выбирая люстру, потолочный светильник или источник местного света для дома или квартиры, покупатель заранее думает о мощности ламп, которые будут там использоваться. Нередко это делается на основе личного практического опыта или, вовсе, по наитию. А, между тем, есть четкие критерии освещенности, характеризующие здоровую среду для объектов разного назначения. Действующие нормативы и стандарты рекомендуют следовать указанным ниже показателям освещенности для разных типов помещений (люкс):

  • Лестницы, вестибюли, коридоры — 20 – 30 лк;
  • Ванные и санузлы — 50 лк;
  • Жилые комнаты и спальни — 150 лк;
  • Детские — 200 лк;
  • Офисы, кабинеты — 300 лк;
  • Лаборатории, мастерские — 400 лк;
  • Учебные аудитории — 500 лк.

Нормативные документы оперируют двумя параметрами: освещенностью в люксах (лк) и световым потоком, излучаемым источником света в люменах (Лм). При этом 1 лк привязан к площади освещаемого помещения и равен 1 Лм/м2. Как же нормированную освещенность соотнести с мощностью лампы в ваттах? Для того, чтобы стало понятнее, рассмотрим простой пример. У нас есть лампа накаливания мощностью 100 Вт, установленная в жилом помещении площадью 20 м2. Такая лампа обладает световым потоком примерно в 1200 Лм, что в пересчете на 1 кв. метр площади дает 60 лк освещенности, чего явно недостаточно для такой комнаты.

Итак, что мы теперь знаем? Для того чтобы выяснить, правильно ли освещается помещение, необходимо знать его площадь, а также величину светового потока и мощности лампы, которые указаны на упаковке к изделию. Имейте в виду, что у ламп разных типов одной мощности (Вт) величина светового потока (Лм) будет отличаться. Разделив значение светового потока (Лм) на площадь комнаты (м2), получим фактическую освещенность (лк), которую можно сравнить с нормативной.

Особенности конструкции и эксплуатации разных типов ламп





Благоприятная световая среда в помещении, необходимая для комфорта человека, определяется рядом факторов, которые следует учитывать при выборе ламп для освещения квартиры, офиса, мастерских, лабораторий, подсобок и т.п. Кроме главной характеристики — мощности лампы на качество освещения влияет цветовая температура спектра, коэффициент цветопередачи, пульсация, направленность светового потока. Помимо этого, при работе светильников нельзя обойти стороной такие моменты, как КПД, тепловыделение, прочность, долговечность и энергоэффективность ламп. Существуют несколько распространенных типов ламп, отличающихся конструктивными и эксплуатационными характеристиками, которые мы предлагаем рассмотреть в нашем обзоре.

Лампы накаливания



Лампы накаливания (ЛН) можно однозначно причислить к реликтам электрической эры освещения. Кроме невысокой стоимости, отсутствия пульсаций и приятной для восприятия цветовой температуры порядка 2700К, близкой к естественному свету, архаичные «лампочки Ильича» обладают множеством недостатков. Они имеют очень хрупкую стеклянную колбу и чувствительны к параметрам сетевого напряжения, ощутимо снижающим заявленный срок службы в 1000 часов. Невысокий КПД лампочек преобразует значительную часть потребляемой энергии в тепло, сильно разогревая колбу и цоколь. А потребляемая мощность ламп накаливания по отношению к световой отдаче очень велика. Это весьма затратно и расточительно в современных условиях повсеместного снижения энергопотребления. Но в нашем обзоре ЛН интересны тем, что мы будем использовать их как отправную точку для сравнения с другими типами источников света.

Галогенные лампы



Галогенная лампа представляет собой усовершенствованную версию лампы накаливания, отличающуюся от нее тем, что здесь нить накала горит в среде защитного газа (брома или йода). Благодаря этому, удалось увеличить температуру спирали, что положительно повлияло на прирост светового потока и повышение долговечности лампы до 4000 часов. Потребляемая мощность галогенных ламп при сравнимой светимости с ЛН примерно на 30% ниже, что позволяет немного сэкономить в счетах на электроэнергию. Из плюсов светильников этого типа стоит отметить возможность работы в широком диапазоне температур окружающей среды от — 60 °C до +100 °C, что роднит их с обычными лампами накаливания. Также у галогенок неплохой коэффициент цветопередачи Ra 99-100, наиболее близкий к естественному свету. Но, они так же, как и ЛН сильно греются и не любят вибраций. Стоимость галогенных источников света существенно выше традиционных ламп и это заставляет задуматься о целесообразности их покупки для бытового освещения.

Популярные галогенные лампочки

Люминесцентные лампы



У люминесцентных ламп, использующих газоразрядное свечение слоя люминофора, световая отдача на единицу энергопотребления выше, чем у ЛН и галогенных ламп. Поэтому еще их принято именовать энергоэффективными. Они обладают продолжительным сроком службы, составляющим 5 лет, при условии редких циклов включений и отключений. Мощности люминесцентной лампы в 29 Вт хватит, чтобы заменить одну обычную 100-ваттную ЛН. К недостаткам таких ламп следует отнести экологическую опасность из-за содержания в их составе ртути, неприятный для восприятия цветовой спектр и неизбежное мерцание во время работы. Еще одним недостатком энергоэффективных ламп для дома является сложная спиральная форма стеклянной газоразрядной трубки, которая не очень эстетично смотрится в домашних люстрах.

Популярные люминесцентные лампочки

Светодиодные лампы



В настоящее время лидером покупательских предпочтений стали светодиодные лампы. По форме и внешнему виду они похожи на обычные лампы, с той лишь разницей, что электроника со светодиодами здесь прикрыта прочной пластиковой колбой. При одинаковом световом потоке мощность потребления светодиодных ламп почти на порядок ниже, чем у ЛН, что делает их очень экономичными в эксплуатации. Наиболее комфортные для восприятия человеком лампы имеют температуру светового потока 2700 – 3000 К, соответствующую естественному солнечному свету. Температура от 4000 до 5000 К считается белым нейтральным светом, а все что выше — уже белый холодный свет. Надо отметить, что по субъективным ощущениям светодиодные лампы одной мощности кажутся более яркими по мере смещения к холодному спектру цветовой температуры. Но, все же, для домашнего использования лучше покупать лампы «теплого» цветового спектра, а нейтральные и холодные больше подходят для коридорного освещения. К сожалению, светодиодные источники света, содержащие электронные элементы, подвержены пульсации, которая в изделиях известных брендов снижена до приемлемых величин.

Популярные светодиодные лампочки


С появлением филаментных ламп (на светодиодных нитях), являющихся разновидностью LED-светильников, расширились возможности декорирования помещений оформленных под старину. Они прекрасно вписываются в интерьеры стиля лофт с индустриальным дизайном начала XX века. Отличительной особенностью филаментной лампы стала замена обычного набора оптических полупроводников на светодиодные нити, которые имеют большой угол рассеивания. Стеклянная колба лампочки заполнена газовой смесью, а электроника с драйвером убрана в цоколь. Нет здесь и привычного для LED-ламп радиаторного охлаждения. Такой источник света во время работы внешне трудно отличить от обычной лампы накаливания.



Сравнение мощности и светового потока



В представленной таблице показана энергетическая эффективность разных типов ламп, дающих одинаковую световую отдачу. Как видно из сравнения потребляемой мощности, лампы накаливания являются наиболее «прожорливыми», а светодиодные — самыми практичными. К примеру, светодиодная лампа мощностью 12 – 15 Вт дает столько же света, сколько люминесцентная 29 Вт, галогенная 72 Вт или «сотка» лампы накаливания. А с учетом длительности срока службы LED-светильников, многократно превосходящей другие типы источников света, выгода покупки светодиодных ламп становится очевидной. Несмотря на свою дороговизну, светодиодные лампы быстро окупаются своей экономичностью в эксплуатации.

Выводы и рекомендации



Обычные лампы накаливания имеет смысл использовать для освещения лишь в двух случаях. Первый случай — если вам не приходят счета за электричество. Второй случай — если лампочки эксплуатируются изредка и кратковременно. Это освещение подвалов, погребов, гаражей и прочих помещений, куда судьба заносит на непродолжительное время. Независимо от мощности ламп такая эксплуатация существенно не повлияет на расход электроэнергии и продлит срок службы светильника.

Галогенные лампы — яркие светильники, устойчивые к колебаниям напряжения, которые обеспечивают мощный всенаправленный пучок света на большом расстоянии, активно используются в автомобильных фарах, в кино- и фото-индустрии, в рамповом освещении театральных и концертных залов, в проекционной и полиграфической технике. И такая специфика говорит о том, что эти лампы вполне востребованы и их еще не стоит списывать со счетов.

Люминесцентные лампы, несмотря на их недостатки, все еще активно используются в государственных и общественных зданиях, учебных заведениях, лечебных учреждениях. А вот времена, когда газоразрядные лампы покупали для освещения квартир и домов, благополучно канули в лету, а им на смену пришли LED-лампы.

Бесспорным лидером среди современных источников света бытового назначения являются светодиодные лампы, имеющие большой срок службы от 10 до 25 лет. И главная причина тому — высокие показатели энергосбережения. Традиционные изделия с пластиковой колбой выпускают в широком диапазоне мощности от 3 до 50 Вт, что позволяет использовать одну лампу нужного номинала вместо целого набора. Также в продаже есть много изделий этого типа ламп для потолочного освещения. Модификации источников света в ретро-стиле «ламп Эдисона» ограничены максимальной мощностью 10 Вт ввиду имеющихся трудностей с охлаждением. В продвинутых изделиях есть функция диммирования, позволяющая регулировать яркость ламп, фактически увеличивая мощность освещения.

Подводя итоги обзора, отметим, что из имеющегося многообразия типов ламп, наиболее привлекательными для домашнего освещения выглядят модели с полупроводниковыми светодиодами.

Световой поток лампы — сколько люмен? . Электропара

Когда мы хотим купить лампочку в магазине, продавец может
спросить: а сколько Люмен вам надо? Большую часть покупателей этот вопрос может
поставить в тупик, ведь еще недавно такого разнообразия ламп на рынке просто не
было, могло быть два варианта: мощность 60 Вт или 100 вт. Итак, что же такое
Люмен. Световой поток лампы определяет количество света, которое  она может дать, и этот световой поток измеряется в Люменах. В зависимости от назначения лампы он может быть до
десятков тысяч Люмен

Лампы накаливания дают самый маленький световой поток – при мощности
100 Вт он будет всего 1300 Люмен. Энергосберегающие лампы разительно отличаются
по этому показателю, лампа мощностью в 12 Вт даст 630 Люмен. Именно поэтому на
упаковке с энергосберегающими лампами часто пишут: мощность 20 Вт
(соответствует 100 Вт лампе накаливания). Здесь дело именно в мощности, лампы
энергосберегающие тратят в пять раз меньше электроэнергии, чем обычные лампы. В
бытовых условиях этого светового потока вполне достаточно для того, чтобы
осветить комнаты и другие более просторные помещения. Однако есть такая
отрасль, как растениеводство. Для досветки или полной подсветки растений
необходимы не просто мощные лампы, а приборы с тысячами Люмен яркости. Это
натриевые лампы ДНАТ. Одна такая лампа мощностью в 400 вт может дать до 50000
Люмен. Если пересчитать, сколько обычных ламп накаливания потребуется в этом
случае, получится 40 100-ватных лампочек общей мощностью не 400, а 4000
Вт. Вот почему сила светового потока должна рассчитываться индивидуально под
ваши личные потребности. Если вам нужно досветить рассаду, выбирайте
люминесцентные  лампы, в бытовых условиях подойдут лампы накаливания.
Кстати, именно натриевые или другие виды газоразрядных ламп используются в
уличных светильниках, там нужен сильный световой поток, чтобы осветить большую
площадь темной улицы или сквера.

Световой поток в реальных условиях может не соответствовать
заявленному производителем, и это вовсе не его вина. Дело в том, что многие
лампы,  в том числе ртутные лампы ДРЛ,
после определенного срока службы способны «растерять» силу света почти до 50
процентов от номинала. Использование неподходящих светильников, отсутствие
алюминиевых отражателей – все это очень влияет на силу светового потока.  Ниже приведена сравнительная таблица мощности
светового потока у различных типов ламп.

  Световой поток ламп накаливания 

 Мощность лампы 
 накаливания

 Световой поток
 (Люмен)

25 Вт 

 250

40 Вт

 400

60 Вт

 630

100 Вт

 1300

200 Вт

 2800

  Световой поток
люминесцентных (энергосберегающих) ламп

 Мощность люминесцентной лампы

 Световой поток,
 (Люмен)

  5 Вт

 250

  8 Вт

 400

  12 Вт

 630

  15 Вт

 900

  20 Вт

 1200

  24 Вт

 1500

  30 Вт

 1900

  Световой поток ртутных ламп ДРЛ

 Мощность дуговой ртутной лампы ДРЛ

 Световой поток,
 (Люмен)

  ДРЛ 125 (160 Ватт)

 5900

  ДРЛ 250 (320 Ватт)

 13000

  ДРЛ 400 (510 Ватт)

 22000

  ДРЛ 700 (900 Ватт)

 40000

  ДРЛ 1000 (1300 Ватт)

 57000

  Световой поток натриевых ламп ДНаТ 

 Мощность газоразрядной лампы ДНаТ

 Световой поток,
 (Люмен)

 ДНаТ 100 (130 Ватт)

 9500

 ДНат 150 (190 Ватт)

 15000

 ДНат 250 (320 Ватт)

 25000

 Днат 400 (510 Ватт)

 45000

  Световой поток светодиодных ламп

 Мощность светодиодных ламп

 Световой поток,
 (Люмен)

Лампа светодиодная 42 Ватт

 4420

 Лампа светодиодная  85 Ватт

 8840

Лампа светодиодная  220 Ватт

 22240

 Лампа светодиодная  32 Ватт

 3320

 Лампа светодиодная  42 Ватт

 4420

Световой поток светодиодных ламп — таблица и эквиваленты

Лампы накаливания уже больше ста лет используются человеком в качестве основного освещающего прибора для своих жилищ, городских улиц, рабочих мест и прочего.

За столько времени технологии освещения развивались вяло, появились люминесцентные и так называемые экономные лампочки, однако новым словом техники стала светодиодная технология освещения.

Одним из важнейших параметров любого осветительного прибора является мощность светового потока, ему и посвящена эта статья. Далее в статье мы рассмотрим таблицу светового потока ламп.

Понятие светового потока

Каждый осветительный прибор имеет величину потребляемо мощности, для бытового использования достаточно светильников мощностью в 1-10 Вт, для внешнего освещения нужны осветительные приборы мощностью до 100 Вт.

Однако показатель потребления электроэнергии не столь важен, интенсивность освещения определяется световым излучением. Параметр измеряется в люменах, он позволяет определить, насколько эффективным будет освещение.

Производители не всегда указывают силу светового излучения, а когда указывают, она не всегда соответствует действительности.

Энергия светового излучения переносится электромагнитными волнами, которые испускаются источником света. Интенсивность излучаемой энергии и определяет силу свечения, она улавливается глазом, который способен воспринять длину излучения от 0,55 мкм в 0,63 мкм, другие виды излучения мы увидеть не можем.

Показатели мощности излучения с учетом способности человеческого глаза к цветовому восприятию суммируют с длиной волн. В расчетах также учитываются кривая чувствительность глаз.

Результат этих расчетов и считается световым потоком.

Нельзя сбрасывать со счетов и эквивалентную мощность лампочки при выборе, особенно если светодиодные светильники призваны заменить традиционные лампы накаливания. Лучшим решением станет вычисление светового потока путем перерасчета с тех же показателей ламп накаливания.

Световой поток светодиодных ламп

Светодиоды (их также называют LED) являются основным источником света в светильниках рассматриваемого типа, что следует из их названия. Сегодня их используют для освещения промышленных объектов и в бытовых целях, хотя еще сравнительно недавно они применялись лишь для подсветки.

Принцип работы подразумевает применение безопасных компонентов, в них не содержатся вещества, содержащие ртуть, а значит, их можно считать экологически чистыми, и безопасными для человека и окружающей среды. LED-светильник работает в качестве самостоятельного источника света.

Потребляя минимум энергии, она способна работать очень долгое время, не нагревается, и обеспечивает достаточно мощный световой поток. Недостатки этих ламп – повышенная стоимость, и цветовой спектр свечения.

Лампы не дают одинаковый свет, лишь некоторые дают «теплый» свет. Впрочем, чем более желтый свет дает светильник, тем дешевле будет само устройство.

Таблица

Преимущества LED-источников света неоспоримы, соотношение светоотдачи, потребления электроэнергии, срока работы, экологической чистоты и безопасности со стоимостью делают их идеальным решением для освещения частного жилья или промышленного комплекса.

Световой поток светодиодных ламп, таблица эффективности для разных источников света.

 

Эквиваленты лампам накаливания

Часто LED-светильники покупают в качестве замены уже работающим лампам накаливания, и при этом важно сохранить необходимую освещенность в помещении.

Для этого нужно провести расчеты так, чтобы при замене световой поток остался тем же. К примеру, для того, чтобы лампа накаливания могла выдать 250 люмен, ее мощность должна быть 20 Вт. Те же 250 люмен выдает светодиодный светильник на 2-3 Вт.

Как мы уже говорили, чаще всего производители не указывают силу светового излучения, поэтому необходимые расчеты произвести будет сложнее. 

Чтобы можно было провести примерное сравнение, ниже приведена таблица, световой поток светодиодных ламп и их мощность в ней сравниваются с теми же показателями аналогов.

 

Особенности при замене

Различия между LED-приборами освещения и их аналогами существенны. У них разный принцип работы, разный способ реализации технологии, и отличаются практически все рабочие параметры.

Сложнее всего правильно произвести перерасчет мощности при их замене. В домашних условиях это не слишком важно, владельцы квартир обычно производят замену на глаз.

К примеру, обнаружив, что новый осветительный прибор слишком яркий, достаточно просто освободить один плафон, чтобы снова сделать освещение удобным.

Однако их использование в промышленности, бизнесе, сфере услуг, при ведении строительных работ или плановой замены осветительной системы, подразумевает проведение точных расчетов, в ходе которых специалисты подсчитывают мощность и световое излучение текущей системы, а затем производят перерасчет с учетом особенностей LED-ламп.

Особенности светодиодной технологии позволяют использовать как светильники, устроенные подобно обычным лампочкам (их можно вкрутить в плафон, и использовать как обычно), так и целые ленты, закрепляемые на поверхности и подключенные к источнику питания.

Разводка электросети в старых домах проводилась под традиционные лампочки, поэтому выполненные в привычном нам стиле, могут обеспечить такое же распределение светового потока по помещению, для лент придется выполнять дополнительные расчеты.

Направленность освещения определяется углом расходимости источника света, это касается направленных излучателей света. Если расходимость равна 120 градусам, это значит, что поток света ослабевает вдвое в направлении, наклоненном на 60 градусов по отношению к оси испускаемого лампой пучка света.

Чтобы сделать освещение комфортным, необходимо провести точные расчеты, лишь тогда удастся добиться равномерного и комфортного распределения светового потока по помещению.

Световой поток, освещенность, сила света

Любой кто начинает изучать характеристики светильников и отдельных видов ламп, обязательно сталкивается с такими понятиями как освещенность, световой поток и сила света. Что они означают и чем отличаются друг от друга?

Давайте попробуем простыми, понятными для всех словами, разобраться в этих величинах. Как они связаны между собой, их единицы измерения и каким образом все это дело можно замерить без специальных приборов.

Что такое световой поток

В старые добрые времена, основным параметром по которому выбирали лампочку в прихожую, на кухню, в зал, была ее мощность. Никто никогда и не задумывался спрашивать в магазине про какие-то люмены или канделы.

Сегодня с бурным развитием светодиодов и других видов ламп, поход в магазин за новыми экземплярами сопровождается кучей вопросов не только по цене, но и по их характеристикам. Одним из наиболее важных параметров является световой поток.

Говоря простыми словами, световой поток – это количество света, которое дает светильник.

Однако не путайте световой поток светодиодов по отдельности, со световым потоком светильников в сборе. Они могут существенно отличаться.

Надо понимать, что световой поток это всего лишь одна из множества характеристик источника света. Причем его величина зависит:

  • от мощности источника

Вот таблица этой зависимости для светодиодных светильников: 

А это таблицы их сравнения с другими видами ламп накаливания, люминесцентных, ДРЛ, ДНаТ: 

Лампочка накаливанияЛюминесцентная лампаГалогеннаяДНаТДРЛ

Однако есть здесь и нюансы. Светодиодные технологии до сих пор еще развиваются и вполне возможен вариант, когда светодиодные лампочки одинаковой мощности, но разных производителей, будут иметь абсолютно разные световые потоки.

Просто некоторые из них ушли более вперед, и научились снимать с одного ватта больше люмен, чем другие.

Кто-то спросит, для чего нужны все эти таблицы? Для того, чтобы вас тупо не обманывали продавцы и производители.

На коробочке красиво напишут:

  • светопоток 1000Лм
  • аналог лампы накаливания 100Вт

На что вы будете смотреть в первую очередь? Правильно, на то что более знакомо и понятно — показатели аналога лампы накаливания.

Но с такой мощностью вам и близко не будет хватать прежнего света. Начнете ругаться на светодиоды и технологии их несовершенства. А дело то оказывается в недобросовестном производителе и его товаре.

  • от эффективности

То есть, насколько эффективно тот или иной источник преобразует электрическую энергию в световую. Например, обычная лампа накаливания имеет отдачу 15 Лм/Вт, а натриевая лампа высокого давления уже 150 Лм/Вт. 

Получается, что это в 10 раз более эффективный источник, чем простая лампочка. При одной и той же мощности, вы имеете в 10 раз больше света!

Измеряется световой поток в Люменах – Лм.

Что такое 1 Люмен? Днем при нормальном свете, наши глаза больше всего чувствительны к зеленному цвету. К примеру, если взять два светильника с одинаковой мощностью синего и зеленого цвета, то для всех нас более ярким покажется именно зеленый.

Длина волны зеленого цвета равна 555 Нм. Такое излучение называется монохроматическим, потому что содержит в себе очень узкий диапазон.

Конечно, в реалии зеленый дополняется и другими цветами, чтобы в итоге можно было получить белый.

Но так как чувствительность человеческого глаза максимальна именно к зелени, то и люмены привязали к нему.

Так вот, световой поток в один люмен, как раз таки и соответствует источнику, который излучает свет с длиной волны 555 Нм. При этом мощность такого источника равняется 1/683 Вт.

Почему именно 1/683, а не 1 Вт для ровного счета? Величина 1/683 Вт возникла исторически. Изначально, основным источником света была обычная свечка, и излучение всех новых ламп и светильников как раз таки и сравнивались со светом от свечи.

В настоящее время эта величина 1/683 узаконена многими международными соглашениями и принята повсеместно.

Для чего нам нужна такая величина как световой поток? С ее помощью можно легко произвести расчет освещенности помещения.

Это напрямую влияет на зрение человека.

Отличие освещенности от светового потока

При этом многие путают единицы измерения Люмены с Люксами. Запомните, в люксах измеряется именно освещенность.

Как наглядно объяснить их разницу? Представьте себе давление и силу. С помощью всего лишь маленькой иголки и небольшой силы, можно создать высокое удельное давление в отдельно взятой точке.

Также и с помощью слабого светового потока, можно создать высокую освещенность в отдельно взятом участке поверхности.

1 Люкс – это когда 1 Люмен попадает на 1м2 освещаемой площади.

Допустим, у вас есть некая лампа со световым потоком в 1000 Лм. Внизу этой лампы стоит стол.

На поверхности этого стола должна быть определенная норма освещенности, чтобы вы могли комфортно работать. Первоисточником для норм освещенности служат требования сводов правил СП 52.13330

Для обычного рабочего места это 350 Люкс. Для места, где производятся точные мелкие работы – 500 Лк.

Данная освещенность будет зависеть от множества параметров. К примеру, от расстояния до источника света.

От посторонних предметов рядом. Если стол находится около белой стены, то и люксов соответственно будет больше, чем от темной. Отражение обязательно скажется на общем итоге.

Любую освещенность можно замерить. Если у вас нет специальных люксометров, воспользуйтесь программами в современных смартфонах.

Правда заранее приготовьтесь к погрешностям. Но для того, чтобы сделать навскидку первоначальный анализ, телефон вполне сгодится.

Расчет светового потока

А как узнать примерный светопоток в люменах, вообще без измерительных приборов? Здесь можно воспользоваться значениями светоотдачи и их пропорциональной зависимости к потоку.

  • для светодиодных ламп с матовой колбой — мощность лампы умножьте примерно на 80лм/Вт и узнаете сколько в ней люмен
  • для филаментных – умножайте мощность лампы на 100
  • энергосберегайки КЛЛ – на 60лм/Вт
  • ДРЛ = мощность * 58лм/вт

Безусловно, свет от разных источников распространяется не равномерно. Один светильник бьет очень узким пучком света, а другой наоборот максимально широким.

Но если сравнить их паспортные данные, оба они могут иметь одновременно одинаковое количество люмен.

Именно поэтому ориентироваться только на люмены, в корне не правильно.

Например, при покупке светильника через интернет, можно получить вовсе не то освещение, на которое изначально рассчитывали.

Еще раз запомните, световой поток показывает только КОЛИЧЕСТВО света, без учета направления его распространения.

Поэтому здесь еще нужно учитывать и другую характеристику – силу света. Что это такое?

Это величина светового потока разделенного на телесный угол, внутри которого он распространяется.

Проще говоря, если световой поток это количество света, то сила света – это его ”плотность”.

Измеряется сила света в канделах – Кд.

1 кандела – это 1 люмен распространяющийся в пределах конуса с углом в 65 градусов.

Чтобы визуально представить себе силу в 1 канделу, посмотрите опять же на обыкновенную свечу. Именно поэтому определение кандела произошло от латинского слова ”candela” – что в переводе означает свеча.

Кстати, теоретически человеческий глаз может увидеть свет от такого источника на расстоянии почти 50км!

Однако из-за кривизны поверхности земли, данное расстояние фактически сокращается до 5км.

Характеристики ламп накаливания: световой поток и мощность

Лампа накаливания сопровождает нашу жизнь почти два столетия. Сегодня она существенно сдала свои позиции из-за появления более эффективных источников света, но до сих пор весьма популярна. Выбирать этот недорогой и простой по конструкции прибор ты привык по мощности, отпечатанной на коробке. Но существует целый ряд дополнительных и весьма немаловажных характеристик, на которые никто из нас не обращает внимания, хотя и стоило бы. Одним из таких параметров любой лампы накаливания является световой поток, понимание о котором должно быть у каждого, кто пользуется современными лампочками Ильича.

Как устроена лампа накаливания

Существует много разновидностей этого прибора, и об основных из них ты, конечно, уже слышал:

  1. Вакуумные.
  2. Галогенные.
  3. Криптоновые.

Названия серьезные, но пугаться их не стоит. Наверняка эти лампочки ты видел, даже не подозревая, что они так серьезно называются. Более того, все эти разновидности ламп накаливания имеют одинаковый принцип работы и сходную конструкцию. Поэтому для общего понимания предмета нам достаточно разобраться в устройстве простейшей вакуумной лампочки.

Конструктивно любая такая лампочка выполнена в виде стеклянной колбы, в которой на тонких металлических стойках, одновременно являющихся и токопроводящими контактами, закреплено так называемое тело накала –  спираль из тугоплавкого материала с высоким электрическим сопротивлением. К колбе крепится патрон – разъем той или иной конструкции, позволяющий подключать спираль к электрической сети. Типов разъемов существует множество, но самый распространенный из них, патрон Эдисона, ты, конечно, видел. Именно им оснащены бытовые лампочки, которые мы вворачиваем в патроны люстр и настольных ламп.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Возможно, тебе будет интересно, что впервые конструкция «цоколя Эдисона» была предложена англичанином Джозефом Суоном. Впрочем, в этом нет ничего странного – практически все запатентованные американцем Эдисоном “изобретения”, включая саму лампу накаливания, появились задолго до самого Эдисона.

Конструкция обычной лампочки накаливания 

При подаче на прибор напряжения спираль, которая изготавливается обычно из вольфрама и представляет собой “многослойную” пружину, начинает разогреваться и излучать электромагнитные волны. Чем выше температура спирали, тем выше частота излучения.  Уже при температуре 580 градусов Цельсия спираль светится красным светом, а при 2 000 градусах ты увидишь яркий свет.

Вот и почти вся конструкция лампочки накаливания. Почему почти? Потому что в работе такой конструкции есть одна, мягко говоря, проблема. Как только спираль нагреется, она сразу же окислится на воздухе и сгорит. Чтобы этого не происходило, из колб самых первых ламп накаливания откачивали воздух – главный источник кислорода, сжигающего спираль. Именно отсюда и пошло название «вакуумные».

Сегодня лампочек накаливания с вакуумом в колбе практически нет (исключение составляют миниатюрные устройства). Воздух давно не откачивают, а просто заменяют инертным газом, не дающим вольфрамовой спирали окисляться. Обычно это смесь азота с аргоном. Тем не менее, обычные лампочки до сих пор принято называть вакуумными, чтобы не путать с другими типами источников света. Ресурс классической лампы накаливания составляет около 1 000 ч.

Поскольку название «вакуумное» прижилось, я тоже буду им пользоваться в этой статье для обозначения обычных лампочек накаливания, колба которых заполнена азотно-аргоновой смесью.

Разновидности вакуумных ламп накаливания

Криптоновые и галогенные лампы накаливания

По сути, это все те же лампочки со спиралью, но в баллон криптоновой лампы закачивается не азот или аргон, а криптон. Из-за большего, чем у азота и аргона, атомного веса криптона спираль испаряется значительно медленнее. Это не только продлевает срок службы светильников  в несколько раз, но и позволяет повысить КПД лампы, увеличив температуру спирали. Кроме того, спектр излучения такой лампочки гораздо ближе к естественному белому свету.

Галогенные источники света наполнены все той же азотно-гелиевой смесью, но с добавкой галогенов – йода или брома. Эта присадка буквально собирает испарившиеся молекулы вольфрама и возвращает их на спираль. Результат – еще более длительный срок службы осветителя (до 4 000 – 6 000 ч) и яркий белый свет почти без оттенка красного. Единственный недостаток галогенной лампы – высокая рабочая температура колбы: минимум 250, а чаще 500 градусов Цельсия и выше. Только при такой температуре галогены в состоянии выполнять свою работу.

Галогенная и криптоновая лампы накаливания

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Не путай! Существует еще одна разновидность осветительных приборов – металлогалогенные лампы. Несмотря на схожее название, эти источники света не имеют никакого отношения к галогенным лампам накаливания. Металлогалогенные приборы излучают свет за счет дугового разряда в парах ртути.

к содержанию ↑

Что такое люмен и что от него зависит

Как я уже говорил выше, основным твоим (да и моим) критерием выбора лампы накаливания является ее мощность, измеряемая в ваттах. Точнее, мощность потребления. Но ведь нас интересует ее яркость, а не мощность! Увы, эта характеристика ламп накаливания указывается крайне редко, но она есть. Данная характеристика называется световой поток, и измеряется он в люменах.

Что такое световой поток

Опущу научную формулировку со всякими монохроматическими излучениями, изотропными источниками, канделами, стерадианами и всем прочим. Для тебя, скорее всего, все это бесполезная и бессмысленная информация. Определим так: световой поток – количество световой энергии, излучаемое лампочкой за единицу времени. Другими словами, этот показатель говорит о том, насколько ярко лампочка светит.

Здесь следует отметить один характерный момент. Визуально оценить световой поток осветителя по его яркости практически невозможно. К примеру, обычная лампочка светит во все стороны, но ты видишь ее только под одним определенным углом. Стоит сменить угол обзора, заглянув, к примеру, под патрон настольной лампы, и яркость сильно упадет. Но световой поток самой лампочки при этом не меняется! Как она светила, так и светит.

Таким образом, оценивая яркость “на глаз”, ты определяешь световой поток, попадающий в глаза только под одним весьма узким углом. Остальное излучение “разлетается” во все стороны. Полный же световой поток, который измеряется в люменах, характеризует весь свет, излучаемый источником.

В человеческий глаз (рисунок справа) попадает лишь малая часть всего светового потока лампочки накаливания

Для чего нужно знать световой поток лампы

Что такое световой поток ты, надеюсь, разобрался. Осталось выяснить, что от этой характеристики зависит и зачем ее нужно учитывать. Дело в том, что от силы светового потока зависит освещенность объекта. Если освещенность недостаточная, то ты не сможешь читать книгу, если избыточная – быстро устанут глаза.  Таким образом, правильно выбрав лампочку по световому потоку, ты обеспечишь достаточную для тех или иных целей освещенность.

к содержанию ↑

Сколько люмен в лампе накаливания

Если учесть, что найти на упаковке лампочки накаливания силу ее светового потока удается не всегда, вопрос весьма актуальный. Ведь не зная светового потока конкретного прибора, ты не сможешь определить, создаст ли он необходимое освещение. К счастью, светоотдача ламп накаливания напрямую связана с потребляемой мощностью, поэтому оценить количество люменов по ваттам несложно. Для этого тебе достаточно обратиться к таблице, приведенной ниже:

Соотношение люмен и ватт у вакуумных лампочек

Мощность потребления, Вт

Создаваемый световой поток, лм

20 250
40 400
60 700
75 900
100 1200
150 1800
200 2500

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос эксперту

Важно! Приведенная таблица справедлива лишь для вакуумных (точнее, заполненных аргонно-азотной смесью) ламп накаливания. У галогенных и криптоновых источников света зависимость тоже есть, но она иная.

к содержанию ↑

Как световой поток зависит от мощности у ламп другого типа

С лампами накаливания вопрос решен, но ведь существует множество других типов ламп, среди которых самыми распространенными являются:

  1. Люминесцентные.
  2. Светодиодные.

Хотя световой поток ламп этих типов ты практически всегда можешь найти на упаковке, зависимость люменов от потребляемой мощности полезно знать. Она существует и также может быть выражена через обычную таблицу:

Сравнительная таблица зависимости светового потока от мощности у ламп разного типа

Лампы накаливания

Люминесцентные лампы

Светодиодные лампы

Потребляемая мощность, Вт

Потребляемая мощность, Вт

Потребляемая мощность, Вт

Световой поток, лм

20 5-7 2-3 250
40 10-13 4-5 400
60 15-16 8-10 700
75 18-20 10-12 900
100 25-30 12-15 1200
150 40-50 18-20 1800
200 60-80 20-30 2500

Глядя на таблицу, ты наверняка заметил, что эффективность (отношение мощности к световому потоку) лампы накаливания самая низкая. Люминесцентная, к примеру, в 4-5 раз экономичнее лампочки Ильича. Светодиоды же в плане экономии электроэнергии оставляют далеко позади и те, и другие вышеуказанные типы. Именно поэтому классические лампы накаливания постепенно вытесняются более эффективными источниками света. Но, благодаря простоте конструкции и доступности по цене, до сих пор удерживают позиции достаточно прочно. Именно поэтому  важно внимательно разобраться со световым потоком и выяснить его связь с мощностью лампы накаливания.

📋 Пройдите тест и проверьте ваши знания

В чем недостаток включения лампы через терморезистор?

Светит тускло

Резистор сильно нагревается

Потребляет больше энергии

Лампа мерцает

Верно! Не верно!

Продолжить »

Почему колбу лампы накаливания делают из кварцевого стекла?

Ее не делают из кварцевого стекла

Кварц лучше пропускает видимый свет

Чтобы колба не расплавилась от раскаленной спирали

Верно! Не верно!

Продолжить »

Почему чаще всего лампа сгорает в момент включения?

Из-за самоиндукции спирали на лампе появляется скачок повышенного напряжения

Это миф. Лампы сгорают в любое время

В момент включения через спираль течет очень большой ток

Верно! Не верно!

Продолжить »

В чем недостаток включения лампы через конденсатор?

Конденсатор сильно нагревается

Лампа светит тускло

Лампа мерцает

Верно! Не верно!

Продолжить »

Чем заполнена колба лампы накаливания?

Инертным газом

Парами йода

Ничем, там вакуум

Инертным газом или вакуумом – зависит от конструкции

Верно! Не верно!

Продолжить »

В чем недостаток включения лампы через диод?

Сокращается срок службы лампы

Увеличивается расход энергии

Лампа заметно мерцает и светит тускло

Верно! Не верно!

Продолжить »

Все ли ты знаешь о лампах накаливания

Похоже ты ничего не знаешь про лампы накаливания

Слабенько, побеседуй о лампах со знакомым электриком.

Неплохо, но что-то ты не понял или еще не читал наши статьи?

Ты знаешь всё про лампы накаливания!

Share your Results:

Facebook ВКонтакте

  Перепройти тест!

Предыдущая

НакаливанияКак сделать плавное включение ламп накаливания и для чего оно нужно

Следующая

НакаливанияКакой cрок службы у лампы накаливания и как его увеличить

Спасибо, помогло!Не помогло

Световая отдача

Световая отдача — это мера того, насколько хорошо источник света излучает видимый свет, и отношение светового потока (люмен, лм) к мощности (Вт) . Световая отдача может быть выражена как

η = Φ / P (1)

, где

η = световая отдача

Φ = световой поток — количество света, излучаемого источником света (светимость , лм)

P = мощность (Вт)

Типы света и типичная световая отдача:

Свет Световая отдача
— η
(люмен / Вт)
Люминесцентная лампа 45-75
Галогенная лампа 16-24
Натриевая лампа высокого давления 85-150
Светодиодная лампа 30-90
Лампа на парах ртути 35-65
Металлогалогенная лампа 75-100
Вольфрамовая лампа накаливания b ulb lamp 12 — 18

Интенсивность света описывает количество света, излучаемого в определенном направлении.Это полезное измерение для элементов направленного освещения, таких как отражатели. Его можно выразить как

I = Φ / Ω (2)

, где

I = сила света (лм / ср, кандела, кд)

Φ = световой поток (люмен, лм )

Ω = телесный угол (величина поля зрения из некоторой конкретной точки, которую покрывает данный объект), в который излучается световой поток (стерадианы, ср)

Пример световой отдачи — мощность, необходимая для светодиода Лампа vs.a Вольфрамовая лампа накаливания

Для конкретного применения требуется 500 люмен света.

Требуемая мощность вольфрамовой лампы накаливания со светоотдачей 15 лм / Вт может быть рассчитана путем изменения (1)

P = Φ / η

= (500 лм) / (15 лм) / Вт)

= 33 Вт

Требуемая мощность светодиодной лампы со световой эффективностью 70 лм / Вт может быть рассчитана путем изменения (1) на

P = Φ / η

= (500 лм) / (70 лм / Вт)

= 7.1 Вт

Конвертер силы света и светового потока

Конвертер силы света и светового потока



Введение

Много лет назад, когда лампы накаливания широко использовались и почти не использовались.
стандартный источник света для повседневного использования, выбор подходящей лампы был
довольно просто: нужно было «всего лишь» выбрать наиболее подходящую мощность для
предполагаемое приложение.
Сегодня все намного сложнее: есть стандартные лампочки накаливания,
галогенные лампы, компактные люминесцентные лампы, люминесцентные лампы и светодиоды
лампы самых разных видов.Все эти лампы имеют разный КПД и разные формы свечения, что позволяет
выбор намного сложнее.

Просто глядя на мощность лампы в ваттах, мало что можно сказать об эффективном
световой поток.
Чтобы преодолеть эту проблему, сила света I v (выраженная
в канделах) и световой поток F (в люменах) являются
лучший выбор, но, к сожалению, лишь немногие люди привыкли к этим агрегатам
и их значение иногда неверно истолковывают.Производители ламп часто указывают на упаковке одну из этих цифр, но
редко и то и другое, поэтому сравнивая лампу мощностью 1000 лм с другой
произвести 250 кд непросто: будут ли они светиться
такая же яркость?
Цель этого калькулятора — помочь преобразовать люмены в канделы для
выбор соответствующего источника света.


Эта компактная люминесцентная лампа потребляет 20 Вт электроэнергии и
обеспечивает (номинальный) световой поток 1’300 лм.
Предположим, что диаграмма направленности направлена ​​во всех направлениях (угол конуса 360 °), с
с помощью калькулятора, представленного ниже, вы можете оценить силу света около
103 кд.Вы также можете рассчитать эффективность лампы 65 лм / Вт.
(нажмите для увеличения)


Эта светодиодная лампа потребляет 4 Вт электроэнергии и производит (номинальную)
сила света 350 кд в конусе с полным углом 36 °.
С помощью калькулятора, представленного ниже, вы можете оценить световой поток около
108 лм.
Вы можете рассчитать эффективность лампы 27 лм / Вт.
(нажмите для увеличения)


Почему фотометрические единицы?

В физике используется радиометрических единиц, единиц: например, заданное излучение
(свет) источник излучает количество мощности P (измеряется в ваттах) и
мы можем легко вычислить интенсивность излучения Дж (измеряется в Вт / стер) или
освещенность E (измеренная в Вт / м 2 ), если мы хотим знать
количество мощности, излучаемой в заданном направлении (телесный угол) или в заданном
поверхность соответственно.

Но когда мы говорим о видимом свете, мы должны учитывать
чувствительность человеческого глаза, потому что
ощущение яркости зависит от цвета (спектра) света.
Поэтому предпочтительнее фотометрических единиц .

Фотометрический эквивалент мощности излучения — световой поток.
(или световая мощность) F (измеряется в люменах).
Тогда сила света I v (выраженная в канделах)
соответствует световому потоку в заданном телесном угле Ом
(1 кд = 1 лм / стер), а освещенность
E v (измеряется в люксах) соответствует световому потоку на
заданной площади (1 лк = 1 лм / м 2 ).

Радиометрические единицы Фотометрические единицы
Мощность излучения
P
Вт
[Вт]
Световой поток
F
Люмен
[лм]
Интенсивность излучения
Дж
Ватт на стерадиан
[Вт / стер]
Сила света
I v
Кандел
[cd = лм / стер]
Энергия излучения
E
Ватт на квадратный метр
[Вт / м 2 ]
Освещенность
E v
Люкс
[лк = лм / м 2 ]

Зависимость силы света от светового потока

В фотометрии световой поток является мерой всего воспринимаемого света.
сила света, в то время как сила света является мерой воспринимаемого
мощность, излучаемая источником света в определенном направлении на единицу твердого тела
угол.Это означает, что максимальная сила света зависит от общей световой
поток источника света, но также и его диаграмма направленности (то, как свет
источник излучает во всех направлениях).


Общий световой поток — это сумма всех излучаемых потоков
направления, независимо от диаграммы направленности источника света.


Сила света — это световой поток в заданном телесном угле.
Вот два примера разной силы света в двух произвольных конусах,
предположим, что диаграмма направленности этой лампы неоднородна.

Итак, один и тот же источник света, излучающий тот же световой поток (те же люмены)
может давать разную силу света (разные свечи) в зависимости от
его способность концентрировать свет.
Если поставить линзу перед лампой, чтобы сосредоточить свет в одном направлении,
сила света в этом направлении увеличится, а общая
световой поток остается прежним.
Чем выше способность концентрировать свет в одном направлении, тем терка
сила света.


Эти 2 светодиода имеют один и тот же чип, обеспечивающий одинаковый световой поток
0.2 лм при токе 30 мА.
У того, что слева, есть линза, которая концентрирует свет в узком конусе.
15 °, в то время как тот, что справа, имеет другую линзу, концентрирующую
свет в конусе 30 °.
В результате сила света светодиода слева составляет 3,7 кд.
и 0,9 кд для правого. (нажмите, чтобы увеличить)


Те же 2 светодиода, которые проецируются на экран на расстоянии около 5 см.
Обратите внимание, что светодиод слева дает меньшее и яркое пятно.К сожалению, на этом HDR-изображении разница в яркости едва заметна.
видимый. (нажмите для увеличения)


Точное преобразование силы света в световой поток

Чтобы точно рассчитать общий световой поток F , нам необходимо:
учитывать диаграмму направленности I (θ) светового
источник.
Без диаграммы направленности выполнить преобразование невозможно.
Точные числовые данные диаграммы направленности доступны очень редко, но
если у кого-то есть шанс иметь таблицу с красивым графиком диаграммы направленности,
бесплатную программу, такую ​​как Engauge Digitizer, можно использовать для преобразования графика в
числовые значения.Практически все источники света имеют симметричную диаграмму направленности, поэтому мы
используйте только данные от 0 ° до 180 ° (от 0 до π), и мы предполагаем, что это будет
остается неизменным, если устройство вращается вокруг своей оптической оси.

Зная I (θ) , мы можем вычислить эквивалентный телесный угол
Ом (в стерадианах):

Чтобы вычислить этот интеграл, вам понадобится числовая вычислительная программа, например
MATLAB, бесплатный Scilab или, возможно, даже электронная таблица.
В любом случае это недоступно для простого калькулятора JavaScript, такого как
тот, который вы найдете на этих страницах.

Обратите внимание, что I (θ) необходимо нормализовать по амплитуде перед
вычисляя вышеуказанный интеграл, что означает, что
макс (I (θ)) = 1 .

Ом представляет собой телесный угол, передающий постоянный и равномерный
поток равен потоку, передаваемому I (θ) в 4π стерадианах
(вся поверхность сферы).

На самом деле это должен быть двойной интеграл в θ и φ .
покрывает всю сферу вокруг источника света, но из-за
симметричная диаграмма направленности большинства источников света, интеграл в
φ можно упростить до коэффициента 2π.

Теперь легко рассчитать световой поток F в люменах:

Где I v — максимальная сила света, измеренная в
кандела (компакт-диск).


Простой преобразователь силы света / потока

Очень часто диаграмма направленности лампы неизвестна, но если мы знаем
ширина луча (расходимость луча) , который является углом конуса
излучаемого света, мы можем сделать приблизительный расчет.Это приблизительное значение, поскольку оно предполагает, что вся мощность равномерно распределена.
распределяется внутри этого конуса, и снаружи не излучается энергия.
Ширина луча обычно определяется как полный угол конуса , что составляет
удвоение угла конуса θ между осью и конусом.


На этом чертеже вы можете видеть синим цветом
угол конуса θ и в
красный конус полный
угол .

В этом приближении мы предполагаем, что весь поток равномерно распределен в
указанный конус и что снаружи нет излучения.Это, конечно, не очень точно.
Имейте в виду, что реальные цифры могут значительно отличаться, но это лучшее, что вы можете
получить только с углом конуса.
Но обычно порядок величины правильный.
Преимущество в том, что преобразование теперь легко и может быть выполнено с помощью
карманный калькулятор или этот конвертер JavaScript.

Зная ширину луча , мы можем легко вычислить
соответствующий телесный угол Ом в стерадианах с:

Затем мы можем использовать то же уравнение, что и раньше, для преобразования между светящимися
поток F и максимальная сила света I v :

Следующий калькулятор выполнит вычисления за вас:

Мобильная версия доступна здесь, если вы
нужно делать преобразования при покупке ламп…

Введите все известные данные в калькулятор ниже и оставьте поля на
вычислить пустое значение, затем нажмите кнопку «вычислить», чтобы вычислить и
заполнить бланки.
Возможны не все комбинации; если данных недостаточно; всплывающее окно
коробка предупредит вас.
Убедитесь, что неизвестные поля полностью пусты: пробел не будет
Работа.


А как насчет силы излучения?

Теперь, когда мы знаем световой поток F , можем ли мы вычислить мощность излучения
P или наоборот?
Что ж, теоретически да, но это не так просто, потому что вам нужно знать
спектр P (λ) излучаемого света для расчета
соответствующий коэффициент преобразования.Иногда производители предоставляют вам красивый график спектра, в противном случае вам нужно
измерить его с помощью оптического спектрометра (и если он у вас есть, вы, вероятно,
не нужны пояснения на этой странице).
Без точных спектральных данных преобразование из F в
П .

Предполагая, что вы знаете P (λ) (измерено, оцифровано с графика
предоставлено производителем), первое, что вам нужно сделать, это нормализовать его
в поверхности (поверхность под кривой должна быть равна единице):

Опять же, это недоступно для этого калькулятора JavaScript, и вам понадобится
мощная числовая вычислительная программа.

Убедившись, что P (λ) нормализовано, вы можете рассчитать
коэффициент преобразования лучистого потока в световой η v :

Где В (λ) — стандартное
функция яркости (фотопическое зрение), и вы должны интегрировать
весь видимый спектр (скажем, от λ мин =
От 380 нм до λ макс = 770 нм) или не менее
часть, где P (λ) отлична от нуля.

Зная η v , теперь возможно преобразование между
лучистый и световой поток со следующим соотношением:

Обратите внимание, что η v выражается в лм / Вт, но не
эффективность лампы, это просто мера видимости света
для человеческого глаза.
Эффективность лампы, выраженная также в лм / Вт, также учитывает потери лампы.

Другими словами, если у вас есть точные спектральные данные и подходящий числовой
вычислительное программное обеспечение, вы можете это сделать, но все же вам нужно много мотивации
чтобы преодолеть эти два препятствия.И не нужно просто покупать лампочку…


Световая отдача лампы

Световая отдача лампы — это соотношение между производимой световой отдачей.
поток и используемая электрическая мощность и выражается в люменах на ватт.
(лм / Вт), чем выше, тем лучше.
В основном это зависит от технологии изготовления ламп: у старых ламп накаливания очень низкий
КПД, галогенные лампы немного лучше, люминесцентные лампы и светодиоды имеют
лучшая эффективность (для белого света) на сегодняшний день (2013 г.).

Обратите внимание, что используемая электрическая мощность отличается от (и всегда
выше, чем) мощность излучения обсуждалась ранее.
Чтобы вычислить эффективность лампы, нет необходимости вычислять или знать
лучистая сила.


Эта старинная лампа накаливания потребляет 75 Вт электроэнергии и
обеспечивает (номинальный) световой поток 950 лм.
Предположим, что диаграмма направленности направлена ​​во всех направлениях (угол конуса 360 °), с
С помощью калькулятора, приведенного выше, вы можете оценить силу света около
76 кд.Вы также можете рассчитать эффективность лампы 13 лм / Вт.
(нажмите для увеличения)

Лампы накаливания, независимо от того, галогенные они или нет, лучше подходят для
большие силы, потому что чем горячее
нить накала генерирует более видимый свет.
Таким образом, одна лампочка мощностью 75 Вт и ее 13 лм / Вт эффективнее.
чем две лампы мощностью 40 Вт с мощностью всего 10 лм / Вт.

Цветные лампы накаливания имеют очень низкий КПД, потому что большинство
свет отфильтровывается цветным стеклом, оставляя только одну часть
спектр.С другой стороны, цветные газоразрядные лампы или светодиоды обладают очень высокой эффективностью.
потому что излучается только требуемый цвет и не делается никаких компромиссов
получить белый свет.
По этой причине во многих странах уличные фонари желтые: натриевые лампы.
имеют очень хорошую светоотдачу, но излучают уродливый желтый свет.

Для белых ламп, как правило, наиболее эффективны газоразрядные или светодиодные лампы.
излучают холодный (голубоватый) свет и плохо передают цвета; это может
изменения в будущем.

Наконец, прозрачные лампы имеют лучшую эффективность, чем диффузные, но они
иногда тревожно смотреть.
Добавление диффузора к прозрачной лампе, конечно, снизит ее эффективность.

В следующей таблице приведены обычные значения световой отдачи обычного белого цвета.
домашние лампы:

Тип лампы: Световая отдача:
Стандартные лампы накаливания 8 … 15 лм / Вт
Галогенные лампы накаливания 15.0,2 лм / Вт
Компактные люминесцентные лампы 30 … 60 лм / Вт
Люминесцентные лампы 60 … 110 лм / Вт
Современные светодиодные лампы 60 … 100 лм / Вт

Практически для всех типов ламп, кроме светодиодных, световая отдача больше или меньше.
менее стабильный уже много лет, и здесь нет больших сюрпризов.
Для светодиодов эффективность постоянно повышается: десять лет назад эффективность
Светодиодные лампы были сравнимы с галогенными лампами, первые эффективные светодиоды имели очень
низкие уровни мощности и были практически бесполезны.Сегодня (в 2013 году) можно купить хорошие светодиодные лампы с превышением КПД.
100 лм / Вт в местном универсальном магазине, и эта цифра продолжает расти.


Заключение

Два основных фотометрических понятия, световой поток и сила света, имеют
были кратко описаны и простой примерный калькулятор для преобразования между
два доступны на этой странице.
Чем отличаются некоторые аспекты преобразования лучистого потока в световой поток.
было объяснено, но, к сожалению, нет простого способа конвертировать между
их.Наконец, была обсуждена световая отдача лампы.
Цель состоит в том, чтобы помочь сравнить лампы или источники света в целом после завершения
технические данные отсутствуют.


Библиография и дополнительная литература

[1] Уоррен Дж. Смит.
Современная оптическая инженерия — Дизайн оптических систем.
3 rd Edition, McGraw-Hill, 2000 г.,
Глава 8.
[2] А.Даешлер, Г. Кампоново.
Elettrotecnica.
Edizioni Casagrande, Беллинцона, 1974 г.,
capitolo 11.


Световая отдача — обзор

1.10 Световая отдача ламп

Световая отдача — это мера того, насколько хорошо источник света излучает видимый свет. Это отношение светового потока к мощности. В зависимости от контекста мощность может быть либо лучистым потоком на выходе источника, либо полной электрической мощностью, потребляемой источником.Лампы преобразуют электрическую энергию в свет. Световая отдача, K является мерой такого преобразования:

[1.20] LuminousEfficacy, K = LuminousFluxFinLumensRadiantFluxPinWatts = ∫PλVλdλ∫Pλdλ

где, V λdλ∫Pλdλ

где, V λ функция яркости и светочувствительность или 9000 λ глаза варьируется от 380 до 700 нм.

Если лампа излучает все излучение на длине волны 555 нм (где В λ = 1), световая отдача будет около 680 лм Вт -1 , теоретическое максимальное значение.Эффективность лампы будет 26 и 73 лм -1 , когда весь свет излучается на 450 и 650 нм соответственно. Световой коэффициент — это световая отдача, выраженная как значение от нуля до единицы, причем единица соответствует световой отдаче 683 лм Вт -1 .

В некоторых системах единиц световой поток имеет те же единицы, что и лучистый поток. Тогда световая эффективность излучения безразмерна. В этом случае его часто называют световой отдачей, и ее можно выразить в процентах.Обычно выбирают такие устройства, чтобы максимально возможная эффективность, 683 лмВт -1 , соответствовала эффективности 100%. В опубликованных источниках не всегда проводится различие между эффективностью и действенностью. Идеальный монохроматический источник 555 нм имеет световую отдачу 683 лм Вт -1 и световую отдачу 100%.

Типичная вольфрамовая лампа при 2800 К, идеальный излучатель черного тела при 4000 К и идеальный излучатель черного тела при 7000 К имеют световую отдачу 15, 47.5 и 95 лм W −1 соответственно. Световая отдача соответствующих источников света составляет 2%, 7% и 14%. Для люминесцентной лампы T12 с магнитным балластом значения составляют 60 лм Вт -1 (9%), а для компактной люминесцентной лампы мощностью 9–32 Вт значения составляют 46–75 лм Вт -1 и 8–11,45%. .

Как правильно выбрать лампочку? — Энергид

Думайте в люменах, а не в ваттах

С появлением новых лампочек наши ориентиры меняются: нам нужно перестать думать в ваттах.Потому что экономичная лампа мощностью 15 Вт излучает столько же света, сколько обычная лампа накаливания на 60 Вт или галогенная лампа на 45 Вт. Таким образом, световой поток больше не пропорционален потребляемой электрической мощности, выраженной в ваттах, как это было раньше.

Вот почему производители теперь должны указывать световой поток в люменах (лм) на упаковке лампы.

При выборе новой лампы (галогенной, компактной люминесцентной или светодиодной) учитывайте три аспекта:

1.Расход

Чем меньше количество ватт, тем меньше потребление. Это исходный критерий выбора.

2. Светоотдача

Какой световой поток вам нужен? Проверьте количество люменов на упаковке. Сравнивая это с вашими интуитивными воспоминаниями о старых лампах, вы будете знать, какой тип светового потока ожидать:

  • Старая лампа накаливания мощностью 100 Вт давала около 1300-1400 люмен. Помните — это ослепляло.
  • Лампа мощностью 75 Вт давала от 920 до 970 люмен. Все еще довольно ослепительно.
  • Наиболее часто используемые лампы мощностью 60 Вт производили от 700 до 750 люмен.
  • Самый слабый, 40 Вт и 25 Вт, давал от 410 до 430 люмен и от 220 до 230 люмен.
3. Тип и цвет света

Что ты хочешь зажечь? В какой комнате? Выберите тип лампы, наиболее подходящий для предполагаемого использования:

  • Для общего освещения в помещениях (спальня, ванная, гараж и т. Д.), неоновые лампы (TL) или потолочные светильники, оснащенные («экономичными») компактными люминесцентными лампами, являются идеальными.
  • Для более теплого и приятного освещения, например в гостиной, выберите низкую цветовую температуру (например, 2700 кельвинов). Галогенные лампы подходят, но стоит отметить, что цвет компактных люминесцентных ламп улучшился по мере развития технологий.
  • Для дополнительного освещения не используйте стандартные галогенные лампы, которые потребляют много энергии.Вместо этого выберите стандартные лампы и небольшие настольные лампы с компактными люминесцентными лампами.
  • Для освещения стола на кухне или в столовой используйте подвесной светильник с круглым неоном или компактную люминесцентную лампочку.
  • Выбирайте компактные люминесцентные точечные светильники для рабочей поверхности на кухне и мини-неоновые лампы для зеркала в ванной.
  • Для точной работы (ручная работа, письмо, учеба, чтение) лучше всего подходят галогенные лампы и определенные светодиоды.
  • Светодиоды могут подходить для освещения дороги и для рассеянного освещения настроения, как и галогенные лампы, преимущество которых состоит в том, что их можно регулировать с помощью переключателя яркости.

Прочтите наше полное руководство по люксам, люменам и ваттам для осветительных установок | Освещение складов и фабрик

Введение в наш справочник по люксам, люменам и ваттам

Здесь, в Green Business Light, мы должны обеспечить, чтобы наши энергоэффективные промышленные и коммерческие осветительные установки обеспечивали необходимый уровень освещенности для здания конечного клиента (например, склад или завод).

Указанные уровни освещенности или яркости освещения, которые должны быть достигнуты установщиком освещения, обычно выражаются в количестве «люкс», например 150 или 400 люкс, но что это на самом деле означает?


Определение люкса

Люкс — это стандартизированная единица измерения силы света, которую обычно называют «освещенность» или «освещенность».

Так что же такое 1 люкс?

Единица измерения 1 люкс равна освещенности квадратной поверхности в один метр, находящейся на расстоянии одного метра от одной свечи.2).

Чтобы поместить количество 1 люкс в контекст, в таблице ниже приведены примеры широкого диапазона люксов при естественном окружающем освещении:

Условия естественного освещения Типичный люкс
Прямой солнечный свет 32000 до 100000
Окружающий дневной свет От 10000 до 25000
Пасмурный дневной свет 1000
Закат и восход солнца 400
Лунный свет (полнолуние) 1
Ночь ( Нет луны) <0.01

Солнечный свет обеспечивает от многих тысяч до нескольких сотен люкс в зависимости от погодных условий и времени суток. Однако уровень люкс искусственного внутреннего освещения обычно составляет 1000 люкс или ниже, что можно увидеть на следующих примерах установки коммерческого освещения:

Окружающая среда Типичный люкс
Больничный театр 1,000
Супермаркет, спортивный зал 750
Завод, мастерская 750
Офис, выставочные залы, лаборатории, кухни 500
Складские погрузочные площадки 300 до 400
Школьный класс , Лекционный зал университета 250
Вестибюли, общественные коридоры, лестничные клетки 200
Складские проходы 100-200
Дома, театры 150
Семейная гостиная 50

Для коммерческих и промышленных предприятий где выполняются специализированные задачи e.грамм. профессиональный спорт в помещении, детальное рисование или механическая работа, длительная работа небольшого размера и зрительная работа с низкой контрастностью и т. д., для этого может потребоваться уровень освещенности от 1500 до 20000 люкс в крайних случаях.

Мощность освещения осветительной арматуры обычно указывается как выходная мощность люмен. — интенсивность света на поверхности (люкс) зависит от интенсивности источника света (т. Е. Его мощности в люменах) и желаемой площади поверхности. быть зажженным.


Определение освещения Люмен

Люмен — это стандартизированная единица измерения общего «количества» световых пакетов (или квантов, если вы хотите получить техническую информацию!), Которые производятся источником света — например, лампой, трубка или светодиодный чип.Этот общий измеренный свет может также называться коммерческими или промышленными инженерами по освещению «световым потоком».

Некоторые примеры общего светового потока (измеренного в люменах) от обычных коммерческих и промышленных источников света приведены ниже:

Светильник Люмен Пример использования
Металлогалогенная лампа 400 Вт 38000 высокий отсек заводское освещение или складское освещение осветительные установки
Светодиодная матрица 200 Вт в высоком отсеке 20000 энергоэффективная замена для высоких отсеков с галогенидами металлов и натрия мощностью 400 Вт
150 Вт Натрий высокого давления лампа 12000 уличное / наружное освещение
100 Вт Лампа накаливания 1700 Применения общего бытового и рабочего освещения
32 Вт T5 или T8 Люминесцентная лампа 1,600 Установка потолочных панелей офисного освещения

* Обратите внимание что это примерные цифры только для примера, и фактический результат может отличаться.


Связь между люменами и люксами

Один люкс (1 люкс) определяется как эквивалент одного люмена на площади в один квадратный метр. Другими словами:

Спецификация в люксах сообщает вам, сколько люменов (общий световой поток) вам нужно с учетом измеряемой площади, которую вы пытаетесь осветить.

Таким образом, 1000 люмен, сконцентрированные на площади в один квадратный метр, освещают этот квадратный метр с уровнем освещенности 1000 люкс. Те же 1000 люмен на площади в десять квадратных метров дают уровень освещенности всего 100 люкс.

Для освещения больших площадей до тех же необходимых уровней освещенности потребуется больший измеренный уровень люменов — обычно это достигается увеличением количества осветительных приборов (и, следовательно, потребляемой мощности). Большие коммерческие и промышленные здания (например, заводы и склады) имеют большие открытые пространства, поэтому, как правило, требуется большое количество осветительных приборов высокой мощности (типа «высокие пролеты» и «низкие пролеты»).


Эффективность: соотношение между люменами и ваттами

Мощность, необходимая для работы установленной осветительной арматуры (или светильника), измеряется как номинальная мощность (ватты — это Джоули энергии в секунду).Номинальная мощность источника света относится ко всей мощности, потребляемой для создания световых люменов, и включает:

  • Энергия, необходимая для создания «видимого» света, излучаемого лампой
  • Вырабатываемая тепловая мощность (включая инфракрасную часть спектр освещения)
  • Другие паразитные потери мощности (например, неэффективность механизма управления / балласта) осветительной арматуры

Светотехнический термин существует для измерения скорости, с которой лампа способна преобразовывать электрическую мощность ( От ватт) до света (люменов) — это называется световой эффективностью (или просто светоотдачей) — и выражается в люменах на ватт (LPW) или люменах на цепь Ватт

Световой эффект является мерой насколько эффективно источник света производит видимый свет.

Некоторые примеры световой отдачи в обычных коммерческих и промышленных источниках света приведены ниже (обратите внимание, что они относятся только к источникам света, а не к осветительной арматуре):

Высококачественные светильники

Светильник Люмен / Вт Типичный Использует светодиодную матрицу
200 Вт в светодиодном светильнике с высоким пролетом 100 энергоэффективную замену металлогалогенным и натриевым высотным отсекам мощностью 400 Вт
Металлогалогенная лампа 400 Вт 90-95 заводское освещение и освещение складов
Натриевая лампа высокого давления 150 Вт 80 уличное освещение
32 Вт T5 или T8 Люминесцентная лампа 50 потолочное освещение общего офиса
100 Вт Лампа накаливания 17 Применения общего рабочего освещения

ПРИМЕЧАНИЕ: Все приведенные выше измерения относятся к установленным источникам света, которые являются новыми и эффективность которых не снизилась — необходимо учитывать постепенное снижение уровней освещенности при выполнении расчетов люкс перед установкой системы освещения в коммерческих зданиях, таких как склады. , фабрики и т. д.- подробности читайте ниже.


«Реальный» световой поток ламп и осветительной арматуры

До сих пор в этой статье рассматривались технические определения люкс, люмен и ватт, но это только часть необходимого понимания.

В спецификации освещения для реальных промышленных и коммерческих приложений (например, завод или склад ) нельзя предполагать, что:

  • 100% мощности лампы будет излучаться из светильника через его полезный срок службы
  • Световой поток будет постоянным в течение всего срока службы.

Чтобы облегчить дальнейшее понимание, ниже поясняются понятия «коэффициент светоотдачи» и «амортизация в люменах».


Коэффициент светоотдачи коммерческой осветительной арматуры

Фактический общий уровень освещенности, обеспечиваемый установленной осветительной арматурой (например, установленной на заводе или складе , будет критически зависеть от коэффициента светоотдачи:

Коэффициент светоотдачи — это отношение общего количества измеренного светового потока светильника (содержащего лампу) к световому потоку изолированной лампы.

В качестве примера — возьмем промышленный или складской светильник с высоким пролетом с LOR 70%: это означает, что 30% светоотдачи лампы теряется из-за конструкции светильника

Коэффициент светоотдачи Требуется в установке коммерческого освещения, потому что, когда лампа расположена в осветительной арматуре (например, в промышленном металлогалогенном высоком отсеке мощностью 400 Вт), потери света происходят внутри самого светильника.

Обычно свет должен быть направлен в сторону рабочей зоны (например,грамм. — вниз от крыши к полу), однако свет излучается от ламп и лампочек во всех направлениях (вверх, в стороны и т. д.)

Использование полированных алюминиевых отражателей направит большую часть света вниз — однако пропорция всегда будет такой. застрял в фитинге (и в конечном итоге потерял тепло). Стоит отметить, что направленные источники света (например, светодиодные чипы в коммерческих светодиодных светильниках для высоких пролетов) не страдают от этой проблемы в такой же степени — здесь свет излучается в виде луча в единственном направлении — поэтому LOR обычно будет выше. для светодиодов.


Потери светового потока из-за предустановленных коммерческих осветительных приборов

На LOR осветительной арматуры со временем также повлияет скопление мусора и / или пыли на отражателях, а также на защитных крышках в случае светильников с ‘ Рейтинг IP. Это будет особенно характерно для промышленных и заводских зданий, в которых осуществляется множество различных процессов (например, химические, производственные и т. Д.).


Потеря люмена от ламп и источников света

Уменьшение люмена означает процесс постепенного снижения светоотдачи, который наблюдается от большинства источников света с течением времени.Это включает (но не ограничивается):

  • Постепенное ухудшение состояния световой нити / электрода
  • Почернение / изменение цвета поверхности лампы

Другими словами:

Светодиодные модули освещения не умирают мгновенно, как большинство обычных источников света делать — они медленно тускнеют, пока световой поток не станет неприемлемым.

Следует, однако, отметить, что более дешевые светодиоды высокой мощности (например, те, которые требуются для крупных промышленных зданий, таких как завод или склад ) могут быстро потерять световой поток, что приведет к быстрому снижению освещенности. в кратчайшие сроки снизить уровень освещенности до уровня ниже требуемого.Хотя потеря света вначале может пройти незамеченной для пользователей здания (в конце концов, часть света излучается), осветительные приборы по существу вышли из строя и должны быть заменены.

При расчете необходимого количества осветительной арматуры необходимо учитывать как коэффициент светоотдачи, так и амортизацию в люменах, чтобы поддерживать требуемый уровень освещенности для складских или промышленных помещений в течение предполагаемого срока службы ламп.

Преобразователь

люмен в ватт

Преобразуйте от люмен до Вт для ламп накаливания, галогенных ламп, CFL и светодиодных ламп.Люмен — единица светового потока (яркости), ватт — единица мощности.

Люмен в Вт: что нужно знать

Покупая лампочки, вы обычно видите несколько размеров, указанных на упаковке. Пожалуй, самый узнаваемый, который существует уже несколько десятилетий, — это мощность. Однако времена меняются, и
инновации привели нас к обновлению системы оценок и ссылок на наши лампы. Войдите в просвет.

Чем люмен отличается от ватта?

Ватт — это единица измерения мощности.Люмен — это показатель светоотдачи. Для наших лампочек световой поток определяет воспринимаемую яркость конкретной лампы (например, светодиодной лампы).

В прошлом мы обычно покупали обычные лампы в зависимости от мощности. Мы знали, что лампочка мощностью 75 Вт дает больше света, чем лампа мощностью 40 Вт. Со временем технология производства лампочек улучшилась, что позволило производить
более энергоэффективных ламп (КЛЛ, LED). Эти лампы имеют такой же уровень яркости (люмены), что и старые лампы накаливания и галогенные лампы, но с меньшей мощностью (ватты).Например, для получения 480-720 люмен
свету может потребоваться 40 Вт мощности для лампы накаливания, но только 6-7 Вт для энергосберегающей светодиодной лампы.

Если вы собираетесь заменить лампочки, воспользуйтесь нашим калькулятором экономии светодиодов, чтобы узнать, сколько денег вы можете сэкономить на счетах за электроэнергию, переключившись на
Светодиодное освещение.

Возможно, вам сказали, что вам нужно определенное количество люменов яркости, чтобы осветить вашу комнату, и вам может быть интересно, какую лампочку какой мощности вам следует искать.Вот где конверсия
может пригодиться, чтобы направлять вас.

Как быстро преобразовать люмен в ватт

Если вы хотите выполнить преобразование люменов в ватты, вы можете использовать следующую формулу:

Вт = люмен ÷ (люмен на ватт)

Какое значение (лм / Вт)?

лм / Вт означает люмен на ватт. — это единица измерения световой отдачи и энергоэффективности — сколько видимого света вырабатывается для данного количества электричества.Например, лампа накаливания мощностью 60 Вт может производить около 900
люмен, что дает световой эффект 900/60 = 15 лм / Вт.

Лампочка какой мощности мне нужна?

При замене старых ламп накаливания или галогенных ламп на более энергоэффективные CFL или светодиодные лампы вы можете сравнить их, чтобы убедиться, что вы получаете такой же уровень яркости (люмен) от вашей лампы.
Чтобы помочь вам, мы предоставили удобную таблицу преобразования ниже. Обратите внимание, что эффективность может сильно различаться между производителями.Поэтому перед покупкой проверьте этикетку с информацией об освещении на лампочке.

Таблица преобразования люмен в ватт
Люмен Лампа накаливания
(12-18 лм / Вт)
Светодиодная лампа
(80-100 лм / Вт)
300-450 лм 25 Вт 4 Вт
480-720 лм 40 Вт 7 Вт
720-1080 лм 60 Вт 10 Вт
900-1350 лм 75 Вт 13 Вт
1200-1800 лм 100 Вт 17 Вт
1800-2700 лм 150 Вт 25 Вт
2400-3600 лм 200 Вт 34 Вт
Преобразования являются ориентировочными.Эффективность лампы может отличаться.

Световая отдача лампочки будет различаться у разных производителей, но ниже приведена оценка того, что вы можете ожидать. Обратите внимание, что
энергосберегающие лампы могут повысить энергоэффективность.

Световая отдача
Тип светильника Световая отдача (лм / Вт)
Лампа накаливания (вольфрам) 12-18 лм / Вт
Галоген 16-29 лм / Вт
CFL (флуоресцентный) 40-60 лм / Вт
LED 80-100 лм / Вт
Примечание: эффективность может различаться для разных продуктов

Источники данных: Energy Saving Trust и
Energy Star.

Если у вас возникнут проблемы с использованием этого преобразователя люмен в ватт, свяжитесь со мной.

ОСНОВНЫЕ ОСВЕЩЕНИЯ

ОСНОВНЫЕ ОСВЕЩЕНИЯ

ОСВЕЩЕНИЕ

РУКОВОДСТВО ПО ОБНОВЛЕНИЮ ОСВЕЩЕНИЯ
Управление по воздуху и радиации Агентства по охране окружающей среды США 6202J
EPA 430-B-95-003, январь 1995 г.

Программа зеленого света Агентства по охране окружающей среды США


СОДЕРЖАНИЕ

Базовое понимание основ освещения необходимо разработчикам и лицам, принимающим решения.
кто оценивает обновления освещения.В этом документе представлен краткий обзор конструкции.
параметры, технологии и терминология, используемые в светотехнике. Для более подробной информации
информацию о конкретных энергосберегающих технологиях освещения см. в разделе «Обновление освещения».
Документ о технологиях.


ОСВЕЩЕНИЕ

Количество освещенности

Световой поток

Наиболее распространенной мерой светоотдачи (или светового потока) является люмен.Источники света
обозначен мощностью в люменах. Например, люминесцентная лампа T12 мощностью 40 Вт может иметь
рейтинг 3050 люмен. Точно так же мощность светильника может быть выражена в люменах. Как лампы
и приспособления стареют и загрязняются, их световой поток уменьшается (т. е. происходит обесценивание просвета).
Большинство характеристик лампы основано на первоначальной яркости (т.е. когда лампа новая).

Уровень освещенности

Интенсивность света, измеренная на плоскости в определенном месте, называется освещенностью .Освещенность
измеряется в фут-канделах, , которые представляют собой люмены рабочей плоскости на квадратный фут. Вы можете измерить
освещенность с помощью люксметра, расположенного на рабочей поверхности, где выполняются задания. С использованием
простая арифметика и фотометрические данные производителя, вы можете предсказать освещенность для определенного
Космос. (Люкс — это метрическая единица измерения освещенности, измеряемая в люменах на квадратный метр. Чтобы преобразовать
фут-кандел в люкс, фут-кандел умножьте на 10,76.)

Яркость

Другое измерение света — яркость , иногда называемая яркостью.Это измеряет свет
«покидает» поверхность в определенном направлении и учитывает освещенность на поверхности и
отражательная способность поверхности.

Человеческий глаз не видит света; он видит яркость. Следовательно, количество света
доставляется в пространство, а отражательная способность поверхностей в пространстве влияет на вашу способность видеть.

Обратитесь к ГЛОССАРИЮ в конце этого документа для получения более подробных определений.

Количественные единицы

  • Световой поток обычно называют световым потоком и измеряется в люменах (лм).
  • Освещенность называется уровнем освещенности и измеряется в фут-канделах (fc).
  • Яркость обозначается как яркость и измеряется в фут-ламбертах (fL) или
    кандел / м2 (кд / м2).

Определение целевого уровня освещенности

Общество инженеров освещения Северной Америки разработало процедуру для
определение соответствующего среднего уровня освещенности для конкретного помещения. Эта процедура (используется
разработчики и инженеры (рекомендует целевой уровень освещенности, учитывая
следующие:

  • выполняемые задачи (контраст, размер и т. д.))
  • возраст оккупантов
  • важность скорости и точности

Затем можно выбрать подходящий тип и количество ламп и осветительных приборов на основе
следующие:

  • КПД приспособления
  • световой поток лампы
  • отражательная способность окружающих поверхностей
  • эффекты световых потерь из-за уменьшения светового потока лампы и накопления грязи
  • размер и форма комнаты
  • наличие естественного света (дневного света)

При проектировании новой или модернизированной системы освещения необходимо соблюдать осторожность, чтобы избежать чрезмерного освещения.
Космос.В прошлом помещения были рассчитаны на 200 фут-свечей в местах, где 50
футсвечи могут быть не только адекватными, но и превосходными. Отчасти это было из-за заблуждения
что чем больше света в помещении, тем выше качество. Мало того, что игнорирование ненужной энергии,
но это также может снизить качество освещения. См. Приложение 2 для получения информации об уровнях освещенности, рекомендованных
Общество инженеров освещения Северной Америки. В указанном диапазоне освещенности три
Факторы диктуют надлежащий уровень: возраст пассажира (ов), требования к скорости и точности, а также
фоновый контраст.

Например, для освещения помещения, в котором используются компьютеры, потолочные светильники должны обеспечивать
до 30 fc окружающего освещения. Рабочие фонари должны обеспечивать дополнительные свечи, необходимые для
достичь общей освещенности до 50 фк при чтении и письме. Для освещения
Рекомендации для конкретных визуальных задач см. в Справочнике по освещению IES, 1993 г., или в
Рекомендуемая практика IES № 24 (для освещения VDT).

Показатели качества

  • Вероятность визуального комфорта (VCP) указывает процент людей, которым комфортно
    с бликами от светильника.
  • Критерии расстояния (SC) относятся к максимальному рекомендуемому расстоянию между креплениями до
    обеспечить единообразие.
  • Индекс цветопередачи (CRI) указывает внешний вид цвета объекта под источником как
    по сравнению с справочным источником.

Качество освещения

Улучшение качества освещения может принести большие дивиденды американским предприятиям. Прибыль в рабочем
производительность может быть достигнута за счет обеспечения скорректированного уровня освещенности с уменьшением бликов.Хотя стоимость
энергии для освещения значительна, она мала по сравнению с затратами на рабочую силу. Следовательно, эти
повышение производительности может быть даже более ценным, чем экономия энергии, связанная с новыми
светотехника. В торговых помещениях привлекательный и удобный дизайн освещения может привлечь
клиентура и увеличение продаж.

В этом разделе рассматриваются три проблемы качества.

  • блики
  • равномерность освещенности
  • цветопередача

Блики

Пожалуй, самый важный фактор, влияющий на качество освещения, — это блики.Блики это сенсация
вызвано слишком ярким светом в поле зрения. Дискомфорт, раздражение или уменьшение
может произойти продуктивность.

Яркий объект сам по себе не обязательно вызывает блики, но яркий объект перед темным
фон, однако, обычно вызывает блики. Контраст — соотношение между
яркость объекта и его фона. Хотя визуальная задача в целом становится проще
при повышенном контрасте слишком большой контраст вызывает блики и усложняет визуальную задачу
сложно.

Вы можете уменьшить яркость или блики, не превышая рекомендуемых уровней освещенности и используя
осветительное оборудование, предназначенное для уменьшения бликов. Жалюзи или линзы обычно используются для блокировки прямого
просмотр источника света. Непрямое освещение или верхнее освещение может создать среду с низким уровнем бликов за счет
равномерное освещение потолка. Кроме того, правильное размещение светильника может уменьшить отраженные блики на
рабочие поверхности или экраны компьютеров. Стандартные данные теперь предоставляются вместе со спецификациями светильников
включают таблицы с оценками вероятности визуального комфорта (VCP ) для комнат различной геометрии.Индекс VCP показывает процент людей в данном пространстве, которые
считают, что блики от приспособления приемлемы. Рекомендуется минимум 70 VCP для
коммерческие интерьеры, в то время как светильники с VCP более 80 рекомендуются в компьютерных
области.


Равномерность освещенности по задачам

Равномерность освещенности — это проблема качества, которая касается того, насколько равномерно свет распространяется по
область задач. Хотя средняя освещенность комнаты может быть подходящей, два фактора могут
компромисс единообразия.

  • неправильное размещение светильников на основании критериев расстояния между светильниками (отношение максимума
    рекомендуемое расстояние между приспособлениями и установочной высотой над рабочей высотой)
  • светильники, оснащенные отражателями, сужающими светораспределение

Неравномерная освещенность вызывает несколько проблем:

  • недостаточный уровень освещенности в некоторых областях
  • зрительный дискомфорт, когда задачи требуют частого смещения поля зрения с недостаточно освещенных участков на затемненные
  • яркие пятна и блики на полу и стенах, отвлекающие внимание и создающие некачественный внешний вид

Цветопередача

Способность правильно видеть цвета — еще один аспект качества освещения.Источники света различаются по своему
способность точно отражать истинный цвет людей и предметов. Индекс цветопередачи
Шкала (CRI) используется для сравнения влияния источника света на внешний вид его цвета.
окружение.

Шкала от 0 до 100 определяет CRI. Более высокий индекс цветопередачи означает лучшую цветопередачу или меньший цвет
сдвиг. CRI в диапазоне 75–100 считаются отличными, а 65–75 — хорошими. Диапазон
55-65 — удовлетворительно, а 0-55 — плохо.При источниках с более высоким индексом цветопередачи цвета поверхности кажутся ярче,
улучшение эстетики пространства. Иногда источники с более высоким индексом цветопередачи создают иллюзию
более высокие уровни освещенности.

Значения CRI для выбранных источников света сведены в таблицу с другими данными о лампах в Приложении 3.

Вернуться к содержанию



ИСТОЧНИКИ СВЕТА

В коммерческих, промышленных и торговых объектах используется несколько различных источников света.Каждый тип лампы
имеет особые преимущества; выбор подходящего источника зависит от требований к установке,
стоимость жизненного цикла, качество цвета, возможность регулирования яркости и желаемый эффект. Три типа ламп
обычно используются:

  • лампы накаливания
  • люминесцентный
  • разряд высокой интенсивности
  • пары ртути
  • галогенид металла
  • натрий высокого давления
  • натрий низкого давления

Перед описанием каждого из этих типов ламп в следующих разделах описаны характеристики, которые
являются общими для всех них.


Характеристики источников света

Источники электрического света имеют три характеристики: эффективность, цветовую температуру и цвет.
индекс рендеринга (CRI). Таблица 4 суммирует эти характеристики.

КПД

Некоторые типы ламп более эффективны в преобразовании энергии в видимый свет, чем другие. В
Эффективность лампы относится к количеству люменов, выходящих из лампы, по сравнению с количеством
ватт, необходимых для лампы (и балласта).Выражается в люменах на ватт. Источники с более высоким
Эффективность требует меньше электроэнергии для освещения помещения.

Цветовая температура

Еще одна характеристика источника света — цветовая температура. Это измерение
«тепло» или «прохлада» лампы. Люди обычно предпочитают более теплый источник в более низких
области освещения, такие как обеденные зоны и гостиные, а также более прохладный источник в более высоких
освещенные зоны, такие как продуктовые магазины.

Цветовая температура относится к цвету излучателя черного тела при заданной абсолютной температуре,
выражается в Кельвинах. Радиатор черного тела меняет цвет при повышении температуры (сначала до
красный, затем оранжевый, желтый и, наконец, голубовато-белый при самой высокой температуре. А «теплый» цвет
Источник света на самом деле имеет более низкую цветовую температуру . Например, холодно-белый люминесцентный
лампа имеет голубоватый цвет с цветовой температурой около 4100 К.Более теплый флуоресцентный
лампа выглядит более желтоватой с цветовой температурой около 3000 К. См. Приложение 5 для
цветовые температуры различных источников света.


Индекс цветопередачи

CRI — это относительная шкала (от 0 до 100). указывает, насколько воспринимаемые цвета соответствуют фактическим
цвета. Он измеряет степень восприятия цветов объектов, освещенных данным светом.
источник, соответствовать цветам тех же объектов, когда они освещены эталонным стандартом
источник света.Чем выше индекс цветопередачи, тем меньше цветовой сдвиг или искажение.

Число CRI не указывает, какие цвета и на сколько сместятся; это скорее
индикация среднего сдвига восьми стандартных цветов. Два разных источника света могут иметь
одинаковые значения CRI, но цвета в этих двух источниках могут сильно отличаться.


Лампы накаливания

Стандартная лампа накаливания

Лампы накаливания — одна из старейших доступных технологий электрического освещения.С эффективностью
от 6 до 24 люмен на ватт, лампы накаливания являются наименее энергоэффективными электрическими
источник света и имеют относительно небольшой срок службы (750-2500 часов).

Свет образуется при прохождении тока через вольфрамовую нить, в результате чего она нагревается и нагревается.
светиться. При использовании вольфрам медленно испаряется, что в конечном итоге приводит к разрыву нити.

Эти лампы доступны во многих формах и отделках. Два самых распространенных типа фигур
это обычные лампы «A-type » и лампы в форме рефлектора .


Вольфрамово-галогенные лампы

Галогенная лампа накаливания — еще один тип лампы накаливания. В галогенной лампе небольшой
кварцевая капсула содержит нить накала и газообразный галоген. Небольшой размер капсулы позволяет
нить накала для работы при более высокой температуре, что дает свет с большей эффективностью, чем
стандартные лампы накаливания. Газообразный галоген соединяется с испарившимся вольфрамом, переосаждая его.
на нити. Этот процесс продлевает срок службы нити накала и предохраняет стенку лампы от
почернение и уменьшение светоотдачи.

Поскольку нить накала относительно небольшая, этот источник часто используется там, где направлен сильно сфокусированный луч.
желанный. Компактные галогенные лампы популярны в розничной торговле для демонстрации и акцента.
осветительные приборы. Кроме того, вольфрамово-галогенные лампы обычно производят более белый свет, чем другие лампы.
лампы накаливания более эффективны, служат дольше и имеют улучшенный износ светового потока.


Лампа накаливания

Доступны более эффективные галогенные лампы.В этих источниках используется инфракрасное покрытие кварцевого стекла.
лампа или усовершенствованный рефлектор для перенаправления инфракрасного света обратно на нить накала. Нить
затем светится сильнее, и эффективность источника увеличивается.


Люминесцентные лампы

Люминесцентные лампы — наиболее часто используемые коммерческие источники света в Северной Америке. В
Фактически, люминесцентные лампы освещают 71% коммерческих помещений в Соединенных Штатах. Их
популярность можно объяснить их относительно высокой эффективностью, рассеянным светораспределением
характеристики и долгий срок службы.

  • Конструкция люминесцентной лампы состоит из стеклянной трубки со следующими характеристиками:
  • , наполненный аргоном или аргон-криптоном и небольшим количеством ртути
  • покрытый изнутри люминофором
  • с электродом на обоих концах

Люминесцентные лампы излучают свет в результате следующего процесса:

  • Электрический разряд (ток) поддерживается между электродами через
    пары ртути и инертный газ.
  • Этот ток возбуждает атомы ртути, заставляя их излучать невидимое излучение ультрафиолет (УФ)
    радиация.
  • Это УФ-излучение преобразуется в видимый свет люминофором, покрывающим трубку.

Для разрядных ламп (например, люминесцентных) требуется балласт для обеспечения правильного пускового напряжения и
отрегулируйте рабочий ток после запуска лампы.


Полноразмерные люминесцентные лампы

Полноразмерные люминесцентные лампы доступны в нескольких формах, включая прямые, U-образные и
круговые конфигурации. Диаметр лампы составляет от 1 дюйма до 2,5 дюйма. Самый распространенный тип лампы —
четырехфутовая (F40) прямая люминесцентная лампа диаметром 1,5 дюйма (T12). Более эффективная люминесцентная лампа.
Теперь доступны лампы меньшего диаметра, включая T10 (1,25 дюйма) и T8 (1 дюйм).

Люминесцентные лампы доступны в диапазоне цветовых температур от теплого (2700 (K)
цвета от «ламп накаливания» до очень холодных (6500 (K) «дневных» цветов).«Холодный белый» (4100 (K) —
наиболее распространенный цвет люминесцентных ламп. Нейтральный белый цвет (3500 (K) становится популярным для офиса.
и розничное использование.

Улучшения люминесцентного покрытия люминесцентных ламп улучшили цветопередачу и
сделали некоторые люминесцентные лампы приемлемыми для многих приложений, в которых ранее преобладали
лампы накаливания.


Рекомендации по производительности

Производительность любой осветительной системы зависит от того, насколько хорошо ее компоненты работают вместе.В системах с люминесцентными лампами и балластом светоотдача, потребляемая мощность и эффективность зависят от
изменения температуры окружающей среды. Когда температура окружающей среды вокруг лампы ниже
значительно выше или ниже 25 ° C (77F) производительность системы может измениться. Приложение 6
показывает эту взаимосвязь для двух распространенных систем балласта лампы: лампы F40T12 с магнитным
балласт и лампа F32T8 с электронным балластом.

Как видите, оптимальная рабочая температура для системы ПРА F32T8 выше.
чем для системы F40T12.Таким образом, когда температура окружающей среды выше 25 ° C (77 ° F),
производительность системы F32T8 может быть выше, чем производительность в соответствии с ANSI
условия. Лампы с меньшим диаметром (например, двухтрубные лампы Т-5) достигают максимума при еще большем
температура окружающей среды.


Компактные люминесцентные лампы

Достижения в области люминофорных покрытий и уменьшение диаметра трубок облегчили
разработка компактных люминесцентных ламп.

Производимые с начала 1980-х годов, они являются долговечной и энергоэффективной заменой
лампа накаливания.

Доступны различные мощности, цветовые температуры и размеры. Мощность компактного
люминесцентные лампы мощностью от 5 до 40 (замена ламп накаливания мощностью от 25 до 150 Вт (
и обеспечить экономию энергии от 60 до 75 процентов. При производстве света, похожего по цвету на
лампы накаливания, продолжительность жизни компактных люминесцентных ламп примерно в 10 раз больше, чем у ламп накаливания.
стандартная лампа накаливания. Однако учтите, что использование компактных люминесцентных ламп весьма затруднительно.
ограничено в приложениях затемнения.

Компактная люминесцентная лампа с цоколем Эдисона предлагает простой способ модернизации
лампа накаливания. Ввинчиваемые компактные люминесцентные лампы доступны двух типов:

  • Встроенные блоки. Они состоят из компактной люминесцентной лампы и пускорегулирующего устройства в автономном корпусе.
    единицы. Некоторые встроенные блоки также включают в себя рефлектор и / или стеклянный кожух.
  • Модульные блоки. Модернизированная компактная люминесцентная лампа модульного типа аналогична модернизированной люминесцентной лампе.
    интегральные блоки, за исключением того, что лампа сменная.

Отчет спецификаций , в котором сравниваются характеристики компактных люминесцентных ламп различных торговых марок.
лампы теперь доступны в Национальной информационной программе по осветительной продукции («Винт-цоколь
Компактные люминесцентные лампы, «Отчеты спецификаций, том 1, выпуск 6, апрель 1993 г.».


Газоразрядные лампы высокой интенсивности

Лампы с разрядом высокой интенсивности (HID) похожи на люминесцентные в том, что генерируется дуга.
между двумя электродами. Дуга в источнике HID короче, но излучает гораздо больше света,
тепло и давление внутри дуговой трубки.

Изначально разработанные для наружного и промышленного применения, HID-лампы также используются в офисах,
розничная торговля и другие внутренние помещения. Улучшены их характеристики цветопередачи.
и более низкие мощности недавно стали доступны (всего 18 Вт.

Источники HID обладают рядом преимуществ:

  • относительно долгий срок службы (от 5000 до 24000+ часов)
  • относительно высокий световой поток на ватт
  • относительно небольшой по физическому размеру

Однако следует также учитывать следующие эксплуатационные ограничения.Во-первых, лампы HID требуют
пора разогреться. Он варьируется от лампы к лампе, но среднее время прогрева составляет от 2 до 6 минут.
Во-вторых, лампы HID имеют время «повторного зажигания», что означает кратковременное прерывание тока или
падение напряжения слишком низкое для поддержания дуги погаснет лампу. В этот момент газы внутри
лампа слишком горячая для ионизации, и требуется время, чтобы газы остыли и давление упало
прежде, чем дуга снова загорится. Этот процесс перезапуска занимает от 5 до 15 минут,
в зависимости от того, какой источник HID используется.Таким образом, лампы HID хорошо применяются.
места, где лампы не включаются и не выключаются периодически.

Следующие источники HID перечислены в порядке возрастания эффективности:

  • пары ртути
  • галогенид металла
  • натрий высокого давления
  • натрий низкого давления

Пары ртути

Прозрачные лампы на парах ртути, излучающие сине-зеленый свет, состоят из дуги на парах ртути.
трубка с вольфрамовыми электродами на обоих концах.Эти лампы имеют самую низкую эффективность среди HID.
семья, быстрое обесценивание просвета и низкий индекс цветопередачи. Из-за этих
характеристики, другие источники HID заменили ртутные лампы во многих приложениях.
Тем не менее, ртутные лампы по-прежнему остаются популярными источниками освещения ландшафта из-за
их срок службы лампы 24 000 часов и яркое изображение зеленых ландшафтов.

Дуга содержится во внутренней колбе, называемой дуговой трубкой. Дуговая трубка заполнена высокой чистотой.
ртуть и газ аргон.Дуговая трубка заключена во внешнюю колбу, которая заполнена
азот.

Ртутные лампы с улучшенным цветом используют люминофорное покрытие на внутренней стенке колбы для улучшения
индекс цветопередачи, что приводит к небольшому снижению эффективности.


Металлогалогенид

Эти лампы похожи на ртутные лампы, но в дуговой трубке используются добавки галогенидов металлов.
вместе с ртутью и аргоном. Эти добавки позволяют лампе производить больше видимого света.
на ватт с улучшенной цветопередачей.

Диапазон мощности от 32 до 2000, что позволяет использовать их в самых разных помещениях и на улице. В
эффективность металлогалогенных ламп колеблется от 50 до 115 люмен на ватт (обычно примерно в два раза больше).
пара ртути. Одним словом, металлогалогенные лампы обладают рядом преимуществ.

  • высокая эффективность
  • хорошая цветопередача
  • широкий диапазон мощности

Однако у них также есть некоторые эксплуатационные ограничения:

  • Номинальный срок службы металлогалогенных ламп меньше, чем у других источников HID; более низкая мощность
    лампы служат менее 7500 часов, в то время как лампы высокой мощности служат в среднем от 15000 до
    20000 часов.
  • Цвет может отличаться от лампы к лампе и может меняться в течение срока службы лампы и во время
    затемнение.

Благодаря хорошей цветопередаче и большому световому потоку эти лампы подходят для занятий спортом.
арены и стадионы. Внутреннее использование включает большие аудитории и конференц-залы. Эти лампы
иногда используются для общего наружного освещения, например, парковок, но при высоком давлении
натриевая система обычно является лучшим выбором.


Натрий высокого давления

Натриевая лампа высокого давления (HPS) широко используется для наружного и промышленного применения.
Его более высокая эффективность делает его лучшим выбором, чем галогенид металла для этих применений, особенно
когда хорошая цветопередача не является приоритетом. Лампы HPS отличаются от ртутных и металлогалогенных.
лампы тем, что они не содержат пусковых электродов; в цепь балласта включен высоковольтный
электронный стартер. Дуговая трубка изготовлена ​​из керамического материала, выдерживающего высокие температуры.
до 2372F.Он заполнен ксеноном для зажигания дуги, а также натриево-ртутным газом.
смесь.

Эффективность лампы очень высока (целых 140 люмен на ватт. Например, 400-ваттный
Натриевая лампа высокого давления дает начальную светосилу 50 000 люмен. Металлогалогенная лампа такой же мощности
производит 40 000 начальных люменов, а ртутная лампа мощностью 400 Вт дает только 21 000 люменов.
изначально.

Натрий, основной используемый элемент, дает «золотой» цвет, характерный для ламп HPS.Хотя лампы HPS обычно не рекомендуются для применений, где требуется цветопередача.
критично, улучшаются свойства цветопередачи HPS. Некоторые лампы HPS уже доступны
в цветах «люкс» и «белый», обеспечивающих более высокую цветовую температуру и улучшенный цвет
исполнение. «Белые» лампы HPS малой мощности по эффективности ниже, чем у металлогалогенных.
лампы (люмен на ватт маломощного металлогалогенида составляет 75-85, а белого HPS — 50-60 LPW).


Натрий низкого давления

Хотя натриевые лампы низкого давления (LPS) похожи на люминесцентные системы (потому что они
системы низкого давления), они обычно входят в семейство HID.Лампы LPS — самые
эффективные источники света, но они производят свет худшего качества из всех типов ламп. Быть
монохроматический источник света, все цвета кажутся черными, белыми или оттенками серого под LPS
источник. Лампы LPS доступны в диапазоне мощности от 18 до 180.

Лампы LPS обычно используются на открытом воздухе, например, в безопасности или на улице.
освещение и внутри помещений с низким энергопотреблением, где качество цвета не имеет значения (например,грамм.
лестничные клетки). Однако из-за плохой цветопередачи многие муниципалитеты не разрешают
их для освещения проезжей части.

Поскольку лампы LPS являются «удлиненными» (например, люминесцентными), они менее эффективны для направления и
управление световым лучом по сравнению с «точечными источниками», такими как натрий и металл высокого давления
галогенид. Следовательно, меньшая высота установки обеспечит лучшие результаты с лампами LPS. К
сравните установку LPS с другими альтернативами, рассчитайте эффективность установки как
среднее количество обслуживаемых фут-кандел, деленное на потребляемую мощность в ваттах на квадратный фут освещенной площади.Входная мощность системы LPS увеличивается с течением времени, чтобы поддерживать постоянный световой поток в течение
срок службы лампы.

Натриевая лампа низкого давления может взорваться при контакте натрия с водой. Утилизировать
этих ламп в соответствии с инструкциями производителя.

Вернуться к содержанию



БАЛЛАСТЫ

Все газоразрядные лампы (люминесцентные и HID) требуют вспомогательного оборудования, называемого
балласт.Балласты выполняют три основные функции:

  • обеспечивают правильное пусковое напряжение , потому что лампам для запуска требуется более высокое напряжение, чем для
    работать
  • соответствие сетевого напряжения рабочему напряжению лампы
  • ограничить ток лампы , чтобы предотвратить немедленное разрушение, потому что после зажигания дуги
    сопротивление лампы уменьшается

Поскольку балласты являются неотъемлемым компонентом системы освещения, они оказывают прямое влияние на
световой поток.Балластный коэффициент — это соотношение светоотдачи лампы с использованием стандартного эталона.
балласта по сравнению с номинальной светоотдачей лампы на стандартном лабораторном балласте. Общий
балласты целевого назначения имеют балластный коэффициент меньше единицы; специальные балласты могут иметь балласт
множитель больше единицы.


Люминесцентные балласты

Двумя основными типами люминесцентных балластов являются магнитные и электронные балласты:

Магнитные балласты

Магнитные балласты (также называемые электромагнитными балластами) относятся к одному из следующих
категории:

  • стандартный сердечник-катушка (больше не продается в США для большинства приложений)
  • высокоэффективный сердечник-катушка
  • катодный вырез или гибридный

Стандартные магнитные балласты сердечник-катушка , по сути, трансформаторы сердечник-катушка, которые относительно
неэффективны в эксплуатации люминесцентных ламп.Высокоэффективный балласт заменяет алюминиевый
электропроводка и сталь более низкого сорта стандартного балласта с медной проводкой и усиленной
ферромагнитные материалы. Результатом этих обновлений материалов является 10-процентная эффективность системы.
улучшение. Однако обратите внимание, что эти «высокоэффективные» балласты являются наименее эффективными магнитными.
балласты, доступные для работы с полноразмерными люминесцентными лампами. Более эффективные балласты
описано ниже.

«Катодный вырез» (или «гибрид «) балласты — это высокоэффективные балласты с сердечником и катушкой, которые включают
электронные компоненты, отключающие питание катодов (нитей) ламп после зажигания ламп,
что дает дополнительную экономию 2 Вт на стандартную лампу.Кроме того, многие T12 с частичным выходом
гибридные балласты обеспечивают на 10% меньше светового потока и потребляют на 17% меньше энергии, чем
энергоэффективные магнитные балласты. Гибридные балласты T8 с полной мощностью почти так же эффективны, как
быстрозажимные двухламповые электронные балласты Т8.

Электронные балласты

Практически в каждом полноразмерном люминесцентном освещении можно использовать электронные балласты.
обычных магнитных балластов типа «сердечник-катушка». Электронные балласты улучшают люминесцентный
эффективность системы за счет преобразования стандартной входной частоты 60 Гц в более высокую частоту, обычно
От 25000 до 40000 Гц.Лампы, работающие на этих более высоких частотах, производят примерно такое же
количество света, в то время как потребляет на 12-25 процентов меньше энергии . Другие преимущества электронного
балласты имеют меньший слышимый шум, меньший вес, практически полное отсутствие мерцания лампы и затемнение
возможности (с конкретными моделями балласта).

Доступны три исполнения ЭПРА:

Стандартные электронные балласты T12 (430 мА)

Эти балласты предназначены для использования с обычными (T12 или T10) люминесцентными системами освещения.Некоторые электронные балласты, предназначенные для использования с 4-дюймовыми лампами, могут работать с четырьмя лампами одновременно.
время. Параллельная проводка — еще одна доступная функция, которая позволяет всем сопутствующим лампам в
цепь балласта для продолжения работы в случае отказа лампы. Электронные балласты также
доступны для 8-дюймовых стандартных и мощных ламп T12.

T8 Электронные балласты (265 мА)

Электронный балласт T8, специально разработанный для использования с лампами T8 (диаметром 1 дюйм), обеспечивает
самая высокая эффективность любой системы люминесцентного освещения.Некоторые электронные балласты T8
предназначены для запуска ламп в обычном режиме быстрого запуска, а другие работают в
режим мгновенного запуска. Использование электронных балластов T8 с мгновенным запуском может привести к 25%
сокращение срока службы лампы (на 3 часа за запуск), но дает небольшое повышение эффективности и света
выход. (Примечание: срок службы лампы для мгновенного запуска и быстрого запуска одинаков для 12 или более
часов за пуск.)

Диммируемые электронные балласты

Эти балласты позволяют регулировать световой поток ламп на основе данных, введенных вручную.
регуляторы яркости или от устройств, которые определяют дневной свет или присутствие людей.


Типы люминесцентных схем

Существует три основных типа люминесцентных схем:

  • быстрый старт
  • мгновенный запуск
  • предварительный нагрев

Конкретный используемый флуоресцентный контур можно определить по этикетке на балласте.

Схема с быстрым запуском является наиболее часто используемой системой на сегодняшний день. Балласты быстрого пуска обеспечивают непрерывное
нагрев нити накала лампы во время работы лампы (кроме случаев, когда используется балласт с катодным вырезом или
напольная лампа).Пользователи замечают очень короткую задержку после «щелчка переключателя» перед включением лампы.

Система мгновенного пуска мгновенно зажигает дугу в лампе. Этот балласт обеспечивает более высокую
пусковое напряжение, что исключает необходимость в отдельной пусковой цепи. Это более высокое начало
напряжение вызывает больший износ нитей, что приводит к сокращению срока службы лампы по сравнению с быстрым
начиная.

Схема предварительного нагрева использовалась, когда впервые стали доступны люминесцентные лампы.Эта технология
используется очень мало сегодня, за исключением приложений с магнитным балластом малой мощности, таких как компактные
флуоресцентные. Отдельный пусковой выключатель, называемый стартером, помогает в образовании дуги. В
нити накала требуется некоторое время для достижения нужной температуры, поэтому лампа не зажигается в течение нескольких
секунд.


HID балласты

Как и люминесцентные лампы, HID-лампы требуют для запуска и работы пускорегулирующего устройства. Цели
балласт аналогичен: для обеспечения пускового напряжения, для ограничения тока и для согласования с линейным напряжением
напряжению дуги.

При использовании балластов HID основное внимание уделяется регулированию мощности лампы, когда линия
напряжение меняется. В лампах HPS балласт должен компенсировать изменения напряжения лампы, как
а также при изменении линейных напряжений.

Установка неправильного балласта HID может вызвать множество проблем:

  • потери энергии и увеличение эксплуатационных расходов
  • значительно сокращает срок службы лампы
  • значительно увеличивает затраты на обслуживание системы
  • обеспечивает уровень освещенности ниже желаемого
  • увеличение затрат на электромонтаж и установку выключателя
  • вызывает срабатывание лампы при падении напряжения

Емкостное переключение доступно в новых светильниках HID со специальными балластами HID.Большинство
обычное применение HID-емкостной коммутации — это двухуровневое освещение с контролем присутствия.
контроль. При обнаружении движения датчик присутствия отправит сигнал на двухуровневый HID.
система, которая быстро доводит уровень освещенности от пониженного уровня ожидания до примерно 80%
полной мощности, с последующим нормальным временем прогрева от 80% до 100% полной световой отдачи.
В зависимости от типа лампы и мощности световой поток в режиме ожидания составляет примерно 15-40% от полной мощности.
а потребляемая мощность составляет 30-60% от полной мощности.Следовательно, в периоды, когда пространство
незанятых людей и система затемнена, достигается экономия 40-70%.

Электронные пускорегулирующие аппараты для некоторых типов ламп HID начинают поступать в продажу.
Эти балласты обладают такими преимуществами, как уменьшенный размер и вес, а также лучший контроль цвета;
однако электронные балласты HID предлагают минимальный выигрыш в эффективности по сравнению с балластами магнитных HID.

Вернуться к содержанию



СВЕТИЛЬНИКИ

Светильник, или осветительный прибор, представляет собой блок, состоящий из следующих компонентов:

  • лампы
  • патроны
  • балласта
  • светоотражающий материал
  • линзы, рефракторы или жалюзи
  • корпус

Светильник

Основная функция светильника — направлять свет с помощью отражающих и экранирующих материалов.Многие проекты модернизации освещения состоят из замены одного или нескольких из этих компонентов для улучшения
эффективность приспособления. В качестве альтернативы пользователи могут подумать о замене всего светильника на тот, который
Я разработал, чтобы эффективно обеспечить необходимое количество и качество освещения.

Есть несколько разных типов светильников. Ниже приводится список некоторых наиболее распространенных
типы светильников:

  • светильники общего освещения, такие как люминесцентные лампы 2х4, 2х2 и 1х4
  • потолочные светильники
  • непрямое освещение (свет отражается от потолка / стен)
  • точечное или акцентное освещение
  • рабочее освещение
  • наружное и прожекторное освещение

КПД светильника

КПД светильника — это процент светового потока лампы, который фактически выходит из
приспособление.Использование жалюзи может улучшить визуальный комфорт, но поскольку они уменьшают просвет
выход приспособления, КПД снижается. Как правило, наиболее эффективные светильники имеют
худший визуальный комфорт (например, промышленное оборудование без покрытия). И наоборот, приспособление, обеспечивающее
самый высокий уровень визуального комфорта наименее эффективен. Таким образом, дизайнер по свету должен определить
лучший компромисс между эффективностью и VCP при выборе светильников. В последнее время некоторые
производители начали предлагать светильники с отличным VCP и эффективностью.Эти так называемые
«супер-приспособления » сочетают в себе ультрасовременную конструкцию линз или жалюзи, чтобы обеспечить лучшее из обоих
миры.

Ухудшение поверхности и скопившаяся грязь в старых, плохо обслуживаемых приборах также могут вызвать
снижение эффективности светильников. Обратитесь к Техническому обслуживанию Освещения для получения дополнительной информации.


Направляющий свет

Каждый из вышеперечисленных типов светильников состоит из ряда компонентов, которые предназначены для работы.
вместе производить и направлять свет.Поскольку тема производства света была освещена
В предыдущем разделе текст ниже посвящен компонентам, используемым для направления производимого света.
лампами.


Отражатели

Отражатели предназначены для перенаправления света, излучаемого лампой, для достижения желаемого
распределение силы света вне светильника.

В большинстве точечных и прожекторных ламп накаливания обычно используются зеркальные (зеркальные) отражатели.
встроены в светильники.

Одним из энергоэффективных вариантов модернизации является установка специально разработанного отражателя для усиления света.
контроль и эффективность приспособления, что может позволить частичное снятие демпфирования. Отражатели дооснащения
полезно для повышения эффективности старых, изношенных поверхностей светильников. Разнообразие
Доступны отражающие материалы: белая краска с высокой отражающей способностью, ламинат с серебряной пленкой и два
марки анодированного алюминиевого листа (стандартная или повышенная отражательная способность).Серебряный пленочный ламинат
Обычно считается, что он имеет самый высокий коэффициент отражения, но считается менее прочным.

Правильная конструкция и установка отражателей могут иметь большее влияние на производительность, чем
отражающие материалы. Однако в сочетании с демпфированием использование отражателей может привести к
снижение светоотдачи и может перераспределить свет, что может быть приемлемым или неприемлемым для
конкретное пространство или приложение. Чтобы обеспечить приемлемую производительность от отражателей, позаботьтесь о том, чтобы
пробная установка и измерение уровней освещенности «до» и «после», используя процедуры, изложенные в
Оценка освещения.Для получения конкретных данных об эффективности бренда см. Отчеты спецификатора,
«Зеркальные отражатели», том 1, выпуск 3, Национальная информационная программа по осветительной продукции.


Линзы и жалюзи

В большинстве комнатных коммерческих люминесцентных светильников используются либо линзы, либо жалюзи для предотвращения прямого попадания света.
просмотр ламп. Свет, излучаемый в так называемой «зоне ослепления» (углы более 45
градусов от вертикальной оси приспособления) может вызвать зрительный дискомфорт и отражения, которые уменьшают
контраст на рабочих поверхностях или экранах компьютеров.Линзы и жалюзи пытаются контролировать эти
проблемы.

Линзы. Линзы из прозрачного акрилового пластика, устойчивого к ультрафиолетовому излучению, обеспечивают максимальное освещение
производительность и однородность всех средств защиты. Однако они обеспечивают меньший контроль бликов, чем
решетчатые светильники. Типы прозрачных линз включают призматические, крылья летучей мыши, линейные крылья летучей мыши и поляризованные.
линзы. Линзы обычно намного дешевле, чем жалюзи. Белые полупрозрачные диффузоры
намного менее эффективны, чем прозрачные линзы, и они приводят к относительно низкой вероятности визуального комфорта.Новые материалы линз с низким уровнем бликов доступны для модернизации и обеспечивают высокий визуальный комфорт (VCP> 80)
и высокая эффективность.

Жалюзи. Жалюзи обеспечивают превосходный контроль бликов и высокий визуальный комфорт по сравнению с
линзово-диффузорные системы. Чаще всего жалюзи используются для устранения бликов на арматуре.
отражается на экранах компьютеров. Так называемые параболические жалюзи с «глубокими ячейками» (с отверстиями для ячеек 5-7 дюймов)
и глубиной 2–4 дюйма (обеспечивают хороший баланс между визуальным комфортом и эффективностью светильника.Хотя параболические жалюзи с мелкими ячейками обеспечивают высочайший уровень визуального комфорта, они уменьшают
КПД светильника около 35-45 процентов. Для модернизированных приложений, как с глубокими ячейками, так и с
жалюзи с мелкими ячейками доступны для использования с существующей арматурой. Обратите внимание, что жалюзи с глубокими ячейками
дооснащение увеличивает общую глубину трансмиссии на 2–4 дюйма; убедитесь, что имеется достаточная глубина камеры статического давления.
перед указанием модернизации с глубокими ячейками.


Распределение

Одна из основных функций светильника — направлять свет туда, где он нужен.Свет
Распространение светильников охарактеризовано Обществом инженеров освещения как
следующие:

  • Прямой (от 90 до 100 процентов света направляется вниз для максимального использования.
  • Непрямое (от 90 до 100 процентов света направляется на потолки и верхние стены и
    отражается во всех частях комнаты.
  • Semi-Direct (от 60 до 90 процентов света направлено вниз, а остальная часть света направлена ​​вниз).
    направлен вверх.
  • General Diffuse или Direct-Indirect (равные части света направлены вверх и
    вниз.
  • Highlighting (дальность проецирования луча и фокусирующая способность характеризуют это
    светильник.

Распределение освещения, характерное для данного светильника, описывается с помощью канделы.
Распространение предоставляется производителем светильника (см. диаграмму на следующей странице). Кандела
распределение представлено кривой на полярном графике, показывающей относительную силу света
360 вокруг приспособления (если смотреть на поперечное сечение приспособления.Эта информация полезна
потому что он показывает, сколько света излучается в каждом направлении и относительные пропорции
вниз и вверх. Угол среза — это угол, измеренный прямо вниз,
где приспособление начинает экранировать источник света, и прямой свет от источника не виден.
Угол экранирования — это угол, отсчитываемый от горизонтали, через который приспособление обеспечивает
экранирование для предотвращения прямого просмотра источника света.Углы экранирования и отсечения складываются.
до 90 градусов.

Продукты для модернизации освещения, упомянутые в этом документе, более подробно описаны в
Технологии модернизации освещения.

Вернуться к содержанию



Индивидуальные объявления

Advanced Lighting Guidelines: 1993, Исследовательский институт электроэнергии (EPRI) / Калифорния
Энергетическая комиссия (CEC) / Министерство энергетики США (DOE), май 1993 г.

EPRI, CEC и DOE совместно разработали обновленную версию Advanced 1993 года.
Руководство по освещению (первоначально опубликовано ЦИК в 1990 году). Рекомендации включают четыре
новые главы, посвященные управлению освещением. Эта серия руководств содержит исчерпывающие
и объективную информацию о текущем осветительном оборудовании и средствах управления.

Рекомендации касаются следующих областей:

  • практика проектирования освещения
  • компьютерное проектирование освещения
  • светильники и системы освещения
  • энергоэффективные люминесцентные балласты
  • полноразмерные люминесцентные лампы
  • компактные люминесцентные лампы
  • вольфрамово-галогенные лампы
  • металлогалогенные лампы и лампы HPS
  • дневное освещение и поддержание светового потока
  • датчики присутствия
  • системы расписания
  • модернизация систем управления

Помимо обзоров технологий и приложений, каждая глава завершается рекомендациями.
спецификации для точного определения компонентов модернизации освещения.Руководящие принципы также
свести в таблицу репрезентативные данные о производительности, которые может быть очень сложно найти в продукте
литература.

Чтобы получить копию Advanced Lighting Guidelines (1993), обратитесь в местную коммунальную службу (если у вас
Утилита является членом EPRI). В противном случае позвоните в ЦИК по телефону (916) 654-5200.

Ассоциация инженеров-энергетиков использует этот текст для подготовки кандидатов к сдаче Сертифицированных
Экзамен по эффективности освещения (CLEP).Эта 480-страничная книга особенно полезна
для изучения расчетов освещенности, основных соображений по проектированию и эксплуатации
характеристики каждого семейства источников света. Он также содержит инструкции по применению для промышленных,
офисное, торговое и внешнее освещение.

Вы можете заказать этот учебник в Ассоциации инженеров-энергетиков по телефону (404)
925-9558.

Стандарт ASHRAE / IES 90.1-1989, Американское общество отопления, охлаждения и
Инженеры по кондиционированию воздуха (ASHRAE) и Общество инженеров освещения (IES), 1989.

ASHRAE / IES 90.1-1989, широко известный как «Стандарт 90.1», является стандартом эффективности, который
Участники Green Lights соглашаются следовать им при проектировании новых систем освещения. Стандарт 90.1 — это
в настоящее время является национальным стандартом добровольного консенсуса. Однако этот стандарт становится законом в
многие государства. Закон об энергетической политике 1992 г. требует, чтобы все штаты подтвердили к октябрю 1994 г., что
их положения коммерческого энергетического кодекса соответствуют или превышают требования Стандарта 90.1.

Участникам Green Lights нужно только соответствовать части стандарта, касающейся системы освещения.
Стандарт 90.1 устанавливает максимальную плотность мощности (W / SF) для систем освещения в зависимости от типа
здание или ожидаемое использование в каждом пространстве. Освещение в Стандарте 90.1 не
применяются к следующему: наружные производственные или технологические объекты, театральное освещение,
специальное освещение, аварийное освещение, вывески, торговые витрины и жилые помещения
осветительные приборы.Дневное освещение и управление освещением получают внимание и кредиты, а также минимум
стандарты эффективности указаны для балластов люминесцентных ламп на базе балласта Federal
Стандарты.

Вы можете приобрести Standard 90.1, связавшись с ASHRAE по телефону (404) 636-8400 или IES по телефону (212)
248-5000.

Справочник по управлению освещением, Крейг Дилуи, 1993.

Этот 300-страничный нетехнический справочник дает четкий обзор управления освещением.
принципы.Особое внимание уделяется важности эффективного обслуживания и
преимущества хорошо спланированной и выполненной программы управления освещением. Содержание
организована следующим образом:

  • Основы и технологии
  • Обследование зданий
  • Эффективное освещение (для людей)
  • Экономика модернизации
  • Техническое обслуживание
  • Финансирование модернизации
  • Зеленая инженерия (воздействие на окружающую среду)
  • Получение помощи
  • Истории успеха

Кроме того, приложения к книге включают общую техническую информацию, рабочие листы и информацию о продукте.
гиды.Чтобы приобрести эту ссылку, позвоните в Ассоциацию инженеров-энергетиков по телефону (404) 925-9558.

Освещение: Учебное пособие для старших специалистов по свету, международный
Ассоциация компаний по управлению освещением (NALMCO), первое издание, 1993 г.

Освещение — это 74-страничное учебное пособие для начинающих светотехников.
(Обозначение NALMCO) для повышения статуса до старшего светотехника. В
Рабочая тетрадь состоит из семи глав, каждая из которых содержит тест для самопроверки.Ответы даны в
оборотная сторона книги.

  • Основы обслуживания (например, электричество, приборы, вопросы утилизации и т. Д.)
  • Работа лампы (например, конструкция и работа лампы (все типы, цветовые эффекты)
  • Работа с балластом (например, люминесцентные и HID компоненты балласта, типы, мощность, балласт
    коэффициент, гармоники, начальная температура, КПД, замена)
  • Устранение неполадок (например,g., визуальные симптомы, возможные причины, объяснения и / или способы устранения)
  • Элементы управления (например, фотоэлементы, часы, датчики присутствия, диммеры, EMS)
  • Устройства и технологии для модернизации освещения (например, отражатели, компактные люминесцентные лампы,
    модернизация балласта, исправление чрезмерно освещенных ситуаций, линзы и жалюзи, преобразования HID,
    измерение энергоэффективности)
  • Аварийное освещение (например, знаки выхода, типы приспособлений, приложения, батареи, техническое обслуживание)

Подсветки четкие и понятные.Сильной стороной публикации является обширная
иллюстрации и фотографии, которые помогают прояснить обсуждаемые идеи. Учебник для подмастерьев
Также доступны специалисты по освещению (под названием «Осветите» (рекомендуется для
новички в области освещения.

Для заказа позвоните в NALMCO по телефону (609) 799-5501.


Научно-исследовательский институт электроэнергетики (EPRI)

Справочник по эффективности коммерческого освещения, EPRI, CU-7427, сентябрь 1991 г.

Справочник по эффективности коммерческого освещения содержит обзор эффективных
коммерческие осветительные технологии и программы, доступные конечному пользователю. Помимо предоставления
обзор возможностей сохранения освещения, этот 144-страничный документ предоставляет ценные
информация об образовании в области освещения и информация в следующих областях:

  • справочник групп по энергетике и окружающей среде обширный справочник по освещению с аннотациями
    библиографии
  • справочник светотехнических демонстрационных центров
  • свод правил и норм, касающихся освещения
  • справочник светотехнических учебных заведений, курсов и семинаров
  • списки светотехнических журналов и журналов
  • справочник и описания светотехнических научно-исследовательских организаций
  • справочник профессиональных групп и торговых ассоциаций в области освещения

Чтобы получить копию EPRI Lighting Publications, обратитесь в местное коммунальное предприятие (если оно
член EPRI) или обратитесь в Центр распространения публикаций EPRI по телефону (510)
934-4212.

Следующие публикации по освещению доступны в EPRI. Каждая публикация содержит
подробное описание технологий, их преимуществ, областей применения и тематических исследований.

  • Газоразрядное освещение высокой интенсивности (10 страниц), BR-101739
  • Электронные балласты (6 страниц), BR-101886
  • Датчики присутствия (6 страниц), BR-100323
  • Компактные люминесцентные лампы (6 страниц), CU.2042R.4.93
  • Зеркальные модифицированные отражатели (6 страниц), CU.2046Р.6.92
  • Retrofit Lighting Technologies (10 страниц), CU.3040R.7.91

Кроме того, EPRI предлагает серию 2-страничных информационных бюллетеней, охватывающих такие темы, как
обслуживание освещения, качество освещения, освещение VDT и срок службы лампы.

Чтобы получить копию EPRI Lighting Publications, обратитесь в местное коммунальное предприятие (если оно
член EPRI). В противном случае обратитесь в Центр распространения публикаций EPRI по телефону (510).
934-4212.

Справочник по основам освещения, Научно-исследовательский институт электроэнергетики, TR-101710, март
1993.

В этом справочнике представлена ​​основная информация о принципах освещения, осветительном оборудовании и др.
соображения, связанные с дизайном освещения. Он не предназначен для использования в качестве актуальной ссылки на
текущая светотехническая продукция и оборудование. Справочник состоит из трех основных разделов:

  • Физика света (например, свет, зрение, оптика, фотометрия)
  • Осветительное оборудование и технологии (e.г., лампы, светильники, регуляторы освещения)

  • Решения по дизайну освещения (например, цели освещения, качество, экономика, коды, мощность
    качество, фотобиология и утилизация отходов)

Чтобы получить копию EPRI Lighting Publications, обратитесь в местное коммунальное предприятие (если оно
член EPRI) или обратитесь в Центр распространения публикаций EPRI по телефону (510)
934-4212.


Общество светотехники (IES)

ED-100 Начальное освещение

Эта образовательная программа, состоящая примерно из 300 страниц в папке, представляет собой обновленную версию.
учебных материалов по основам 1985 года.Этот набор из 10 уроков предназначен для тех, кто
хотите тщательный обзор поля освещения.

  • Свет и цвет
  • Свет, зрение и восприятие
  • Источники света
  • Светильники и их фотометрические данные
  • Расчет освещенности
  • Световые приложения для визуального представления
  • Освещение для визуального воздействия
  • Наружное освещение
  • Энергоменеджмент / Экономика освещения
  • Дневной свет

ED-150 Промежуточное освещение

Этот курс — «следующий шаг» для тех, кто уже прошел ED-100.
фундаментальной программы или желающих расширить свои знания, полученные с помощью практических
опыт.Экзамен технических знаний IES основан на уровне ED-150.
знания. Папка длиной 2 дюйма содержит тринадцать уроков.

  • Видение
  • Цвет
  • Источники света и балласты
  • Оптическое управление
  • Расчет освещенности
  • Психологические аспекты освещения
  • Концепции дизайна
  • Компьютеры в дизайне и анализе освещения
  • Экономика освещения
  • Расчет дневного света
  • Электрические параметры / распределение
  • Электроуправление
  • Математика освещения

Справочник по освещению IES, 8-е издание, IES of North America, 1993.

Этот 1000-страничный технический справочник представляет собой комбинацию двух более ранних томов, которые по отдельности
адресная справочная информация и приложения. Считается «библией» озарения.
Инженерное дело, Справочник обеспечивает широкий охват всех этапов светотехнических дисциплин. 34
главы разделены на пять общих частей.

  • Наука об освещении (например, оптика, измерения, зрение, цвет, фотобиология)
  • Светотехника (например, источники, светильники, дневное освещение, расчеты)
  • Элементы дизайна (e.g., процесс, выбор освещения, экономика, нормы и стандарты)
  • Lighting Applications, в которой обсуждаются 15 уникальных тематических исследований
  • Специальные темы (например, энергоменеджмент, контроль, техническое обслуживание, экологические вопросы)

Кроме того, Справочник содержит обширный ГЛОССАРИЙ и указатель, а также множество
иллюстрации, графики, диаграммы, уравнения, фотографии и ссылки.

Справочник является важным справочником для практикующего светотехника.Вы можете приобрести
руководство из отдела публикаций IES по телефону (212) 248-5000. Члены IES получают цену
скидка на Справочник.

IES Lighting Ready Reference, IES, 1989.

.
Эта книга представляет собой сборник информации об освещении, включая следующие: терминология,
коэффициенты преобразования, таблицы источников света, рекомендации по освещенности, расчетные данные, энергия
соображения управления, методы анализа затрат и процедуры обследования освещения.Готов
Справочник включает наиболее часто используемые материалы из Справочника по освещению IES.

Вы можете приобрести 168-страничный справочник в отделе публикаций IES по телефону (212)
248-5000.
членов IES получают рекомендацию Ready при вступлении в общество.

Освещение VDT: Рекомендуемая практика IES для офисов освещения
Содержит компьютерные терминалы визуального отображения. ОЭС Севера
Америка, 1990. IES RP-24-1989.

Это руководство по освещению содержит рекомендации по освещению офисов, где компьютер
Используются ВДТ.Он также предлагает рекомендации относительно требований к освещению для визуального комфорта и
хорошая видимость, с анализом влияния общего освещения на визуальные задачи VDT.

Чтобы приобрести копию RP-24, обратитесь в IES по телефону (212) 248-5000.

Национальное бюро освещения (NLB)

NLB — это информационная служба, созданная Национальными производителями электрооборудования.
Ассоциация (NEMA). Его цель — повысить осведомленность и оценить преимущества
хорошее освещение.NLB продвигает все аспекты управления энергопотреблением освещения, начиная от
производительность к световому потоку. Ежегодно НББ публикует статьи в различных периодических изданиях и
путеводители, написанные для непрофессионала. В этих статьях обсуждаются конкретные конструкции систем освещения,
эксплуатация, методы технического обслуживания и системные компоненты.

Следующие публикации являются основными ссылками, дающими обзор предмета и
включают приложения для освещения.

  • Офисное освещение и производительность
  • Прибыль от модернизации освещения
  • Получите максимальную отдачу от освещения Dollar
  • Решение загадки проблем просмотра VDT
  • Руководство NLB по промышленному освещению
  • Руководство NLB по управлению освещением в розничной торговле
  • Руководство NLB по энергоэффективным системам освещения
  • Освещение для безопасности
  • Проведение аудита системы освещения
  • Освещение и возможности человека

Чтобы запросить каталог или заказать публикации, позвоните в NLB по телефону (202) 457-8437.

Руководство NEMA по средствам управления освещением, Национальные производители электрооборудования
Ассоциация, 1992.

В этом руководстве представлен обзор следующих стратегий управления освещением: включение / выключение, занятость.
распознавание, планирование, настройка, сбор дневного света, компенсация износа просвета и
контроль спроса. Кроме того, в нем обсуждаются варианты оборудования и приложения для каждого элемента управления.
стратегия.

Для заказа звоните в NLB по телефону (202) 457-8437.


Национальная информационная программа по осветительной продукции (NLPIP)

Эта программа публикует объективную информацию о продуктах для модернизации освещения и является
спонсируется четырьмя организациями: Green Lights EPA, Исследовательским центром освещения, New
Управление энергетических исследований и разработок штата Йорк и Энергетическая компания северных штатов.
Доступны два типа публикаций (Specifier Reports и Lighting Answers.

).

Чтобы приобрести эти публикации, отправьте запрос по факсу в Исследовательский центр освещения,
Политехнический институт Ренсселера: (518) 276-2999 (факс).

Отчеты спецификаций

В каждом отчете спецификатора рассматривается конкретная технология обновления освещения. Отчеты спецификатора
предоставить справочную информацию о технологии и результаты независимых тестов производительности
брендовых продуктов для модернизации освещения. Отчеты NineSpecifier опубликованы по состоянию на июль.
1994.

  • Электронные балласты, декабрь 1991 г.
  • Редукторы мощности, март 1992 г.
  • Зеркальные отражатели, июль 1992 г.
  • Датчики присутствия, октябрь 1992 г.
  • Светильники для парковок, январь 1993 г.
  • Компактные люминесцентные лампы с винтовыми цоколями, апрель 1993 г.
  • Катодно-разъединяющие балласты, июнь 1993 г.
  • Exit Sign Technologies, январь 1994 г.
  • Электронные балласты, май 1994 г.

В отчетах-спецификаторах, которые будут опубликованы в 1994 г., будут рассмотрены пять тем: знаки выхода, электронные
балласты, элементы управления дневным светом, компактные люминесцентные лампы и запасные части для
лампы накаливания с отражателем.HID-системы для освещения торговых дисплеев также будут исследованы в
1994.

Световые ответы

Ответы на освещение содержат информативный текст об эксплуатационных характеристиках конкретных
технологии освещения, но не включают результаты сравнительных испытаний производительности. Осветительные приборы
Ответы, опубликованные в 1993 году, касались флуоресцентных систем T8 и поляризационных панелей для
люминесцентные светильники. Дополнительные ответы на вопросы освещения, запланированные к публикации в 1994 году, будут охватывать
рабочее освещение и HID затемнение.Другие обсуждаемые темы — электронный балласт.
электромагнитные помехи (EMI) и системы освещения 2’x4 ‘.

Периодические издания

Energy User News, Chilton Publications, публикуется ежемесячно.

В этом ежемесячном издании рассматриваются многие аспекты энергетической отрасли. Каждое издание содержит
раздел, посвященный освещению, обычно содержащий тематическое исследование и как минимум одну статью, посвященную
осветительный продукт или проблема. Некоторые выпуски новостей Energy User News содержат руководства по продуктам, которые
Таблицы по конкретным технологиям, в которых перечислены участвующие производители (с номерами телефонов) и
атрибуты своей продукции.В сентябрьском выпуске 1993 года в центре внимания было освещение, а
содержала следующую информацию.

  • несколько статей по освещению и анонсы продуктов
  • специальный отчет о планировании модернизации освещения и качестве электроэнергии
  • технологический отчет по вольфрамово-галогеновым лампам
  • комментарий к успешной модернизации датчика присутствия
  • справочники по КЛЛ, галогенам, HID, отражателям, электронным балластам

Чтобы заказать старые выпуски, звоните (215) 964-4028.

Управление освещением и техническое обслуживание, НАЛМКО, публикуется ежемесячно .

В этой ежемесячной публикации рассматриваются проблемы и технологии, непосредственно связанные с обновлением и
обслуживание систем коммерческого и промышленного освещения. Ниже приведены некоторые темы
рассматриваются в Управление освещением и техническое обслуживание: светотехническая промышленность, законодательство, новые
продуктов и приложений, утилизации отходов, геодезии и управления освещением.

Чтобы заказать подписку, позвоните в NALMCO по телефону (609) 799-5501.

Другие публикации EPA Green Lights

Помимо Руководства по обновлению освещения, EPA публикует другие документы, которые доступны бесплатно.
оплаты в Центре обслуживания клиентов Green Lights. Кроме того, новая факсимильная линия EPA
система позволяет пользователям запрашивать и получать маркетинговую и техническую информацию Green Lights
в течение нескольких минут по телефону (202) 233-9659.

Обновление зеленого света

Этот ежемесячный информационный бюллетень является основным средством информирования участников Green Lights (и
другие заинтересованные стороны) о последних обновлениях программы. Информационный бюллетень каждого месяца
обращается к технологиям освещения, приложениям, тематическим исследованиям и специальным мероприятиям. Каждый выпуск
содержит последний график семинаров по модернизации освещения и копию формы отчетности
используется участниками для отчета о завершенных проектах для EPA.

Чтобы получить бесплатную подписку на Обновление, обратитесь в службу поддержки Green Lights по адресу
(202) 775-6650 или факс (202) 775-6680.

Страницы питания

Power Pages — это короткие публикации, посвященные технологиям освещения, приложениям и конкретным
вопросы или проблемы по программе Green Lights. Анонсы Power Pages ищите в
информационный бюллетень обновления.

Эти документы доступны через факсимильную линию Green Lights. По вопросам доставки факса звоните по телефону
по факсу (202) 233-9659. Периодически связывайтесь с факсимильной линией, чтобы получить последнюю
информация от Green Lights. Если у вас нет факсимильного аппарата, обратитесь в Green Lights.
Служба поддержки клиентов по телефону (202) 775-6650.

Легкие трусы

EPA публикует 2-страничные краткие обзоры по различным вопросам реализации. Эти публикации
предназначен для ознакомления с техническими и финансовыми проблемами, влияющими на решения по обновлению.Четыре Light Briefs фокусируются на технологиях: датчики присутствия, электронные балласты, зеркальные отражения.
отражатели и эффективные люминесцентные лампы. Другие выпуски охватывают скользящие стратегии финансирования,
варианты финансирования, измерение рентабельности модернизации освещения и удаление отходов. Текущие копии
были разосланы всем участникам Green Lights.

За дополнительной информацией обращайтесь в службу поддержки Green Lights по телефону (202).
775-6650 или по факсу (202) 775-6680.

Брошюра Green Lights

EPA выпустило четырехцветную брошюру для продвижения программы Green Lights. В нем излагаются
цели и обязательства программы, описывая при этом то, что делают некоторые из участников.
Этот документ является важным инструментом для любой маркетинговой презентации Green Lights.

Чтобы заказать копии брошюры, обратитесь в службу поддержки клиентов Green Lights по телефону (202).
775-6650 или факс (202) 775-6680

Вернуться к содержанию




A, B, C, D, E, F, G, H, I, L, M, N, O, P, Q, R, S, T, U, V, W, Z


AMPERE : стандартная единица измерения электрического тока, равная одному кулону
в секунду.Он определяет количество электронов, движущихся мимо заданной точки в цепи во время
конкретный период. Amp — это аббревиатура.

ANSI : Аббревиатура американского национального института стандартов.

ARC TUBE : Трубка, заключенная во внешнюю стеклянную оболочку HID лампы и сделанная из прозрачного
кварцевый или керамический, содержащий дуговую струю.

ASHRAE : Американское общество инженеров по отоплению, охлаждению и кондиционированию воздуха

ПЕРЕГОРОДКА : Одиночный непрозрачный или полупрозрачный элемент, используемый для управления распределением света при определенных
углы.

БАЛЛАСТ: Устройство для управления люминесцентными и HID лампами. Балласт обеспечивает
необходимое пусковое напряжение, при этом ограничивая и регулируя ток лампы во время работы.

BALLAST CYCLING : Нежелательное состояние, при котором балласт включает и выключает лампы.
(циклы) из-за перегрева термовыключателя внутри балласта. Это может быть связано с
неправильные лампы, неподходящее напряжение, высокая температура окружающей среды вокруг светильника,
или ранняя стадия выхода из строя балласта.

КОЭФФИЦИЕНТ БАЛЛАСТНОЙ ЭФФЕКТИВНОСТИ : Фактор балластной эффективности (BEF) — это балластный коэффициент.
(см. ниже), деленное на входную мощность балласта. Чем выше BEF (в пределах того же
лампово-балластного типа (тем эффективнее балласт.

BALLAST FACTOR : Балластный коэффициент (BF) для конкретной комбинации лампа-балласт
представляет собой процент от номинального люменов лампы, который будет произведен комбинацией.

CANDELA: Единица силы света, описывающая интенсивность источника света в определенном
направление.

CANDELA DISTRIBUTION : Кривая, часто в полярных координатах, иллюстрирующая изменение
сила света лампы или светильника в плоскости, проходящей через световой центр.

CANDLEPOWER: Мера силы света источника света в определенном направлении,
измеряется в канделах (см. выше).

CBM : Аббревиатура ассоциации сертифицированных производителей балласта.

CEC : Аббревиатура от California Energy Commission.

КОЭФФИЦИЕНТ ИСПОЛЬЗОВАНИЯ : Отношение люменов от светильника, получаемого на
рабочая плоскость к люменам, создаваемым только лампами. (Также называется «CU»)

ИНДЕКС ЦВЕТООТРАЖЕНИЯ (CRI): Шкала влияния источника света на цвет
внешний вид объекта по сравнению с его цветным внешним видом под эталонным источником света.
Выражается по шкале от 1 до 100, где 100 означает отсутствие изменения цвета. Низкий рейтинг CRI предполагает
что цвета объектов будут казаться неестественными под определенным источником света.

ЦВЕТОВАЯ ТЕМПЕРАТУРА : Цветовая температура является характеристикой внешнего вида цвета
источник света, связывающий цвет с эталонным источником, нагретым до определенной температуры,
измеряется термической единицей Кельвина. Измерение также можно описать как «тепло» или
«прохлада» источника света. Обычно источники ниже 3200K считаются «теплыми»; в то время как
те, что выше 4000К, считаются «крутыми» источниками.

КОМПАКТНАЯ ФЛУОРЕСЦЕНТНАЯ : Маленькая люминесцентная лампа, которая часто используется в качестве альтернативы
лампы накаливания.Срок службы лампы примерно в 10 раз больше, чем у ламп накаливания, и составляет 3-4 часа.
в раз эффективнее. Также называются лампами PL, Twin-Tube, CFL или BIAX.

ПОСТОЯННАЯ ВАТТАЖНОСТЬ (CW) БАЛЛАСТ : Премиум-тип СПРЯТЕННОГО балласта, в котором
первичная и вторичная обмотки изолированы. Считается высокоэффективным балластом с высокими потерями.
с отличной регулировкой мощности.

АВТОМАТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ КОНСТАНТА (CWA) БАЛЛАСТ : популярный тип
HID балласт, в котором первичная и вторичная катушки электрически соединены.Считается
соответствующий баланс между стоимостью и производительностью.

КОНТРАСТ: Отношение между яркостью объекта и его фоном.

CRI: (СМ. ИНДЕКС ЦВЕТА)

УГОЛ ОБРЕЗКИ : Угол от вертикальной оси приспособления, под которым отражатель, жалюзи или
другое экранирующее устройство закрывает прямую видимость лампы. Это дополнительный угол
угол экранирования.

КОМПЕНСАЦИЯ ДНЕВНОГО СВЕТА : Система затемнения, управляемая фотоэлементом, который уменьшает
мощность ламп при дневном свете. По мере увеличения дневного света интенсивность лампы
уменьшается. Энергосберегающая технология, используемая в районах со значительным дневным освещением.

DIFFUSE : термин, описывающий распределение рассеянного света. Относится к рассеянию или размягчению
свет.

РАССЕИВАТЕЛЬ: Полупрозрачный кусок стекла или пластика, который экранирует источник света в
приспособление.Свет, проходящий через диффузор, будет перенаправлен и рассеян.

ПРЯМОЙ БЛИК : Блики, возникающие при прямом взгляде на источники света. Часто результат
недостаточно экранированные источники света. (См. ОБЗОР)

DOWNLIGHT : Тип потолочного светильника, обычно полностью встраиваемый, в который попадает большая часть света.
направлен вниз. Может иметь открытый отражатель и / или экранирующее устройство.

ЭФФЕКТИВНОСТЬ : показатель, используемый для сравнения светоотдачи с потреблением энергии.Эффективность
измеряется в люменах на ватт. Эффективность аналогична эффективности, но выражается в разных
единицы. Например, если источник мощностью 100 Вт дает 9000 люмен, то эффективность составляет 90 люмен.
на ватт.

ЭЛЕКТРОЛЮМИНЕСЦЕНТ: Технология источника света, используемая в знаках выхода, которая обеспечивает
равномерная яркость, длительный срок службы лампы (примерно восемь лет) при очень низком потреблении
энергия (менее одного ватта на лампу).

ЭЛЕКТРОННЫЙ БАЛЛАСТ : ПРА, в котором используются полупроводниковые компоненты для увеличения
частота работы люминесцентной лампы (обычно в диапазоне 20-40 кГц.Меньший индуктивный
Компоненты обеспечивают контроль тока лампы. Эффективность люминесцентной системы повышается за счет
работа лампы высокой частоты.

ЭЛЕКТРОННЫЙ ДИММИНИРУЮЩИЙ БАЛЛАСТ : Электронный люминесцентный балласт с регулируемой мощностью.

EMI: Сокращенное обозначение электромагнитных помех. Высокочастотные помехи (электрические
шум), вызванный электронными компонентами или люминесцентными лампами, который мешает работе
электрическое оборудование.EMI измеряется в микровольтах и ​​может контролироваться фильтрами. Потому что
EMI может создавать помехи для устройств связи, Федеральная комиссия по связи (FCC)
установил пределы для EMI.

ЭНЕРГОСБЕРЕГАЮЩИЙ БАЛЛАСТ : Тип магнитного балласта, сконструированный таким образом, что компоненты
работают более эффективно, холоднее и дольше, чем «стандартный магнитный» балласт. По законам США,
стандартные магнитные балласты больше не производятся.

ЭНЕРГОСБЕРЕГАЮЩАЯ ЛАМПА : Лампа с меньшей мощностью, обычно дает меньше люмен.

FC: (СМ. ПОДВЕСКА)

ФЛУОРЕСЦЕНТНАЯ ЛАМПА : Источник света, состоящий из трубки, заполненной аргоном, вместе с
криптон или другой инертный газ. При подаче электрического тока возникающая дуга излучает ультрафиолетовое излучение.
излучение, которое возбуждает люминофор внутри стенки лампы, заставляя их излучать видимый свет.

FOOTCANDLE (FC): Английская единица измерения освещенности (или уровня освещенности) на
поверхность.Одна фут-свеча равна одному люмену на квадратный фут.

FOOTLAMBERT : английская единица яркости. Один футламберт равен 1 / p кандел на
квадратный фут.

ЯРКОСТЬ: Достаточное влияние яркости или различий в яркости в пределах поля зрения.
высокий, чтобы вызвать раздражение, дискомфорт или потерю зрения.

ГАЛОГЕН: (СМ. ГАЛОГЕННАЯ ЛАМПА Вольфрама)

ГАРМОНИЧЕСКОЕ ИСКАЖЕНИЕ : Гармоника — это синусоидальная составляющая периодической волны.
имеющий частоту, кратную основной частоте.Гармонические искажения от
осветительное оборудование может создавать помехи другим приборам и работе электроэнергии
сети. Общее гармоническое искажение (THD) обычно выражается в процентах от
ток основной линии. THD для 4-футовых люминесцентных балластов обычно составляет от 20% до 40%.
Для компактных люминесцентных балластов уровни THD более 50% не являются редкостью.

HID: Сокращенное обозначение разряда высокой интенсивности. Общий термин, описывающий пары ртути, металл
галогенидные, натриевые источники высокого давления и (неофициально) натриевые источники света и светильники низкого давления.

HIGH-BAY: Относится к типу освещения в промышленных помещениях, где потолок составляет 20 градусов.
футов или выше. Также описывает само приложение.

ВЫСОКАЯ МОЩНОСТЬ (HO): Лампа или балласт, предназначенный для работы при более высоких токах (800 мА) и
производить больше света.

HIGH POWER FACTOR : Балласт с номинальным коэффициентом мощности 0,9 или выше, который достигается
с помощью конденсатора.

НАТРИЕВАЯ ЛАМПА ВЫСОКОГО ДАВЛЕНИЯ : Газоразрядная лампа высокой интенсивности (HID), свет которой
производится излучением паров натрия (и ртути).

HOT RESTART или HOT RESTRIKE : Явление повторного зажигания дуги в СКРЫТОМ свете
источник после кратковременного отключения питания. Горячий перезапуск происходит, когда дуговая трубка остыла.
достаточное количество.

IESNA: Сокращенное обозначение Общества инженеров по освещению Северной Америки.

ОСВЕЩЕНИЕ : фотометрический термин, который количественно определяет свет, падающий на поверхность или плоскость.
Освещенность обычно называют уровнем освещенности. Выражается в люменах на квадратный фут.
(фут-кандел) или люмен на квадратный метр (люкс).

НЕПРЯМОЙ СБЛИК : Слепящий свет от отражающей поверхности.

МГНОВЕННЫЙ ЗАПУСК : Люминесцентная схема, которая мгновенно зажигает лампу с очень высокой
пусковое напряжение от балласта.Лампы мгновенного пуска имеют одноштырьковые цоколи.

КРЕСТ-КОЭФФИЦИЕНТ ТОКА ЛАМПЫ (LCCF): Пиковое значение тока лампы, деленное на среднеквадратичное значение.
(средний) ток лампы. Производители ламп требуют <1,7 для максимального срока службы лампы. LCCF 1,414 идеальная синусоида.

КОЭФФИЦИЕНТ СТАРЕНИЯ ЛАМПЫ (LLD): Коэффициент, представляющий снижение
светового потока с течением времени. Коэффициент обычно используется как множитель начального просвета.
рейтинг в расчетах освещенности, который компенсирует снижение светового потока.LLD
коэффициент — безразмерное значение от 0 до 1.

LAY-IN-TROFFER: Люминесцентный светильник; обычно приспособление размером 2 х 4 фута, которое устанавливается или «кладется» в
специфическая потолочная сетка.

LED: Сокращенное обозначение светодиода. Технология освещения, используемая для знаков выхода.
Потребляет небольшую мощность и имеет номинальный срок службы более 80 лет.

ЛИНЗА : Прозрачный или полупрозрачный материал, который изменяет характеристики направления света.
проходя через это.Обычно из стекла или акрила.

КОЭФФИЦИЕНТ ПОТЕРЯ СВЕТА (LLF): Факторы, которые позволяют системе освещения работать с меньшими затратами.
чем начальные условия. Эти коэффициенты используются для расчета поддерживаемого уровня освещенности. LLF
разделены на две категории: восстанавливаемые и невозмещаемые. Примеры: люмен лампы.
износ и износ поверхности светильника.

СТОИМОСТЬ ЖИЗНИ : Общие затраты, связанные с покупкой, эксплуатацией и обслуживанием
система в течение жизни этой системы.

ЗАСЛОНКА: Оптическая сборка решетчатого типа, используемая для управления распределением света от осветительного прибора. Жестяная банка
варьируются от пластика с мелкими ячейками до решеток из анодированного алюминия с большими ячейками, используемых в параболических
люминесцентные светильники.

КОЭФФИЦИЕНТ НИЗКОЙ МОЩНОСТИ : Фактически нескорректированный коэффициент мощности балласта менее 0,9
(СМ. НПФ)

НАТРИЙ НИЗКОГО ДАВЛЕНИЯ : Газоразрядная лампа низкого давления, свет в которой
излучение паров натрия.Считается монохроматическим источником света (большинство цветов
отображается как серый).

ЛАМПА НИЗКОГО НАПРЯЖЕНИЯ : Лампа (обычно компактная галогенная)
и хорошая цветопередача. Лампа работает от 12 В и требует использования трансформатора. Популярный
лампы MR11, MR16 и PAR36.

ВЫКЛЮЧАТЕЛЬ НИЗКОГО НАПРЯЖЕНИЯ : Реле (переключатель с магнитным приводом), которое позволяет
дистанционное управление освещением, включая централизованные часы или компьютерное управление.

ЛЮМЕН: Единица светового потока или светового потока. Световой поток лампы — это мера светового потока.
общий световой поток лампы.

ЛЮМИНАР : Полный осветительный прибор, состоящий из лампы или ламп, а также их частей.
предназначен для распределения света, удержания ламп и подключения ламп к источнику питания. Также
называется приспособление.

LUMINAIRE EFFICIENCY : Отношение общей световой отдачи светильника к световому потоку.
мощность ламп, выраженная в процентах.Например, если два светильника используют один и тот же
лампы, больше света будет испускаться из светильника с более высокой эффективностью.

ЯРКОСТЬ: Фотометрический термин, который количественно определяет яркость источника света или
освещенная поверхность, отражающая свет. Выражается в футламбертах (английских единицах) или канделах.
за квадратный метр (метрические единицы).

ЛЮКС (LX): Метрическая единица измерения освещенности поверхности.Один люкс равен одному
люмен на квадратный метр. Один люкс равен 0,093 фут-канделы.

ПОДДЕРЖИВАЕМАЯ ОСВЕЩЕННОСТЬ : Относится к уровням освещенности помещения, отличным от начального или номинального.
условия. Эти термины учитывают факторы световых потерь, такие как уменьшение светового потока лампы, светильник.
износ грязи и износ поверхности помещения.

MERCURY VAPOR LAMP : Тип газоразрядной лампы высокой интенсивности (HID), в которой большая часть
свет создается за счет излучения паров ртути.Излучает сине-зеленый свет.
Доступны в прозрачных лампах и лампах с люминофорным покрытием.

METAL HALIDE : Тип разрядной лампы высокой интенсивности (HID), в которой большая часть света
образуется за счет излучения паров галогенидов металлов и ртути в дуговой трубке. Доступен в прозрачном и
лампы с люминофорным покрытием.

MR-16: Низковольтная кварцевая лампа с рефлектором, всего 2 дюйма в диаметре. Обычно лампа и
отражатели представляют собой единый блок, который направляет резкий и точный луч света.

NADIR : Опорное направление непосредственно под светильником или «прямо вниз» (угол 0 градусов).

NEMA: Сокращенное обозначение Национальной ассоциации производителей электрооборудования.

NIST: Сокращенное обозначение Национального института стандартов и технологий.

NPF (НОРМАЛЬНЫЙ КОЭФФИЦИЕНТ МОЩНОСТИ) : Комбинация пускорегулирующего устройства / лампы, в которой нет компонентов
(например, конденсаторы) были добавлены, чтобы скорректировать коэффициент мощности, сделав его нормальным (существенно низким,
обычно 0.5 или 50%).

ДАТЧИК ЗАСЕДАНИЯ : Устройство управления, которое выключает свет после того, как пространство становится
незанятые. Может быть ультразвукового, инфракрасного или другого типа.

ОПТИКА: Термин, относящийся к компонентам осветительной арматуры (таким как отражатели, рефракторы,
линзы, жалюзи) или светоизлучающие или светорегулирующие характеристики прибора.

PAR LAMP : Лампа с параболическим алюминированным отражателем.Лампа накаливания, галогенид металла или компактный
Люминесцентная лампа используется для перенаправления света от источника с помощью параболического отражателя. Лампы бывают
Доступен с раздачей наводнением или спотом.

PAR 36: Лампа PAR диаметром 36 1/8 дюйма параболической формы.
отражатель (СМ. ПАР. ЛАМПУ).

ПАРАБОЛИЧЕСКИЙ СВЕТИЛЬНИК : популярный тип люминесцентного светильника с жалюзи
алюминиевых перегородок изогнутой параболической формы.Результирующее светораспределение, производимое
эта форма обеспечивает меньшее количество бликов, лучший контроль света и считается более эстетичной.
обращаться.

PARACUBE : Пластиковая решетка с металлическим покрытием, состоящая из небольших квадратов. Часто используется для замены
линза в установленном troffer для улучшения ее внешнего вида. Паракуб визуально удобный,
но КПД светильника снижается. Также используется в помещениях с компьютерными экранами из-за
их способность уменьшать блики.

ФОТОЭЛЕМЕНТ: Светочувствительное устройство, используемое для управления светильниками и диммерами в ответ на
обнаруженные уровни освещенности.

ФОТОМЕТРИЧЕСКИЙ ОТЧЕТ : Фотометрический отчет — это набор печатных данных, описывающих свет
распределение, эффективность и зональный световой поток светильника. Этот отчет создан из
лабораторные испытания.

КОЭФФИЦИЕНТ МОЩНОСТИ : Отношение напряжения переменного тока x ампер через устройство к мощности переменного тока
устройство.Такое устройство, как балласт, которое измеряет 120 В, 1 А и 60 Вт, имеет мощность
коэффициент 50% (вольт x ампер = 120 ВА, следовательно, 60 Вт / 120 ВА = 0,5). Некоторые коммунальные услуги взимают
заказчики систем с низким коэффициентом мощности.

ПРЕДВАРИТЕЛЬНЫЙ НАГРЕВ : Тип схемы балласта / лампы, в которой используется отдельный стартер для нагрева люминесцентной лампы.
лампа до того, как будет подано высокое напряжение для запуска лампы.

QUAD-TUBE LAMP : Компактная люминесцентная лампа с двойной двойной трубкой.

РАДИОЧАСТОТНЫЕ ПОМЕХИ (RFI): Помехи в радиодиапазоне
вызвано другим высокочастотным оборудованием или устройствами в непосредственной близости. Флуоресцентное освещение
системы генерируют RFI.

RAPID START (RS): Самая популярная комбинация люминесцентных ламп и пускорегулирующих устройств, используемая сегодня. Этот
балласт быстро и эффективно предварительно нагревает катоды лампы для запуска лампы. Использует «двухштырьковый» цоколь.

ROOM CAVITY RATIO (RCR): Отношение размеров комнаты, используемое для количественной оценки того, как свет будет
взаимодействуют с поверхностями комнаты.Коэффициент, используемый при расчетах освещенности.

ОТРАЖЕНИЕ: Отношение света, отраженного от поверхности, к свету, падающему на
поверхность. Коэффициент отражения часто используется для расчета освещения. Коэффициент отражения темного ковра составляет
около 20%, а чистая белая стена — примерно от 50% до 60%.

ОТРАЖАТЕЛЬ: Часть светильника, которая закрывает лампы и перенаправляет свет.
испускается лампой.

РЕФРАКТОР: Устройство, используемое для перенаправления светового потока от источника, в основном путем изгиба.
волны света.

УДАЛЕНО: Термин, используемый для описания дверной коробки трифтора, в которой находится линза или жалюзи.
над поверхностью потолка.

ПОЛОЖЕНИЕ : Способность балласта поддерживать постоянную (или почти постоянную) выходную мощность в ваттах.
(светоотдача) при колебаниях напряжения питания балласта. Обычно указывается как +/-
процентное изменение выпуска по сравнению с +/- процентным изменением на входе.

РЕЛЕ: Устройство, которое включает или выключает электрическую нагрузку при небольших изменениях тока или
Напряжение.Примеры: реле низкого напряжения и твердотельное реле.

ПЕРЕОБОРУДОВАНИЕ : Относится к модернизации приспособления, комнаты или здания путем установки новых деталей или
оборудование.

САМОСВЕТИТЕЛЬНЫЙ ЗНАК ДЛЯ ВЫХОДА : Технология освещения с использованием стекла с люминесцентным покрытием
трубки, заполненные радиоактивным газом тритием. Знак выхода не использует электричество и, следовательно, не требует
быть зашитым.

SEMI-SPECULAR: Термин, описывающий характеристики светоотражения материала.Некоторые
свет отражается направленно с некоторым рассеянием.

УГОЛ ЭКРАНА : Угол, измеряемый от плоскости потолка до линии обзора, где
становится видна оголенная лампа в светильнике. Более высокие углы экранирования уменьшают прямые блики. это
дополнительный угол угла отсечки. (См. УГОЛ ОБРЕЗКИ).

КРИТЕРИЙ РАСПОЛОЖЕНИЯ : Максимальное расстояние, на котором могут быть размещены внутренние приспособления, на которые
обеспечивает равномерное освещение рабочей плоскости.Высота светильника над рабочей плоскостью
умноженное на критерий расстояния, равняется расстоянию между светильником.

SPECULAR: Зеркальная или полированная поверхность. Угол отражения равен углу
заболеваемость. Это слово описывает отделку материала, используемого в некоторых жалюзи и отражателях.

СТАРТЕР: Устройство, используемое с балластом для запуска предварительного нагрева люминесцентных ламп.

СТРОБОСКОПИЧЕСКИЙ ЭФФЕКТ : Состояние, при котором вращающееся оборудование или другое быстро движущееся
объекты кажутся стоящими из-за переменного тока, подаваемого к источникам света.Иногда его называют «стробоскопическим эффектом».

T12 LAMP : Промышленный стандарт для люминесцентных ламп толщиной 12 1/8 дюйма (1 дюйм)
диаметр. Другие размеры — лампы T10 (1 дюйм) и T8 (1 дюйм).

ТАНДЕМНАЯ ПРОВОДКА : Вариант подключения, при котором пускорегулирующие устройства используются совместно двумя или более светильниками.
Это снижает затраты на рабочую силу, материалы и энергию. Также называется проводкой «ведущий-ведомый».

ТЕПЛОВОЙ КОЭФФИЦИЕНТ : коэффициент, используемый в расчетах освещения, который компенсирует изменение
светоотдачи люминесцентной лампы из-за изменения температуры стенки колбы.Применяется при
рассматриваемая комбинация лампы и балласта отличается от используемой в фотометрических
тесты.

TRIGGER START : Тип балласта, обычно используемый с прямой мощностью 15 и 20 Вт.
флюоресцентные лампы.

TROFFER: Термин, используемый для обозначения встраиваемого люминесцентного светильника (комбинация
корыто и сундук).

ГАЛОГЕННАЯ ЛАМПА ВОЛЬФРАМА : Газонаполненная лампа накаливания с вольфрамовой нитью
колба лампы из кварца, выдерживающая высокие температуры.Эта лампа содержит некоторые
галогены (а именно йод, хлор, бром и фтор), которые замедляют испарение
вольфрам. Также обычно называют кварцевой лампой.

TWIN-TUBE: (СМ. КОМПАКТНАЯ ФЛУОРЕСЦЕНТНАЯ ЛАМПА)

УЛЬТРАФИОЛЕТОВЫЙ (УФ): Невидимое излучение с более короткой длиной волны и более высокой
частоты, чем видимый фиолетовый свет (буквально за пределами фиолетового света).

ЛАБОРАТОРИИ БАЗОВЫХ РАБОТНИКОВ (UL): Независимая организация, чья
в обязанности входит тщательное тестирование электротехнической продукции.Когда продукты проходят эти испытания,
они могут быть помечены (и объявлены) как «внесенные в список UL». Испытания UL только на безопасность продукта.

ВАНДАЛОУСТОЙЧИВОСТЬ: Светильники с прочными корпусами, защитой от взлома и
винты с защитой от взлома.

VCP: Сокращенное обозначение вероятности визуального комфорта. Рейтинговая система оценки прямых
дискомфортные блики. Этот метод представляет собой субъективную оценку визуального комфорта, выраженную как
процент жителей помещения, которым не понравится прямой свет.VCP позволяет несколько
Факторы: яркость светильника под разными углами обзора, размер светильника, размер помещения, светильник
высота монтажа, освещенность и отражательная способность поверхности комнаты. Таблицы VCP часто представлены как
часть фотометрических отчетов.

ОЧЕНЬ ВЫСОКАЯ МОЩНОСТЬ (VHO): Люминесцентная лампа, работающая при «очень высоком» токе.
(1500 мА), что дает больший световой поток, чем лампа с «высокой выходной мощностью» (800 мА) или стандартный выход
лампа (430 мА).

VOLT: Стандартная единица измерения электрического потенциала.Он определяет «силу» или
«давление» электричества.

НАПРЯЖЕНИЕ: Разность электрических потенциалов между двумя точками электрической цепи.

WALLWASHER: Описывает светильники, которые освещают вертикальные поверхности.

ВАТТ (Вт) : Устройство для измерения электрической мощности. Он определяет уровень потребления энергии.
электрическим устройством во время его работы. Стоимость энергии при эксплуатации электрического устройства
рассчитывается как его мощность, умноженная на часы использования.В однофазных цепях это связано с вольтами.
и амперы по формуле: Вольт x Ампер x PF = Ватт. (Примечание: для цепей переменного тока коэффициент мощности должен быть
включены.)

ПЛОСКОСТЬ РАБОТЫ: Уровень, на котором выполняется работа, и на которой указывается освещенность и
измеряется. Для офисных помещений это обычно горизонтальная плоскость на высоте 30 дюймов над полом.
(высота стола).

ZENITH: Направление непосредственно над светильником (180 (угол).



Основы освещения — один из серии документов, известных под общим названием
Руководство по обновлению освещения . Щелкните ниже, чтобы перейти к другим документам этой серии.

Планировка

Технический

Приложения


ЗЕЛЕНЫЙ ФОНАРЬ: яркое вложение в окружающую среду

Для получения дополнительной информации или для заказа других документов или приложений из этой серии обращайтесь в офис программы Green Lights по телефону:
Программа «Зеленый свет»
Агентство по охране окружающей среды США
401 M Street, SW (6202J)
Вашингтон, округ Колумбия 20460

или позвоните по телефону горячей линии Green Lights по телефону (202) 775-6650, факсу (202) 775-6680.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *