Выпрямители напряжения: Однополупериодный выпрямитель: принцип работы и применение

Разное

Содержание

Однополупериодный выпрямитель: принцип работы и применение

Однополупериодный выпрямитель – это самый простой вид выпрямителя напряжения. Он берет на себя ровно половину от синусоидального переменного напряжения. По своим техническим характеристикам и принципам работы такой тип выпрямителя не подходит для очень многих сфер электрики и электроники.

В сигнале на выходе слишком много гармоник, которые трудно технически и практически отфильтровать. В настоящей статье будет рассмотрено строение, структура этого типы выпрямителя, а также где они могут быть использованы. Дополнением служат два ролика по данной теме, а также она подробная техническая лекция по данным типам выпрямления напряжения.

Как устроен выпрямитель тока

Схема однополупериодного выпрямителя

При подаче переменного sin-идального напряжения на первичную обмотку трансформатора напряжение на зажимах вторичной его обмотки также будет переменным синусоидальным и будет равноU2=U2msinwt. Диод проводит электрический ток только в том случае, когда его анод относительно катода будет иметь положительный потенциал. Поэтому ток в цепи – вторичная обмотка, диод и нагрузка – будет протекать только в одном направлении, то есть в течение одной половины периода переменного напряженияU2. В результате этого ток, протекающий в цепи нагрузки, оказывается пульсирующим. Максимальное значение тока:

Im=U2m/RH, гдеRH– сопротивление потребителя постоянного тока.

Кривая получаемого в процессе однополупериодного выпрямления пульсирующего тока может быть разложена в гармонический ряд Фурье:

i=Im(1/π+1/2 sinwt-2/3π∙1 cos2wt-…).

Пульсирующий ток, как видно из выражения, кроме переменных составляющих содержит также и постоянную I=Im/π. Отсюда постоянная составляющая напряжения

U=IRH=Im/π∙RH=U2m/π.

Через действующее значение напряжения: U=√2 ∙U2/π.

Переменные составляющие характеризуют величину пульсаций тока и напряжения.

График работы однополупериодного выпрямителя

Для оценки пульсаций при какой-либо схеме выпрямления вводится понятие коэффициента пульсаций q, под которым понимается отношение амплитуды Aнаиболее резко выраженной гармонической составляющей, входящей в кривые выпрямленного тока или напряжения, к постоянной составляющей Aв тока\напряжения в выходной цепи выпрямителя:q=Am/AB.

Для схемы однополупериодного выпрямителя: q=0.5Im/(1/π ∙Im)=π/2. В течение половины периода, когда анод диода имеет отрицательный относительно катода потенциал, диод тока не проводит. Напряжение, воспринимаемое диодом в непроводящий полупериод, называется обратным напряжением Uобр. Обратное напряжение на диоде будет определяться напряжением на вторичной обмотке. Максимальное значение напряженияUобрm=U2m. Значит, вентиль надо выбирать так, чтобы [Umax обр]>=U2m.

Недостатки такой схемы выпрямления: большие пульсации выпрямленного тока и напряжения, а также плохое использование трансформатора, поскольку по его вторичной обмотке протекает ток только в течение половины периода. Такую установку используют в маломощных системах, когда выпрямленный ток мал.

Как устроен выпрямитель

Напряжение с вторичной обмотки силового трансформатора подаётся на один единственный диод. Поэтому выпрямитель и назван однополупериодным. Выпрямляется только один полупериод и на выходе получается импульсное напряжение. Схема проста и не требует большого количества элементов. Это и сказывается на качестве выпрямленного напряжения. При низких частотах переменного напряжения (например, как в электросети – 50 Гц) выпрямленное напряжение получается сильно пульсирующим. А это очень плохо.

Для того чтобы снизить величину пульсации выпрямленного напряжения приходится брать величину конденсатора С1 очень большую, порядка 2000 – 5000 микрофарад, что увеличивает размер блока питания, так как электролиты на 2000 – 5000 мкф имеют довольно большие размеры. Поэтому на низких частотах эта схема практически не используется. Зато однополупериодные выпрямители прекрасно зарекомендовали себя в импульсных блоках питания работающих на частотах 10 – 15 кГц (килогерц).

На таких частотах величина ёмкости фильтра может быть очень небольшой, а простота схемы уже не столь сильно влияет на качество выпрямленного напряжения.

Примером использования однополупериодного выпрямителя может служить простой зарядник от сотового телефона. Так как зарядник сам по себе маломощный, то в нём применяется однополупериодная схема, причём как во входном сетевом выпрямителе 220V (50Гц), так и в выходном, где требуется выпрямить переменное напряжение высокой частоты со вторичной обмотки импульсного трансформатора. К несомненным достоинствам такого выпрямителя следует отнести минимум деталей, низкую стоимость и простые схемные решения. В обычных (не импульсных) блоках питания многие десятилетия успешно работают двухполупериодные выпрямители.

Выпрямитель электрического тока

Его электронная схема, предназначенная для преобразования переменного электрического тока в постоянный (одно полярный) электрический ток. В полупроводниковой аппаратуре выпрямители исполняются на полупроводниковых диодах. В более старой и высоковольтной аппаратуре выпрямители исполняются на электровакуумных приборах – кенотронах. Раньше широко использовались – селеновые выпрямители.

Для начала вспомним, что собой представляет переменный электрический ток. Это гармонический сигнал, меняющий свою амплитуду и полярность по синусоидальному закону. В переменном электрическом токе можно условно выделить положительные и отрицательные полупериоды. Всё то, что больше нулевого значения относится к положительным полупериодам (положительная полуволна – красным цветом), а всё, что меньше (ниже) нулевого значения – к отрицательным полупериодам (отрицательная полуволна – синим цветом).

Выпрямитель, в зависимости от его конструкции «отсекает», или «переворачивает» одну из полуволн переменного тока, делая направление тока односторонним. Схемы построения выпрямителей сетевого напряжения можно поделить на однофазные и трёхфазные, однополупериодные и двухполупериодные.

Однофазная мостовая схема выпрямления

Для удобства мы будем считать, что выпрямляемый переменный электрический ток поступает с вторичной обмотки трансформатора. Это соответствует истине и потому, что даже электрический ток в домашние розетки квартир домов приходит с трансформатора понижающей подстанции. Кроме того, поскольку сила тока – величина, напрямую зависящая от нагрузки, то при рассмотрении схем выпрямления мы будем оперировать не понятием силы тока, а понятием – напряжение, амплитуда которого напрямую не зависит от нагрузки.

Из сземы видно, что диод отсекает отрицательную полуволну. Если мы перевернём диод, поменяв его выводы – анод и катод местами, то на выходе окажется, что отсечена не отрицательная, а положительная полуволна. Среднее значение напряжения на выходе однополупериодного выпрямителя соответствует значению:

Uср = Umax / π = 0,318 Umax

где: π — константа равная 3,14.

Однополупериодные выпрямители используются в качестве выпрямителей сетевого напряжения в схемах, потребляющих слабый ток, а также в качестве выпрямителей импульсных источников питания. Они абсолютно не годятся в качестве выпрямителей сетевого напряжения синусоидальной формы для устройств, потребляющих большой ток. Наиболее распространёнными являются однофазные двухполупериодные выпрямители. Существуют две схемы таких выпрямителей – мостовая схема и балансная.

Работа выпрямительного диода

Заключение

Рейтинг автора

Автор статьи

Инженер по специальности «Программное обеспечение вычислительной техники и автоматизированных систем», МИФИ, 2005–2010 гг.

Написано статей

Более подробно о том, что однополупериодный выпрямитель, рассказано в исследовательской работе по выпрямителям. Если у вас остались вопросы, можно задать их в комментариях на сайте. А также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов. Для этого приглашаем читателей подписаться и вступить в группу.

В завершение статьи хочу выразить благодарность источникам, откуда мы черпали информацию во время подготовки материала:

www.meanders.ru

www.electricalschool.info

www.radioprog.ru

www.go-radio.ru

www.studfile.net

Предыдущая

ТеорияКак работает выпрямитель напряжения

Следующая

ТеорияЧто такое мостовой выпрямитель и как он устроен

Выпрямитель напряжения: история и разновидности

Выпрямитель напряжения – это не совсем правильное сочетание слов, относящееся к схемам на различных выпрямителях тока. К последним относятся, прежде всего, диоды. Ранее использовались кенотроны различной конструкции.

Из истории вопроса

Выпрямить удаётся исключительно ток, впрочем, если применить слово к напряжению, профессионалу термин останется понятым. Электроны способны двигаться по проводу в обоих направлениях, в зависимости от разницы потенциалов. Происходящее называется переменным током, током переменного направления. Чтобы электроны постоянно двигались прямо и не сворачивали, требуется выпрямитель.

Следовательно, определение уточняется. Выпрямителем (напряжения) тока называется прибор, заставляющий электроны в цепи двигаться лишь в единственном направлении. Присутствует разница между профессиональной средой и любителями:

  1. Ученикам в школе рассказывают, что прямым называется постоянный ток. На уровне класса физики не происходит деления. Возможно, чтобы не путать учащихся.
  2. Профессионалы импульсы одной полярности уже называют выпрямленным напряжением (током). В этом свете простой диодный вентиль без сглаживающего фильтра считается выпрямителем в полном смысле слова.

Таким образом, словосочетание, указанное выше, допустимо трактовать по-разному. Если требуется постоянный ток, как в аккумуляторе, но из розетки, искомый прибор полагается называть:

  • Адаптер постоянного тока.
  • Блок питания постоянного тока.
  • Преобразователь постоянного тока.

Но не выпрямитель. Под последним понимается просто срезание отрицательной части тока и напряжения. Обработке подвергаются оба параметра, вытекая из закона Ома для участка цепи. Переозвучим: если на концах цепи без разрывов присутствует напряжение, потечёт ток. Единственное исключение из правила даёт конденсатор. В традиционном физическом классе не рассматривается при упоминании законов Ома. Зато в высшей школе преподают, что ёмкостное сопротивление изменяет сдвиг фаз между напряжением и током.

Обобщая: выпрямитель выпрямляет сразу два параметра, ток и напряжение. В первом случае присутствует однонаправленное движение электронов, во втором – градиент разницы потенциалов постоянен. Выпрямляющие свойства в противовес общественному мнению первоначально открыты в полупроводниках. Электронные лампы изобрели намного позднее в результате изысканий Томаса Эдисона и прочих (см. Лампа накаливания).

Открытие по полупроводникам сделано в 1874 году Карлом Фердинандом Брауном вскоре после перебазирования к новому месту назначения научного руководителя Георга Квинке. Университет не нашёл подходящей должности, открыватель эффекта выпрямления начинает преподавать в средней школе. Обширный досуг предоставляет Брауну достаточно времени для научной деятельности, в свет выходит первая работа по искусственным и натуральным окислам меди, платины, нейзильбера, пирита, халькопирита, галенита.

Исследование тетраэдра из блеклой породы показало анизотропность найденных свойств. Подводя к каждой из 8 граней серебряную проволоку, учёный измерял ток при помощи мультипликатора (гальванометр). Напряжение вольтова столба постоянно перепроверялось, памятуя печальный опыт Георга Ома. Требование возникло, когда учёный обнаружил нелинейность проводимости контакта металл-кристалл. Сегодня эту половинку параболы видим на любой вольт-амперной характеристике диода. Собственно, так и обнаружились выпрямляющие свойства минералов. Остаётся лишь сожалеть, что перевод работы на русский язык отсутствует, а английский доступен лишь за солидную сумму денег, но упорные читатели пусть покоряют немецкий!

Ламповые выпрямители

Согласно статистике на момент середины 70-х годов из всей производимой в СССР энергии примерно четверть требовалось преобразовать в постоянный ток. Для действия потребовались дешёвые и качественные приборы, нежели предложенные потребителям сталинскими заводами.

Уже выедены были многочисленные технические решения, но большая часть электрических схем реализовывалась на лампах: диодах, триодах и пр. На рисунке представлены застойные варианты выпрямителей, взятые из книги Мазеля К.Б. издания 1951 года. Безусловным достоинством схем признана понятность читателю. Описание однополупериодного лампового выпрямителя:

  1. Переменный ток подаётся на трансформатор с двумя вторичными обмотками, одна предназначена целиком для подогрева катода (на рисунке – справа, дуга).
  2. Стрелка с направлением тока не вводит в заблуждение: электроны движутся внутри вакуума в противоположном направлении.
  3. Цепь катода включена в заземлённый контур, чтобы замкнуть путь для выходного тока. Электроны, разогревающие активный слой, сюда не ответвляются в силу очевидных причин.
  4. На выходе стоит полосовой фильтр из индуктивности и ёмкостей, служащий для отсеивания ненужных гармоник.

Двухполупериодный действует аналогичным образом, вместо диодной лампы используется двуханодный кенотрон. В результате появляется возможность повышения КПД. Выходной ток снимается через среднюю точку, где всегда течёт в направлении, указанном на рисунке. Схема представляет аналог диодного моста.

Первый вариант схемы используется для удешевления конструкции и уменьшения габаритов. Одновременно сильнее расходуется запас батарейки. Причина – выпрямляется лишь единственный полупериод колебания входного напряжения питания. На выходе фильтра, как правило, сохраняется остаточная частота пульсаций, совпадающая с сетевой. Уже в сталинские времена схемы иногда оборудовали селеновыми или купроксными полупроводниковыми диодами. Напомним, на основе оксида меди в 1874 году Карл Фердинанд Браун открыл выпрямляющие свойства неметаллических элементов (см. Полупроводниковый диод).

Двухполупериодная схема прежде считалась распространенной для питания маломощных радиоприёмников. Частота пульсаций выходит удвоенной, зато амплитуда меньше, нежели в однополупериодной схеме при эквивалентных фильтрах гармоник. Большой минус: число витков рабочей обмотки приходится увеличивать, чтобы достичь схожего коэффициента передачи каскада. Следовательно, схема более высоковольтная.

Выпрямитель на лампах с удвоением напряжения

Схема с умножением напряжения (вдвое) собирается на двух кенотронах (ламповых диодах). Это станет платой за увеличенный вольтаж. Как легко увидеть из рисунка, кенотроны включены навстречу, за счёт чего первый пропускает ток в положительном направлении, а второй – в отрицательном. Несомненный плюс схемы: трансформатор приобретает меньшие размеры, а вторичная обмотка находится под меньшим напряжением. Цепи подогрева раздельные для обеих ламп, иного не дано: катод кенотрона закорачивался бы на анод.

Пунктиром здесь показана схема снятия напряжения без его удвоения, допустимо использовать с потерей КПД системы. Недостаточность фильтрации в современной электронике легко повысить, применяя схемы, обычные для импортной техники, одна представлена на рисунке. Это типичное техническое решение для стиральных машин, требующее присутствия в доме системы заземления TN-S. Рабочий и защитный нулевые проводники не должны соприкасаться в любой точке. Это обеспечивает качественную фильтрацию помех по фазе и нейтрали одновременно, что в конечном итоге продлит жизнь электроники в доме.

Частота пульсация в схеме с удвоением удвоенная, используются оба полупериода. Кенотроны возможно заменить на полупроводниковые диоды без потери работоспособности схемы. Рекомендуется обеспечить раздельное питание катодов кенотрона, дополнительная особенность: при непосредственном заземлении одного конца вторичной обмотки нейтраль выходного напряжения соединять с грунтом уже нельзя. Лучше такое заземление выполнять через конденсатор ёмкостью 500 – 1000 мкФ.

Простые диоды возможно заменить на двуханодные кенотроны с катодами, электрически изолированными от единой нити накала. Это делается, когда есть общий (на прибор) питающий трансформатор. Тогда нить накала питается из общей сети (питания накала) и отделяется от остальной части бареттером (вакуумным ограничителем тока). В остальном схема мало отличается от представленной выше.

Полупроводниковые схемы выпрямителей

Полупроводниковый выпрямитель с учетверением напряжения порадует любителей домашних экспериментов. При помощи такой штуковины удастся сильно намагнитить металлический стержень, как Араго в 1820 году (о чем известно из его собственной заметки, опубликованной в томе XV журнала Annales de chimie et de physique). За четыре года до изобретения Вильяма Стерджена! Араго наблюдал действие проволоки с электрическим током на металлические опилки, но не придал наблюдению оттенка практичности или коммерциализации.

Схема простая, но демонстрирует недостаток – нужно где-то набрать четыре высоковольтных конденсатора. Напряжение каждого указано на изображении, и этим допустимо руководствоваться при отборе. Конденсаторы не должны быть электролитическими, знак на контактах поменяется. Плюс и минус указаны только для иллюстрации образования выходного напряжения.

На положительном полупериоде заряжается нижняя пара ёмкостей, а на отрицательной – верхняя. Конденсаторы в каждой паре включены параллельно (см. параллельное включение конденсаторов) и последовательно (см. последовательное включение конденсаторов) одновременно. Смотря по какому полупериоду пришло время. Номиналы лучше брать одинаковыми.

Кенотроны и твердотельные выпрямители

Выше намеренно не приводятся все известные схемы на твердотельной электронике, часть увидите в теме диодный мост. Найдутсятам и трёхфазные технические решения, в том числе принадлежащие Ларионову. Важнее рассмотреть критерии выбора кенотронов. Тематика древняя, литературу найти сложно среди интернетского завала, появляется смысл остановиться подробнее на старой элементной базе.

В аудиозаписи и на концертах ламповые усилители популярны и поныне. Стоят немалых денег. Купить сумеет не каждый, а вот собрать собственноручно… Артисты утверждают, что звук получается насыщенный объёмный. Авторам приходилось даже слышать, что, мол, от вибраций колонок в лампах электроны летят по-особенному. Оттого и звучание столь своеобразное.

  • Важным параметром считается максимально допустимое обратное напряжение. Как в случае с твердотельной техникой, способно повредить: образуется лавинный пробой за счёт эмиссии электронов с анода. Сопровождающийся значительной температурой, сожжёт лампу.
  • Внутренним сопротивлением называется величина, обратная проводимости лампы в открытом состоянии. Определяется из вольт-амперной характеристики прибора (см. рис.). Как для обычного диода потребуется разницу потенциалов поделить на ток. Значения берутся по выбранной рабочей точке, либо по максимуму входного напряжения.
  • Максимальные ток в импульсе и напряжение способны превышать средние выпрямленные значения. Потребуется убедиться, что лампа не сгорит в имеющихся условиях.

основные понятия / Статьи и обзоры / Элек.ру

Выпрямитель переменного напряжения строится либо на диодах, либо на тиристорах, либо на их комбинации. Выпрямитель, построенный на диодах, является неуправляемым, а на тиристорах — управляемым. Если используются и диоды, и тиристоры, выпрямитель является полууправляемым.

Неуправляемые выпрямители

Диоды позволяют току протекать только в одном направлении: от анода (А) к катоду (К). Как и в случае некоторых других полупроводниковых приборов, величину тока диода регулировать невозможно. Напряжение переменного тока преобразуется диодом в пульсирующее напряжение постоянного тока. Если неуправляемый трехфазный выпрямитель питается трехфазным напряжением переменного тока, то и в этом случае напряжение постоянного тока будет пульсировать.

Выходное напряжение неуправляемого выпрямителя равно разности напряжений двух диодных групп. Среднее значение пульсирующего напряжения постоянного тока равно 1,35 х напряжение сети.

Управляемые выпрямители

В управляемых выпрямителях диоды заменены тиристорами. Подобно диоду тиристор пропускает ток только в одном направлении — от анода (А) к катоду (К). Однако в противоположность диоду тиристор имеет третий электрод, называемый «затвором» (G). Чтобы тиристор открылся, на затвор должен быть подан сигнал. Если через тиристор течет ток, тиристор будет пропускать его до тех пор, пока ток не станет равным нулю.

Ток не может быть прерван подачей сигнала на затвор. Тиристоры используются как в выпрямителях, так и в инверторах.

На затвор тиристора подается управляющий сигнал α, который характеризуется задержкой, выражаемой в электрческих градусах. Эти градусы оказывают запаздывание между моментом перехода напряжения через нуль и временем, когда тиристор открыт.

Если угол а находится в пределах от 0° до 90°, то тиристорная схема используется в качестве выпрямителя, а если в пределах от 90° до 180° — то в качестве инвертора.

Управляемый выпрямитель в своей основе не отличается от неуправляемого за исключением того, что тиристор управляется сигналом а и начинает проводить с момента, когда начинает проводить обычный диод, до момента, который находится на 30° позже точки перехода напряжения через нуль.

Регулирование значения а позволяет изменять величину выпрямленного напряжения. Управляемый выпрямитель формирует постоянное напряжение, среднее значение которого равно 1,35 х напряжение сети x cos α.

По сравнению с неуправляемым выпрямителем управляемый имеет более значительные потери и вносит более высокие помехи в сеть питания, поскольку при более коротком времени пропускания тиристоров выпрямитель отбирает от сети больший реактивный ток.

Преимуществом управляемых выпрямителей является их способность возвращать энергию в питающую сеть.

По материалам компании «Звезда-Электроника»

Соотношения между переменными выпрямленными токами и напряжениями для различных схем выпрямления.





Для выпрямления однофазного переменного напряжения применяют три схемы:

1) однополупериодная;

2) двухполупериодная мостовая;

3) двухполупериодная трансформаторная (с выводом средней точки).

Однополупериодная схема — в которой ток проходит через вентиль только в течение одного полупериода переменного напряжения источника.

Двухполупериодные схемы — в которых ток проходит через вентильную группу в течение двух полупериодов переменного напряжения источника.

Рассмотрим соотношения параметров в выпрямителях при следующих допущениях:

1) Индуктивное сопротивление рассеяния трансформатора и активное сопротивление его обмоток равны нулю;

2)
Сопротивление вентиля в прямом направлении равно нулю, а в обратном равно бесконечности.

Однополупериодный однофазный выпрямитель приведен на рис.8

Временные диаграммы напряжений и токов данного выпрямителя представлены на рис.9

Определим постоянную составляющую выпрямленного тока:

.

Так как , то

.

Но так как , т.е. , то

или

.

 

Постоянная составляющая напряжения, выраженная через максимальное значение:

.

Постоянная составляющая напряжения, выраженная через действующее значение:

 

Таким образом, в данной схеме максимальное напряжение на диоде

,

т.е. напряжение на диоде в три раза больше, чем на нагрузке.

Среднее значение тока диода в этой схеме .

Величину пульсаций выпрямленного напряжения характеризуют коэффициентом пульсаций

,

где U1m – амплитуда переменной составляющей напряжения, изменяющегося с частотой повторения импульсов, т. е. амплитуда первой гармоники.

Для однополупериодной схемы

, а .

Недостатки схемы:

1) большое значение коэффициента пульсаций ;

2) напряжение на нагрузке почти в 3 раза меньше, чем на диоде;

3) постоянная составляющая выпрямленного тока значительно меньше тока во вторичной обмотке трансформатора, что приводит к его недостаточному использованию по току.

Двухполупериодная мостовая схема

 

Рис. 10

I0 в 2 раза больше, чем в однополупериодной схеме. Поэтому:

;

;

Частота выпрямленного тока в 2 раза больше, чем у сети.

.

Двухполупериодная схема с выводом средней точки вторичной обмотки трансформатора (рис.11):

Рис. 11

Временные диаграммы работы выпрямителя (рис. 12):

Это фактически сочетание двух однополупериодных выпрямителей, включенных на нагрузочный резистор Rн в различные фазы.

Соотношения параметров в данной схеме такие же, как и в мостовой схеме.



Преимущества двухполупериодных выпрямителей по сравнению с однополупериодным:

Среднее значение выпрямленных тока и напряжения в 2 раза больше, а пульсации меньше.

Но двухполупериодные выпрямители имеют более сложную конструкцию и стоимость.

Сравнение двухполупериодных схем:

1) Мостовая схема конструктивно проще, ее габариты, масса и стоимость ниже, чем трансформаторной схемы.

2) Максимальное обратное напряжение на закрытых диодах в мостовой схеме в 2 раза меньше (на каждый из двух диодов приходится половина напряжения).

3) Но в мостовой схеме необходимо в 2 раза больше диодов.

При выпрямлении токов I >Iпрmax для одного диода параллельно включают однотипные диоды с добавочными сопротивлениями (рис.13):

Рис. 13

Величины токов определяются их сопротивлениями в прямом направлении. Но сопротивления диодов в прямых направлениях Rдпр даже для однотипных диодов различны.

Для выравнивания токов диодов последовательно включают добавочные сопротивления. Причем Rд в 5…10 раз больше Rдпр.

Рис. 14

При выпрямлении напряжения, превышающего максимально допустимое для диода Uобр.max, используют последовательное соединение диодов, шунтированных резисторами (рис.14).

При этом обратное напряжение на диодах распределяется в соответствии с их обратными сопротивлениями Rд.обр. Для выравнивания обратных напряжений параллельно диодам включают шунтирующие резисторы Rш, величина которых равна:

Rш=(0,1…0,2) Rд.обр.

 

 

Задача 1

Для цепи постоянного тока со смешанным соединением резисторов начертить схему цепи и определить:

1. Эквивалентное сопротивление цепи относительно входных зажимов.

2. Токи, проходящие через каждый резистор.




3. Составить баланс мощностей.

4. Определить мощность, потребляемую всей цепью за 10 часов работы.

 

Таблица 2.

Вариант Номер схемы U, В Сопротивления, Ом
R1, Ом R2 , Ом R3, Ом R4, Ом R5, Ом R6, Ом

 

 

Решение

 

 

 

В цепи, приведенной на рисунке известны следующие величины: R1=14 Ом, R2= 7 Ом, R3= 12 Ом, R4= 8 Ом, R5= 17 Ом, R6= 12 Ом, U=50 В.

1. Сначала определяем эквивалентное сопротивление цепи. Участки с сопротивлениями R5 и R6 соединены ппоследовательно, и их эквивалентное сопротивление

R56= R5+ R6 =17+12=29 Ом

Участки с сопротивлениями R3, R4, R56 соединены параллельно. Эквивалентное сопротивление находим из формулы:

1/R3456=1/R3+1/R4+1/R56= 1/12+1/8+1/29 = 0,242 Ом-1,

а R3456= 4,12 Ом.

Резисторы R2 и R3456 соединены последовательно. Их эквивалентное сопротивление определяем по формуле:

R23456= R2+ R3456 =7+4,12=11,12 Ом

 

Эквивалентное сопротивление цепи с учетом параллельного соединения резисторов R 1 и R23456

Rэкв= (R1•R23456)/( R1+R23456)= (14•11,12)/(14+11,12)= 6,20 Ом.

2. Ток в неразветвленной части цепи

I=U/Rэкв= 50/6,20 = 8,06A

Ток через резистор R1:

 

I1=U/R1= 50/14= 3,57А

 

Ток по участку цепи R23456:

I23456= I2= I3456=U/R23456= 50/11,12= 4,50 А

 

Напряжение на участке R3456 определяем по формуле:

U3456= U3= U4= U56= I3456·R3456=4,50·4,12 = 18,53 В

 

Токи участков цепи:

I3=U3/R3 = 18,53/12 = 1,54 A

I4=U4/R4 = 18,53/8 = 2,32 A

I5= I6=U56/R56 = 18,53/29 = 0,64 A

 

3. Составляем баланс мощностей, для чего найдем мощность подводимую к цепи Р и мощности приемников электрической энергии:

Р=U·I= 50 ·8,06 = 403 Вт

Р1=U1·I1= I12·R1 = 3,572·14=178,43 Вт

Р2=U2·I2= I22R2 = 4,502·7=141,75 Вт

Р3=U3·I3= I32·R3 = 1,542·12=28,46 Вт

Р4=U4·I4= I42·R4 = 2,322·8=43,06 Вт

Р5=U5·I5= I52·R5 = 0,642·17=6,96 Вт

Р6=U6·I6= I62·R6 = 0,642·12=4,92 Вт

 

Р= P1+ Р2 + Р3+ Р4+ Р5+ Р6

403 Вт = (178,43 +141,75 + 28,46 + 43,06 + 6,96+4,92) Вт

403 Вт ≈403,58 Вт

Баланс мощностей выполнен.

4. Определяем количество энергии потребляемой цепью за 10 часов работы:

W= P· t = 403 · 10 = 4030 Вт·ч = 4,03 кВт·ч.

 

 

Задача 2

По данным таблицы 3 начертить схему последовательной электрической цепи синусоидального тока с частотой 50 Гц. Определить следующие параметры цепи (если они не заданы в таблице):

1. Сопротивление реактивных элементов цепи XL, XC.

2. Полное сопротивление цепи Z.

3. Напряжение, приложенное к цепи U

4. Ток, протекающий в цепи I.

5. Активную, реактивную и полную мощность цепи.

6. Угол сдвига фаз φ между током и напряжением (по величине и знаку).

7. Начертить в масштабе векторную диаграмму цепи и объяснить ее построение.

 

Таблица 3

 

№ варианта R1, Ом L1,мГн C1,мкФ R2, Ом L2,мГн C2,мкФ R3, Ом L3,мГн C3,мкФ Дополнительный параметр
- - - 15. 9 - РR1=54 Вт

 

 

Решение

 


R1 С1 R2 R3

 

L3

 

 

В цепи, приведенной на рисунке известны следующие величины: R1= 2 Ом, С1=637 мкФ, R2= 6 Ом, R3= 4 Ом, L1=15,9 Гн, РR1=54 Вт.

1. Определяем индуктивное сопротивление катушки L3 :

ХL3=2πfL3 = 2·3,14·50·0,0159=5 Ом

 

2.Определяем емкостное сопротивление конденсатора С1:

ХС1=1/(2πfС1) = 1/(2·3,14·50·637·10-6) =5 Ом

3. Определяем полное сопротивление цепи:

=12 Ом


4. Определяем ток в цепи:

I=√ РR1/ R1=√54/2 = 5,20 А

5. Определяем напряжение, подведенное к цепи:

U=I·Z = 5,20·12 = 62,35 В

6. Определяем угол сдвига фаз между током и напряжением:

sin φ= (XL3— XC1) /Z= 0

φ=00

7.Определяем активную, реактивную и полную мощности цепи:

P=U·I·cosφ =62,35· 5,20· 1= 324,24 Вт

cosφ = (R1+ R2+ R3)/ Z=12/12=1

Q=U·I·sinφ = 62,35· 5,20· 0= 0вар

S =U·I=62,35· 5,20= 324,24 В·А

8.Для построения векторной диаграммы определяем напряжения на элементах цепи:

UR1=I·R1=5,20·2=10,4 В

UR2=I·R2=5,20·6=31,2 В

UR3=I·R3=5,20·4=20,8 В

UС1=I· XС1=5,20·5=26 В

UL3=I·XL3=0,63·62,8=39,6 В

Задаемся масштабами: MU = 5,20 В/см, MI = 1 А/см

Определив длины векторов тока и напряжений, строим векторную диаграмму, откладывая вектора в порядке, соответствующем подключению элементов цепи:

 

 

 

 

Задача 3

Рассчитать выпрямитель по заданным в таблице 4 характеристикам нагрузки (выпрямленные значения Uн, Рн), сети переменного тока (Uc, f), схеме выпрямителя (А- однофазная мостовая, Б- однофазная с нулевой точкой, В – однофазная однополупериодная, Г – трехфазная с нулевой точкой, Д – трехфазная мостовая):

1. Выбрать тип диодов при условии работы выпрямителя на заданную активную нагрузку. Основные соотношения для различных схем приведены в таблице 4.

2. Определить расчетную мощность и коэффициент трансформации трансформатора. Диоды считать идеальными.

3. Начертить схему выпрямителя , показать токи, напряжения, полярность выходных клемм выпрямителя, тип диодов, мощность, номинальные напряжения трансформатора.

Таблица 4.

№ варианта Характеристика нагрузки Схема выпрямителя Характеристика сети
Uн, В Рн, Вт Uс, В f, Гц
Д 220х

 

 

Решение

1. Определяем ток нагрузки выпрямителя:

 

2. Определяем ток, проходящий через диод в проводящий период:

 

3. Определяем максимальное обратное напряжение на диоде в непроводящий период:

 

4. Для выпрямителя выбираем диод КД202Е с параметрами Iпр доп = 3,5А; Uобр доп = 140 В.

5. Определяем расчетную мощность трансформатора:

 

6. Определяем напряжение на вторичной обмотке трансформатора:

 

 

Коэффициент трансформации:

 

Схема выпрямителя имеет вид:

 

Литература

1. Данилов И.А., Иванов П.М. Общая электротехника с основами электроники: Учеб.пособие для студ неэлектротехн. спец.средних учеб. заведений. 4-е изд., пер. – М.: Высш. шк., 2000. – 752 с..: ил.

2. Усс Л.В., Красько А.С., Кримович Г.С. Общая электротехника с основами электроники Мн. : Выш. школа, 1990

3. Усс Л.В. Лабораторный практикум по общей электротехнике с основами электроники Мн.: Выш. школа, 1993

4. Евдокимов Ф.Е. Общая электротехника: Учебник для учащ. неэлектротехнич. спец. техникумов.-2-е изд.- М.:Высш.шк., 1990

5. Галкин В.И., Пелевин Е.В. Промышленная электроника и микроэлектроника. Учеб.-Мн.:Беларусь, 2000

6. Диоды. Массовая библиотека радиолюбителя. Справочник.-М.:Радио и связь, 1990

 





Читайте также:

Рекомендуемые страницы:

Поиск по сайту











Что такое полноволновой выпрямитель? — Принципиальная схема, работа, преимущества и недостатки

Определение: Двухполупериодный выпрямитель — это полупроводниковые устройства, которые преобразуют полный цикл переменного тока в пульсирующий постоянный ток. В отличие от однополупериодных выпрямителей, в которых используется только полуволна входного цикла переменного тока, в полнополупериодных выпрямителях используется полная волна. Недостаток более низкого КПД полуволнового выпрямителя можно преодолеть, используя двухполупериодный выпрямитель.

Принципиальная схема двухполупериодного выпрямителя

Схема выпрямителя состоит из понижающего трансформатора, в которые включены два диода с центральным ответвлением.Таким образом, этот тип выпрямителя с центральным отводом называется выпрямителем с центральным отводом . Нагрузочный резистор подключен, и выходное напряжение получается на этом резисторе.

Работа полноволнового выпрямителя

Входное переменное напряжение, подаваемое для выпрямления, очень высокое. Сигнал переменного тока подается по линиям передачи с высоким напряжением, потому что подавать переменный ток высокого напряжения экономично. Понижающий трансформатор в цепи выпрямителя преобразует переменный ток высокого напряжения в переменный ток низкого напряжения.

В двухполупериодном выпрямителе с центральным ответвлением два диода подключены к центральному ответвлению вторичных обмоток трансформатора. Анодные выводы этих двух диодов соединены с центральным ответвлением вторичной обмотки. Кроме того, выводы анода также подключены к нагрузочному резистору.

Когда на выпрямитель подается положительный полупериод переменного напряжения, верхняя часть вторичной обмотки становится положительной, а нижняя часть вторичной обмотки становится отрицательной по отношению к верху обмотки.

Механизм диодной проводимости

Таким образом, диод D1 смещен в прямом направлении, поскольку он подключен к верхней части вторичной обмотки, а диод D2 смещен в обратном направлении, поскольку он подключен к нижней части вторичной обмотки. Таким образом, диод D1 будет проводить в течение положительной половины цикла, а диод D2 не будет проводить в течение положительной половины сигнала переменного тока.

Диод D1 действует как короткое замыкание, а диод D2 действует как разомкнутый контур во время положительной половины сигнала переменного тока.Когда на схему выпрямителя подается отрицательный полупериод сигнала переменного тока, верхняя часть вторичной обмотки становится отрицательной, а нижняя половина вторичной обмотки становится положительной.

Таким образом, диод D1 имеет обратное смещение, а диод D2 — прямое смещение. Это происходит потому, что отрицательное напряжение в верхней части вторичной обмотки делает вывод анода отрицательным по отношению к катоду в диоде D1.

Следовательно, в двухполупериодных выпрямителях постоянное напряжение получается как для положительной половины переменного тока, так и для отрицательной половины переменного тока.Таким образом, имя выпрямителя — это двухполупериодный выпрямитель — это двухполупериодный выпрямитель, так как он дает выход для полной волны переменного тока.

Анализ двухполупериодного выпрямителя

  1. Пиковое обратное напряжение: Пиковое обратное напряжение двухполупериодного выпрямителя вдвое больше, чем у полуволнового выпрямителя. PIV (пиковое обратное напряжение) на D1 составляет 2 В smax , а PIV на диоде D2 также составляет 2V smax. Это вдвое больше, потому что PIV на диоде при обратном смещении является суммой напряжения на половине вторичной обмотки и нагрузочного резистора.
  1. Пиковый ток: Значение пикового тока (I max ) может быть получено с помощью мгновенного значения приложенного напряжения и сопротивления диодов. Значение мгновенного напряжения, приложенного к цепи выпрямителя, может быть определено как: —

Предположим, что прямое сопротивление равно Rf Ом, а обратное сопротивление равно бесконечности, тогда ток, протекающий через нагрузочный резистор, может быть задан как: —

Полный ток i может быть получен суммой i 1 и i 2 для всего цикла.

Где Rf — прямое сопротивление, а RL — нагрузочный резистор.

Другие факторы, такие как выходной ток и выходное напряжение, описаны ниже.

  1. Выходной ток: Выходной постоянный ток может быть получен путем интегрирования i 1 от 0 до или интегрирования i 2 от до 2Π.
  2. Выходное напряжение постоянного тока: Среднее значение или значение постоянного тока выходного напряжения может быть выражено как произведение выходного постоянного тока и нагрузочного резистора R L.
  3. Среднеквадратичное значение тока: Среднеквадратичное значение и эффективное значение тока могут быть получены путем интегрирования i 2 1 в пределах от 0 до.

4. Среднеквадратичное значение выходного напряжения: Среднеквадратичное значение напряжения на нагрузке может быть получено путем умножения среднеквадратического значения тока на значение резистора нагрузки R L.

5. Форм-фактор и пик-фактор: Форм-фактор ( Kf ) двухполупериодного выпрямителя — это отношение действующего значения тока к среднему значению тока.

Пик-фактор ( Kp ) двухполупериодного выпрямителя — это соотношение между пиковым значением тока и среднеквадратичным значением тока.

6. Эффективность выпрямления: Эффективность выпрямления двухполупериодного выпрямителя можно получить как соотношение мощности постоянного тока, подаваемой на нагрузку, и мощности переменного тока, присутствующей в выходной мощности.

Преимущества полноволновых выпрямителей

  1. Эффективность выпрямления двухполупериодного выпрямителя намного выше, чем у полуволнового выпрямителя.Это примерно вдвое больше, чем у полуволнового выпрямителя, то есть около 81%.
  2. Схема фильтрации, необходимая для двухполупериодного выпрямителя, проста, поскольку коэффициент пульсации в случае двухполупериодного выпрямителя очень низок по сравнению с полуволновым выпрямителем. Значение коэффициента пульсаций в двухполупериодном выпрямителе составляет 0,482, а в полуволновом выпрямителе — около 1,21.
  3. Выходное напряжение и выходная мощность двухполупериодных выпрямителей намного больше, чем у двухполупериодных выпрямителей.
  4. Постоянные токи, протекающие в двух половинах вторичной обмотки трансформатора, протекают в противоположном направлении, таким образом, проблема насыщения сердечника постоянным током устраняется в двухполупериодных выпрямителях.

Недостатки полноволновых выпрямителей

Для двухполупериодных выпрямителей требуется больше элементов схемы, чем для однополупериодных выпрямителей, что делает их более дорогостоящими.

Введение в диоды

  • Раздел 2.0 Введение в диоды.
  • • Обозначения диодных схем.
  • • Ток через диоды.
  • • Конструкция диода.
  • • PN-переход.
  • • Прямое и обратное смещение.
  • • Характеристики диода.
  • Раздел 2.1 Кремниевые выпрямители.
  • • Маркировка полярности.
  • • Параметры выпрямителя.
  • Раздел 2.2 Диоды Шоттки.
  • • Конструкция диода Шоттки.
  • • Потенциал соединения Шоттки.
  • • Высокая скорость переключения.
  • • Выпрямители мощности Шоттки.
  • • Ограничения по току Шоттки.
  • • Защита от перенапряжения.
  • Раздел 2.3 Малосигнальные диоды.
  • • Конструкция малосигнального диода.
  • • Формирование волны.
  • • Обрезка.
  • • Зажим / восстановление постоянного тока.
  • • Приложения HF.
  • • Защитные диоды.
  • Раздел 2.4 Стабилитроны.
  • • Конструкция стабилитрона.
  • • Обозначения схем стабилитрона.
  • • Эффект Зенера.
  • • Эффект лавины.
  • • Практические стабилитроны.
  • Раздел 2.5 Светодиоды.
  • • Работа светодиода.
  • • Световое излучение.
  • • Цвета светодиодов.
  • • Расчеты цепей светодиодов.
  • • Светодиодные матрицы.
  • • Тестирование светодиодов.
  • Раздел 2.6 Лазерные диоды.
  • • Лазерный луч.
  • • Основы атома.
  • • Конструкция лазерного диода.
  • • Лазерная накачка.
  • • Управление лазерным диодом.
  • • Лазерные модули.
  • • Лазерная оптика.
  • • Классы лазерных диодов.
  • Раздел 2.7 Фотодиоды.
  • • Основы фотодиодов.
  • • Приложения.
  • • Конструкция лазерного диода.
  • • Лазерная накачка.
  • • Управление лазерным диодом.
  • • Лазерные модули.
  • • Лазерная оптика.
  • • Классы лазерных диодов.
  • Раздел 2.8 Проверка диодов.
  • • Неисправности диодов.
  • • Проверка диодов с помощью омметра.
  • • Определение соединений диодов.
  • • Выявление неисправных диодов.
  • Раздел 2.9. Тест диодов.
  • • Проверьте свои знания о диодах.

Рисунок 2. 0.1. Диоды

Введение

Диоды — одни из самых простых, но наиболее полезных из всех полупроводниковых устройств. Многие типы диодов используются в широком диапазоне приложений.Выпрямительные диоды — жизненно важный компонент в источниках питания, где они используются для преобразования сетевого напряжения переменного тока в постоянное. Стабилитроны используются для стабилизации напряжения, предотвращения нежелательных изменений в подаче постоянного тока в цепи и для подачи точных опорных напряжений для многих схем. Диоды также можно использовать для предотвращения катастрофического повреждения оборудования с батарейным питанием, когда батареи подключены с неправильной полярностью.

Сигнальные диоды также широко используются при обработке сигналов в электронном оборудовании; они используются для получения аудио- и видеосигналов из передаваемых радиочастотных сигналов (демодуляция), а также могут использоваться для формирования и изменения форм сигналов переменного тока (ограничение, ограничение и восстановление постоянного тока). Диоды также встроены во многие цифровые интегральные схемы, чтобы защитить их от опасных скачков напряжения.

Рис. 2.0.2 Обозначения диодных цепей

Светодиоды

излучают многоцветный свет в очень широком спектре оборудования от простых индикаторных ламп до огромных и сложных видеодисплеев. Фотодиоды также производят электрический ток из света.

Диоды изготавливаются из полупроводниковых материалов, в основном кремния, с добавлением различных соединений (комбинаций более чем одного элемента) и металлов в зависимости от функции диода.Ранние типы полупроводниковых диодов были сделаны из селена и германия, но эти типы диодов были почти полностью заменены более современными конструкциями кремния.

На рис. 2.0.1 показаны следующие диоды с общим проводом на концах:

1. Три силовых выпрямителя (мостовой выпрямитель для использования с сетевым (линейным) напряжением и два выпрямительных диода сетевого напряжения).

2. Точечный диод (в стеклянной капсуле) и диод Шоттки.

3. Кремниевый малосигнальный диод.

4. Стабилитроны в корпусе из стекла или черной смолы.

5. Подборка светодиодов. Против часовой стрелки от красного: желтый и зеленый светодиоды, инфракрасный фотодиод, теплый белый светодиод 5 мм и синий светодиод высокой яркости 10 мм.

Обозначения диодных цепей

Диод — это односторонний провод. Он имеет два вывода: анод или положительный вывод и катод или отрицательный вывод. В идеале диод будет пропускать ток, когда его анод сделан более положительным, чем его катод, но предотвращать протекание тока, когда его анод более отрицательный, чем его катод.В условных обозначениях схем, показанных на рис. 2.0.2, катод показан в виде стержня, а анод — в виде треугольника. На некоторых принципиальных схемах анод диода также может обозначаться буквой «а», а катод — буквой «к».

В какую сторону протекает ток диода?

Обратите внимание на рис. 2.0.2, что обычный ток течет от положительной (анодной) клеммы к отрицательной (катодной) клемме, хотя движение электронов (электронный поток) происходит в противоположном направлении, от катода к аноду.

Конструкция кремниевого диода

Рис. 2.0.3 Кремниевый планарный диод

Современные кремниевые диоды обычно производятся с использованием одной из различных версий планарного процесса, который также используется для изготовления транзисторов и интегральных схем. Многослойная конструкция, используемая в методах Silicon Planar, дает ряд преимуществ, таких как предсказуемые характеристики и надежность, а также является преимуществом для массового производства.

Упрощенный планарный кремниевый диод показан на рис.2.0.3. Использование этого процесса для кремниевых диодов позволяет получить два слоя кремния с различным легированием, которые образуют «PN переход». Нелегированный или «собственный» кремний имеет решеточную структуру из атомов, каждый из которых имеет четыре валентных электрона, но кремний P-типа и кремний N-типа легируют путем добавления относительно очень небольшого количества материала, имеющего атомную структуру с тремя валентными электронами (например, бор или алюминий), чтобы получить P-тип, или пять валентных электронов (например, мышьяк или фосфор), чтобы получить кремний N-типа. Эти легированные версии кремния известны как «примесный» кремний. Кремний P-типа теперь имеет нехватку валентных электронов в своей структуре, что также можно рассматривать как избыток «дырок» или носителей положительного заряда, тогда как слой N-типа легирован атомами, имеющими пять электронов в его валентной оболочке и поэтому имеет избыток электронов, которые являются носителями отрицательного заряда.

Диод PN Junction

Рис. 2.0.4 Слой истощения диода

Когда кремний P- и N-типа объединяются во время производства, создается переход, где встречаются материалы P-типа и N-типа, и отверстия, расположенные рядом с переходом в кремнии P-типа, притягиваются к отрицательно заряженному материалу N-типа на другой стороне. перехода.Кроме того, электроны вблизи перехода в кремнии N-типа притягиваются к положительно заряженному кремнию P-типа. Следовательно, вдоль перехода между кремнием P- и N-типа создается небольшой естественный потенциал между полупроводниковым материалом P и N с отрицательно заряженными электронами, которые теперь находятся на стороне P-типа перехода, и положительно заряженными дырками на стороне N соединение. Этот слой носителей заряда противоположной полярности накапливается до тех пор, пока его не будет достаточно, чтобы предотвратить свободное движение любых дальнейших дырок или электронов.Из-за этого естественного электрического потенциала на переходе между слоями P и N в PN-переходе образовался очень тонкий слой, который теперь обеднен носителями заряда и поэтому называется обедненным слоем. Следовательно, когда диод подключен к цепи, ток не может течь между анодом и катодом, пока анод не станет более положительным, чем катод, с помощью прямого потенциала или напряжения (V F ), по крайней мере, достаточного для преодоления естественного обратного потенциала соединение.Это значение зависит в основном от материалов, из которых сделаны слои P и N диода, и от количества используемого легирования. Различные типы диодов имеют естественный обратный потенциал в диапазоне примерно от 0,1 В до 2 или 3 В. Кремниевые диоды с PN-переходом имеют потенциал перехода от 0,6 до 0,7 В.

Диод прямой проводимости

Рис. 2.0.5 Диод вперед
Проводимость

Как только напряжение, приложенное к аноду, становится более положительным, чем на катоде, на величину, превышающую потенциал обедненного слоя, начинается прямая проводимость от анода к обычному катоду, как показано на рис.2.0.5.

По мере увеличения напряжения, приложенного между анодом и катодом, прямой ток сначала медленно увеличивается, поскольку носители заряда начинают пересекать обедненный слой, а затем быстро возрастает примерно по экспоненте. Следовательно, сопротивление диода, когда он «включен» или проводит в режиме «прямого смещения», не равно нулю, а очень мало. Поскольку прямая проводимость увеличивается после преодоления потенциала истощения по примерно следующей экспоненциальной кривой, прямое сопротивление (V / I) незначительно изменяется в зависимости от приложенного напряжения.

Диод с обратным смещением

Рис. 2.0.6 Обратный диод
Смещенный

Когда диод смещен в обратном направлении (анод подключен к отрицательному напряжению, а катод — к положительному), как показано на рис. 2.0.6, положительные отверстия притягиваются к отрицательному напряжению на аноде и вдали от перехода. Точно так же отрицательные электроны притягиваются от перехода к положительному напряжению, приложенному к катоду. Это действие оставляет большую площадь на стыке без каких-либо носителей заряда (либо положительных дырок, либо отрицательных электронов) по мере расширения обедненного слоя.Поскольку область перехода теперь обеднена носителями заряда, она действует как изолятор, и по мере того, как более высокие напряжения прикладываются с обратной полярностью, обедненный слой становится еще шире, чем больше носителей заряда удаляется от перехода. Диод не будет проводить при приложенном обратном напряжении (обратном смещении), за исключением очень небольшого «обратного тока утечки» (I R ), который в кремниевых диодах обычно меньше 25 нА. Однако, если приложенное напряжение достигает значения, называемого «обратным напряжением пробоя» (V RRM ), ток в обратном направлении резко возрастает до точки, где, если ток не ограничен каким-либо образом, диод будет разрушен.

Вольт-амперные характеристики диода

Рис 2.0.7. Типичный диод I / V
Характеристика

Работа диодов, описанная выше, также может быть описана специальным графиком, называемым «характеристической кривой». Эти графики показывают взаимосвязь между фактическими токами и напряжениями, связанными с различными клеммами устройства. Понимание этих графиков помогает понять, как работает устройство.

Для диодов характеристическая кривая называется ВАХ, поскольку она показывает взаимосвязь между напряжением, приложенным между анодом и катодом, и результирующим током, протекающим через диод.Типичная ВАХ показана на рис. 2.0.7.

Оси графика показывают как положительные, так и отрицательные значения и поэтому пересекаются в центре. Пересечение имеет нулевое значение как для тока (ось Y), так и для напряжения (ось X). Оси + I и + V (верхняя правая область графика) показывают круто возрастающий ток после области начального нулевого тока. Это прямая проводимость диода, когда анод положительный, а катод отрицательный. Первоначально ток не течет, пока приложенное напряжение не превысит потенциал прямого перехода.После этого ток резко возрастает примерно по экспоненте.

Оси -V и -I показывают состояние обратного смещения (нижняя левая область графика). Здесь можно увидеть, что очень небольшой ток утечки увеличивается с увеличением обратного напряжения. Однако, как только достигается обратное напряжение пробоя, обратный ток (-I) резко возрастает.

Начало страницы

Диоды и выпрямители | Vishay

  • Продукты

    Полупроводники

    Матрица и вафля

    Диоды и выпрямители

    Дискретные тиристоры

    IC — силовая и линейная

    МОП-транзисторы

    Оптоэлектроника

    Силовые модули

    Пассивные компоненты

    Магнит

    Датчики

    Прочие компоненты

    Продукты на заказ

    Полупроводники

    Пассивные компоненты

  • Приложения
  • Ресурсы

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *