Tn с s: Система заземления TN-C-S | Заметки электрика

Разное

Содержание

Система заземления TN-C-S | Заметки электрика

Дорогие гости, сайта заметки электрика.

Продолжаю серию статей про системы заземления.

В прошлой статье мы рассмотрели систему заземления TN-C.

Наша сегодняшняя тема статьи — это система заземления TN-C-S.

Чем же эта система заземления отличается от предыдущей?

Принцип системы TN-C-S основан на том, что PEN проводник разделяется в определенном месте и  приходит к потребителю двумя отдельными проводниками:

  • нулевой рабочий проводник N
  • защитный проводник PE

В качестве примера приведу схему электрического подъездного щита жилого дома.

Электроснабжение квартиры с системой заземления TN-C-S

В данном случае электроснабжение квартиры осуществляется либо 3-жильным кабелем (фаза, N, PE) при однофазном питании (см. рисунок выше), либо 5-жильным кабелем (А,В,С, N, PE) при трехфазном питании.

В отличии от рассмотренной ранее системы TN-C, в этой системе допускается устанавливать розетки с наличием клеммы для заземления — евророзетки.

Защитный проводник РЕ необходимо соединить с корпусом электрооборудования (СВЧ-печь, электроплита, стиральная машина и другие электрические приборы). Нулевой рабочий проводник N служит только для передачи электроэнергии потребителю.

Где произвести разделение PEN-проводника?

 

Разделение PEN проводника в системе TN-C-S

Сначала давайте определимся с местом разделения PEN-проводника в системе TN-C-S.

Чаще всего разделение PEN-проводника осуществляется на вводе в жилой дом, т.е. в вводно-распределительном устройстве (ВРУ) Вашего дома.

Наглядное представление системы заземления TN-C-S

Как правильно произвести электромонтаж по разделению проводника PEN?

Пример разделения PEN-проводника в ВРУ жилого дома

В ВРУ жилого дома должны быть установлены:

  • нулевая шина N
  • шина заземления PE

PEN проводник с вводного кабеля соединяем с шиной заземления РЕ. А между шиной заземления РЕ и нулевой шиной N устанавливаем перемычку. 

Шину заземления PE необходимо заземлить (повторное заземление), т.е. соединить с контуром заземления жилого дома.

Очень важно!!! PEN проводник от источника питания до места разделения должен иметь сечение: не меньше 10 кв.мм. по меди, и не меньше 16 кв.мм. по алюминию.

Дополнение: я написал подробную статью о том как правильно и в каком месте разрешено разделять PEN проводник — переходите и читайте.

Достоинства системы заземления TN-C-S

Система TN-C-S — это самая перспективная система заземления для нашего государства. С помощью нее обеспечивается высокий уровень безопасности от поражения электрическим током, в связи с использованием устройств защитного отключения (УЗО).

Также рекомендую прочитать статью про систему уравнивания потенциалов (СУП).

Недостатки системы TN-C-S

Самый главный недостаток системы TN-C-S возникает в случае обрыва PEN проводника. При нарушении изоляции, корпус электрических приборов может оказаться под напряжением относительно земли, что приведет к электрической травме человека.

Вывод

В завершение статьи я хочу дать Вам совет-рекомендацию. Если в Ваших домах (квартирах) до сих пор эксплуатируется электропроводка с системой заземления TN-C, то Вам необходимо задуматься о переходе на систему TN-C-S (а еще лучше на систему TN-S), т.к. от этого зависит Ваша личная электробезопасность.

В следующей моей статье читайте материал про систему заземления TT.

P.S. Для проведения электромонтажных работ по переходу от системы TN-C на систему TN-C-S обратитесь к специалистам электротехнической лаборатории.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:


Система заземления TN-C-S, схема, особенности, достоинства и недостатки

Организация системы TN-C-S состоит в том, что нулевой провод N и защитный PEN совмещены и разделяются в какой-то определенной точке электросети, приходя к потребителям по отдельности.

Для примера рассмотрим схему электроснабжения жилого многоэтажного дома.

При такой системе заземление электроснабжение квартиры осуществляется:

— при 3-фазном питании: 5-ти-жильным кабелем с жилами — А,В,С,N,PE;

— при 1-фазном: 3-х-жильной кабельной линией – фаза, N, PE.

Данная система заземления предполагает установку розеток с выводом для подключения заземления, ее в народе называют евророзеткой.

При такой системе к защитному проводнику подключается корпус электроприборов (электрическая плита, кондиционер, стиральная машина и др.). Нулевой проводник при этом выполняет роль рабочего, основное назначение которого — передача электроэнергии.

Точка раздела PEN проводника

В большинстве случаев разделение осуществляют на вводе в многоэтажный дом — в РЩ (распределительном щите). Для этого следует PEN проводник вводной кабельной линии подключить к шине заземления РЕ. Сечение PEN до места раздела должно иметь не менее 10 кв. мм – при медном соединении и 16кв. мм – при алюминиевом. При этом нулевую шину N, шину РЕ соединяют с помощью перемычки. Шину заземления повторно заземляют, подключают к контуру заземления здания.

Преимущества системы TN-C-S

Данная система на сегодняшний день считается наиболее перспективной, поскольку она обеспечивает высокий уровень электробезопасности может использоваться совместно с устройствами защитного отключения.

Недостатки

Несовершенство системы TN-C-S объясняется опасностью поражения электротоком при обрыве PEN проводника. При неисправности изоляции корпус электроприборов может оказаться под опасным для человеческого организма напряжением.

Поэтому сегодня при обустройстве электропроводки для нового жилья и модернизации старой в соответствии с ПУЭ необходимо использовать TN-C-S систему (а лучше TN-S), поскольку от этого напрямую зависит безопасность Вас и близким Вам людей.

Системы заземления TN-S, TN-C, TNC-S, TT, IT – ГОСГОРПРОМНАДЗОР

При проектировании, монтаже и эксплуатации электроустановок, промышленного и бытового электрооборудования, а также электрических сетей освещения, одним из основополагающих факторов обеспечения их функциональности и электробезопасности является точно спроектированное и правильно выполненное заземление. Основные требования к системам заземления содержатся в Правилах устройства электроустановок (ПУЭ). В зависимости от того, каким образом, и с каким заземляющими конструкциями, устройствами или предметами соединены соответствующие провода, приборы, корпуса устройств, оборудование или определенные точки сети, различают естественное и искусственное заземление.

Естественными заземлителями являются любые металлические предметы, постоянно находящиеся в земле: сваи, трубы, арматура и другие токопроводящие изделия. Однако, ввиду того, что электрическое сопротивление растеканию в земле электротока и электрических зарядов от таких предметов плохо поддается контролю и прогнозированию, использовать естественное заземление при эксплуатации электрооборудования запрещается. В нормативной документации предусмотрено использование только искусственного заземления, при котором все подключения производятся к специально созданным для этого заземляющим устройствам.

Основным нормируемым показателем, характеризующим, насколько качественно выполнено заземление, является его сопротивление. Здесь контролируется противодействие растеканию тока, поступающего в землю через данное устройство — заземлитель. Величина сопротивления заземления зависит от типа и состояния грунта, а также особенностей конструкции и материалов, из которых изготовлено заземляющее устройство. Определяющим фактором, влияющих на величину сопротивления заземлителя, является площадь непосредственного контакта с землей составляющих его пластин, штырей, труб и других электродов.

Основным документом, регламентирующим использование различных систем заземления, является ПУЭ,, разработанные в соответствии с принципами, классификацией и способами устройства заземляющих систем, утвержденных специальным протоколом Международной электротехнической комиссии (МЭК). Сокращенные названия систем заземления принято обозначать сочетанием первых букв французских слов: «Terre» — земля, «Neuter» — нейтраль, «Isole» — изолировать, а также английских: «combined» и «separated» – комбинированный и раздельный.

  • T — заземление.
  • N — подключение к нейтрали.
  • I — изолирование.
  • C — объединение функций, соединение функционального и защитного нулевых проводов.
  • S — раздельное использование во всей сети функционального и защитного нулевых проводов.

В приведенных ниже названиях систем искусственного заземления по первой букве можно судить о способе заземления источника электрической энергии (генератора или трансформатора), по второй – потребителя. Принято различать TN, TT и IT системы заземления. Первая из которых, в свою очередь, используется в трех различных вариантах: TN-C, TN-S, TN-C-S. Для понимания различий и способов устройства перечисленных систем заземления следует рассмотреть каждую из них более детально.

  1. Системы с глухозаземлённой нейтралью (системы заземления TN)

Это обозначение систем, в которых для подключения нулевых функциональных и защитных проводников используется общая глухозаземленная нейтраль генератора или понижающего трансформатора. При этом все корпусные электропроводящие детали и экраны потребителей следует подключить к общему нулевому проводнику, соединенному с данной нейтралью. В соответствии с ГОСТ Р50571.2-94 нулевые проводники различного типа также обозначают латинскими буквами:

  • N — функциональный «ноль»;
  • PE — защитный «ноль»;
  • PEN — совмещение функционального и защитного нулевых проводников.

Построенная с использованием глухозаземленной нейтрали, система заземления TN характеризуется подключением функционального «ноля» — проводника N (нейтрали) к контуру заземления, оборудованному рядом с трансформаторной подстанцией. Очевидно, что в данной системе заземление нейтрали посредством специального компенсаторного устройства — дугогасящего реактора не используется. На практике применяются три подвида системы TN: TN-C, TN-S, TN-C-S, которые отличаются друг от друга различными способами подключения нулевых проводников «N» и «PE».

Система заземления TN-C

Как следует из буквенного обозначения, для системы TN-C характерно объединение функционального и защитного нулевых проводников. Классической TN-C системой является традиционная четырехпроводная схема электроснабжения с тремя фазными и одним нулевым проводом. Основная шина заземления в данном случае – глухозаземленная нейтраль, с которой дополнительными нулевыми проводами необходимо соединить все открытые детали, корпуса и металлические части приборов, способные проводить электрический ток.

Данная система имеет несколько существенных недостатков, главный из которых – утеря защитных функций в случае обрыва или отгорания нулевого провода. При этом на неизолированных поверхностях корпусов приборов и оборудования появится опасное для жизни напряжение. Так как отдельный защитный заземляющий проводник PE в данной системе не используется, все подключенные розетки земли не имеют. Поэтому используемое электрооборудование приходится занулять – соединять корпусные детали с нулевым проводом. .

Если при таком подключении фазный провод коснется корпуса, из-за короткого замыкания сработает автоматический предохранитель, и опасность поражения электрическим током людей или возгорания искрящего оборудования будет устранена быстрым аварийным отключением. Важным ограничением при вынужденном занулении бытовых приборов, о чем следует знать всем проживающим в помещениях, запитанных по системе TN-C, является запрет использования дополнительных контуров уравнивания потенциалов в ванных комнатах.

В настоящее время данная система заземления сохранилась в домах, относящихся к старому жилому фонду, а также применяется в сетях уличного освещения, где степень риска минимальна.

Система TN-S

Более прогрессивная и безопасная по сравнению с TN-C система с разделенными рабочим и защитным нолями TN-S была разработана и внедрена в 30-е годы прошлого века. При высоком уровне электробезопасности людей и оборудования это решение имеет один, но достаточно очень существенный недостаток — высокую стоимость. Так как разделение рабочего (N) и защитного (PE) ноля реализовано сразу на подстанции, подача трехфазного напряжения производится по пяти проводам, однофазного — по трем. Для подключения обоих нулевых проводников на стороне источника используется глухозаземленная нейтраль генератора или трансформатора.

В ГОСТ Р50571 и обновленной редакции ПУЭ содержится предписание об устройстве на всем ответственных объектах, а также строящихся и капитально ремонтируемых зданиях энергоснабжения на основе системы TN-S, обеспечивающей высокий уровень электробезопасности. К сожалению, широкому распространению и внедрению системы TN-S препятствует высокий уровень затрат и ориентированность российской энергетики на четырехпроводные схемы трехфазного электроснабжения.

Система TN-C-S

С целью удешевления оптимальной по безопасности, но финансово емкой системы TN-S с разделенными нулевыми проводниками N и PE, было создано решение, позволяющее использовать ее преимущества с меньшим бюджетом, незначительно превышающим расходы на энергоснабжение по системе TN-C. Суть данного способа подключения состоит в том, что с подстанции осуществляется подача электричества с использованием комбинированного нуля «PEN», подключенного к глухозаземленной нейтрали. Который при входе в здание разветвляется на «PE» – ноль защитный, и еще один проводник, исполняющий на стороне потребителя функцию рабочего ноля «N».

Данная система имеет существенный недостаток — в случае повреждения или отгорания провода PEN на участке подстанция — здание, на проводнике PE, а, следовательно, и всех связанных с ним корпусных деталях электроприборов, появится опасное напряжение. Поэтому при использовании системы TN-C-S, которая достаточно распространена, нормативные документы требуют обеспечения специальных мер защиты проводника PEN от повреждения.

Система заземления TT

При подаче электроэнергии по традиционной для сельской и загородной местности воздушной линии, в случае использования здесь небезопасной системы TN-C-S трудно обеспечить надлежащую защиту проводника комбинированной земли PEN. Здесь все чаще используется система TT, которая предполагает «глухое» заземление нейтрали источника, и передачу трехфазного напряжения по четырем проводам. Четвертый является функциональным нолем «N». На стороне потребителя выполняется местный, как правило, модульно-штыревой заземлитель, к которому подключаются все проводники защитной земли PE, связанные с корпусными деталями.

При таком способе устройства заземления обязательным условием является наличие приборов защитного отключения, а также осуществление технических мер грозозащиты.

 

  1. Системы с изолированной нейтралью

Во всех описанных выше системах нейтраль связана с землей, что делает их достаточно надежными, но не лишенными ряда существенных недостатков. Намного более совершенными и безопасными являются системы, в которых используется абсолютно не связанная с землей изолированная нейтраль, либо заземленная при помощи специальных приборов и устройств с большим сопротивлением. Например, как в системе IT. Такие способы подключения часто используются в медицинских учреждениях для электропитания оборудования жизнеобеспечения, на предприятиях нефтепереработки и энергетики, научных лабораториях с особо чувствительными приборами, и других ответственных объектах.

Система IT

Классическая система, основным признаком которой является изолированная нейтраль источника – «I», а также наличие на стороне потребителя контура защитного заземления – «Т». Напряжение от источника к потребителю передается по минимально возможному количеству проводов, а все токопроводящие детали корпусов оборудования потребителя должны быть надежно подключены к заземлителю. Нулевой функциональный проводник N на участке источник – потребитель в архитектуре системы IT отсутствует.

 

 

 

Надежное заземление — гарантия безопасности

Все существующие системы устройства заземления предназначены для обеспечения надежного и безопасного функционирования электрических приборов и оборудования, подключенных на стороне потребителя, а также исключения случаев поражения электрическим током людей, использующих это оборудование. При проектировании и устройстве систем энергоснабжения, необъемлемыми элементами которых является как функциональное, так и защитное заземление, должна быть уменьшена до минимума возможность появления на токопроводящих корпусах бытовых приборов и промышленного оборудования напряжения, опасного для жизни и здоровья людей.

Система заземления должна либо снять опасный потенциал с поверхности предмета, либо обеспечить срабатывание соответствующих защитных устройств с минимальным запаздыванием. В каждом таком случае ценой технического совершенства, или наоборот, недостаточного совершенства используемой системы заземления, может быть самое ценное – жизнь человека.

Особенности систем TN-C, TN-C-S, TN-S | Безопасность

Система TN (защитное заземление нейтрали)

Система TN используется для заземления оборудования с целью защиты от косвенного прикосновения к токоведущим частям при повреждении изоляции. PEN-проводник или РЕ-проводник присоединяется к заземляющему устройству питающей системы и частям, доступным прикосновению: открытым проводящим частям питаемого электрооборудования (ОПЧ) и сторонним проводящим частям (СПЧ).

В случае повреждения изоляции ток повреждения вызывает срабатывание устройства защиты от сверхтока, которое обесточивает цепь. Кроме того, низкое сопротивление цепи обратного тока на участке от доступных проводящих частей (ОПЧ и СПЧ) до заземляющего устройства источника питания ограничивает напряжение прикосновения, которое может появиться на поврежденном оборудовании. Следовательно, это позволяет снизить вероятность поражения электрическим током.

Система TN может иметь одну из следующих возможных разновидностей: Система TN-C, система TN-S или система TN-C-S. Разновидность системы выбирается в зависимости от конкретных условий.

Система TN-C

Распределительная система TN-C имеет PEN-проводник, который выполняет одновременно функции нулевого рабочего проводника и нулевого защитного проводника на всем протяжении системы (рис. 1).

Заметим, что устройство защитного отключения УЗО-Д на рис. 1. зачеркнуто. УЗО-Д не может надлежащим образом функционировать в такой цепи. Применение УЗО-Д в такой цепи не разрешается по двум причинам.

Во-первых, ток повреждения, который протекает от доступных проводящих частей поврежденного электрооборудования через человека и возвращается в PEN-проводник, не воздействует на защитно-отключающее устройство как дифференциальный (разностный) ток. Ток повреждения не будет различим. Значительная часть тока повреждения будет возвращаться к источнику питания через устройство защитного отключения.

Ток может возвращаться также через другое оборудование, корпуса которого (ОПЧ или СПЧ) имеют случайное или преднамеренное соединение с PEN-проводником. В этом случае УЗО-Д бесполезны.

Во-вторых, если корпуса электрооборудования заземлены (занулены) посредством PEN-проводника и корпуса имеют контакт с землей, часть тока нагрузки может возвращаться к источнику питания через землю при нормальных условиях. Эта часть тока будет восприниматься защитно-отключающим устройством как дифференциальный (разностный) ток и устройство будет срабатывать, если эта часть тока, проходящая через землю, будет больше то кг) уставки защитно-отключающего устройства. Величина тока уставки, как правило, не превышает 0,5 А.

Система TN-S

Если в системе TN отдельный защитный заземляющий проводник не связан с нулевым рабочим проводником, то такая система называется системой TN-S (см. рис. 3).

В системе TN-S возможно и целесообразно в качестве дополнительной защиты применить устройство защитного отключения (УЗО-Д). В этой системе цепь нагрузочного тока отделена от земли и, следовательно, устройство


Рис. 1. Система TN-C (однофазная сеть)


Рис. 2. Система TN-S (однофазная сеть)

защитного отключения будет нормально функционировать, обеспечивая защиту от замыкания на землю.

В ряде стран системы TN-C и TN-S используются для электроустановок в производственных зданиях, в высотных зданиях с их собственными понизительными трансформаторами и других подобных помещениях. Когда важно обеспечить защиту систем передачи информации и линий связи от помех, как правило, используется система TN-S (отдельный защитный проводник  —  РЕ-проводник).

Система TN-C-S

Наиболее часто в сетях общего пользования используется система TN-C-S, которая является комбинацией систем TN-C и TN-S.

PEN-проводник в системе TN-C-S используется только в распределительной системе общего пользования, а затем «расщепляется» на отдельный нулевой рабочий проводник и нулевой защитный проводник в зданиях потребителей (рис. 3.).

В США металлические кабелепроводы и распределительные щитки присоединяются к заземленному PEN-проводнику.

В ряде стран Европы PEN-проводник «расщепляется» на нулевой рабочий проводник и РЕ-проводник при площади поперечного сечения ниже 10 кв. мм (по меди). В США PEN-проводник расщепляется на отдельные нулевой рабочий и РЕ-проводники на вводе электрической сети в здание. В США отсутствует критерий расщепления PEN-проводника по площади поперечного сечения.

Во всех заземленных распределительных системах (системы TN-) заземленный PEN-проводник часто соединяется с зазем лиге лями в нескольких точках сети. Требования, относящиеся к условиям заземления этого типа систем, рассмотрены далее.

Устройства защитного отключения УЗО-Д (RCD, GFCI) не могут удовлетворительно функционировать в той части сети, где используется PEN-проводник по тем же причинам, по которым эти устройства не могут удовлетворительно функционировать в системе TN-C.

Однако, на участке, где PEN-проводник расщеплен на отдельные РЕ- и N-проводники, применение УЗО не только возможно, но и желательно также как и в системе TN-S.

В США N-проводник не разрешается присоединять к земле (заземлять) со стороны нагрузки после расщепления. Исключением из этого правила являются линии для приготовления пищи (кухни предприятий питания), предприятия типа прачечных, химчистки и электрические сети, идущие от одного здания или сооружения к другим зданиям или сооружениям, являющимся частями одного владения (например, сети, идущие от здания к гаражу или к сараю). В этом случае питающую линию второго здания или сооружения разрешается рассматривать также как основную питающую линию. Это означает, что заземленный в начале линии N-проводник повторно заземляется, превращаясь в PEN-проводник.


Рис. 3. Система TN-C-S (однофазная сеть)

При этом отпадает надобность в РЕ-проводнике в сетях между зданиями или конструкциями. В каждом конкретном случае имеется возможность выбора между системами TN-C, TN-S или TN-C-S, или, другими словами,  —  возможность решения вопроса о необходимости изоляции от земли N-проводника со стороны нагрузки после расщепления PEN-проводника. Использование PEN-проводника в питающей сети и недопущение дополнительных соединений с землей N-проводника во всех точках сети со стороны нагрузки в здании рекомендуется во всех случаях. Систему TN-S необходимо использовать там, где в сетях потребителя требуется УЗО-Д (GFCI  —  в США). В США защита с помощью GFC1 (УЗО-Д) требуется для штепсельных розеток в подвальных помещениях домов, гаражах, кухнях, ванных комнатах, наружных установках.

Практика использования заземленного нейтрального проводника питающей сети для заземления металлических корпусов кухонного оборудования (электрических плит) предприятий по приготовлению пищи и корпусов электрооборудования для сушки одежды ведет начало со времен второй мировой войны как следствие экономии меди за счет отказа от РЕ-проводника. За время эксплуатации системы TN-C на этих предприятиях было зарегистрировано сравнительно небольшое число случаев поражения электрическим током.

Можно считать, что в этих производствах, характеризуемых наличием симметричной трехфазной нагрузки, система TN-C выдержала испытание временем и потому ее применение разрешено.

На рис. 3. символом UK обозначено напряжение PEN-проводника, обусловленное падением напряжения в PEN-проводнике распределительной системы при протекании тока короткого замыкания. Во всех случаях система TN обеспечивает определенную степень защиты от поражения электрическим током, вызванным пробоем изоляции фазных проводников на заземленные доступные проводящие части, посредством ограничения напряжения UK во время короткого замыкания и за счет ограничения длительности короткого замыкания посредством его отключения устройством защиты от сверхтоков. Амперсекундныс характеристики устройства защиты от сверхтоков выбираются с учетом опасности перегрева проводников сети, вызываемого сверхтоками, а также с учетом пусковых токов двигателей. Амперсекундные характеристики устройств защиты от сверхтоков, как правило, выбираются без учета условий электробезопасности, но, практически, заземление оборудования в сочетании с устройством защиты от сверхтока может обеспечить приемлемый уровень защиты от поражения электрическим током во многих случаях.

Напряжения в системе TN при повреждении изоляции

Ампер-секундные характеристики устройств защиты от сверхтоков выбираются для защиты от перегрева проводников. Значение тока, обычно, порядка 10 А и более. Малое сопротивление цепи обратного тока (ЦОТ), обусловленное использованием РЕ- и PEN-проводников, ограничивает значение напряжения PEN-проводника и способствует быстрому срабатыванию устройства защиты от сверхтока, делая в большинстве случаев серьезное поражение электрическим током маловероятным. В отдельных случаях, когда человек может быть особенно чувствителен к воздействию электрического тока, что может быть обусловлено, например, малым сопротивлением тела (большая или влажная площадь контакта), задача решается применением дополнительной защиты в форме защитно-отключающих устройств. Высокая чувствительность и быстродействие этих устройств снижают вероятность поражения электрическим током до очень низких значений.

В сельских районах высокое значение сопротивления петли «фаза —  нуль» в конце протяженных распределительных сетей обусловлено значительным расстоянием между питающим трансформатором и потребителями. В этом случае высокое значение сопротивления петли «фаза  —  нуль» приводит к низкому значению тока короткого замыкания и к увеличенному времени срабатывания устройства защиты от сверхтока у потребителей. Основная часть сопротивления цепи «фаза  —  нуль» приходится на «сетевую сторону» распределительной системы. Падение напряжения в PEN-проводнике распределительной системы при повреждении изоляции фазного проводника проявляется в виде потенциала на доступных проводящих частях электрооборудования и всех других проводящих частях установок, связанных с PEN-проводником.

Заметим, что при замыкании «фаза  —  фаза» или «фаза  —  PEN» в распределительной сети при системе TN-C-S (рис. 3) до момента отключения тока короткого замыкания устройством защиты от сверхтока т.кз. преодолевает сопротивление PEN-проводника и фазного L-проводника. Сопротивление PEN-проводников протеканию т.кз. вызывает падение напряжения между заземляющим устройством нейтрали питающего трансформатора и РЕ-проводником, который присоединен к ОПЧ и СПЧ. Это падение напряжения вызывает напряжение прикосновения между ОПЧ, СПЧ и землей. В США нагрузочный конец PEN-проводника требуется соединять с землей, но сопротивление заземляющего устройства обычно составляет несколько Ом и иногда может быть и выше в зависимости от сопротивления земли.

Сельская сеть системы TN-C-S, выполненная в виде BJT, характеризуется сравнительно высоким сопротивлением петли «фаза — нуль», обусловленным относительно большой протяженностью линий. В этой системе повторное заземление PEN-проводника вызывает значительное снижение его потенциала при коротком замыкании фазного проводника (L-проводника) на PEN-проводник. Это показано на упрощенной схеме (рис. 3).

PEN-проводники в системе TN заземлены во многих точках системы. В результате этого сопротивление между PEN-проводником и землей обычно невелико. Кроме того, из-за того, что сопротивление PEN-проводника по сравнению с шунтирующими его сопротивлениями заземлителей относительно мало, часть тока к.з., протекающая по PEN-проводнику значительно превосходит часть тока к.з., протекающего через землю.


Рис. 4. Распределение потенциала в PEN-проводнике при ОКЗ

Следовательно, градиент потенциала земли вдоль трассы линии от питающего трансформатора до места к.з. сравнительно невелик и становится более пологим из-за влияния PEN-проводника.

Потенциал PEN-проводника при к.з. не превышает 100 В при напряжении системы 380/220 В. Распределение напряжения в короткозамкнутой цепи, определяющее напряжение на ОПЧ и СПЧ при о.к.з., зависит от соотношения сопротивлений отдельных ветвей ЦОТ, включающих сопротивления заземляющего устройства и сопротивлений L1 (или L2, или L3) и PEN-проводников).

Если сопротивление заземлителей на каждом конце PEN-проводника были равны между собой, напряжение ОПЧ и СПЧ, соединенных с РЕ-проводником, не более 50 В, т. е. потенциал заземлителя равен половине падения напряжения в PEN-проводнике.

Система TN-S — самая безопасная система заземления

Система TN-S — самая безопасная система заземления

В этой статье мы расскажем вам, почему система TN-S считается самой безопасной.

По сравнению с такими системами заземления как TN-C и TN-C-S, система заземления TN-S отличается особой надежностью и безопасностью. Данная система появилась и начала набирать популярность еще в 40-е годы, получив первое широкое распространение на территории Европы, где по сей день продолжает оставаться заслуженно востребованной.

В России система заземления TN-S также все чаще используется, и год за годом все сильнее конкурирует с остальными, менее надежными, системами заземления, поскольку считается на сегодняшний день наиболее безопасной и качественной из всех известных подходов к устройству заземления в потребительских электросетях, особенно в жилых домах.

Несмотря на то, что стоимость монтажа системы TN-S дороже остальных (просто в силу необходимости прокладывать более дорогостоящие многожильные кабеля), тем не менее именно ее выбирают исходя из требования обеспечить наибольшую безопасность для людей, о чем будет подробно разъяснено далее.

Суть в том, что однофазные и трехфазные электрические сети на самом деле всегда нуждаются в трехжильных и пятижильных питающих кабелях, поскольку в идеале в однофазной сети от источника к потребителю необходимо проложить три проводника (фазный, нейтральный N и защитный проводник PE), а для трехфазной сети это будет уже пять проводников (три фазных — A, B, C, нейтральный N и защитный проводник PE).

Так вот, в системе TN-S главный заземлитель расположен на трансформаторной подстанции, а отделенные друг от друга в кабеле проводники N и PE тянутся от него, от самой подстанции, — к потребителю, и дополнительного заземления на стороне потребителя монтировать уже не нужно.

Таким образом, с системой заземления TN-S оборудование у потребителя всегда будет максимально защищено, а самого человека от поражения электрическим током защитят дифавтоматы и устройства защитного отключения, для монтажа и подключения которых оказываются доступны сразу все необходимые проводники в одном кабеле. Причем регулярно контролировать состояние контура заземления у себя дома обывателю уже не придется. Кстати, высокочастотные помехи от работающих пылесосов и дрелей будут не страшны силовым линиям в такой системой заземления.

Напомним, что та же устаревшая система заземления TN-C имеет совмещенные проводники PE и N в одном проводнике — PEN, что ставит людей под угрозу поражения электрическим током. Так или иначе, в целях обеспечения безопасности систему заземления TN-C все равно приходится дорабатывать, хотя изначально к системе TN-C прибегают из соображений экономии.

В итоге система заземления TN-C принципиально уступает по качеству и надежности системе TN-S. Не даром ПУЭ (пункт 1.7.132) склоняет потребителей к необходимости категорически отказаться от использования системы заземления TN-C в пользу более безопасной и надежной TN-S (или в крайнем случае TN-C-S).

Система заземления TN-C-S немного лучше чем TN-C, поскольку в ней присутствует разделение нулевого, заземленного на подстанции, проводника PEN — на нулевой и защитный (N и PE) проводники, однако точка данного разделения обычно находится на вводно-распределительном устройстве самого здания.

Таким образом, очевидный и ключевой недостаток системы TN-C-S заключается в том, что в случае обрыва PEN проводника при нарушении изоляции может случиться пробой на корпус электрического прибора, что опять же поставит человека под угрозу поражения электрическим током. Вот почему наиболее безопасной считается система заземления TN-S, где защитный проводник надежно заземлен и идет сразу в кабеле вместе со всеми остальными проводниками.

Ранее ЭлектроВести писали, что Киевский городской совет поддержал выделение в бюджете средств в сумме 40 млн гривен на систему мониторинга качества атмосферного воздуха в столице. Система будет включать 27 стационарных постов и мобильную лабораторию.

По материалам: electrik.info.

Система заземления TN-C-S! В каких случаях использовать систему заземления TN-C-S?!

Технологические процессы не стоят на месте и с каждым днем продвигаются только вперед, несмотря на множество нововведений, большинство населения Российской Федерации используют старый образец заземления сетей электричества TN-C. Каждый из нас помнит те времена, когда иностранные бытовые приборы начали укомплектовывать трехштекерными электровилками, многие до сих пор не знают, для чего необходим третий штекер на вилке. Для полного понимания, зачем нужна данная система, необходимо со всеми подробностями проанализировать, чем является система заземления TN-C-S и как она используется в современных электрических сетях. В данной статье мы расскажем положительные и отрицательные качества заземления, которые были раньше и нововведения TN-C-S.

Основные системы заземления

Жилой фонд Российской Федерации при подключении жилых помещений использует следующие системы заземления электросетей:

Одной из наиболее известных систем заземления является TN-C, но по современным меркам она давно устарела и не может соответствовать мировым стандартам. Старая система занимает большинство всех подключенных электросетей в стране. Для заземления TN-C требуется трансформаторно-понижающая подстанция, она должна обслуживать множество жилых построек, государственных или частных, в зависимости от установки.

В данном варианте нулевая точка подстанции трансформатора полностью заземлена. Подключение проводника осуществляется к точке PEN, затем подается в жилое помещение для выполнения функции нулевого работающего PN и провода защиты РЕ. Данная система является наиболее экономной и простой, по этой причине она не может отвечать необходимым требованиям по безопасности электрических сетей. По требованиям ПУЭ данную систему не рекомендуется использовать в помещениях с влагой превышающие нормы, бани ванные бассейны.

В случае с системой TN-S нулевой PN и провод защиты РЕ проводятся отдельно. Такой тип электроснабжения полностью соответствует нормам безопасности и часто используется для электроснабжения небольших микрорайонов. Применение данной системы исключает поражение электрическим током рядовых граждан.

Особенности схемы системы заземления TN-C-S

Устаревшая система TN-C не может быть модифицирована под более современную систему TN-S, в настоящее время не представляется возможным поменять существующие системы старого типа по причине высокой стоимости необходимых работ и материалов. Безопасность сети электричества напрямую зависит от существующей системы, для модификации устаревшей сети электричества можно использовать новую систему TN-C-S, которая совмещает в себе обе системы TN-C и TN-S.

Работа новой системы состоит в том, что подстанции с распределительным устройством ВРУ идут с одним проводником PEN, подводимым к жилым зданиям. Распределительные устройства ВРУ, которые подключаются к частным или многоквартирным домам, оборудуются повторным заземлением, в этом случае получается разделение PEN на ноль PN и проводник с защитой РЕ.

На ниже представленной схеме мы можем наблюдать заземление TN-C-S с клеммами нагрузки по трем фазам подводимых к четырем проводникам, из них получаются три фазы в виде провода А, В, С, и последний провод с нейтральным проводом PN.

РЕ выполняет функцию перемычки между корпусом из металла электрического прибора и контуром заземления. Сеть подключается к дому в виде одной фазы при наличии одного провода с нейтральным PN, который заземляется от металлического корпуса.

Контуры заземления и как их правильно сделать?

Система заземления TN-C-S часто применяется в многоэтажных домах, так как старые системы небезопасны для человека и очень пожароопасные. Большинство пожаров случается именно из-за устаревших небезопасных систем электроснабжения многоэтажных домов. Для обновления электроснабжения необходима команда высокопрофессиональных электриков. Данным видом работ занимаются исключительно профессионалы и специализирующиеся на данном вопросе компании.

Профессиональные рабочие сделают все необходимые переключения в ВРУ многоэтажного дома, затем устанавливают дополнительное заземление.    

Многие не совсем грамотные и разбирающиеся в электрике индивидуумы, проживающие в многоквартирном доме, часто пытаются подключить свою отдельно взятую квартиру по принципу новой системы заземления TN-C-S.

Для осуществления данной цели некоторые люди используют канализационные стояки или трубы отопления и водопровода в качестве заземления. Такие манипуляции категорически запрещены законом Российской Федерации и караются в соответствии с действующим законодательством. Подобные действия могут привести к поражению электрическим током рядовых граждан проживающих в одном подъезде с совместной линией коммуникаций. Вдобавок ко всему перечисленному, такие действия приводят к быстрому износу коммуникационных металлических труб и счетчиков контроля воды и тепла.

В собственном частном доме сделать дополнительное заземление не составит особой сложности. Наиболее распространенным и простым способом является замкнутая схема, которая создается в виде треугольника.

Для осуществления подобной схемы необходим металлический проводник, закопанный в землю на глубину около метра, в виде электрода можно использовать обычный металлопрокатный уголок из стали, в виде перемычки можно использовать металлическую платину, арматуру можно использовать как заземляющий проводник. Конструкция должна иметь поперечное сечение в пределах 50мм 2.

Достоинства и минусы TN-C-S

Каждая система имеет сильные и слабые стороны, но найти оптимальный вариант, который бы устраивал все за и против нелегко. Система заземления TN-C-S обладает множеством положительных качеств. Простота в использовании и ее экономичность дает множество позитивных отзывов в эксплуатационных характеристиках. Безопасность, которую несет данная система можно отнести к наиболее эффективным средствам по защите от поражения электрическим током.

Среди минусов данной системы можно наблюдать следующие нюансы, когда происходит разрыв проводника PEN, то металлический корпус и проводник РЕ будут находиться под напряжением и могут нанести вред. При создании данного заземления своими руками, необходимо делать все точно по инструкции и соблюдать все нормы техники безопасности.

Данная статья должна помочь каждому, кто хочет обезопасить свое жилище и сделать комфортное и безопасное проживание себе и своей семье. Благодаря вышеизложенным схемам вы сможете полностью сделать данное заземление своими руками, не прибегая к услугам высокооплачиваемых специалистов.

Если же вы сомневаетесь в своих силах и знаниях, или попросту не хотите рисковать, то вам стоит обратиться за помощью к профессиональным электрикам, или в специализированные компании, которые смогут поменять вашу старую систему на более современную и безопасную во всех отношениях. Мы искренне надеемся, что наша помощь была вам полезной, и вы по достоинству оцените наши усилия, чтобы сделать ваши дома более безопасными.

Системы заземления TN-C, TN-S, TN-C-S, ТТ, IT

Системы заземления TN-C, TN-S, TN-C-S, ТТ, IT показаны на рис.1-5 соответственно.

Первая буква в обозначении системы заземления определяет характер заземления источника питания:

  • Т — непосредственное соединение нейтрали источника питания с землей;
  • I — все токоведущие части изолированы от земли.

Вторая буква определяет характер заземления открытых проводящих частей электроустановки здания:

  • Т — непосредственная связь открытых проводящих частей электроустановки здания с землей, независимо от характера связи источника питания с землей;
  • N — непосредственная связь открытых проводящих частей электроустановки здания с точкой заземления источника питания.

Буквы, следующие через черточку за N, определяют характер этой связи -функциональный способ устройства нулевого защитного и нулевого рабочего проводников:

  • S — функции нулевого защитного РЕ и нулевого рабочего N проводников обеспечиваются раздельными проводниками;
  • С — функции нулевого защитного и нулевого рабочего проводников обеспечиваются одним общим проводником PEN.

Рис. 1. Система заземления, подобная TN-C, которая применяется в России.

Рис. 2. Система заземления TN-S.

В России до настоящего времени применяется система, подобная TN-C (рис. 1), в которой открытые проводящие части электроустановки (корпуса, кожухи электрооборудования) соединены с заземленной нейтралью источника совмещенным нулевым защитным и рабочим проводником PEN, т.е. «занулены». Эта система относительно простая и дешевая, однако она не обеспечивает необходимый уровень электробезопасности.

Рис. 3. Система заземления TN-C-S.

Системы TN-S (рис.2) и TN-C-S (рис.3) широко применяются в Германии, Австрии, Франции и других европейских странах. В системе TN-S все открытые проводящие части электроустановки здания соединены отдельным нулевым защитным проводником PE непосредственно с заземляющим устройством источника питания.

Рис. 4. Система заземления ТТ.

При монтаже электроустановок правила предписывают применять для нулевого защитного проводника PE провод с желто-зеленой маркировкой изоляции.

В системе TN-C-S (рис.3) во вводном устройстве электроустановки совмещенный нулевой защитный и рабочий проводник PEN разделен на нулевой защитный PE и нулевой рабочий N проводники.

В системе TN-C-S нулевой защитный проводник PE соединен со всеми открытыми проводящими частями и может быть многократно заземлен, в то время как нулевой рабочий проводник N не должен иметь соединения с землей.

Наиболее перспективной для нашей страны является система TN-C-S, позволяющая в комплексе с широким внедрением УЗО (устройств защитного отключения) обеспечить высокий уровень электробезопасности в электроустановках без их коренной реконструкции. Важное примечание!

В электроустановках с системами заземления TN-S и TN-C-S электробезопасность потребителя обеспечивается не собственно системами, а устройствами защитного отключения (УЗО), действующими более эффективно в комплексе с этими системами заземления и системой уравнивания потенциалов.

Собственно сами системы заземления (без УЗО) не обеспечивают необходимой безопасности. Например, в случае пробоя изоляции на корпус электроприбора или какого-либо аппарата при отсутствии УЗО отключение этого потребителя от сети осуществляется устройствами защиты от сверхтоков — автоматическими выключателями или плавкими вставками.

Быстродействие устройств защиты от сверхтоков, во-первых, уступает быстродействию УЗО, во-вторых, зависит от многих факторов: кратности тока короткого замыкания, которая, в свою очередь, зависит от сопротивления проводников, переходного сопротивления в месте повреждения изоляции, длины линий, точности калибровки автоматических выключателей и др.

Наличие на объекте металлических корпусов, арматуры и пр., соединенных с PE-проводником, повышает опасность электропоражения, поскольку в этом случае вероятность образования цепи «токоведущий проводник — тело человека — земля» гораздо выше. Только УЗО осуществляет защиту от прямого прикосновения.

Внедрение систем TN-S и TN-C-S в европейских странах, к опыту которых мы вынуждены постоянно обращаться, поскольку там рассматриваемые проблемы решались на два десятилетия раньше, также проходило с большими трудностями.

Например, в литературе описан случай, когда электромонтер при подключении одного объекта ошибочно подключил фазу на защитный проводник, что повлекло за собой смертельное поражение нескольких человек.

В плане обеспечения условий электробезопасности при эксплуатации электроустановки серьезной альтернативой вышерассмотренным системам заземления является сравнительно новое, но все более широко применяемое эффективное электрозащитное средство — двойная изоляция.

Достижения химической промышленности в области производства пластиков и керамик, имеющих великолепные механические и электроизоляционные характеристики, позволили значительно расширить ассортимент электробезопасных электроприборов и электроинструментов в исполнении «двойная изоляция», при применении которых тип системы заземления в плане обеспечения условий электробезопасности не имеет значения.

Рис. 5. Система заземления IT.

Монтаж заземляющих устройств (TNC, TN-S, TNC-S, TT)

Заземление низковольтных сетей

Заземление низковольтных сетей в Великобритании в значительной степени определяется положениями Low Voltage Supply . Однако, если входящие источники питания имеют напряжение 11 кВ и трансформаторы находятся в собственности пользователя, источники питания низкого напряжения могут быть заземлены менее традиционным способом с использованием высокого импеданса. Такое расположение не допускается для общественных поставок.

Процедуры монтажа заземляющих устройств (TNC, TN-S, TNC-S и TT) — фото предоставлено: Эдвард CSANYI

Тем не менее, это полезная система, когда более важно поддерживать электропитание, чем устранять первое замыкание на землю. .

ПРИМЕР: Схема аварийного освещения для эвакуации персонала из опасной зоны могла бы использовать систему с высоким импедансом, если бы считалось менее опасным поддерживать электропитание после первого замыкания на землю, чем полностью отключать свет. Туннель под Ла-Маншем может быть таким случаем.

Даже в этих обстоятельствах исходное замыкание на землю следует устранять как можно быстрее.

Более традиционные схемы заземления:

  • TN-C , где земля и нейтраль объединены (PEN) и
  • TN-S , где они разделены (5 проводов) или
  • TN-C- S .

Последний очень распространен, поскольку он позволяет питать однофазные нагрузки по фазе и нейтрали с полностью отдельной системой заземления, соединяющей вместе все открытые проводящие части, прежде чем подключать их к проводнику PEN через главный зажим заземления, который также подключен к нейтральному выводу.

Принципы заземления

Для защитных проводов из того же материала, что и фазный провод, площадь поперечного сечения должна быть такого же размера, что и фазный провод , до 16 мм 2 . ВАЖНО: Когда фазный провод больше 16 мм 2 , тогда защитный провод может оставаться на 16 мм 2 , пока фазовый провод не станет 35 мм 2 , после чего защитный провод должен быть вдвое меньше фазного проводника.

Для проводников, которые сделаны из разных материалов, площадь поперечного сечения должна быть скорректирована с использованием коэффициента k из таблицы 43A в BS 7671. Коэффициент k учитывает удельное сопротивление, температурный коэффициент и теплоемкость материалы проводника, а также начальную и конечную температуры.

И, наконец, система TT, которая использует материнскую землю как часть возврата на землю.

Нейтраль и заземленная часть соединяются вместе только через систему электродов обратно к заземлению источника (и нейтрали). Чтобы проверить, что обычные системы являются удовлетворительными, т. Е. Что защита срабатывает при возникновении замыкания на землю, необходимо вычислить полное сопротивление контура замыкания на землю (Z s ) и убедиться, что ток короткого замыкания через него вызовет защита для работы.