В чем измеряется q количество теплоты: Количество теплоты. Удельная теплоемкость. Видеоурок. Физика 10 Класс

Разное

Содержание

Измерение количества теплоты — урок. Физика, 8 класс.

Измерять количество теплоты учёные стали задолго до того, как в физике появилось понятие энергии. Тогда была установлена особая единица для измерения количества теплоты — калория (кал).

Калория — это количество теплоты, которое необходимо для нагревания \(1\) г воды на \(1\)°С.

\(1\) кал \(= 4,19\) Дж \(≈ 4,2\) Дж.

Термин «калория» (от латинского «calor» — тепло) ввёл в научный оборот французский химик Николя Клеман-Дезорм (\(1779—1842\)).

 

Николя Клеман-Дезорм

 

Его определение калории как единицы измерения тепла было впервые опубликовано в \(1824\) году в журнале «Le Producteur», а во французских словарях оно появилось в \(1842\) году.

Однако задолго до появления этого термина были сконструированы первые калориметры — приборы для измерения теплоты.

 

Первый калориметр изобрёл английский химик Джозеф Блэк и в \(1759—1763\) годах с его помощью определил теплоёмкости разных веществ, скрытую теплоту плавления льда и испарения воды.

 

Джозеф Блэк

 

Изобретением Д. Блэка воспользовались знаменитые французские учёные Антуан Лоран Лавуазье (\(1743—1794\)) и Пьер Симон Лаплас (\(1749—1827\)).

 

Антуан Лоран Лавуазье

 

Пьер Симон Лаплас

 

В \(1780\) году они начали серию калориметрических экспериментов, которые позволили измерить тепловую энергию.

Это понятие встречается ещё в \(XVIII\) веке в трудах шведского физика Иоганна Карла Вильке (\(1732—1796\)), который занимался исследованием электрических, магнитных и тепловых явлений и задумывался об эквивалентах, в которых можно измерять тепловую энергию.

 

Иоганн Карл Вильке

 

Устройство, которое впоследствии начали называть калориметром, Лавуазье и Лаплас использовали, чтобы измерять количество теплоты, выделяющееся в различных физических, химических и биологических процессах. Тогда ещё не было точных термометров, поэтому для измерения теплоты приходилось идти на ухищрения.

 

 

Первый калориметр был ледяным. Внутренняя полая камера, куда помещали объект, излучающий тепло (например, мышку), была окружена рубашкой, заполненной льдом или снегом. А ледяная рубашка, в свою очередь, была окружена воздушной, чтобы лёд не плавился под действием внешнего нагрева. Тепло от объекта внутри калориметра нагревало и плавило лёд. Взвешивая талую воду, стекавшую из рубашки в специальный сосуд, исследователи определяли теплоту, выделенную объектом.

Этот прибор позволил Лавуазье и Лапласу измерить теплоту многих химических реакций: сгорания угля, водорода, фосфора, чёрного пороха. Своими работами они заложили основы термохимии и сформулировали её основной принцип:

Всякие тепловые изменения, которые испытывает какая-нибудь материальная система, переменяя своё состояние, происходят в обратном порядке, когда система вновь возвращается в своё первоначальное состояние.

Иными словами, чтобы разложить воду на водород и кислород, надо затратить столько же энергии, сколько выделяется при реакции водорода с кислородом с образованием воды.

В том же \(1780\) году Лавуазье поместил в калориметр морскую свинку. Тепло от её дыхания растапливало снег в рубашке. Потом последовали и другие эксперименты, которые имели огромное значение для физиологии.

Тогда-то Лавуазье высказал мысль, что дыхание животного подобно горению свечи, за счёт которого в организме поддерживается необходимый запас тепла. Он также впервые связал три важнейшие функции живого организма: дыхание, питание и транспирацию (испарение воды). Видимо, с тех пор и заговорили о том, что пища сгорает в нашем организме.

 

В \(XIX\) веке благодаря стараниям знаменитого французского химика Марселена Бертло (\(1827—1907\)), который опубликовал более 200 работ по термохимии, точность калориметрических методов сильно повысилась и появились более совершенные приборы — водяной калориметр и герметичная калориметрическая бомба.

 

Марселен Бертло

 

Последний прибор нам особенно интересен, потому что в нём можно измерять теплоту, выделяемую при очень быстрых реакциях — горении и взрыве.

 

 

Навеску сухого исследуемого вещества насыпают в тигель, помещают внутри бомбы и герметично закрывают этот сосуд. Затем вещество поджигают электрической искрой. Оно сгорает, отдавая тепло воде в окружающей его водяной рубашке. Термометры позволяют точно фиксировать изменение температуры воды.

В похожем калориметре в тридцатых годах \(XIX\) века проводил первые опыты с пищей знаменитый немецкий химик Юстус фон Либих (\(1803—1873\)), который разделял идеи Лавуазье о том, что пища — это топливо для организма, как дрова для печки.

 

Юстус фон Либих

 

Юлиус фон Майер

 

Либих назвал эти дрова: белки, жиры и углеводы. Он сжигал навески пищи в калориметре и измерял выделившееся тепло. На основании результатов этих опытов Либих вместе со своим коллегой Юлиусом фон Майером составил первые в мире таблицы калорийности продуктов питания и на их основе попытался рассчитать научно обоснованный рацион для прусских солдат.

Знаменитым последователем Юстуса фон Либиха стал американский агрохимик Уилбур Олин Этуотер (\(1844—1907\)).

 

Уилбур Олин Этуотер

 

Этуотер первым додумался измерять энергоёмкость компонентов пищи и придумал схему подсчёта калорийности любых продуктов питания. Ему не пришлось начинать с нуля. Три года (\(1869—1871\)) Этуотер провёл в Германии, где изучал опыт европейских коллег-агрохимиков. Здесь он не только вдохновился идеями физиологической калориметрии, посеянными Либихом, но и освоил некоторые методики эксперимента.

Сегодня Этуотера называют отцом диетологии. Значения калорийности углеводов (\(4\) ккал/г), белков (\(4\) ккал/г) и жиров (\(9\) ккал/г) впервые экспериментально получил Этуотер. Но и теперь, спустя сто двадцать лет, диетологи используют эти цифры при подсчёте энергетической ценности продуктов питания. Система Этуотера по сей день лежит в основе маркировки продуктов. И в этом смысле, как верно подметил кто-то из журналистов, Уилбур Этуотер — самый цитируемый учёный в мире.

Источники:

Стрельникова Л., «Калория и её история»/ Стрельникова Л.//«Химия и жизнь». — 2013. — №2.

www.biologylib.ru

www.biphoo.com

www.587.su

www.commons.wikimedia.org

www.ebookdead3b.cf

www.liveinternet.ru

www.invata-mate.info

www.surfingbird.com

www.fitband.ru

Единица количества теплоты в системе СИ

Передача энергии от одного тела к другому без совершения работы называется теплопередачей или теплообменом. Энергия, переданная телу в результате теплообмена, называется количеством теплоты. Разберемся: какие единицы используются в физике для измерения теплоты.

Работа и количество теплоты

Внутренняя энергия тела изменяется при совершении работы, когда тело перемещается под действием приложенной к нему силы. Механическая работа равна силе, умноженной на путь, пройденный по направлению силы. Но это не единственный способ изменения энергии.

При установлении контакта между телами с разными температурами, в результате взаимодействия атомов и молекул на границе соприкосновения тел, происходит передача части внутренней энергии от тела с более высокой температурой к телу, у которого температура ниже.

Энергия, переданная телу в результате теплообмена, называется количеством теплоты. Для обозначения количества теплоты используется буква Q.

Рис. 1. Процесс теплообмена, теплопередачи.

В чем измеряется теплота

Любой вид энергии в физике измеряется с помощью единиц, которые названы в честь английского физика Джеймса Джоуля (1818-1889 г.г.). Для единицы измерения количества теплоты, наряду с работой и энергией в Международной системе единиц СИ используется джоуль (Дж — русское обозначение, J — международное).

$$[Дж] = {[Н*м]={[кг]*[м^2]over [c^2]}}$$

Когда количество тепла представляет собой очень большую величину, допускается использование кратных единиц — килоджоуль (кДж), мегаджоуль (МДж), гигаджоуль (ГДж):

  • 1 кДж = 1000 Дж = 103 Дж;
  • 1 МДж = 1000000 Дж = 106 Дж;
  • 1 ГДж = 1000000000 Дж = 109 Дж.

Рис. 2. Портрет Джеймса Джоуля.

Джеймс Джоуль изучал закономерности термодинамических процессов. Своими экспериментами он доказал справедливость закона сохранения энергии и открыл закон, устанавливающий связь количества тепла и электрического тока в цепи. Теоретически определил скорость движения молекул газа и вывел формулу ее зависимости от температуры.

Калория

Джоуль в качестве универсальной энергетической единицы был введен в 1889 г. Но количество теплоты исследователи начали измеряли задолго до этого. Для этих целей была введена специальная единица — калория (от латинского слова calor — “тепло”), равная количеству теплоты, которое необходимо для нагревания одного грамма воды на один градус Цельсия при нормальном атмосферном давлении.

Калория (кал) и кратная ей единица — килокалория (ккал), до сих пор используются в качестве внесистемной единицы для некоторых областей деятельности. Например, килокалорию применяют в теплоэнергетике для расчетов потребленной тепловой энергии в домах, подключенных к централизованному отоплению в холодное время года.

Экспериментально установлено соответствие между калорией и джоулем, чтобы иметь возможность перевода количества тепла из одних единиц в другие:

  • 1 Дж = 0,2388 кал;
  • 1 кДж = 238,8 кал
  • 1 кал = 4,19 Дж;
  • 1 ккал = 4190 Дж.

Прибор для получения информации о количестве теплоты в научных экспериментах (физике, химии, биологии и медицине) называется калориметром. Внутреннее устройство калориметров определяется диапазоном температур, временем и характером изучаемых явлений.

Рис. 3. Примеры калориметров.

Что мы узнали?

Итак, мы узнали что единица количества теплоты — это джоуль. Наряду с джоулем используются кратные ему единицы. Кроме джоуля в отдельных областях деятельности допускается использование устаревшей единицы — калории.

Предыдущая

ФизикаВнутренняя энергия системы как физическая величина – характеристика, формулы нахождения

Следующая

ФизикаЗакон сохранения и превращения энергии – открытие в механике

Тепловая энергия единицы измерения и применение

Тепловая энергия — это система измерения теплоты, которая была изобретена и используется еще два столетия назад. Основным правилом работы с данной величиной было то, что тепловая энергия сохраняется и не может просто исчезнуть, но может перейти в другой вид энергии.

Существует несколько общепринятых единиц измерения тепловой энергии. В основном их используют в промышленных отраслях, таких как энергетика. Внизу описаны самые распространенные из них:

  • Калория — единица измерения, не входящая в общую систему, но часто использующаяся для сравнения с другими параметрами. В основном исчисления производят в килокал, Мегакал, Гигакал;
  • Тонна пара — одна из специфичных и самых редко используемых величин, с помощью которых измеряют количество энергии тепла в особо больших объемах. Одна единица «тонны пара» равняется количеству пара, который можно получить из 1 тонны воды;
  • Джоуль — распространенная единица измерения из СИ, использующаяся для общего обозначения количества энергии в разных ее видах. Основными величинами являются кДж, МДж, ГДж;
  • кВт на час (Квт х ч) — основная единица измерения электрической энергии, используемая в частности странами СНГ.Тепловая энергия единицы измерения

Любая единица измерения, входящая в систему СИ, имеет предназначение в определении суммарного количества того или иного вида энергии, такого как выделения тепла или электроэнергия. Время проведения измерения и количество не влияют на эти величины, почему можно их использовать как для потребляемой, так и для уже потребленной энергии. Кроме того, любая передача и прием, а также потери тоже исчисляются в таких величинах.

Где применяют единицы измерения тепловой энергии

  1. Подсчет выработанной энергии пара в котельных за один сезон или год.
  2. Определение необходимого количества тепла для проведения нагрева определенного количества воды с конкретным температурным режимом.
  3. Полный подсчет количества тепловой энергии, которая служит для обеспечения нагревания горячей воды, отопительных сооружений и вентиляции помещений.
  4. В некоторых вариантах величину тепловой энергии используют для измерения объема природного газа. В таком случае учитывается способность определенного количества вещества производить тепло при сжигании.
  5. В катальнях зачастую используют данную величину для определения показателя используемой электроэнергии в отопительных сезонах.Применение единиц измерения тепловой энергии

Единицы измерения энергии, переведенные в тепловую

Для наглядного примера ниже приведены сравнения различных популярных показателей СИ с тепловой энергией:

  • 1 ГДж равен 0,24 Гкал, что в электрическом эквиваленте равняется 3400 миллионов кВт на час. В эквиваленте тепловой энергии 1 ГДж = 0,44 тонны пара;
  • В то же время 1 Гкал = 4,1868 ГДж = 16000 млн. кВт на час = 1,9 тонн пара;
  • 1 тонна пара равняется 2,3 ГДж = 0,6 Гкал = 8200 кВт на час.

В данном примере приводимая величина пара принята за испарение воды при достижении 100°С.

Чтобы провести расчеты количества тепла, используется следующий принцип: для получения данных о количестве тепла его используют в нагревании жидкости, после чего масса воды умножается на пророщенную температуру. Если в СИ масса жидкости измеряется килограммами, а температурные перепады в градусах Цельсия, то результатом таких расчетов будет количество теплоты в килокалориях.

Если есть необходимость в передаче тепловой энергии от одного физического тела другому, и вы хотите узнать возможные потери, то стоит массу получаемого тепла вещества умножить на температуру повышения, а после узнать произведение получаемого значения на «удельную теплоемкость» вещества.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Количество теплоты — это… Что такое Количество теплоты?

Коли́чество теплоты́ — энергия, которую получает или теряет тело при теплопередаче. Количество теплоты является одной из основных термодинамических величин.

Количество теплоты является функцией процесса, а не функцией состояния, то есть количество теплоты, полученное системой, зависит от способа, которым она была приведена в текущее состояние.

Единица измерения в Международной системе единиц (СИ): Джоуль.

Определение

Рассмотрим систему, состоящую из двух тел и . Предположим, что тело заключено почти полностью в жёсткую адиабатическую оболочку, так что оно не способно совершать макроскопическую работу, а обмениваться теплом (то есть энергией) посредством микроскопических процессов может лишь с телом . Предположим, что тело также заключено в адиабатическую оболочку почти полностью, так что для него возможен теплообмен лишь с , но не будем предполагать, что оболочка жёсткая. Количеством теплоты, сообщённой телу в некотором процессе, будем называть величину , где  — изменение внутренней энергии тела . Согласно закону сохранения энергии,

где  — макроскопическая работа внешних сил над телом . Если учесть, что

где  — работа, совершённая телом , то по закону сохранения энергии можно придать форму первого начала термодинамики:

Из первого начала термодинамики следует корректность введённого определения количества теплоты, то есть независимость соответствующей величины от выбора пробного тела и способа теплообмена между телами. Заметим, что для определения количества теплоты необходимо пробное тело, в противном случае первое начало теряет смысл содержательного закона и превращается в определение количества теплоты (весьма бесполезное в таком виде). При определении количества теплоты независимо от и первое начало становится содержательным законом, допускающим экспериментальную проверку.

Отметим, что, как и совершённая работа, количество переданной теплоты зависит от конкретного процесса, совершённого над телом.

Неравенство Клаузиуса. Энтропия

Предположим, что рассматриваемое тело может обмениваться теплотой лишь с бесконечными тепловыми резервуарами, внутренняя энергия которых столь велика, что при рассматриваемом процессе температура каждого остаётся строго постоянной. Предположим, что над телом был совершён произвольный круговой процесс, то есть по окончании процесса оно находится абсолютно в том же состоянии, что и в начале. Пусть при этом за весь процесс оно заимствовало из i-го резервуара, находящегося при температуре , количество теплоты . Тогда верно следующее неравенство Клаузиуса:

Здесь обозначает круговой процесс. В общем случае теплообмена со средой переменной температуры неравенство принимает вид

Здесь  — количество теплоты, переданное участком среды с (постоянной) температурой . Это неравенство применимо для любого процесса, совершаемого над телом. В частном случае квазистатического процесса оно переходит в равенство. Математически это означает, что для квазистатических процессов можно ввести функцию состояния, называемую энтропией, для которой

здесь  — это абсолютная температура внешнего теплового резервуара. В этом смысле является интегрирующим множителем для количества теплоты.

Для неквазистатических процессов такое определение энтропии не работает. Например, при адиабатическом расширении газа в пустоту

однако энтропия при этом возрастает, в чём легко убедиться, переведя систему в начальное состояние квазистатически и воспользовавшись неравенством Клаузиуса. Кроме того, энтропия (в указанном смысле) не определена для неравновесных состояний системы, хотя во многих случаях систему можно считать локально равновесной и обладающей некоторым распределением энтропии.

Литература

  • Сивухин Д. В. Общий курс физики. — Т. II. Термодинамика и молекулярная физика.

ТЕПЛОТА — это… Что такое ТЕПЛОТА?

где q — тепловой поток, k — коэффициент теплопроводности, а A — площадь поперечного сечения. Это соотношение называется законом теплопроводности Фурье; знак «минус» в нем указывает на то, что теплота передается в направлении, обратном градиенту температуры. Из закона Фурье следует, что тепловой поток можно понизить, уменьшив одну из величин — коэффициент теплопроводности, площадь или градиент температуры. Для здания в зимних условиях последние величины практически постоянны, а поэтому для поддержания в помещении нужной температуры остается уменьшать теплопроводность стен, т.е. улучшать их теплоизоляцию. В таблице представлены коэффициенты теплопроводности некоторых веществ и материалов. Из таблицы видно, что одни металлы проводят тепло гораздо лучше других, но все они являются значительно лучшими проводниками тепла, чем воздух и пористые материалы.
ТЕПЛОПРОВОДНОСТЬ НЕКОТОРЫХ ВЕЩЕСТВ И МАТЕРИАЛОВ
Вещества и материалы Теплопроводность, Вт/(м? К)
Металлы

Алюминий ___________________205
Бронза _____________________105
Висмут _______________________8,4
Вольфрам ___________________159
Железо ______________________67
Золото _____________________287
Кадмий ______________________96
Магний _____________________155
Медь _______________________389
Мышьяк _____________________188
Никель ______________________58
Платина _____________________70
Ртуть ________________________7
Свинец ______________________35
Цинк _______________________113

Другие материалы

Асбест _______________________0,08
Бетон ________________________0,59
Воздух _______________________0,024
Гагачий пух (неплотный) ______0,008
Дерево (орех) ________________0,209
Магнезия (MgO) _______________0,10
Опилки _______________________0,059
Резина (губчатая) ____________0,038
Слюда ________________________0,42
Стекло _______________________0,75
Углерод (графит) ____________15,6

Теплопроводность металлов обусловлена колебаниями кристаллической решетки и движением большого числа свободных электронов (называемых иногда электронным газом). Движение электронов ответственно и за электропроводность металлов, а потому неудивительно, что хорошие проводники тепла (например, серебро или медь) являются также хорошими проводниками электричества. Тепловое и электрическое сопротивление многих веществ резко уменьшается при понижении температуры ниже температуры жидкого гелия (1,8 K). Это явление, называемое сверхпроводимостью, используется для повышения эффективности работы многих устройств — от приборов микроэлектроники до линий электропередачи и больших электромагнитов.
См. также СВЕРХПРОВОДИМОСТЬ.
Конвекция. Как мы уже говорили, при подводе тепла к жидкости или газу увеличивается интенсивность движения молекул, а вследствие этого повышается давление. Если жидкость или газ не ограничены в объеме, то они расширяются; локальная плотность жидкости (газа) становится меньше, и благодаря выталкивающим (архимедовым) силам нагретая часть среды движется вверх (именно поэтому теплый воздух в комнате поднимается от батарей к потолку). Данное явление называется конвекцией. Чтобы не расходовать тепло отопительной системы впустую, нужно пользоваться современными обогревателями, обеспечивающими принудительную циркуляцию воздуха. Конвективный тепловой поток от нагревателя к нагреваемой среде зависит от начальной скорости движения молекул, плотности, вязкости, теплопроводности и теплоемкости и среды; очень важны также размер и форма нагревателя. Соотношение между соответствующими величинами подчиняется закону Ньютона q = hA (TW — TҐ), где q — тепловой поток (измеряемый в ваттах), A — площадь поверхности источника тепла (в м2), TW и TҐ — температуры источника и его окружения (в кельвинах). Коэффициент конвективного теплопереноса h зависит от свойств среды, начальной скорости ее молекул, а также от формы источника тепла, и измеряется в единицах Вт/(м2*К). Величина h неодинакова для случаев, когда воздух вокруг нагревателя неподвижен (свободная конвекция) и когда тот же нагреватель находится в воздушном потоке (вынужденная конвекция). В простых случаях течения жидкости по трубе или обтекания плоской поверхности коэффициент h можно рассчитать теоретически. Однако найти аналитическое решение задачи о конвекции для турбулентного течения среды пока не удается. Турбулентность — это сложное движение жидкости (газа), хаотичное в масштабах, существенно превышающих молекулярные. Если нагретое (или, наоборот, холодное) тело поместить в неподвижную среду или в поток, то вокруг него образуются конвективные токи и пограничный слой. Температура, давление и скорость движения молекул в этом слое играют важную роль при определении коэффициента конвективного теплопереноса. Конвекцию необходимо учитывать при проектировании теплообменников, систем кондиционирования воздуха, высокоскоростных летательных аппаратов и многих других устройств. Во всех подобных системах одновременно с конвекцией имеет место теплопроводность, причем как между твердыми телами, так и в окружающей их среде. При повышенных температурах существенную роль может играть и лучистый теплообмен.
Лучистый теплообмен. Третий вид теплопередачи — лучистый теплообмен — отличается от теплопроводности и конвекции тем, что теплота в этом случае может передаваться через вакуум. Сходство же его с другими способами передачи тепла в том, что он тоже обусловлен разностью температур. Тепловое излучение — это один из видов электромагнитного излучения. Другие его виды — радиоволновое, ультрафиолетовое и гамма-излучения — возникают в отсутствие разности температур. На рис. 8 представлена зависимость энергии теплового (инфракрасного) излучения от длины волны. Тепловое излучение может сопровождаться испусканием видимого света, но его энергия мала по сравнению с энергией излучения невидимой части спектра.

Рис. 8. РАСПРЕДЕЛЕНИЕ ЭНЕРГИИ теплового излучения по длинам волн при двух разных температурах.
Интенсивность теплопередачи путем теплопроводности и конвекции пропорциональна температуре, а лучистый тепловой поток пропорционален четвертой степени температуры и подчиняется закону Стефана — Больцмана

где, как и ранее, q — тепловой поток (в джоулях в секунду, т.е. в Вт), A — площадь поверхности излучающего тела (в м2), а T1 и T2 — температуры (в кельвинах) излучающего тела и окружения, поглощающего это излучение. Коэффициент s называется постоянной Стефана — Больцмана и равен (5,66961 ± 0,00096)*10-8 Вт/(м2 * К4). Представленный закон теплового излучения справедлив лишь для идеального излучателя — так называемого абсолютно черного тела. Ни одно реальное тело таковым не является, хотя плоская черная поверхность по своим свойствам приближается к абсолютно черному телу. Светлые же поверхности излучают сравнительно слабо. Чтобы учесть отклонение от идеальности многочисленных «серых» тел, в правую часть выражения, описывающего закон Стефана — Больцмана, вводят коэффициент, меньший единицы, называемый излучательной способностью. Для плоской черной поверхности этот коэффициент может достигать 0,98, а для полированного металлического зеркала не превышает 0,05. Соответственно лучепоглощательная способность высока для черного тела и низка для зеркального. Жилые и офисные помещения часто обогревают небольшими электрическими теплоизлучателями; красноватое свечение их спиралей — это видимое тепловое излучение, близкое к границе инфракрасной части спектра. Помещение же обогревается теплотой, которую несет в основном невидимая, инфракрасная часть излучения. В приборах ночного видения применяются источник теплового излучения и приемник, чувствительный к ИК-излучению, позволяющий видеть в темноте. Мощным излучателем тепловой энергии является Солнце; оно нагревает Землю даже на расстоянии 150 млн. км. Интенсивность солнечного излучения, регистрируемая год за годом станциями, расположенными во многих точках земного шара, составляет примерно 1,37 Вт/м2. Солнечная энергия — источник жизни на Земле. Ведутся поиски способов наиболее эффективного ее использования. Созданы солнечные батареи, позволяющие обогревать дома и получать электроэнергию для бытовых нужд. РОЛЬ ТЕПЛОТЫ И ЕЕ ИСПОЛЬЗОВАНИЕ
Глобальные процессы теплообмена не сводятся к нагреванию Земли солнечным излучением. Массивными конвекционными потоками в атмосфере определяются суточные изменения погодных условий на всем земном шаре. Перепады температуры в атмосфере между экваториальными и полярными областями совместно с кориолисовыми силами, обусловленными вращением Земли, приводят к появлению непрерывно изменяющихся конвекционных потоков, таких, как пассаты, струйные течения, а также теплые и холодные фронты.
См. также
КЛИМАТ;
МЕТЕОРОЛОГИЯ И КЛИМАТОЛОГИЯ. Перенос тепла (за счет теплопроводности) от расплавленного ядра Земли к ее поверхности приводит к извержению вулканов и появлению гейзеров. В некоторых регионах геотермальная энергия используется для обогрева помещений и выработки электроэнергии. Теплота — непременный участник почти всех производственных процессов. Упомянем такие наиболее важные из них, как выплавка и обработка металлов, работа двигателей, производство пищевых продуктов, химический синтез, переработка нефти, изготовление самых разных предметов — от кирпичей и посуды до автомобилей и электронных устройств. Многие промышленные производства и транспорт, а также теплоэлектростанции не могли бы работать без тепловых машин — устройств, преобразующих теплоту в полезную работу. Примерами таких машин могут служить компрессоры, турбины, паровые, бензиновые и реактивные двигатели. Одной из наиболее известных тепловых машин является паровая турбина, в которой реализуется часть цикла Ранкина, используемого на современных электростанциях. Упрощенная схема этого цикла представлена на рис. 9. Рабочую жидкость — воду — превращают в перегретый пар в паровом котле, нагреваемом за счет сжигания ископаемого топлива (угля, нефти или природного газа). Пар высокого давления вращает вал паровой турбины, которая приводит в действие генератор, вырабатывающий электроэнергию. Отработанный пар конденсируется при охлаждении проточной водой, которая поглощает часть теплоты, не использованной в цикле Ранкина. Далее вода подается в охлаждающую башню (градирню), откуда часть тепла уходит в атмосферу. Конденсат с помощью насоса возвращают в паровой котел, и весь цикл повторяется.

Рис. 9. УПРОЩЕННАЯ СХЕМА РАБОЧЕГО ЦИКЛА паротурбинной электростанции, работающей на ископаемом топливе.
Все процессы в цикле Ранкина иллюстрируют описанные выше начала термодинамики. В частности, согласно второму началу, часть энергии, потребляемой электростанцией, должно рассеиваться в окружающей среде в виде теплоты. Оказывается, что таким образом теряется примерно 68% энергии, первоначально содержавшейся в ископаемом топливе. Заметного повышения КПД электростанции можно было бы достигнуть, лишь повысив температуру парового котла (которая лимитируется жаропрочностью материалов) или понизив температуру среды, куда уходит тепло, т.е. атмосферы. Другой термодинамический цикл, имеющий большое значение в нашей повседневной жизни, — это парокомпрессорный холодильный цикл Ранкина, схема которого представлена на рис. 10. В холодильниках и бытовых кондиционерах энергия для его обеспечения подводится извне. Компрессор повышает температуру и давление рабочего вещества холодильника — фреона, аммиака или углекислого газа. Перегретый газ подается в конденсатор, где охлаждается и конденсируется, отдавая тепло окружающей среде. Жидкость, выходящая из патрубков конденсатора, проходит через дросселирующий клапан в испаритель, и часть ее испаряется, что сопровождается резким понижением температуры. Испаритель отбирает у камеры холодильника тепло, которое нагревает рабочую жидкость в патрубках; эта жидкость подается компрессором в конденсатор, и цикл снова повторяется.

Рис. 10. УПРОЩЕННАЯ СХЕМА ХОЛОДИЛЬНОГО ЦИКЛА.
Холодильный цикл, представленный на рис. 10, можно использовать и в тепловом насосе. Такие тепловые насосы летом отдают тепло горячему атмосферному воздуху и кондиционируют помещение, а зимой, наоборот, отбирают тепло у холодного воздуха и обогревают помещение. Важным источником теплоты для таких целей, как производство электроэнергии и транспортные перевозки, служат ядерные реакции. В 1905 А.Эйнштейн показал, что масса и энергия связаны соотношением E = mc2, т.е. могут переходить друг в друга. Скорость света c очень велика: 300 тыс. км/с. Это означает, что даже малое количество вещества может дать огромное количество энергии. Так, из 1 кг делящегося вещества (например, урана) теоретически можно получить энергию, которую за 1000 суток непрерывной работы дает электростанция мощностью 1 МВт. См. также
АТОМА СТРОЕНИЕ;
ПЕЧЕЙ И ТОПОК ТЕХНОЛОГИЯ;
ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ;
ТЕПЛООБМЕННИК;
ТУРБИНА;
ЕДИНИЦЫ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН.
ЛИТЕРАТУРА
Земанский М. Температуры очень высокие и очень низкие. М., 1968 Поль Р. Механика, акустика и учение о теплоте. М., 1971 Смородинский Я.А. Температура. М., 1981 Фен Дж. Машины, энергия и энтропия. М., 1986 Эткинс П.В. Порядок и беспорядок в природе. М., 1987

Энциклопедия Кольера. — Открытое общество.
2000.

Синонимы:

  • ФИЗИКА ТВЕРДОГО ТЕЛА
  • ТЕРМОЭЛЕКТРОННАЯ ЭМИССИЯ

Смотреть что такое «ТЕПЛОТА» в других словарях:

  • теплота́ — теплота, ы …   Русское словесное ударение

  • ТЕПЛОТА — ТЕПЛОТА, теплоты, мн. нет, жен. 1. отвлеч. сущ. к теплый в 1 знач. Теплота тела. Теплота воздуха. || Исходящее от чего нибудь тепло (см. тепло1 во 2 знач.). «Оно (солнце) своею теплотой огромные дубы и недра согревает.» Крылов. 2. перен. Доброе,… …   Толковый словарь Ушакова

  • теплота — ы; ж. 1. к Тёплый. Т. солнца, воды, воздуха. Т. дня. Т. рук. Т. шубы. Т. дома. Т. встречи. Т. души, взгляда, сердца. Любить теплоту. 2. = Тепло (1 2, 5 зн.). Лучистая т. Присутствие, наличие теплоты. Единицы измерения теплоты. Превращение… …   Энциклопедический словарь

  • ТЕПЛОТА — (1) энергетическая характеристика процесса теплообмена, при котором рассматриваемое тело получает (отдает) энергию. Т. в отличие от внутренней энергии является функцией процесса, а не состояния. Её количественной мерой служит количество теплоты… …   Большая политехническая энциклопедия

  • Теплота — один из двух, известных современному естествознанию, способов передачи энергии мера передачи неупорядоченного движения. Количество переданной энергии называют количеством теплоты. В узком смысле о теплоте можно говорить как об энергии,… …   Википедия

  • ТЕПЛОТА — (количество теплоты) энергетическая характеристика процесса теплообмена, определяется количеством энергии, которое получает (отдает) тело (физическая система) в процессе теплообмена. Теплота функция процесса: количество сообщенной телу теплоты… …   Большой Энциклопедический словарь

  • Теплота — ж. 1. Форма движения материи, представляющая собою беспорядочное движение образующих тело микрочастиц (молекул, атомов, электронов и т.п.). отт. Энергия, создаваемая таким движением; теплота 1.. 2. Нагретое состояние кого либо или чего либо;… …   Современный толковый словарь русского языка Ефремовой

  • ТЕПЛОТА — ТЕПЛОТА, ы, жен. 1. см. теплый. 2. Форма движения материи беспорядочное движение частиц тела; энергетическая характеристика теплообмена, определяющаяся количеством энергии, к рое получает нагреваемое тело (отдает охлаждаемое тело) (спец.). Т.… …   Толковый словарь Ожегова

  • теплота — приветливость, мягкость, жар, тепло, нежность, ласковость, ласка Словарь русских синонимов. теплота сущ., кол во синонимов: 9 • жар (39) • ласка …   Словарь синонимов

  • ТЕПЛОТА — ТЕПЛОТА. Непосредственное ощущение позволяет различать холодные тела от теплых. Более точно можно определить состояние тела, используя изменения, которые испытывают вещества при действии теплоты: можно использовать расширение тел в зависимости от …   Большая медицинская энциклопедия

  • теплота — процесса; теплота Энергия, передаваемая одним телом другому при их взаимодействии, зависящая только от температуры этих тел и не связанная с переносом вещества от одного тела к другому. Энергия, передаваемая более нагретым телом менее нагретому,… …   Политехнический терминологический толковый словарь

Что такое калория: перевод Гкал в кВт и МВт, как рассчитывают тепловую энергию на горячую воду и отопление

Каждый, хотя бы косвенно, но знаком с таким понятием как «калория». Что это и для чего она нужна? Что именно она обозначает? Такие вопросы возникают, особенно, если нужно её увеличить до килокалорий, мегакалорий или гигакалорий, или перевести в другие величины, например Гкал в кВт.

Что собой представляет калория

Калория не входит в международную систему измерений метрических величин, однако это понятие широко используется для обозначения количества выделенной энергии. Она указывает, сколько энергии должно быть затрачено на обогрев 1 г воды так, чтобы данный объём увеличил температуру на 1 °C в стандартных условиях.

Существует 3 общепринятых обозначения, каждое из которых используют в зависимости от области:

  • Международное значение калории, которое равняется 4,1868 Дж (Джоуль), и обозначается как «кал» в Российской Федерации и cal – в мире;
  • В термохимии – относительная величина, примерно равная 4,1840 Дж с российским обозначением калтх и всемирным – calth;
  • 15-градусный показатель калории, равный приблизительно 4,1855 Дж, который в России известен как «кал15», а в мире – cal15.

Изначально калорию использовали для нахождения количество теплоты, выделенной при выработке энергии топлива. Впоследствии данную величину стали использовать для вычисления количества энергии, затраченной спортсменом при выполнении любой физической нагрузки, поскольку при данных действиях применимы те же физические законы.

Поскольку для выделения тепла необходимо топливо, то по аналогии с теплоэнергетикой в простой жизни для выработки энергии организмом также необходима «заправка» – пища, которую люди принимают регулярно.

Человек получает определённое количество калорий, в зависимости от того, какой продукт употребил.

Чем больше калорий в виде пищи человек получил, тем больше он получает энергии для занятий спортом. Однако не всегда люди потребляют количество калорий, которое необходимо для поддержания жизненных процессов организма в норме и выполнения физической нагрузки. В результате чего одни худеют (при дефиците калорий), а другие – набирают вес.

Калорийность пищиКалорийность пищиКалорийность — это количество энергии, полученной человеком в результате поглощения того или иного продукта

На основе этой теории построено множество принципов диет и правил здорового питания. Оптимальное количество энергии и макронутриентов, которые необходимы человеку в день, можно рассчитать в соответствии с формулами известных диетологов (Харрис-Бенедикт, Миффлин-Сан Жеор), используя стандартные параметры:

  • Возраст;
  • Рост;
  • Вес;
  • Пример суточной активности;
  • Образ жизни.

Эти данные можно использовать изменяя их под себя – для безболезненного похудения достаточно создать дефицит в 15-20% от суточной калорийности, а для здорового набора массы – аналогичный профицит.

Что такое Гигакалория, и сколько в ней калорий

Понятие Гигакалории наиболее часто встречается в документах области теплоэнергетики. Данную величину можно встретить в квитанциях, извещениях, платежах за отопление и горячую воду.

Она обозначает то же самое, что и калория, но в большем объёме, о чем свидетельствует приставка «Гига». Гкал определяет, что исходную величину умножили на 109. Говоря простым языком: в 1 Гигакалории – 1 миллиард калорий.

Как и калория, Гигакалория не относится к метрической системе физических величин.

В таблице ниже для примера приведено сравнение величин:

Приставка Количество калорий
ккал (килокалория) 1 000
Мкал (мегакалория) 1 000 000
Гкал (гигакалория) 1 000 000 000

Необходимость использования Гкал обусловлена тем, что при нагреве объёма воды, нужного для обогрева и бытовых нужд населения даже 1 жилого дома выделяется колоссальное количество энергии. Писать числа, обозначающие её в документах, в формате калорий слишком долго и неудобно.

Кот на батарееКот на батарееТакую величину, как гигакалорию, можно встретить в платёжных документах за отопление

Можно представить, сколько энергии затрачивается во время отопительного сезона в промышленных масштабах: при отоплении 1 квартала, района, города, страны.

Гкал и Гкал/ч: в чём разница

При необходимости расчёта оплаты потребителем услуг государственной теплоэнергетики (отопление дома, горячая вода) используется такая величина как Гкал/ч. Она обозначает привязку ко времени – сколько Гигакалорий расходуется при обогреве за данный промежуток времени. Иногда её также заменяют Гкал/м3 (сколько энергии нужно для передачи тепла кубическому метру воды).

Величину Гкал/ч можно рассчитать самостоятельно, используя данную формулу:

Q=V*(T1 – T2)/1000, где

  • Q – количество тепловой энергии;
  • V – объём потребления жидкости в кубических метрах/тоннах;
  • T1 – температура поступаемой горячей жидкости, которая измеряется в градусах по Цельсию;
  • T2 – температура поступаемой холодной жидкости по аналогии с предыдущим показателем;
  • 1000 – вспомогательный коэффициент, который упрощает подсчёты, избавляя от чисел в десятом разряде (автоматически переводит ккал в Гкал).

Данную формулу часто используют для построения принципа работы тепловых счётчиков на частных квартирах, домах или предприятиях. Данная мера необходима при резком росте стоимости данной коммунальной услуги особенно, когда подсчёты обобщаются из расчёта на площадь/объём помещения, которое нагревают.

В случае, если в помещении установлена система закрытого типа (горячая жидкость заливается в неё единоразово без дополнительного поступления воды), формулу модифицируют:

Q= (( V1* (T1 – T2)) – (V2* (T2 – T)))/ 1000, где

  • Q – количество тепловой энергии;
  • V1 – объём расходуемого теплового вещества (вода/газ) в трубопроводе, по которому оно поступает в систему;
  • V2 – объём теплового вещества в трубопроводе, по которому оно возвращается обратно;
  • T1 – температура в градусах Цельсия в трубопроводе на входе;
  • T2 – температура в градусах Целься в трубопроводе на выходе;
  • T – температура холодной воды;
  • 1000 – вспомогательный коэффициент.

Данная формула основана на разности величин на входе и выходе теплоносителя в помещении.

В зависимости от использования того или иного источника энергии, а также – типа теплового вещества (вода, газ), применяют также альтернативные формулы расчётов:

  1. Q= (( V1* (T1 – T2)) + (V1 – V2)*( T2 – T))/1000
  2. Q= (( V2* (T1 – T2)) + (V1 – V2)*(T1 – T))/1000

Кроме того, формула меняется, если в систему включены электрические устройства (например полы с подогревом).

Как рассчитываются Гкал на горячую воды и отопление

Отопление рассчитывается по формулам, аналогичным формулам нахождения величины Гкал/ч.

Примерная формула подсчёта оплаты за тёплую воду в жилых помещениях:

P i гв = Vi гв * T х гв + (V v кр * Vi гв / ∑ Vi гв * T v кр)

Используемые величины:

  • P i гв – искомая величина;
  • V i гв – объём потребления горячей воды за определённый временной промежуток;
  • T х гв – установленная тарифная плата за горячее водоснабжение;
  • V v гв – объём затраченной энергии компанией, которая занимается её подогревом и поставкой в жилое/нежилое помещение;
  • ∑ V i гв – сумма потребления тёплой воды во всех помещениях дома, в котором производится расчет;
  • T v гв – тарифная плата за тепловую энергию.

В данной формуле не учитывается показатель атмосферного давления, поскольку он не существенно влияет на конечную искомую величину.

Формула приблизительная и не подходит для самостоятельного расчёта без предварительной консультации. Перед её использованием необходимо обратиться к местным коммунальным службам для уточнения и корректировки – возможно, они пользуются другими параметрами и формулами для расчёта.

Расчет отопленияРасчет отопленияРасчёт размера платы за отопление является очень важным, так как зачастую внушительные суммы не оправданы

Результат расчётов зависит не только от относительных температурных величин – на него напрямую влияют установленные правительством тарифы на потребление горячего водоснабжения и отопления помещений.

Вычислительный процесс значительно упрощается, если установить отопительный счётчик на квартиру, подъезд или жилой дом.

Стоит учитывать, что даже самые точные счётчики могут допускать погрешность при вычислениях. Также её можно определить по формуле:

E = 100 *((V1 – V2)/(V1 + V2))

В представленной формуле используются следующие показатели:

  • E – погрешность;
  • V1 – объём потребляемого горячего водоснабжения при поступлении;
  • V2 – потребляемая горячая вода на выходе;
  • 100 – вспомогательный коэффициент, преобразующий результат в проценты.

В соответствии с требованиями, средняя величина погрешности расчётного прибора составляет около 1 %, а максимально допустимая – 2 %.

Видео: пример расчёта платы за отопление

Как перевести Гкал в кВт/ч и Гкал/ч в кВт

На различных устройствах сферы теплоэнергетики указывают различные метрические величины. Так, на отопительных котлах и обогревателях чаще указывают киловатт и киловатт в час. На счётных приборах (счётчиках) чаще встречаются Гкал. Разница в величинах мешает правильному расчёту искомой величины по формуле.

Чтобы облегчить расчётный процесс, необходимо научиться переводить одну величину в другую и наоборот. Поскольку величины имеют постоянное значение, то это несложно – 1 Гкал/ч равен 1162,7907 кВт.

Если величина представлена в мегаваттах, её можно перевести обратно в Гкал/ч, умножив на постоянное значение 0,85984.

Ниже представлены вспомогательные таблицы, позволяющие быстро переводить величины из одной в другую:

Гкал кВт/ч
1 1163
2 2326
3 3489
4 4652
5 5815
10 11630
15 17445
20 23260

Таблица обратная предыдущей:

кВт Гкал/ч
1 000 0,85984
5 000 4,29922
10 000 8,5984
30 000 25,795
50 000 42,992
100 000 85,984
500 000 429,9226
1 000 000 859,8452

Использование данных таблиц значительно упростит процесс расчёта стоимости тепловой энергии. Кроме того, для упрощения действий, можно воспользоваться одним из предложенных в сети Интернет онлайн-конвертеров, преобразующих физические величины одна в другую.

Самостоятельный расчёт потребляемой энергии в Гигакалориях позволит владельцу жилого/нежилого помещения контролировать стоимость коммунальных услуг, а также – работу коммунальных служб. С помощью проведения простых подсчётов появляется возможность сверить результаты с аналогичными в получаемых платёжных квитанциях и обратиться в соответствующие органы в случае разности показателей.

Оцените статью: Поделитесь с друзьями!

Как измеряется энергия? — манекены

  1. Образование
  2. Наука
  3. Химия
  4. Как измеряется энергия?

Вы можете измерить кинетическую энергию (энергию движения) с помощью термометра. Измерение потенциальной (накопленной) энергии может быть сложной задачей. Потенциальная энергия мяча, застрявшего в дереве, связана с массой мяча и его высотой над землей. Потенциальная энергия, содержащаяся в химических связях, зависит от типа связи и количества связей, которые потенциально могут разорваться.

Температура и температурные шкалы

Когда вы измеряете температуру воздуха на заднем дворе, вы действительно измеряете среднюю кинетическую энергию частиц газа на заднем дворе. Чем быстрее движутся частицы, тем выше температура.

Теперь все частицы не движутся с одинаковой скоростью. Некоторые едут очень быстро, а некоторые относительно медленно, но большинство движется со скоростью между двумя крайностями. Показание температуры вашего термометра связано со средней кинетической энергией частиц.

Вы, вероятно, используете шкалу Фаренгейта для измерения температуры, но большинство ученых и химиков используют шкалу температур Цельсия (° C) или Кельвина (K). (Нет символа градуса, связанного с K.) На следующем рисунке сравниваются три температурные шкалы с использованием точки замерзания и точки кипения воды в качестве контрольных точек.

Сравнение температурных шкал по Фаренгейту, Цельсию и Кельвину.

Вода кипит при 100 ° C (373 K) и замерзает при 0 ° C (273 K).Чтобы получить температуру Кельвина, вы берете температуру Цельсия и прибавляете 273. Математически это выглядит так:

К = ° С + 273

Возможно, вы захотите узнать, как преобразовать градусы Фаренгейта в градусы Цельсия (потому что большинство из нас все еще думает в ° F). Вот необходимые вам уравнения:

° C = 5/9 (° F — 32)

Обязательно вычтите 32 из своей температуры по Фаренгейту, прежде чем умножать на 5/9:

° F = 9/5 (° C) + 32

Обязательно умножьте вашу температуру по Цельсию на 9/5 и , затем прибавьте 32.

Попробуйте использовать эти уравнения, чтобы подтвердить, что нормальная температура тела 98,6 ° F равна 37 ° C.

Почувствуй тепло

Тепло — это не то же самое, что температура. Когда вы измеряете температуру чего-либо, вы измеряете среднюю кинетическую энергию отдельных частиц. Тепло , с другой стороны, является мерой общего количества энергии, которым обладает вещество.

Например, стакан с водой и бассейн могут иметь одинаковую температуру, но они содержат совершенно разное количество тепла.Чтобы поднять температуру бассейна на 5 ° C, требуется гораздо больше энергии, чем для стакана воды, потому что в бассейне гораздо больше воды.

Единица тепла в системе СИ — джоуль ( Дж ). Большинство из нас до сих пор использует метрическую единицу тепла — калорий ( кал ). Вот связь между ними:

1 калория = 4,184 джоуля

Калорийность — это довольно небольшое количество тепла — количество, необходимое для повышения температуры 1 грамма воды на 1 ° C. килокалорий ( ккал ), что составляет 1000 калорий, является удобной единицей измерения тепла. Если полностью сжечь большую кухонную спичку, она произведет около 1 килокалории (1000 калорий) тепла.

Когда вы слышите слово калорий , вы можете думать о еде и подсчете калорий. Пища содержит энергию (тепло). Мерилом этой энергии является пищевая калория (которая обычно пишется с заглавной буквы), которая на самом деле составляет килокалорию (ккал). Этот шоколадный батончик, который вы только что съели, содержал 300 питательных калорий, что составляет 300 ккал или 300 000 калорий.

.

Теплота сгорания — Простая английская Википедия, бесплатная энциклопедия

Эти куски древесного угля имеют теплотворную способность 7543 ккал / кг. Горели почти 4 часа.

Теплота сгорания , также называемая теплотворной способностью . или . Энергетическая ценность. вещества — это количество энергии, которое выделяется при сгорании определенного количества вещества. Эта энергия выделяется в виде тепла, когда вещество сжигается в стандартных условиях.

Теплота сгорания ( Δ H ° c ) — это мера количества энергии, выделяющейся в виде тепла ( q ) при сгорании одного моля вещества (горение).Выработка тепла означает, что реакция является экзотермическим процессом и выделяет энергию. Теплота сгорания — это особая форма энтальпии реакции, поскольку она измеряется при стандартных условиях и ограничена одним моль исходного материала. Символ (°) показывает, что значение теплоты сгорания достигается при стандартных условиях: 25 градусов Цельсия (298,15 Кельвина) и при постоянном давлении. Сообщается, что давление составляет один бар или одну атмосферу в зависимости от источника. [1] , [2]

Теплота сгорания также называется энтальпией сгорания, поскольку энергия, выделяемая в результате реакции сгорания, является результатом изменения общей энтальпии исходного вещества, поскольку оно полностью реагирует с кислородом.Термины теплота сгорания и энтальпия сгорания используются взаимозаменяемо из-за Первого закона термодинамики и соотношений между теплотой при постоянном давлении ( q P ), изменением внутренней энергии (ΔU) и изменением энтальпии. (ΔH). [3] , [4]

Уравнение для изменения внутренней энергии:

Δ U = q P PΔV .

Если уравнение переставить, то

q P = Δ U + P Δ V .

Уравнение изменения энтальпии имеет вид

Δ H = Δ U + P Δ V + V Δ P .

Член V Δ P отменяется, так как давление не изменяется, поэтому

Δ H = Δ U + P Δ V .

Как указано ранее,

q P = Δ U + P Δ V .

Следовательно, q P = Δ H .

Измерения теплоты сгорания наиболее распространены при сгорании органических углеводородов, соединений, состоящих из углерода и водорода, но могут включать и другие атомы, присутствующие в органических соединениях, таких как азот, фосфор, сера и особенно кислород. Значения теплоты сгорания наиболее широко используются для определения того, является ли вещество эффективным источником топлива. [5] Многие органические соединения можно найти в таблицах теплоты сгорания.

Единицы теплоты сгорания можно варьировать, но они всегда указываются в единицах энергии на моль или на единицу массы или объема в зависимости от метода, используемого для сообщения значений.Для оценки эффективности вещества как топлива более удобна энергия на единицу массы или объема. [5]

Как и во всех случаях горения и во многих реакциях окисления, кислород должен присутствовать для того, чтобы вещество могло воспламениться. Реакции горения проводятся с кислородом при постоянном давлении в калориметре. Типичной реакцией горения является реакция метана (CH 4 ) в присутствии кислорода.

CH 4 (г) + O 2 (г) → CO 2 + H 2 O (л)

Продуктами реакции горения являются вода и углекислый газ, если реагентами являются кислород и углеводороды.Водный продукт может быть в виде газа или жидкости в зависимости от температуры дожигания. Для определения истинной теплоты сгорания используется жидкая вода в конце реакции из-за того, что эксперимент возвращается к стандартной температуре 25 ° C, при которой вода конденсируется в жидкость. [3] , [4] , [2] .

  1. ↑ Домальский, Э.С. Избранные значения теплоты сгорания и теплоты образования органических соединений, содержащих элементы C, H, N, O и P.J. Phys. Chem. Ref. Данные 1972 г., 1, стр. 221-277.
  2. 2,0 2,1 Schmidt-Rohr, K. Почему процессы сгорания всегда экзотермичны, давая около 418 кДж на моль 02. J. Chem. Эд. 2015, 92, 2094-2099.
  3. 3,0 3,1 McQuarrie, D. A .; Саймон, Дж. Д. Молекулярная термодинамика; Научные книги университета, Саусалито, Калифорния, 1999.
  4. 4,0 4,1 Мортимер Р.Г. Физическая химия; 3-е изд .; Макгроу-Хилл, Лондон, 2002.
  5. 5,0 5,1 McMurry, J.E; Fay, R.C .; Робинсон, Дж. Химия; 7-е изд .; Пирсон, Верхняя Сэдл-Ривер, Нью-Джерси, 2015. С. 335-337.

.

Как вещества в следовых количествах могут вызывать серьезные последствия

Что говорит наука …

Небольшие количества очень активных веществ могут вызвать сильные эффекты.

CO 2 составляет 390 частей на миллион (0,039%) * атмосферы, как такое небольшое количество может иметь значение? Сказать, что CO 2 — это «только следовые газы» , все равно что сказать, что мышьяк «всего лишь» — это следовые примеси воды.Небольшие количества очень активных веществ могут вызвать сильные эффекты.

Некоторые примеры важных небольших сумм:

  • Он не водил машину в нетрезвом виде, у него просто было следов алкоголя в крови; 800 ppm (0,08%) — это предел во всех 50 штатах США, а в большинстве других стран пределы ниже).
  • Ирландия не важна; это всего 660 промилле (0,066%) населения мира.
  • Эта таблетка ибупрофена не принесет вам никакой пользы; это всего 3 промилле вашего веса (200 мг на 60 кг человека).
  • Земля ничтожно , это всего 3 ppm массы Солнечной системы.
  • Ваши дети могут пить эту воду, она содержит только следовых количеств мышьяка (0,01 ppm — это предел ВОЗ и Агентства по охране окружающей среды США).
  • Озон — это только a след газ: 0,1 ppm — это предел воздействия, установленный Национальным институтом безопасности и гигиены труда США. Всемирная организация здравоохранения (ВОЗ) рекомендует предел озона равный 0.051 частей на миллион.
  • Несколько частей на миллион чернил могут сделать ведро с водой синим. Цвет обусловлен поглощением желтого / красного цветов солнечного света, оставляя синий цвет. Вдвое большее количество чернил обеспечивает более насыщенный цвет, даже несмотря на то, что общее количество по-прежнему составляет всего след относительно воды.

«Следы» CO 2

Хотя процентное соотношение — удобный способ говорить о количестве газа в атмосфере, оно говорит только о его количестве относительно всего остального; процент не дает абсолютной суммы.

Например, у вас проблемы с дыханием на вершине Эвереста, хотя атмосфера все еще содержит 21% кислорода, как и на уровне моря. Процент не важен, вам нужно определенное количество молекул кислорода при каждом вдохе, независимо от того, насколько они разбавлены инертными газами. На высоте 8000 м вся атмосфера разбавлена.

Общее количество молекул CO 2 над нашими головами в атмосфере более важно, чем их процентное содержание в атмосфере.Если бы количество инертного газообразного азота (N 2 ) в атмосфере было сокращено вдвое, тогда процентное содержание CO 2 подскочило бы (примерно до 600 ppm; 0,06%) без изменения абсолютного количества. CO 2 и никакого существенного изменения в энергетическом балансе Земли. Добавление в атмосферу огромного количества молекул CO 2 , поглощающих энергию, не сильно меняет его процентное число, только потому, что оно добавляется к огромному инертному фону N 2 .

Мы знаем, что количество CO 2 в атмосфере увеличилось, потому что мы его измерили. Мы знаем, что климат стал теплее, исходя из текущих и исторических данных. Связь между увеличением количества парниковых газов и повышением температуры очевидна: так же, как чернила делают воду более окрашенной, CO 2 делает атмосферу более поглощающей. Дополнительный CO 2 в нашей атмосфере улавливает энергию, которая в противном случае могла бы уйти в космос. Измеренное глобальное потепление точно соответствует количеству энергии, удерживаемой парниковыми газами, добавляемыми в атмосферу.

Удвоение следа молекулы CO 2 с 280 ppm до 560 ppm по-прежнему остается следом , но, как и в случае с мышьяком, разница между маленьким следом и большим следом является фатальным.


* Чтобы преобразовать ppm в процент, разделите на 10,000.

Фотография: http://www.photographyblogger.net/15-cool-pictures-of-ink-in-water/

Основное опровержение, написанное Сарой


Обновление за июль 2015 г. :

Вот соответствующая лекция-видео от Denial101x — Осмысление климатологии Отказ

Последнее обновление: 8 июля 2015 г., автор: MichaelK.Смотреть архив

.

10 показателей человеческого отпечатка пальца на изменение климата

10 показателей человеческого отпечатка пальца на изменение климата

Размещено 30 июля 2010 г. автором John Cook

Отчет NOAA «Состояние климата в 2009 году» представляет собой прекрасное обобщение множества свидетельств того, что происходит глобальное потепление. Признание того факта, что планета нагревается, приводит к очень важному вопросу — что вызывает глобальное потепление? Чтобы ответить на этот вопрос, вот краткое изложение эмпирических данных, отвечающих на этот вопрос.Множество различных наблюдений находят отчетливый человеческий отпечаток изменения климата:

Чтобы получить более подробное представление, нажмите на картинку выше, чтобы получить версию с высоким разрешением 1024×768 (вы все можете использовать этот рисунок в своих презентациях Powerpoint). Или, чтобы копнуть еще глубже, вот дополнительная информация по каждому показателю (включая ссылки на исходные данные или рецензируемые исследования):

  1. В настоящее время человек выбрасывает в атмосферу около 30 миллиардов тонн CO. 2 ежегодно (CDIAC).Конечно, может быть совпадением, что уровни CO2 одновременно растут так резко, поэтому давайте рассмотрим больше доказательств того, что мы несем ответственность за повышение уровня CO2.
  2. Когда мы измеряем тип углерода, накапливающийся в атмосфере, мы наблюдаем больше того типа углерода, который поступает из ископаемого топлива (Manning 2006).
  3. Это подтверждается измерениями содержания кислорода в атмосфере. Уровень кислорода падает в соответствии с увеличением количества углекислого газа, как и следовало ожидать от сжигания ископаемого топлива, которое забирает кислород из воздуха для образования углекислого газа (Manning 2006).
  4. Еще одно независимое свидетельство того, что люди повышают уровень CO2, получено из измерений углерода, обнаруженных в коралловых записях за несколько столетий. Они обнаружили недавнее резкое увеличение количества углерода, получаемого из ископаемого топлива (Pelejero 2005).
  5. Итак, мы знаем, что люди повышают уровень CO2. Какой эффект? Спутники измеряют меньше тепла, уходящего в космос, на тех длинах волн, на которых CO2 поглощает тепло, таким образом обнаруживая «прямые экспериментальные доказательства значительного увеличения парникового эффекта Земли» .(Харрис 2001, Григгс 2004, Чен 2007).
  6. Если в космос уходит меньше тепла, куда оно уходит? Вернемся к поверхности Земли. Измерения на поверхности подтверждают это, наблюдая более низкое инфракрасное излучение (Philipona 2004, Wang 2009). Более пристальный взгляд на нисходящее излучение обнаруживает, что больше тепла возвращается на длинах волн CO2, что приводит к выводу, что «эти экспериментальные данные должны эффективно положить конец аргументу скептиков о том, что не существует экспериментальных доказательств связи между увеличением выбросов парниковых газов в атмосфере и глобальным потеплением. .» (Evans 2006).
  7. Если усиление парникового эффекта вызывает глобальное потепление, мы должны увидеть определенные закономерности в потеплении. Например, планета ночью должна нагреваться быстрее, чем днем. Это действительно наблюдается (Braganza 2004, Alexander 2006).
  8. Еще одна отличительная черта парникового потепления — похолодание в верхних слоях атмосферы, также известное как стратосфера. Именно это и происходит (Jones 2003).
  9. С потеплением нижних слоев атмосферы (тропосферы) и похолоданием верхних слоев атмосферы (стратосферы) другим следствием является то, что граница между тропосферой и стратосферой, также известная как тропопауза, должна повыситься вследствие потепления парниковых газов.Это было замечено (Santer 2003).
  10. Ожидается, что еще более высокий слой атмосферы, ионосфера, будет охлаждаться и сжиматься в ответ на парниковое потепление. Это наблюдалось со спутников (Laštovička 2006).

Наука — это не карточный домик, который можно свергнуть, если убрать хотя бы одну строку улик. Вместо этого это похоже на головоломку. По мере накопления доказательств мы получаем более четкую картину того, что движет нашим климатом. Теперь у нас есть множество доказательств, указывающих на один последовательный ответ: основной движущей силой глобального потепления является повышение уровня углекислого газа в результате сжигания ископаемого топлива.

.

0 0 vote
Article Rating
Подписаться
Уведомление о
guest
0 Комментарий
Inline Feedbacks
View all comments