Ток утечки это: Что такое утечка тока и каковы причины её возникновения?

Разное

Содержание

Что такое утечка тока и каковы причины её возникновения?

В идеальной электрической цепи сопротивление изоляции стремится к бесконечности. К сожалению, на практике не все так однозначно. Какой бы качественной не была изоляция провода или других токоведущих элементов оборудования, это конечная величина, а, следовательно, даже при штатной работе происходит незначительная утечка тока. Ситуация в корне меняется, когда этот параметр превышает установленные нормы, чем это грозит и как определить утечку Вы узнаете прочитав статью.

Что такое утечка тока и чем она опасна

Эквивалентная схема 3-х фазной электросети с изолированной нейтральюЭквивалентная схема 3-х фазной электросети с изолированной нейтралью

Начнем с терминологии. Точное определение этого явления описано в ГОСТ 61140 2012 и ГОСТ 30331.1 2013, далее дословно: «Электрический ток, протекающий в землю, открытые, сторонние проводящие части и защитные проводники при нормальных условиях». Для более детального описания явления приведем в качестве примера эквивалентную схему 3-х фазной электрической сети IT (изолированная нейтраль).

Обозначения:

  • А, В, С – фазы сети.
  • Ra, Rb, Rс – величина активного сопротивления между землей и каждой фазой.
  • Са, Сb, Сс – параметры емкости линий относительно земли.
  • Ua, Ub, Uc – напряжение каждой из фаз по отношению к земле.
  • Ia, Ib, Ic – токи утечки.

В приведенном примере активное сопротивление Ra, Rb, Rс не стремиться к бесконечности, а вполне измеряемая величина. Соответственно и токоведущих проводников емкость относительно земли (Са, Сb, Сс) будет какую-то величину больше нуля. Следовательно, в токоведущих частях с напряжениями Ua, Ub, Uc будут образовываться токи утечки Ia, Ib, Ic.

Пути таких токов напрямую зависят от того, какой тип заземления используется в системе. В приведенном примере с изолированной нейтралью (IT), утечка происходит через изоляцию проводов в токопроводящие элементы оборудования. Из них по проводникам, соединенным с ЗУ, уходит в зону растекания (локальную землю).

В системах с глухозаземленной нейтралью (TN) ток утечки по шине PEN течет до ЗУ на вводе электропитания.

Опасность утечки

Пока ток утечки соответствует принятым нормам, он не представляет серьезной опасности. Когда сопротивление изоляции снижается, например, при ее повреждении, ток утечки резко возрастает и может стать опасным для человека. На 1-й части рисунка 2 схематически изображен путь тока утечки (Iу) при касании человеком корпуса электроустановки, в которой повреждена изоляция корпуса Rи

Опасность утечкиРисунок 2. Опасность утечки

При заземлении корпуса электроустановки (см. 2-ю часть рис.2) поражение электротоком при касании не происходит, поскольку утечка пойдет по пути наименьшего сопротивления. Но в этом случае в месте крепления защитного проводника (отмечено на рисунке красным кругом) может наблюдаться интенсивное выделение тепла, что провоцирует возникновение пожара.

Причины возникновения утечки тока

Из приведенной выше информации мы выяснили, что утечка происходит всегда, даже при штатной работе электрического оборудования. Опасность представляет превышение нормальных показателей. Давайте рассмотрим ситуации, когда превышаются допустимые нормы дифференциальных токов, чтобы установить причины возникновения неисправности.

С электроприбора в квартире или доме

Опасное напряжение может появиться на корпусе бытового электроприбора, например, накопительного нагревателя воды (бойлера) или стиральной машины. Как правило, причина этого нарушение целостности одного из ТЕНов или механическое повреждение изоляции. К чему приведет пробой на корпус, зависит от системы заземления жилого помещения. Рассмотрим варианты с трехпроводным подключением стиральной машины в системе TN-C-S и двухпроводное подключение при заземлении TN-C.

Пробой на корпус в системах: А) TN-C-S; В) TN-CРисунок 3. Пробой на корпус в системах: А) TN-C-S; В) TN-C

Как видно из рисунка в случае пробоя на заземленный корпус ток утечки будет на шину-PE, что приведет к срабатыванию электромагнитной или тепловой защиты автоматического выключателя, установленного на линию питания электроустановки.

При двухпроводном подключении утечка тока не вызовет срабатывание АВ и стиральная машина будет продолжать работать, пока не образуется дифференциальный ток. Это может произойти в случае одновременного касания корпуса электроустановки и заземленного элемента конструкции здания или труб водоснабжения. Ток утечки в этом случае пойдет от корпуса через тело человека на землю (см. В рис.3). Величины тока в образованной цепи будет недостаточно для срабатывания АВ, но УЗО или диффавтомат обнаружит утечку и произведет отключение оборудования.

В скрытой электропроводке в доме или квартире

Причины утечки в скрытых проводках напрямую связаны со снижением уровня изоляции токоведущих жил кабеля. Это может быть вызвано следующими причинами:

  1. Превышение допустимого срока службы проводки. Это довольно распространенное явление в домах возведенных 30-40 лет назад и более давних постройках. Согласно нормативным документам (в частности ВСН 58 88) срок эксплуатации срытых электропроводок, выполненных кабелем с медными токоведущими жилами, не может превышать 40 лет. Для алюминиевых проводов установлен срок службы не более 30 лет.
  2. Нарушения режимов эксплуатации. Если проводка подвергалась перегрузке, то велика вероятность разрушения изоляции вследствие нагрева токоведущих жил.
  3. Механические повреждения изоляции провода. Они могут быть нанесены из-за не соблюдения технологии монтажных работ или впоследствии при сверлении стен.

Причины повреждения изоляции кабеля скрытой проводкиПричины повреждения изоляции кабеля скрытой проводки

Не следует надеяться на постоянную величину сопротивления изоляции, при малейших подозрениях следует проверить этот показатель.

В автомобиле

Рассматриваемое нами явление нередко наблюдается и в электросети автомобиля. Причем вероятность утечки может не зависеть марки авто и его состояния. Результат потери тока во всех случаях приводит к одному итогу – разряду аккумулятора. Предлагаем рассмотреть наиболее вероятные причины утечки тока в электрической сети автотранспортного средства.

С аккумулятора

Основные функции АКБ заключаются в запуске мотора автомобиля и обеспечении питания внутренней сети, в тех случаях, когда генератор не справляется с этой задачей. Подзарядка аккумуляторной батареи производится в процессе работы двигателя, также вращающего генератор. У припаркованной машины с выключенным ДВС разряд АКБ происходит за счет питания подключенной электроники (например, сигнализации) и допустимого тока утечки.

Если недавно заряженный аккумулятор быстро разрядился, не спешите сваливать на него всю вину, вполне возможно, что произошло превышение допустимой величины утечки по следующим причинам:

  1. Повреждение изоляции бортовой сети, КЗ в блоке предохранителей.
  2. Неправильно подключенная электроника и/или сигнализация потребляет ток сверх установленной нормы.
  3. Загрязнение или окисление клемм аккумулятора.
  4. Подключение дополнительных электрических приборов.

Плохой контакт клемм АКБ - одна из причин ее быстрого разрядаПлохой контакт клемм АКБ — одна из причин ее быстрого разряда

Как измерить заряд автомобильного аккумулятора и его утечку, было описано на нашем сайте.

Через генератор

Как показывает практика, довольно часто причина утечки через генератор связана с «пробитием» одного из диодов выпрямительного блока. На представленном ниже рисунке приведена упрощенная схема подключения АКБ к генератору, в котором «пробит» один из силовых диодов.

Путь тока утечки через поврежденный выпрямительный диодПуть тока утечки через поврежденный выпрямительный диод

Как производить поверку генератора, можно прочитать на нашем сайте.

Через сигнализацию

Практически все современные системы охраны для понижения потребления электричества с целью снижения разряда батареи переходят в режим «сна». Иногда может возникнуть сбой ПО или произойти другая неисправность, устранить которую довольно сложно. В результате сигнализация потребляет ток сверх допустимой нормы, что приводит к разряду АКБ. Особенно в этом замечена китайская продукция.

С диодов, транзисторов, конденсаторов

В данных радиоэлементах всегда присутствует незначительный уровень тока утечки, его показатели указываются в даташит к каждому компоненту. При выходе из строя транзистора, диода или конденсатора этот показатель может существенно увеличиться.

Последствия

Как мы уже говорили, протекание дифференциальных токов происходит даже при наличии изоляции должного уровня. Из-за их низкой величины не возникает деструктивных последствий. Ситуация в корне изменяется, когда утечка превышает допустимую норму. В таких случаях возможны следующие последствия:

  • Угроза поражения электротоком.
  • Вероятность возникновения пожара.
  • Протекание дифференциального тока в сети приводит к тому, что даже при отключенных потребителях электроэнергии по показаниям приборов учета будет наблюдаться расход электричества.
  • Электрический ток, проходя через неизолированные токопроводящие конструкции, вызывает их ускоренную коррозию. Что можно наглядно наблюдать на клеммах аккумуляторных батарей.
  • Утечка в бортовой сети автомашины может вызвать воспламенение проводки и практически всегда становится причиной разряда аккумуляторной батареи, что создает проблемы цепи зажигания.

Перечисленных последствий вполне достаточно, чтобы осознать опасность дифференциального тока, поэтому поговорим о способах защиты и устранении утечки.

Средства защиты

Самый надежный способ защиты в рассматриваемой ситуации – установка на линию питания УЗО или диффавтомата. Эти устройства произведут разрыв цепи питания, как только произойдет утечка, останется только приступить к ее поиску и устранению.

Не менее эффективно действует подключение корпусов электрических приборов к шине заземления (PE), если имеется такая возможность.

Найти подробную информацию по выбору и установке УЗО, АВ, диффавтоматов, а также получить сведения о заземлении электрооборудования, Вы сможете на нашем сайте.

Как проверить и найти ток утечки своими руками

Приведем несколько косвенных способов, позволяющих обнаружить утечку:

  • Если при отключении от сети всех постоянных потребителей электрической энергии, счетчик продолжить регистрировать расход электроэнергии, значит необходимо приступать к поиску и устранению неисправности. То есть, ищите утечку.
  • При наличии бойлера вода, поступающая с кранов, вызывает ощущение прохождения электричества.
  • Срабатывает защита УЗО или диффавтомата.
  • В системе TN-C-S происходит отключение АВ.
  • Быстро разряжается аккумулятор автомобиля.

Теперь перейдем к более точным измерениям, для этого могут понадобиться следующие инструменты:

  • Простой или бесконтактный пробник напряжения. С их помощью можно определить наличие напряжения на корпусе бытовых приборов или смесителях, то есть, обнаружить утечку.
  • Токоизмерительные клещи, вместо них можно использовать мультиметр с режимом амперметра. При помощи этих инструментов снимаются показания амперметра, что позволяет измерить дифференциальные токи. После проведения измерений показатели прибора (амперметра) сравниваются с допустимыми параметрами. Обратим внимание, что контакты амперметра могут быть не приспособлены для замера больших величин, в таких случаях токовые клещи более удобны.
  • Авометр (необходим для проверки изоляции). Диапазон измерения выставляется в мегаомах, если сопротивление несколько сот кОм, то это говорит о недостаточной изоляции.

И несколько видео по теме (пример того, как искать утечку тока в автомобиле):

Внимание! Измерение сопротивления должно проводиться при полном отключении источника питания, то есть нуля и фазы для переменно напряжения и плюса и минуса в системах постоянных токов. Рекомендуется перед проверкой изоляции провести замеры в режиме измерения постоянного или переменного напряжения (в зависимости от типа сети).

Советуем также почитать:

Ток утечки в электрических сетях

Во-первых, для возникновения «утечки» току необходима замкнутая электрическая цепь, как и любому току проводимости. И нагрузкой здесь может стать практически любой проводящий объект: тело человека, ванна, труба, часть корпуса электроустановки и т. д. А если ток утечки оказывается чрезмерно большим, то может возникнуть опасность для здоровья людей. Вот почему необходимо иметь представление о данном явлении.


Схематически на рисунке изображен путь, который ток утечки проложил себе по телу человека. Почему ток пошел по телу в данном примере? Потому что сопротивление между корпусом и токоведущими частями установки по какой-то причине уменьшилось. Если корпус установки с поврежденной изоляцией заземлен, то ток утечки двинется к земле, и в месте контакта корпуса с землей из-за разогрева может случиться возгорание.



Ток утечки на землю разогреет место крепления провода заземления к корпусу, это и опасно пожаром. Если такое случится например на объекте горнодобывающей промышленности, где высока вероятность обильного выделения горючих взрывоопасных газов или иных легко воспламеняющихся веществ, это может привести к большой трагедии.




Как защитить от поражения электрическим током Вы можете прочитать здесь.



Для сетей с глухозаземленной нейтралью вышеописанная проблема, к сожалению, типична. Но есть и другая не менее опасная возможность. Для трехфазных сетей с изолированной нейтралью характерна утечка тока между фазами по земле через изоляторы, корпус, опоры ЛЭП, в случае если повреждена изоляция хотя бы одной из фаз.


Сопротивление параллельно соединенных изоляторов и опор уменьшается пропорционально их количеству, и при поврежденной изоляции шаговое напряжение может превысить безопасное для человека значение. В любом случае, если норма тока утечки превышена, необходимо срочно осуществить поиск источника неисправности и устранить утечку.


Итак, величина тока утечки связана с сопротивлением изоляции проводников, которое может быть как очень большим, так и малым при нарушенной изоляции. Так или иначе, через любую изоляцию всегда протекает хоть и очень мизерный, но реальный ток от токоведущей части установки, находящейся в данный момент под напряжением, к заземлению или к другой фазе.


Безопасное значение тока утечки регламентировано, его можно посмотреть в документации на соответствующее оборудование, но по причине работы устройства в агрессивной внешней среде, изоляция может повредиться, и ток утечки тогда возрастет. Для защиты от неприятных последствий необходимо применять «устройства защиты от токов утечки на землю».

Поделиться записью

Ток утечки — это… Что такое Ток утечки?

2.2.13 Ток утечки — ток, протекающий в землю или на сторонние проводящие части в электрической цепи при отсутствии повреждения.

3.1.2 ток утечки: Ток, который протекает в землю или на сторонние проводящие части в электрически неповрежденной цепи.

3.1.2 ток утечки: Ток, который протекает в землю или на сторонние проводящие части в электрически неповрежденной цепи.

1.18. Ток утечки — ток, который протекает от токоведуших частей через изоляцию к оболочке ТЭН.

29 Ток утечки

[195-05-15] [826-11-20]

Электрический ток, протекающий по нежелательным проводящим путям в нормальных условиях эксплуатации

ток утечки

(leakage current):

Электрический ток, протекающий по нежелательным проводящим путям при нормальных условиях функционирования.

поражение электрическим током

(electric shock):

Физиологический эффект от воздействия электрического тока при его прохождении через тело человека или животного.

826-12-04

[195-06-04]

3.3.125 ток утечки : Ток, который протекает в землю или на сторонние проводящие части в электрически неповрежденной цепи.

[ГОСТ 30331.1-95/ГОСТ Р 50571.1-93. пункт 3.23]

2.1.2 Ток утечки — ток, который протекает в землю или на сторонние проводящие части в электрически неповрежденной цепи.

3.20 ТОК УТЕЧКИ: Любой ток в сигнальной цепи детектора и/или ИЗМЕРИТЕЛЬНОЙ СИСТЕМЫ, который не создается ионизацией в ионизационной камере.

3.23 Ток утечки — ток, который протекает в землю или на сторонние проводящие части в электрически неповрежденной цепи.

Ток утечки

Электрический ток, проходящий за счет разности потенциалов по струе огнетушащего вещества и обусловленный ее диэлектрическими свойствами

Ток утечки

В сети с изолированной нейтралью и сети постоянного тока — ток, протекающий между находящейся под напряжением фазой (полюсом) и землей в результате снижения сопротивления изоляции; в сети с глухозаземленной нейтралью — ток, протекающий по участку сети параллельно току в нулевом проводе, а при отсутствии нулевого провода — ток нулевой последовательности

ГОСТ 12.4.155-85

3.35 ток утечки: Электрический ток, проходящий за счет разности потенциалов по струе огнетушащего вещества и обусловленный ее диэлектрическими свойствами.

3.23 Ток утечки — ток, который протекает в землю или на сторонние проводящие части в электрически неповрежденной цепи.

Смотри также родственные термины:

3.2.14. ток утечки (в установке) [leakage current (in an installation)]:

Электрический ток, протекающий на землю или на сторонние проводящие части в электрической цепи при отсутствии повреждений.

(МЭС 195-05-15, MOD).

Примечание 1. — Этот ток может иметь место при использовании емкостных компонентов, включая конденсаторы.

Примечание 2. — Значения тока утечки могут различаться в горячем и холодном состоянии изоляции.

3.42 ток утечки IPE (residual current IPE): Ток, протекающий через вывод РЕ, когда на УЗИП подано максимальное длительное рабочее напряжение (Uс), с соединениями без нагрузки, выполненными согласно указаниям изготовителя.

Определения термина из разных документов: ток утечки IPE

3.1 ток утечки в сети: Ток между находящейся под напряжением фазой и землей вследствие снижения сопротивления изоляции.

3.1 ток утечки в сети: Ток между находящейся под напряжением фазой и землей вследствие снижения сопротивления изоляции.

3.25 Ток утечки в сети постоянного токаток, протекающий между полюсом и землей в сети постоянного тока.

3.25 Ток утечки в сети постоянного токаток, протекающий между полюсом и землей в сети постоянного тока.

3.26 Ток утечки в сети с заземленной нейтральюток, протекающий по участку электрической цепи, соединенному параллельно с нулевым рабочим проводником, а при отсутствии нулевого рабочего проводника — ток нулевой последовательности.

3.26 Ток утечки в сети с заземленной нейтральюток, протекающий по участку электрической цепи, соединенному параллельно с нулевым рабочим проводником, а при отсутствии нулевого рабочего проводника — ток нулевой последовательности.

3.3.126 ток утечки в сети с изолированной нейтралью : Ток протекающий между фазой и землей в сети с изолированной нейтралью.

[ГОСТ 30331.1-95/ГОСТ Р 50571.1-93. пункт 3.24]

3.24 Ток утечки в сети с изолированной нейтральюток, протекающий между фазой и землей в сети с изолированной нейтралью.

5.1. Ток утечки в сети с изолированной нейтралью и сети постоянного тока — ток, протекающий между находящейся под напряжением фазой (полюсом) и землей в результате снижения сопротивления изоляции.

3.10 Ток утечки в электрической сети с заземленной нейтралью — ток, протекающий по участку электрической цепи, соединенному параллельно с нулевым рабочим проводником, а при отсутствии нулевого рабочего проводника — ток нулевой последовательности.

3.24 Ток утечки внести с изолированной нейтральюток, протекающий между фазой и землей в сети с изолированной нейтралью.

47. Ток утечки диэлектрика

Ток утечки

Ток в диэлектрике, обусловленный приложением не изменяющегося во времени электрического напряжения

60. Ток утечки конденсатора

D. Reststrom

E. Leakage current

F. Courant de fuite

Ток проводимости, проходящий через конденсатор при постоянном напряжении

10. Ток утечки между катодом и подогревателем

Ток, протекающий между катодом и подогревателем прибора, у которого отсутствует электрический контакт между подогревателем и катодом

45. Ток утечки на выходе оптопары (оптоэлектронного коммутатора)

Ток утечки

Leakage current

Iут.вых

Значение тока, протекающего в выходной цепи оптопары (оптоэлектронного коммутатора) в заданном режиме в закрытом состоянии

Ток утечки на выходе оптоэлектронного коммутатора

45

3.1.2 ток утечки на землю (earth leakage current): Ток, который протекает от токоведущих частей электроустановки в землю в отсутствие повреждения изоляции.

3.1.2 ток утечки на землю (earth leakage current): Ток, который протекает от токоведущих частей электроустановки в землю в отсутствие повреждения изоляции

3.42 ток утечки по струе огнетушащего вещества: Электрический ток, проходящий за счет разности потенциалов по струе огнетушащего вещества, во время проведения специальных испытаний.

3.42 ток утечки по струе огнетушащего вещества : Электрический ток, проходящий за счет разности потенциалов по струе огнетушащего вещества во время проведения специальных испытаний.

31. Ток утечки по струе ОТВ

Электрический ток, проходящий за счет разности потенциалов по струе огнетушащего вещества

3.1.29 ток утечки по струе ОТВ : Электрический ток, проходящий за счет разности потенциалов по струе огнетушащего вещества (ГОСТ 27.002).

2.3.3. Ток утечки схемы переключения (переключателя) аналоговых сигналов во включенном состоянии I(lkg.on)

Ток на выводе входа (или выхода) сигнала, возникающий в результате приложения напряжения между выводом входа (или выхода) сигнала и общим контрольным выходом схемы, когда переключатель находится во включенном состоянии.

Примечания:

1. Из-за низкого сопротивления переключателя во включенном состоянии измеренные значения на выводах входа и выхода практически одинаковы. Поэтому задают только одно значение, которое можно измерять на выводе входа или выхода.

2. При отсутствии неопределенности можно использовать обозначение II/O (on).

2.3.1. Ток утечки схемы переключения (переключателя) аналоговых сигналов на входе в состоянии «выключено» II (lkg.off)

Ток на выводе входа сигнала, возникающий в результате приложения напряжения между выводом входа сигнала и общим контрольным выводом схемы, когда переключатель находится в выключенном состоянии.

Примечание. При отсутствии неопределенности можно использовать обозначение II (off).

2.3.2. Ток утечки схемы переключения (переключателя) аналоговых сигналов на выходе в состоянии «выключено» IO (lkg.off)

Ток на выводе выхода сигнала, возникающий в результате приложения напряжения между выводом выхода сигнала и общим контрольным выводом схемы, когда переключатель находится в выключенном состоянии.

Примечание. При отсутствии неопределенности можно использовать обозначение IO (off).

45. Ток утечки ФППЗ

Ток между одиночными электродами, одиночным электродом и группой электродов или группами электродов, измеренный в статическом режиме работы фоточувствительного прибора с переносом заряда при заданной разности потенциалов между ними

1. Ток утечки электроприбора

Ток, возникающий при нормальной эксплуатации электроприбора между токоведущими частями и корпусом прибора

Словарь-справочник терминов нормативно-технической документации.
academic.ru.
2015.

Что такое утечка тока и как ее найти?

Причины возникновения утечки тока в квартире и доме. Методы поиска токовой утечки и варианты защиты домашней электросети от данного явления.

Утечка тока в землю – довольно популярное и ходовое понятие. Большинство людей пользуются им в разговорном обиходе, но далеко не каждый понимает его физическую сущность и до конца не осознает масштаб пагубных последствий этого явления. Для людей, не сведущих в тонкостях электротехники, достаточно будет знать, что под данным понятием следует понимать протекание тока от фазы в землю по нежелательному и не предназначенному для этого пути, то есть по корпусу оборудования, металлической трубе или арматуре, сырой штукатурке дома или квартиры и другим токопроводящим конструкциям. Условиями возникновения утечек является нарушение целостности изоляции, которое может быть вызвано старением, термическим воздействием, как правило, вызванным перегрузкой электрооборудования или механическим повреждением. В этой статье мы расскажем читателям сайта Сам Электрик, чем опасна утечка тока в квартире, какие причины ее возникновения и меры защиты в домашних условиях. Содержание:

Чем она опасна?

Электрическая изоляция не может быть идеальной, поэтому при работе потребителя электроэнергии, даже в случае ее полной исправности, утечка тока всегда имеет место, величина которой имеет мизерное значение и не представляет опасности для человека. В случае частичного или полного нарушения изоляции, значения токовых утечек возрастают и могут быть серьезной угрозой здоровью и жизни людей. Проще говоря, в случае потери сопротивления изоляции при прикосновении к корпусу электротехнического устройства, кабельной оболочке, штепсельной вилке или розетке, трубе водопровода или отопительной системы, стене дома или квартиры, человеческое тело выступит в роли проводника, через который пройдет протекание токов утечки в землю. Последствия могут быть самыми печальными, вплоть до летального исхода.

 

Не стоит забывать о том, что наличие утечки в электрохозяйстве дома и квартиры может влиять на потребление электрической энергии. При наличии данного явления в проводке, даже в случае отключения всех потребителей, электрический счетчик будет фиксировать расход электричества.

Характерные признаки

Обладая понятием, что такое утечка электричества, причинами возникновения и сопутствующим опасными последствиями, хозяину дома или квартиры не мешает знать, как определить электрооборудование с пониженным сопротивлением изоляции. Для начала следует твердо усвоить, если при прикосновении к электрическому прибору, к трубопроводам или стенам в помещении, ощущается даже едва уловимое воздействие электричества, в электросети дома или квартиры имеет место утечка тока. Потеря сопротивления изоляции может произойти, как в неисправных потребителях электроэнергии, так и в проводке. Частый признак опасного явления — когда в ванной бьет током.

Как определить, поврежден ли электроприбор?

Классическим средством измерения сопротивления изоляции является мегомметр, но, так как такой прибор в домашнем обиходе вещь довольно редкая, для этой цели можно использовать простейшие и доступные средства измерения, такие как индикатор напряжения и мультиметр.

Другой вариант — проверить утечку тока индикатором напряжения. Такой способ проверки можно использовать в том случае, если проверяемый электроприбор имеет металлическую оболочку. В случае, когда есть сомнения в исправности и безопасности пользования прибором, наличие или отсутствие утечки можно проверить отверткой-индикатором, предназначенным для поиска фазы в сети. Для этого необходимо при включенном потребителе прикоснуться жалом отвертки-индикатора к металлическому корпусу электротехнического устройства, если произойдет даже слабое срабатывание индикации фазоискателя, проверяемый потребитель неисправен и представляет опасность. Более подробно о том, как использовать индикаторную отвертку, мы рассказали в отдельной статье.

Утечка тока на корпус в приборе с металлической оболочкой может быть вызвана не только потерей сопротивления изоляции. Причиной этого может служить обрыв перемычки заземляющей металлический корпус изделия, в том случае, если предусмотрена система заземления.

Важно! Во время проверки необходимо соблюдать осторожность и исключить прикосновение руками металлического корпуса изделия и жала отвертки.

Проверка мультиметром. Проверка сопротивления изоляции мультиметром производится только на обесточенном оборудовании. Перед проверкой измерительный прибор необходимо переключить в режим измерения сопротивления на отметке 20 МОм. Щуп мультиметра зафиксировать на корпусе проверяемого изделия, второй на одном из контактных штырей вилки. Такую же операцию необходимо проделать для второго контактного штыря и с заменой полярности щупов. На исправном электрооборудовании на шкале измерительного прибора должна высвечиваться бесконечность. В противном случае электрооборудованием пользоваться нельзя, его необходимо либо сдать в ремонт, либо утилизировать. Инструкцию по эксплуатации мультиметра мы также рассмотрели на сайте.

Проверка мегомметром. Порядок проверки такой же, как в случае с мультиметром. Пользуясь мегомметром, необходимо помнить, что при вращении его рукоятки на выходе этого прибора генерируется напряжение от 500 до 1000 Вольт, которые могут безвозвратно вывести из строя слаботочные электронные элементы оборудования.

О том, как пользоваться мегаомметром, мы рассказывали в отдельной статье на сайте!

Поиск проблемы в электропроводке

Утечка в скрытой проводке дома или квартиры может вызвать поражение электрическим током во время штукатурки стен или клейки обоев. Как ее обнаружить без привлечения специалистов и использования специальных приборов. Существует проверенный способ проверки утечки в скрытой проводке дома или квартиры с использованием транзисторного радиоприемника, имеющего средневолновый и длинноволновый диапазоны приема. Перед проверкой необходимо выключить все потребители электроэнергии. Далее необходимо пройтись с приемником, предварительно настроенным на частоту, на которой нет вещания радиостанций, в непосредственной близости от стен в местах прокладки проводки. При приближении к проблемному месту динамик приемника начнет характерно фонить.

Средства защиты

Для того чтобы гарантированно исключить в доме случаи элктротравматизма, необходимо обустроить домашнюю электрическую сеть средствами защиты от утечек, в качестве которых в настоящее время находят широкое применение устройства защитного отключения (УЗО) и дифференциальные автоматы. О том, как выбрать УЗО по току, мы рассказывали в отдельной статье.

Альтернативный вариант — использовать дифференциальный автомат, который совмещает УЗО и автоматический выключатель. Дифавтомат также поможет защититься от неблагоприятного явления, т.к. моментально сработает и обесточит сеть при возникновении опасности.

Более подробно узнать о том, для чего нужно использовать УЗО, рассказывается в видео:

Вот мы и рассмотрели, что такое утечка тока в квартире и доме, какие причины ее возникновения, а также меры защиты в домашних условиях. Надеемся, информация была для вас полезной и интересной!

Будет полезно прочитать:

  • Что опаснее: переменный или постоянный ток
  • Основные неисправности электропроводки
  • Как определить короткое замыкание в сети

Нравится0)Не нравится0)

защита, опасность, признаки, причины и способы устранения

Содержание статьи:

При превышении нагрузки в замкнутой электросети иногда возникает утечка тока. Нагрузкой становятся различные проводящие объекты – человеческое тело, батареи, ванна, электрические приборы. Чрезмерно большой ток утечки представляет опасность для жизни, имеет риски повреждения бытовой техники. По этой причине стоит разобраться, как обнаружить и защититься от явления.

Что такое утечка тока

Схема поражения человека электричеством

В ГОСТах 61140-2012 и 30331.1-2013 дано определение понятия. Токовая утечка – это протекание электротока в грунт, к открытым, проводящим, сторонним предметам или защитным проводникам в нормальных рабочих условиях.

Ток направляется от фазы к земле по непредназначенному для этого маршруту:

  • корпусу бытового оборудования – стиральных или посудомоечных машин, бойлеров, электрических плит;
  • металлическим трубам водопроводной или газопроводной магистрали;
  • сырому штукатурному слою квартиры или дома;
  • иным токопроводящим путям.

Явление возникает в условиях повреждения изоляции в процессе старения, перегрузки домашнего оборудования или механических повреждений проводки.

Направленность тока при утечке 

Ток утечки в землю

Направление токов зависит от типа заземления:

  • Изолированная нейтраль IT – утечка осуществляется через изоляционный слой к токопроводящим элементам. С них по проводникам она отводится в область растекания.
  • Схема TN с глухим заземлением нейтрали – утечка проходит по REN-шине до вводного устройства защиты.
  • Система ТТ – утечка выполняется через основную изоляцию от токоведущих до открытых проводящих элементов. По проводнику и заземлителю ток направляется в локальный грунт.

Направление и путь тока в схемах IT и ТТ одинаковы.

Причины возникновения утечки тока

Утечка возникает даже при функционировании оборудования в штатном режиме, но опасность появляется, когда превышен предел дифференциального тока. Допустимая норма может увеличиваться в нескольких случаях.

С электроприбора в квартире или доме

Пробой на корпус в системах: А) TN-C-S, В) TN-C

Напряжение возникает на корпусе бытовой техники (чаще всего водонагревателя или машинки-автомат). Причина заключается в повреждениях ТЭНа или разрывах изоляции. В трехпроводной или двухпроводной схеме подключения оборудования явление проявляется по-разному:

  • Трехпроводное подключение прибора по схеме TN-C-S. При пробоях заземленного корпуса утечка направляется на шину PE. Электромагнитная или тепловая защита автовыключателя на линии питания активируется.
  • Двухпроводное подключение прибора с заземлением типа TN-C. Утечка не приведет к срабатыванию автовыключателя и техника продолжит работать до момента образования дифференциального тока. Явление произойдет при касании к корпусу, элементу здания или труб водоподачи. Проводником утечки от прибора к земле будет человек.

Наибольшую опасность для жизни представляет двухпроводной тип подключения.

В скрытой проводке в доме или квартире

Повреждение изоляции кабеля скрытой проводки

При скрытой организации проводки существуют риски повреждения изолированных жил кабеля. Они происходят в таких случаях:

  • Превышение нормативного срока эксплуатации. Квартира в доме застройки 50-90-х годов ХХ века оснащается алюминиевой или медной проводкой. Согласно ВСН 58-88 медные токоведущие жилы заменяются 1 раз в 30 лет, алюминиевые – 1 раз в 30 лет.
  • Неправильное использование. Перегрузка электросети приводит к нагреву и разрушению изоляции кабеля питания.
  • Механические повреждения проводников тока. Возникают, когда нарушена технология монтажа или неправильно просверливались стены.

Изоляция имеет постоянную величину сопротивления, но при подозрениях на утечку ее необходимо проверить.

Чем опасна утечка

Поражение человека током

Если изоляционный слой теряет сопротивление, человек, прикоснувшись к корпусу бытовой техники, оболочке провода, вилке штепсельного типа, розетке, трубе водопровода или отопления, стен жилого здания, выступит в роли проводника. Через его тело ток утечки поступит в землю. При этом существуют риски частичного поражения или летального исхода.

Токовая утечка повлияет на качество энергопотребления. В доме могут не работать некоторые потребители, но даже при выключенном состоянии техники на электросчетчике отразиться затрата электричества.

Заземление электроприборов предотвратит удары тока при касании к корпусу. В этом случае точка фиксации проводящего кабеля начнет интенсивно выделять тепло, что станет причиной возгорания проводки.

Характерные признаки

Путь тока утечки через поврежденный выпрямительный диод

Узнать токовую утечку можно по следующим признакам:

  • легкое покалывание при касании к стенке, трубам, бытовой техники;
  • увеличенный расход электроэнергии без видимых причин;
  • начинает выбивать пробки при включении нескольких приборов;
  • помехи и шумы от работающего радиоприемника;
  • электроприборы при включении в сеть не работают;
  • удары тока в ванной при проведении водных процедур.

Для устранения явления нужно выявить его причину.

Как проверить и найти ток утечки своими руками

Индикаторная отвертка

В домашних условиях можно применить простой метод – проверку утечки измерительными приборами.

Индикаторная отвертка

Инструментом можно найти фазу на предметах-проводниках. Кончиком отвертки необходимо прикоснуться к различным участкам. Загорание лампочки свидетельствует о нарушении изоляционного слоя.

Работа с мультиметром

Прибор используется в режиме омметра для уточнения показателей сопротивления. Понадобится включить мультиметр, перевести его на омметр, щупами посмотреть показатели между корпусами техники и каждым из штырей. Об утечке свидетельствует величина больше 20 мОм.

Показатель меньше 5 мА не является опасным при надежном заземлении электроприборов.

Прозвонка мегаомметром

Бытовую технику понадобится отключить от сети. Поскольку прибор умеет находить повреждения на нечувствительном к напряжению оборудовании, понадобится прикоснуться к нему щупами. Вращая рукоятку, генерируют напряжение. Утечка выявляется если сопротивление более 20 мОм.

При резком скачке напряжения от 500 до 1000 В слаботочная электроника выходит из строя.

Как определить, поврежден ли электроприбор

Приборы с металлическим корпусом при попадании на них фазного напряжения становятся опасными для жизни. Определить утечку можно так:

  • Прикоснуться отверткой с неоновым индикатором к неокрашенной металлической части. Слабое свечение лампочки говорит об утечке. Проверка проводится на двух полярностях подключения.
  • Выключить оборудование, достав вилку из сети. Выключатель в помещении привести в рабочий режим. Одним щупом мультиметра прикоснуться к прибору, другим – к розетке. Измерения производятся в обеих полярностях.

Не касайтесь руками бытовой техники.

Поиск проблем в электропроводке

Поврежденная цепь скрытой проводки часто становится причиной поражения током при ремонтно-отделочных работах. Наличие утечки легко проверить транзисторным радиоприемником.

Устройство настраивают на улавливание средней и длинной волны, прослушку станции в режиме молчания. Радиоприемник включают на полную громкость и начинают поиск, проводя им практически по стене. Шумы динамика и фоновые помехи говорят о повреждении коммуникаций.

Средства защиты

Устройство защитного отключения (УЗО)

Чтобы обезопасить себя от поражения током, а бытовую технику от поломок, используются следующие методы защиты:

  • заземление всех домашних приборов и устройств;
  • установка ШДУП (шины дополнительного выравнивания потенциалов) в ванной комнате;
  • установка УЗО, который реагирует на суммарные показания около 100 мА и быстро выключает приборы;
  • установка дифавтомата, отключающего электричество только на поврежденных участках;
  • замена распаечных колодок в щитке и соединение их качественными клеммами;
  • прокладка новой электрической линии с качественной изоляцией.

Организация защиты требует соблюдения норм безопасности и профессиональных навыков, поэтому понадобится помощь специалистов.

Обнаружение утечки тока позволит защитить человека от травм или смерти, предотвратит поломки техники. Самостоятельные изменения стоит проводить с соблюдением техники безопасности, а линию защиты организовывать с задействованием квалифицированных электриков.

Понятие «ток утечки»: y_kharechko — LiveJournal

В стандарте МЭК 60050-195 «Международный электротехнический словарь. Часть 195. Заземление и защита от поражения электрическим током» определён термин «ток утечки»: электрический ток в нежелательном проводящем пути при нормальных условиях оперирования. В другой части Международного электротехнического словаря (МЭС) – стандарте МЭК 60050-826 «… Часть 826. Электрические установки» этот термин определён аналогично. В рассматриваемом определении точно установлены условия протекания тока утечки. Однако определение термина не содержит такой же однозначной информации о пути, по которому он протекает.
В ранее действовавшем стандарте МЭК 60050-826:1982 был определён термин «ток утечки (в установке)»: ток в цепи, который при отсутствии повреждения, протекает в землю или в сторонние проводящие части.
Рассматриваемый термин определён и в других частях МЭС. В стандарте МЭК 60050-151 «… Часть 151. Электрические и магнитные устройства» термину «ток утечки» дано следующее определение: электрический ток в нежелательном проводящем пути ином, чем короткозамкнутая цепь. Это определение не содержит никакой информации ни об условиях, ни о путях протекания тока утечки. Более того, определению соответствует ток замыкания на землю, когда замыкание на землю произошло через какое-то сопротивление.
В стандарте МЭК 60050-442 «… Часть 442. Электрические аксессуары» термин «ток утечки на землю» определён так: ток, протекающий из частей, находящихся под напряжением, установки в землю при отсутствии повреждения изоляции. В этом определении указаны и условия, при которых протекает ток утечки, и основной путь его протекания.
В стандарте МЭК 61140 «Защита от поражения электрическим током. Общие положения для установки и оборудования», МЭК 60519-1 «Безопасность в электронагревательных установках. Часть 1. Основные требования» и других использовано определение термина «ток утечки», заимствованное из стандарта МЭК 60050-195.
Стандарт МЭК 60519-2 «… Часть 2. Специальные требования для оборудования резистивного нагрева» определил термин «ток утечки (в установке)» на основе определения из стандарта МЭК 60050-195: электрический ток, который протекает в землю или в сторонние проводящие части при нормальных условиях оперирования. Помимо указания условий протекания тока утечки, рассматриваемое определение устанавливает основные пути его протекания.
Определение термина «ток утечки» в стандартах МЭК 60050-195, МЭК 60050-826 и МЭК 60050-151 имеет теоретический вид, мало пригодный для применения в нормативной документации, устанавливающей требования к низковольтным электроустановкам. Кроме того, определения из указанных стандартов содержат ключевое словосочетание «нежелательный проводящий путь», которое нуждается в подробном разъяснении. Более приемлемыми для использования в нормативной документации являются определения терминов «ток утечки (в установке)» из стандартов МЭК 60050-826:1982 и МЭК 60519-2, «ток утечки на землю» из стандарта МЭК 60050-442. На основании этих определений можно разработать определение общего термина «ток утечки» для национальной нормативной документации. Рассмотрим ключевые моменты.
Из представленных определений следует, что ток утечки имеет место при нормальных условиях оперирования, когда изоляция частей, находящихся под напряжением, электроустановки или электрооборудования не имеет повреждений. Такие условия называют нормальными условиями. Ток утечки протекает из частей, находящихся под напряжением, в землю или сторонние проводящие части. При этом следует учитывать, что ток утечки электрооборудования класса I протекает из частей, находящихся под напряжением, в его открытые проводящие части и присоединённые к ним защитные проводники.
Сопротивление изоляции частей, находящихся под напряжением, электрооборудования не может быть бесконечно большим, а их ёмкость относительно земли или соединённых с землёй проводящих частей не может быть равной нулю. Поэтому при нормальных условиях из любой части, находящейся под напряжением, в землю, а также в проводящие части, электрически соединённые защитными проводниками с заземляющим устройством низковольтной электроустановки и с заземлённой частью, находящейся под напряжением, источника питания, постоянно протекает небольшой электрический ток, который в нормативной документации называют током утечки.
Путь, по которому протекает ток утечки, зависит от типа заземления системы. В низковольтных электроустановках, соответствующих типам заземления системы TT и IT, ток утечки электрооборудования класса I через неповреждённую основную изоляцию протекает из частей, находящихся под напряжением, в открытые проводящие части. Из открытых проводящих частей по защитным проводникам, главной заземляющей шине, заземляющим проводникам и заземлителю ток утечки протекает в землю. Если низковольтная электроустановка соответствует типам заземления системы TN-C, TN-S и TN-C-S, то большая часть тока утечки протекает не в землю, а по защитным проводникам и по PEN-проводникам низковольтной электроустановки и распределительной электрической сети протекает к заземлённой части, находящейся под напряжением, источника питания.
Ток утечки электрооборудования классов 0, II и III протекает по менее определённому проводящему пути, например, – через оболочку электрооборудования в землю или сторонние проводящие части. Причём частью проводящего пути может быть тело человека, который держит в руках переносное электрооборудование или находится в электрическом контакте с доступными частями передвижного или стационарного электрооборудования. Ток утечки может протекать через полы, стены и другие элементы здания, если по каким-то причинам (например, из-за повышенной влажности) их сопротивление резко уменьшилось, а также по иным нежелательным проводящим путям.
Токи утечки всегда имеют место в электрических цепях при нормальных условиях. Их значения в конечных электрических цепях мало зависят от типа заземления системы и редко превышают несколько десятков миллиампер (обычно не более 10 мА). Если в низковольтной электроустановке применяют электрооборудование, имеющее повышенные токи утечки (более 10 мА), то выполняют дополнительные электрозащитные мероприятия, посредством которых людей защищают от их негативного воздействия.
Для применения в национальной нормативной документации рассматриваемый термин целесообразно определить следующим образом:
ток утечки: Электрический ток, протекающий в землю, открытые, сторонние проводящие части и защитные проводники при нормальных условиях.
Именно так определён термин «ток утечки» в ГОСТ IEC 61140–2012 «Защита от поражения электрическим током. Общие положения безопасности установок и оборудования» (см. http://y-kharechko.livejournal.com/1016.html) и ГОСТ 30331.1–2013 (IEC 60364-1:2005) «Электроустановки низковольтные. Часть 1. Основные положения, оценка общих характеристик, термины и определения» (см. http://y-kharechko.livejournal.com/4077.html, http://y-kharechko.livejournal.com/7044.html).

Заключение. Токи утечки протекают при нормальных условиях, когда отсутствуют повреждения изоляции частей, находящихся под напряжением. Из частей, находящихся под напряжением, токи утечки протекают в землю, открытые, сторонние проводящие части и защитные проводники.

ток утечки — это… Что такое ток утечки?

 

ток утечки
Электрический ток, протекающий по нежелательным проводящим путям в нормальных условиях эксплуатации.
[ГОСТ Р МЭК 60050-195-2005]

ток утечки
Любые токи, включая емкостные токи, которые могут протекать между открытыми проводящими поверхностями прибора и землей или другими открытыми проводящими поверхностями прибора.
[ГОСТ IЕС 60730-1-2011]

ток утечки
Ток, который протекает в землю или на сторонние проводящие части в электрически неповрежденной цепи.
[ГОСТ Р 50807-95]

ток утечки
Электрический ток, протекающий в Землю, открытую и стороннюю проводящие части и защитный проводник при нормальных условиях.
Активное сопротивление изоляции токоведущих частей электрооборудования не может быть бесконечно большим, а их ёмкость относительно Земли или соединённых с Землёй проводящих частей не может быть равна нулю. Поэтому с любой токоведущей части, находящейся под напряжением, в Землю, а также в проводящие части, электрически соединённые защитными проводниками с заземляющим устройством электроустановки здания и с заземлённой токоведущей частью источника питания, постоянно протекает небольшой электрический ток, который в нормативной и правовой документации называют током утечки. В нормальном режиме электроустановки здания из токоведущих частей функционирующего электрооборудования всегда имеется утечка электрического тока в Землю, открытые и сторонние проводящие части и защитные проводники.
Путь, по которому протекает ток утечки, зависит от типа заземления системы. В электроустановках зданий, соответствующих типам заземления системы TT и IT, ток утечки электрооборудования класса I через неповреждённую основную изоляцию протекает из токоведущих частей в открытые проводящие части.


Из открытых проводящих частей по защитным проводникам, главной заземляющей шине, заземляющим проводникам и заземлителю ток утечки протекает в локальную землю. Если электроустановка здания соответствует типам заземления системы TN, преобладающая часть тока утечки протекает не в локальную землю, а по защитным проводникам и по PEN-проводникам электроустановки здания и низковольтной распределительной электрической сети протекает до заземлённой токоведущей части источника питания.
[http://www.volt-m.ru/glossary/letter/%D2/view/84/]

EN

leakage current
electric current in an unwanted conductive path other than a short circuit
[IEV number 151-15-49]


leakage current
electric current in an unwanted conductive path under normal operating conditions
Source: 151-03-35 MOD, 826-03-08 MOD
[IEV number 195-05-15]

FR

courant de fuite, m
courant électrique qui s’écoule à travers un chemin électrique non désiré autre qu’un court-circuit
[IEV number 151-15-49]


courant de fuite, m
courant électrique qui, dans des conditions normales de fonctionnement, s’écoule à travers un chemin électrique non désiré
Source: 151-03-35 MOD, 826-03-08 MOD
[IEV number 195-05-15]

Что такое ток утечки? — Sunpower UK

Sunpower Electronics обладает более чем 25-летним опытом торговли источниками питания, разрабатывая продукты для производства, чтобы предоставить нашим клиентам эффективные, мощные и долговечные решения. Если вы не уверены и нуждаетесь в поддержке по выбору правильного источника питания для вашего проекта, свяжитесь с нами сегодня. Мы предлагаем множество услуг, в том числе индивидуальные блоки питания, разработанные специально для ваших производственных проектов, или же вы можете просмотреть наш текущий ассортимент продукции.

Что такое ток утечки?

Ток утечки — это ток, который течет от цепи переменного или постоянного тока в оборудовании к шасси или к земле, и может быть от входа или выхода. Если оборудование не заземлено должным образом, ток течет по другим путям, например по телу человека. Это также может произойти, если заземление неэффективно или прерывается намеренно или непреднамеренно.

Где протекает ток утечки

Ток утечки в оборудовании протекает, когда возникает непреднамеренное электрическое соединение между землей и частью или проводником под напряжением.Земля может быть точкой отсчета нулевого напряжения или заземлением. В идеале ток, протекающий от блока питания, должен проходить через заземление и попадать в заземление установки.

Ток утечки в портативных компьютерах или устройствах, использующих двухконтактные вилки, в основном происходит через сигнальные кабели, подключенные к другому заземленному или незаземленному оборудованию, например, к принтерам. Другое оборудование обеспечивает путь к земле, если оно должным образом заземлено, или может вызвать поражение электрическим током любого, кто коснется открытых металлических частей, если оно не заземлено должным образом.

Утечка в устройствах в значительной степени связана с дефектами изоляторов или материалов, из которых изготовлен компонент, например, полупроводников и конденсаторов. Это приводит к небольшой утечке или протеканию тока через диэлектрик, в случае конденсатора.

Ток утечки в фильтрах ЭМС

Ток утечки в источниках питания может возникать из-за фильтров ЭМС, в которых используются конденсаторы Y между токоведущим и нейтральным проводниками. Это вызывает протекание некоторого тока утечки от нейтрали или токоведущего проводника к корпусу источника питания, который обычно соединен с заземлением.

Большинство производителей блоков питания указывают этот ток, который всегда должен быть ниже 3,5 мА в соответствии с правилами IEC-60950-1. Это гарантирует очень низкий ток и не может нанести вред человеку, который прикасается к корпусу источника питания или контактирует с ним. Источник питания с хорошим заземлением значительно снижает ток утечки, обеспечивая путь к земле с низким сопротивлением.

Ток утечки в фильтре ЭМС — Кредит изображения

Производители фильтров обычно указывают максимальный ток утечки, который может пропускать фильтр, но это только теоретические значения, и фактические значения могут отличаться от них, особенно если такие параметры, как напряжение или частота, изменяются.Чтобы получить точное значение тока утечки, рекомендуется измерить ток, который течет на землю во время работы фильтра.

Допустимые максимальные токи утечки

Существуют стандарты, которые определяют максимальные токи утечки, безопасные для человека в различных условиях. Они различаются в зависимости от области применения и типа возможного контакта, а также от типа заземления.

Разработчики должны гарантировать, что ток утечки не причинит вреда пользователям, которые касаются корпуса источника питания или подключенного оборудования.Все приложения имеют свой верхний предел тока, который должен течь. Медицинское оборудование и другое чувствительное оборудование должны иметь очень низкие токи из-за характера их применения и воздействия, которое они могут оказать.

Стандарты более строгие в медицинских приложениях, поскольку слабые пациенты более уязвимы для поражения электрическим током, которое может быть смертельным.

Типичные пределы тока утечки для приложения:

Информационные технологии

  • Постоянно подключен — 3.5 мА или более в некоторых приложениях
  • Передвижной или съемный, не переносной — 3,5 мА
  • Портативный — 0,25 мА

Медицинское оборудование

Допустимый ток утечки при нормальных условиях составляет 0,5 мА и 1 мА при условии единичного отказа. Ток утечки очень опасен, если он превышает допустимый безопасный предел. В медицине ситуация еще хуже из-за риска как для пациентов, так и для лиц, осуществляющих уход. Чтобы причинить вред, по телу человека должен пройти только небольшой ток, и он может быть фатальным для пациентов, чья иммунная система уже ослабла.Ознакомьтесь с нашими источниками питания для медицинского применения здесь.

Типичный ток утечки для оборудования различных классов

Оборудование класса I:

Должен иметь защиту от поражения электрическим током посредством основной изоляции в сочетании с защитным заземлением, подключенным к корпусу оборудования. — максимальный ток утечки составляет 0,75 мА для портативного устройства и 3,5 мА для другого оборудования.

Оборудование класса II:

Это оборудование не имеет защитного заземления.В таком оборудовании используется усиленная или двойная изоляция для защиты от поражения электрическим током. Максимальный ток утечки составляет 0,25 мА.

Класс III:

Это цепи сверхнизкого напряжения (SELV), в которых нет опасного напряжения.

Сводка

Ток утечки будет течь, когда это нежелательно, либо из-за плохой конструкции, неисправного заземления или изоляции оборудования, дефектов материалов компонентов и т. Д. Величину тока можно уменьшить за счет правильного проектирования и соблюдения лучших стандартов и практик.

Различные типы оборудования имеют допустимый максимальный ток утечки в зависимости от области применения и напряжения. Помимо конструкции, эффективным методом уменьшения тока утечки является обеспечение надлежащего заземления оборудования.

Все продукты Sunpower проходят обширный процесс тестирования и были разработаны так, чтобы гарантировать, что каждое устройство не только соответствует всем требованиям, но и соответствует более высоким стандартам, чем минимальные требования. Свяжитесь с нами сегодня, чтобы обсудить ваши производственные требования.

Medical Grade Power Supplies Источники питания медицинского класса ATX Power Supplies 250 Источники питания ATX Meanwell Din Rail Power Supplies Источники питания на DIN-рейку Enclosed Power Supply Закрытый источник питания.

Что такое ток утечки? (с изображением)

Ток утечки — это непреднамеренная потеря электрического тока или электронов. Этот термин часто применяется к компьютерным микропроцессорам, которые представляют собой микросхемы, которые выполняют вычисления и обрабатывают данные. Фактически, утечка — это проблема, которая препятствует более быстрому повышению производительности компьютера. Этот термин также применяется к электронике и устройствам бытовой электроники.

Полупроводники используют миллионы транзисторов для выполнения вычислений и хранения данных в компьютерных микропроцессорах.

Semiconductors использует миллионы транзисторов для выполнения вычислений и хранения данных в компьютерных микропроцессорах. Транзисторы — это устройства, используемые для усиления и переключения электронных сигналов. Ток утечки в полупроводниках происходит на уровне транзистора. Поскольку производители полупроводников продолжают делать транзисторы меньше, чтобы втиснуть больше в микросхему, проблемы с утечкой увеличиваются. Транзисторы меньшего размера имеют более тонкие изолирующие слои, что вызывает больший ток утечки.

Утечка в транзисторах приводит к тому, что полупроводникам требуется больше энергии для работы, поскольку они должны заменять ток, потерянный из-за утечки. Ток утечки также выделяет тепло по мере его утечки, что приводит к ухудшению характеристик полупроводника.Когда тепло от утечки объединяется с теплом, выделяемым при нормальной работе полупроводника, это может стать серьезной проблемой. Чрезмерный нагрев может в конечном итоге вызвать отказ цепи. Дизайнеры могут использовать ряд различных подходов для уменьшения утечки.

В электронике ток утечки означает непреднамеренную потерю энергии конденсатором.Конденсатор — это пассивный электрический компонент, который может создавать электрическое поле и накапливать энергию. Конденсатор постоянно разряжается медленно, поскольку через его электронные компоненты, включая транзисторы и диоды, постоянно проходит небольшой электрический ток. Даже когда конденсатор выключен, через него проходит небольшой ток, что и вызывает проблему. Ток утечки в электронике также может относиться к току, протекающему через заземляющий провод.

Для устройств бытовой электроники ток утечки может относиться к устройству, потребляющему электрический ток, даже при отключенном питании. Некоторые устройства, такие как сотовые телефоны, потребляют небольшой ток, даже если аккумулятор уже полностью заряжен.Некоторые другие устройства с заряженным аккумулятором могут потреблять немного энергии даже в спящем режиме, что также называется током утечки. Это одна из причин, по которой эксперты рекомендуют отключать зарядные устройства сотовых телефонов и другие устройства, когда они не используются; со временем эта утечка тока может накапливаться и увеличивать счета за электроэнергию.

.

Что такое ток утечки? — Power Electronic Tips

Ток утечки неожиданно протекает почти во всех цепях, даже когда питание отключено. Утечка тока не ограничивается электроникой, компьютерами или небольшими сигнальными цепями, а также может быть обнаружена в промышленном оборудовании и трехфазных электрических установках. Некоторый ток всегда найдет путь к земле, будь то через заземляющую изоляцию, которая должна защищать проводку в электрической установке в проводке промышленного оборудования, или утечка тока через слабые диэлектрические изоляторы внутри конденсаторов, которые предназначены для байпаса или защиты цепи.Даже незначительное количество тока может протекать через альтернативные пути, устройства защиты цепей и изоляторы всех типов.

Ток утечки становится проблемой, когда он влияет на производительность или расходует энергию, когда приоритетом является эффективное управление питанием. В вычислениях производительность может быть снижена, поскольку компьютеры состоят из миллионов или триллионов транзисторов, которые в основном используются

Рис. 1. Токоизмерительные клещи или амперметр обнаруживают и измеряют широкий диапазон переменного тока в проводнике.(Источник: Fluke)

как электронные переключатели. Поскольку технология создает меньшие и более эффективные транзисторы, ток утечки становится более серьезной проблемой по сравнению с ними, поскольку через изолирующие барьеры становится легче проникать. (Транзисторы могут становиться меньше, а электроны — нет, поэтому потери мощности из-за утечки тока увеличиваются благодаря прогрессу все меньших узлов в полупроводниковой технологии. Ток утечки в большинстве случаев нежелателен.

Ток утечки может привести к постоянной трате энергии, и в кругах конечных потребителей это называется потерей «силы вампира»; ответ на этот вопрос — отключать зарядные устройства, когда они не используются.Однако потеря мощности — не единственная проблема, которую может создать ток утечки. Ток может просачиваться из одной цепи в другую, если ток утечки находит легкий путь к земле, и может усиливаться из-за изменяющихся условий окружающей среды, таких как температура или сигналы, работающие на высоких частотах.

Ток утечки — это реальность. Однако его можно уменьшить, используя более совершенные методы проектирования, другие материалы или компоненты и лучшие изоляторы. При подозрении на проблему с током утечки (напр.g., прибор всегда поражает вас электрическим током или кажется, что при выключенном выключателе питания происходит чрезмерная потеря энергии), вы можете определить источник тока утечки путем тестирования и измерения. Если величина тока утечки незначительна, возможно, не стоит вашего времени пытаться уменьшить ток утечки. На макроуровне (например, электропроводка в доме) вы можете использовать амперметр, чтобы отследить источник протекающего тока, когда выключатель питания выключен. Амперметр следует откалибровать, очистить и использовать в соответствии с инструкциями для проверки возможных проводников, включая неожиданные пути, такие как водопроводные трубы или заземленный экран кабелей.Однако для электронных схем на печатных платах может потребоваться более сложное оборудование, такое как осциллограф. Во всех случаях не забывайте проверять неожиданные проводники, включая изоляторы, которые могут обеспечивать путь к земле.

.

Токи утечки

Большинство режимов испытаний на безопасность медицинского электрического оборудования включают измерение определенных «токов утечки», поскольку их уровень может помочь проверить, является ли часть оборудования электрически безопасным. В этом разделе описываются различные токи утечки, которые обычно можно измерить с помощью тестеров безопасности медицинского оборудования, и обсуждается их значение. Точные методы измерения вместе с применимыми безопасными пределами обсуждаются позже в параграфах 6.

3.1 Причины токов утечки

Если какой-либо проводник поднят до потенциала, превышающего потенциал земли, некоторый ток обязательно будет течь от этого проводника на землю. Это верно даже для проводников, которые хорошо изолированы от земли, поскольку не существует таких вещей, как идеальная изоляция или бесконечное сопротивление. Количество протекающего тока зависит от:

  1. напряжение на проводе.
  2. — емкостное сопротивление между проводником и землей.
  3. сопротивление между проводом и землей.

Токи, протекающие между проводниками, изолированными от земли и друг от друга, называются токами утечки и обычно малы. Однако, поскольку величина тока, необходимого для возникновения неблагоприятных физиологических эффектов, также мала, такие токи должны быть ограничены конструкцией оборудования до безопасных значений.

Для медицинского электрооборудования определяется несколько различных токов утечки в соответствии с путями, по которым проходят эти токи.

3,2 Ток утечки на землю

Ток утечки на землю — это ток, который обычно протекает в заземляющем проводе защитно заземленного элемента оборудования. В медицинском электрооборудовании очень часто сеть подключается к трансформатору с заземленным экраном. Большая часть тока утечки на землю попадает на землю через полное сопротивление изоляции между первичной обмоткой трансформатора и межобмоточным экраном, так как это точка, в которой полное сопротивление изоляции является самым низким (см. Рисунок 2).

Рис. 2. Путь тока утечки на землю

В нормальных условиях человек, который находится в контакте с заземленным металлическим корпусом оборудования и с другим заземленным объектом, не будет испытывать неблагоприятных последствий, даже если будет протекать довольно большой ток утечки на землю. Это связано с тем, что полное сопротивление заземления от корпуса через провод защитного заземления намного ниже, чем через человека. Однако, если провод защитного заземления замыкается, ситуация меняется.Теперь, если полное сопротивление между первичной обмоткой трансформатора и корпусом имеет тот же порядок величины, что и полное сопротивление между корпусом и землей через человека, существует опасность поражения электрическим током.

Основополагающим требованием безопасности является то, что в случае единичного повреждения, такого как размыкание цепи заземления, не должно существовать никакой опасности. Ясно, что для того, чтобы это имело место в приведенном выше примере, полное сопротивление между сетевой частью (первичной обмоткой трансформатора и т. Д.) И корпусом должно быть высоким.Об этом свидетельствует низкий ток утечки на землю, когда оборудование находится в нормальном состоянии. Другими словами, если ток утечки на землю невелик, риск поражения электрическим током в случае неисправности минимален.

3.3 Ток утечки корпуса или ток прикосновения

Термины «ток утечки корпуса» и «ток прикосновения» следует понимать как синонимы. Первый термин используется в основном тексте. Эти термины дополнительно обсуждаются в связи с методами электрических испытаний в параграфе 6.6. Ток утечки оболочки определяется как ток, который течет от открытой проводящей части оболочки к земле через проводник, отличный от защитного заземляющего проводника.

Если к корпусу подключен провод защитного заземления, нет смысла пытаться измерить ток утечки корпуса из другой точки защитного заземления на корпусе, поскольку любое используемое измерительное устройство эффективно закорачивается из-за низкого сопротивления защитного заземления. .Точно так же мало смысла в измерении тока утечки корпуса из точки защитного заземления на корпусе с разомкнутой цепью защитного заземления, поскольку это даст те же значения, что и измерение тока утечки на землю, как описано выше. По этим причинам при испытании медицинского электрооборудования обычно измеряют ток утечки корпуса в точках корпуса, которые не предназначены для защитного заземления (см. Рисунок 3). На многих единицах оборудования таких точек нет.Это не проблема. Испытание включено в режимы испытания, чтобы охватить случай, когда такие точки действительно существуют, и гарантировать, что опасные токи утечки не будут вытекать из них.

Рисунок 3. Путь тока утечки корпуса

3,4 Ток утечки на пациента

Ток утечки пациента — это ток утечки, протекающий через пациента, подключенного к применяемой части или частям. Он может течь либо от приложенных частей через пациента к земле, либо от внешнего источника высокого потенциала через пациента и приложенные части к земле.Рисунки 4a и 4b иллюстрируют два сценария.

Рисунок 4а. Путь тока утечки пациента от оборудования

Рисунок 4b. Путь тока утечки пациента к оборудованию

3,5 Дополнительный ток пациента

Вспомогательный ток пациента определяется как ток, который обычно протекает между частями прикладываемой части через пациента, который не предназначен для оказания физиологического эффекта (см. Рисунок 5).

Рис. 5. Путь вспомогательного тока пациента

.

0 0 vote
Article Rating
Подписаться
Уведомление о
guest
0 Комментарий
Inline Feedbacks
View all comments