Регулятор напряжения и тока схема: Три простые схемы регулятора тока для зарядных устройств

Схема

Содержание

Три простые схемы регулятора тока для зарядных устройств

Мы уже рассматривали много схем регуляторов напряжения для самых разных целей, сегодня же я вам покажу три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так как они универсальны и могут быть использованы не только в зарядных устройствах, но и во многих самодельных конструкциях, включая и лабораторные блоки питания.

Регулятор тока по идее не многим отличается от регулятора напряжения, стоит заметить, что есть понятие стабилизатор тока.

В отличие от регулятора он поддерживает стабильный выходной ток независимо от напряжения на входе и выходной нагрузки.

Сегодня мы рассмотрим пару вариантов стабилизатора и один регулятор общего применения, стабилизатор тока неотъемлемая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого в нагрузку.

Важный момент… во всех трех вариантах в качестве датчика тока использованны шунты, по сути это низкоомные резисторы, для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта экспериментальным образом.

Кстати ссылки на все печатные платы найдёте в конце статьи. Нужное значение тока выставляют вручную, как правило вращением переменного резистора.

Все три варианта которые мы сегодня рассмотрим работают в линейном режиме, а значит силовой элемент — транзистор. При больших нагрузках будет нагреваться и нуждается в охлаждении.

Постараюсь пояснить принцип работы схем максимально простыми словами…

Первая схема отличается максимальной простотой и доступностью компонентов, всего два транзистора, один из них управляющий, второй же является силовым, по которому протекает основной ток.Датчик тока или шунт представляет из себя низкоомный проволочный резистор, при подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение.

Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт этот транзистор.

Резистор R1 задаёт напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии.

Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1, грубо говоря затухается или замыкается на плюс питания через открытый переход маломощного транзистора. Этим силовой транзистор будет закрываться, следовательно ток протекающий по нему уменьшается вплоть до полного нуля.

Резистор R2 по сути обычный делитель напряжения, которым мы можем задать как бы степень приоткрытости управляющего транзистора, а следовательно управлять и силовым транзистором, ограничивая ток протекающий по нему.Увеличить общий ток коммутации этой схемы, можно дополнительными силовыми транзисторами, подключенных параллельно. Так как характеристики даже одинаковых транзисторов будут отличаться, в их коллекторную цепь добавлены резисторы, они предназначены для выравнивания токов через транзисторы, чтобы последние были нагружены равномерно.

Вторая схема построена на базе операционного усилителя, её неоднократно использовал в зарядных устройствах для автомобильных аккумуляторов, в отличие от первого варианта эта схема является именно стабилизатором тока. Как и в первой схеме, тут также имеется датчик тока или шунт, операционный усилитель фиксирует падение напряжения на этом шунте, всё по уже знакомой нам схеме.

Усилитель сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение, операционный усилитель в свою очередь постарается сбалансировать напряжение на входах, путём изменения выходного напряжения.

Выход операционного усилителя управляется мощным полевым транзистором.

То есть, принцип работы мало, чем отличается от первой схемы за исключением того, что тут имеется источник опорного напряжения в лице стабилитрона.

Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться и ему необходим радиатор, кстати возможно применение биполярных транзисторов.

Последняя схема построена на базе популярной интегральной микросхемы стабилизатора LM317, это линейный стабилизатор напряжения но имеется возможность использовать микросхему в качестве стабилизатора тока. Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов.

Введите электронную почту и получайте письма с новыми поделками.

Максимально допустимый ток для микросхема LM317 составляет около полтора ампера, увеличить его можно дополнительным силовым транзистором, в этом случае микросхема уже будет в качестве управляющей, следовательно нагреваться она не будет.

Взамен будет нагреваться транзистор и от этого никуда не денешься.

Архив к статье; скачать…

Автор; АКА Касьян

cxema.org — Три схемы простых регуляторов тока

В сети очень много схем регуляторов напряжения для самых разных целей, а вот с регуляторами тока дела обстоят иначе. И я хочу немного восполнить этот пробел, и представить вам три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так, как они универсальны и могут быть использованы во многих самодельных конструкциях.  

Регуляторы тока по идее не многим отличается от регуляторов напряжения. Прошу не путать регуляторы тока со стабилизаторами тока, в отличии от первых они поддерживают стабильный выходной ток не зависимо от напряжения на входе и выходной нагрузки.

Стабилизатор тока — неотемлимая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого на нагрузку. В этой статье мы рассмотрим пару стабилизаторов и один регулятор общего применения. 

Во всех трех вариантах в качестве датчика тока использованы шунты, по сути низкоомные резисторы. Для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта. Нужное значение тока выставляют вручную, как правило вращением переменного резистора. Все три схемы работают в линейном режиме, а значит силовой транзистор при больших нагрузках будет сильно нагреваться. 

Первая схема отличается максимальной простотой и доступностью компонентов.   Всего два транзистора, один из них управляющий, второй является силовым, по которому и протекает основной ток. 

Датчик тока представляет из себя низкоомный проволочный резистор. При подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение. Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт транзистор. Резистор R1, задает напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии. Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1 грубо говоря затухаеться или замыкается на массу питания через открытый переход маломощного транзистора, этим силовой транзистор будет закрываться, следовательно, ток протекающий по нему уменьшается вплоть до полного нуля.

Резистор R1 по сути обычный делитель напряжения, которым  мы можем задать как бы степень приоткрытия управляющего транзистора, а следовательно, управлять и силовым транзистором ограничивая ток протекающий по нему.  

Вторая схема построена на базе операционного усилителя. Ее неоднократно использовал в зарядных устройствах для автомобильного аккумулятора. В отличии от первого варианта — эта схема является стабилизатором тока.

Как и в первой схеме тут также имеется датчик тока (шунт), операционный усилитель фиксирует падение напряжения на этом шунте, все по уже знакомой нам схеме. Операционный усилитель  сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение. Операционный усилитель в свою очередь постарается сбалансировать напряжение на входах путем изменения выходного напряжения. 

Выход операционного усилителя управляет мощным полевым транзистором. То есть принцип работы мало чем отличается от первой схемы, за исключением того, что тут имеется источник опорного напряжения выполненный на стабилитроне. 

Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться.

Последняя схема построена на базе популярной интегральной микросхеме стабилизатора LM317. Это линейный стабилизатор напряжения, но имеется возможность использовать микросхему в качестве стабилизатора тока. 

Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов. 

Максимально допустимый ток для микросхемы LM317 1,5 ампера, увеличить его можно дополнительным силовым транзистором. В этом случае микросхема уже будет в качестве управляющей, поэтому нагреваться не будет, взамен будет нагреваться транзистор и от этого никуда не денешься. 

Небольшое видео

Печатные платы 

 

простые самодельные схемы для повторения

В электрических схемах для изменения уровня выходного сигнала используется регулятор напряжения. Основное его назначение — изменять подаваемую на нагрузку мощность. C помощью устройства управляют оборотами электродвигателей, уровнем освещённости, громкостью звука, нагревом приборов. В радиомагазинах можно приобрести готовое изделие, но несложно изготовить регулятор напряжения своими руками.

Описание устройства

Регулятором напряжения называется электронный прибор, служащий для повышения или понижения уровня выходного сигнала, в зависимости от величины разности потенциалов на его входе. То есть это устройство, с помощью которого можно управлять значением мощности, подводимой к нагрузке. При этом регулировать подаваемый уровень энергии можно как на реактивной, так и активной нагрузке.

Самым простым устройством, с помощью которого можно изменять уровень сигнала, считается реостат. Он представляет собой резистор, имеющий два вывода, один из которых подвижный. При перемещении ползункового вывода реостата изменяется сопротивление. Для этого он подключается параллельно нагрузке. Фактически это делитель напряжения, позволяющий регулировать величину разности потенциалов на нагрузке в пределах от нуля до значения, выдаваемого источником энергии.

Использование реостата ограничено мощностью, которую можно через него пропустить. Так как при больших значениях тока или напряжения он начинает сильно нагреваться и в итоге перегорает, поэтому на практике применение реостата ограничено. Его используют в параметрических стабилизаторах, элементах электрического фильтра, усилителях звука и регуляторах освещённости небольшой мощности.

Разновидности приборов

По виду выходного сигнала регуляторы разделяют на стабилизированные и нестабилизированные. Также они могут быть аналоговыми и цифровыми (интегральными). Первые строятся на основе тиристоров или операционных усилителей. Их управление осуществляется путём изменения параметров RC цепочки обратной связи. Совместно с ними для повышения мощности применяются биполярные или полевые транзисторы. Работа же интегральных устройств связана с использованием широтно-импульсной модуляции (ШИМ), поэтому в цифровой схемотехнике используются микроконтроллеры и силовые транзисторы, работающие в ключевом режиме.

При изготовлении самодельного регулятора напряжения могут быть использованы следующие элементы:

  • резисторы;
  • тиристоры или транзисторы;
  • цифровые или аналоговые интегральные микросхемы.

Первые два типа имеют несложные схемы и довольно просты к самостоятельной сборке. Их можно изготавливать без использования печатной платы с помощью навесного монтажа, в то время как импульсные регуляторы на основе микроконтроллеров требуют более обширных знаний в радиоэлектронике и программировании.

Характеристика регулятора

По своему виду приспособления могут изготавливаться в портативном или стационарном исполнении. Устанавливаются они в любом положении: вертикальном, потолочном, горизонтальном.

Устройства могут крепиться с использованием дин-рейки или встраиваться в различные блоки и приборы. Конструктивно регуляторы возможно изготовить как корпусными, так и без помещения в корпус.

К основным характеристикам устройств относят следующие параметры:

  1. Плавность регулировки. Обозначает минимальный шаг, с которым происходит изменение величины разности потенциалов на выходе. Чем он плавнее, тем точнее можно выставить значение напряжения на выходе.
  2. Рабочая мощность. Характеризуется значением силы тока, которое может пропускать через себя прибор продолжительное время без повреждения своих электронных связей.
  3. Максимальная мощность. Пиковая величина, которую кратковременно выдерживает устройство с сохранением своей работоспособности.
  4. Диапазон входного напряжения. Это значения входного сигнала, с которым устройство может работать.
  5. Диапазон изменяемого сигнала на выходе устройства. Обозначает значения разности потенциалов, которое может обеспечить устройство на выходе.
  6. Тип регулируемого сигнала. На вход устройства может подаваться как переменное, так и постоянное напряжение.
  7. Условия эксплуатации. Обозначает условия, при которых характеристики регулятора не изменяются.
  8. Способ управления. Выставление выходного уровня сигнала может осуществляться пользователем вручную или без его вмешательства.

Особенности изготовления

Изготовить регулирующее приспособление можно несколькими способами. Самый лёгкий -приобрести набор, содержащий уже готовую печатную плату и радиоэлементы, необходимые для сборки своими руками. Кроме них, набор содержит электрическую и принципиальную схему с описанием последовательности действий. Такие наборы называются KIT и предназначены для самых неопытных радиолюбителей.

Другой путь подразумевает самостоятельное приобретение радиокомпонентов и изготовление в случае необходимости печатной платы. Используя второй способ, можно будет сэкономить, но он занимает больше времени.

Существует множество схем разного уровня сложности для самостоятельного изготовления. Но чтобы сделать регулятор напряжения, кроме схемы, понадобится подготовить следующие инструменты, приборы и материалы:

  • паяльник;
  • мультиметр;
  • припой;
  • пинцет;
  • кусачки;
  • флюс;
  • технический спирт;
  • соединительные медные провода.

Если планируется собирать устройство, состоящее из 6 и более элементов, то целесообразно будет смастерить печатную плату. Для этого необходимо иметь фольгированный текстолит, хлорное железо и лазерный принтер.

Техника изготовления печатной платы в домашних условиях называется лазерно-утюжной (ЛУТ). Её суть заключается в распечатывании печатной платы на глянцевом листе бумаги, и переносом изображения на текстолит с помощью проглаживания утюгом. Затем плату погружают в раствор хлорного железа. В нём открытые участки меди растворяются, а закрытые с переведённым изображением формируют необходимые соединения.

При самостоятельном изготовлении прибора важно соблюдать осторожность и помнить про электробезопасность, особенно при работе с сетью переменного тока 220 В. Обычно правильно собранный регулятор из исправных радиодеталей не нуждается в настройке и сразу начинает работать.

Простые схемы

Для управления величиной выходного напряжения для слабо мощных устройств можно собрать простой регулятор напряжения на 2 деталях. Понадобится лишь транзистор и переменный резистор. Работа схемы проста: с помощью переменного резистора происходит индуцирование (отпирание транзистора).

Если управляющий вывод резистора находится в нижнем положении, то напряжение на выходе схемы равно нулю. А если вывод перемещается в верхнее положение, то транзистор максимально становится открытым, а уровень выходного сигнала будет равен напряжению источника питания за вычетом падения разности потенциалов на транзисторе.

При изменении сопротивления регулируется величина напряжения на выходе. В зависимости от типа транзистора изменяется и схема включения. Чем номинал переменного резистора будет меньше, тем регулировка будет плавней. Недостатком схемы является чрезмерный нагрев транзистора, поэтому чем больше будет разница между Uвх и Uвых, тем он будет сильнее нагреваться.

Такую схему удобно применять для регулировки вращения компьютерных вентиляторов или других слабых двигателей, а также светодиодов.

Симисторный вид

Для регулировки переменного напряжения используются симисторные регуляторы, с помощью которых можно управлять мощностью паяльника или лампочки. Собрав схему на недорогом и доступном симисторе BT136, можно изменять мощность нагрузки в пределах 100 ватт.

Для сборки схемы понадобится:

Наименование Номинал Аналог
Резистор R1 470 кОм
Резистор R2 10 кОм
Конденсатор С1 0,1 мкФ х. 400 В
Диод D1 1N4007 1SR35–1000A
Светодиод D2 BL-B2134G BL-B4541Q
Динистор DN1 DB3 HT-32
Симистор DN2 BT136 КУ 208

Принцип работы регулятора заключается в следующем: через цепочку, состоящую из динистора DN1, конденсатора C1 и диода D1, ток поступает на симистор DN2, что приводит к его открытию. Момент открытия зависит от ёмкости C1, которая заряжается через резисторы R1 и R2. Соответственно, изменением сопротивления R1 управляется скорость заряда C1.

Несмотря на простоту, такая схема отлично справляется с регулировкой вольтажа нагревательных устройств, использующих вольфрамовую нить. Но так как такая схема не имеет обратной связи, использовать её для управления оборотами коллекторного электродвигателя нельзя.

Реле напряжения

Для автолюбителей важным элементом является устройство, поддерживающее напряжение бортовой сети в установленных пределах при изменении различных факторов, например, оборотов генератора, включении или выключении фар. Использующиеся для этого приборы работают по одинаковому принципу – стабилизация напряжения путём изменения тока возбуждения. Иными словами, если уровень сигнала на входе изменяется, то устройство уменьшает или увеличивает ток возбуждения.

Собранная схема своими руками реле-регулятора напряжения должна:

  • работать в широком диапазоне температур;
  • выдерживать скачки напряжения;
  • иметь возможность отключения во время запуска мотора;
  • обладать малым падением разности потенциалов.

Упрощённо принцип работы можно описать в следующем виде: при величине напряжения, превышающей установленное значение, ротор отключается, а при её нормализации запускается вновь. Основным элементом схемы является ШИМ стабилизатор LM 2576 ADJ.

Микросхема TC4420EPA предназначена для моментального переключения транзистора. С помощью резистора R3, конденсатора C1 и стабилитронов VD1, VD2 осуществляется защита микросхемы и полевого транзистора. Резисторы R1 и R2 задают опорное напряжение для стабилизатора. DD1 управляет работой полевого транзистора и ротора. Диод D2 используется для ограничения управляющего напряжения. Индуктивность L1 обеспечивает плавность разрядки ротора через диоды D4 и D5 при размыкании цепи.

Управляемый блок питания

Конструируя различные схемы, радиолюбители часто собирают источники напряжений. Спаяв регулятор постоянного напряжения своими руками, его можно будет использовать как управляемый блок питания в диапазоне от 0 до 12В.

Собираемый источник напряжения состоит из 2 частей: блока питания и параметрического регулятора напряжения. Первая часть изготавливается по классической схеме: понижающий трансформатор — выпрямительный блок. Типом используемого трансформатора, выпрямительных диодов и транзистора определяется мощность устройства. Переменное напряжение сети понижается в трансформаторе до 11 вольт, после чего попадает на диодный мост VD1, где становится постоянным. Конденсатор C1 используется как сглаживающий фильтр. Сигнал поступает на параметрический стабилизатор, состоящий из резистора R1 и стабилитрона VD2.

Параллельно стабилитрону подключён резистор R2, которым и изменяется уровень выходного напряжения. Транзисторы включены по упрощённой схеме эмиттерного повторителя, и при появлении на их переходах напряжения начинают работать в режиме усиления тока. То есть сигнал, снятый с R2, поступает на выход прибора через транзисторы, которые снижают его значение на величину своего насыщения. Таким образом, чем больше подаётся на них напряжение, тем сильнее они открываются и больше мощности поступает на выход.

Этот регулируемый блок питания может работать с нагрузкой до трёх ампер, то есть обеспечивать мощность до 30 ватт. Если есть опыт, то схема паяется навесным монтажом с использованием проводов любого сечения.

Регулятор напряжения, тока, мощности | Все своими руками

— Эдуард Орлов Просмотры 2 711

Здравствуйте. Сегодня хочу рассказать о нестандартном применении импульсного преобразователя LM2596. Это понижающий модуль, подробней рассказывал совсем недавно в статье Понижающий преобразователь LM2596. Сегодня же я превращу…

Загрузка…

— Эдуард Орлов Просмотры 44 104

В сегодняшней статье хочу сделать небольшой обзор понижающего преобразователя на XL4015. Этот дешевый модуль на удивление очень мощный для своего маленького размера.

Загрузка…

— Эдуард Орлов Просмотры 14 748

Написал мне недельки две назад один из посетителей из республики Башкортостан. Понравилась ему на Радиокоте схема электронного регулятора оборотов для микро дрели, только есть в…

Загрузка. ..

— Эдуард Орлов Просмотры 23 250

Для питания различных схем нужны разные блоки питания с разными напряжениями и токами, для таких целей в мастерской необходим регулируемый блок питания, то есть лабораторный…

Загрузка…

— Эдуард Орлов Просмотры 5 409

Давно, еще года 2 назад, видел одну интересную схему, где человек собирал лабораторный блок питания используя только TL431. Вчера, не знаю к чему ту схему…

Загрузка…

— Эдуард Орлов Просмотры 4 750

Что такое регулятор мощности. Это какое то устройство, которое удерживает отдаваемую нагрузке мощность в каких то заданных пределах. Нужен для управления различными нагрузками: лампами,электромоторами,тэнами и…

Загрузка…

— Эдуард Орлов Просмотры 17 415

Сегодня проснулся с мыслью закинуть что то интересное на блог. Вспомнил про простенький регулятор напряжения на LM317T. Очень удобный регулятор за небольшую цену Все собирается…

Загрузка…

Регулятор тока и напряжения своими руками

Многие современные приборы имеют возможность регулировать свои параметры, в том числе значения тока и напряжения. За счет этого можно настроить любое устройство в соответствии с конкретными условиями эксплуатации. Для этих целей существует регулятор тока, выпускаемый в различных конфигурациях и конструкциях. Процесс регулировки может происходить как с постоянным, так и с переменным током.

Регулятор тока и напряжения

Основными рабочими элементами регуляторов служат тиристоры, а также различные типы конденсаторов и резисторов. В высоковольтных устройствах дополнительно используются магнитные усилители. Модуляторы обеспечивают плавность регулировок, а специальные фильтры способствуют сглаживанию помех в цепи. В результате, электрический ток на выходе приобретает более высокую стабильность, чем на входе.

Регуляторы постоянного и переменного тока имеют свои особенности и отличаются основными параметрами и характеристиками. Например, регулятор напряжения постоянного тока имеет более высокую проводимость, при минимальных потерях тепла. Основой прибора является тиристор диодного типа, обеспечивающий высокую подачу импульса за счет ускоренного преобразования напряжения. Резисторы, используемые в цепи, должны выдерживать значение сопротивления до 8 Ом. За счет этого снижаются тепловые потери, предохраняя модулятор от быстрого перегрева.

Регулятор постоянного тока может нормально функционировать при максимальной температуре 40С. Этот фактор следует обязательно учитывать в процессе эксплуатации. Полевые транзисторы располагаются следом за тиристорами, поскольку они пропускают ток лишь в одном направлении. За счет этого отрицательное сопротивление будет сохраняться на уровне, не превышающем 8 Ом.

Основным отличием регулятора переменного тока является использование в его конструкции тиристоров исключительно триодного типа. Однако полевые транзисторы применяются такие же, как и в регуляторах постоянного тока. Конденсаторы, установленные в цепь, выполняют лишь стабилизирующие функции. Фильтры высокой частоты встречаются очень редко. Все проблемы, связанные с высокими температурами, решаются установкой импульсных преобразователей, расположенных следом за модуляторами. В регуляторах переменного тока, мощность которых не превышает 5 В, применяются фильтры с низкой частотой. Управление по катоду в таких приборах выполняется путем подавления входного напряжения.

Во время регулировок в сети должна быть обеспечена плавная стабилизация тока. При высоких нагрузках схема дополняется стабилитронами обратного направления. Для их соединения между собой используются транзисторы и дроссель. Таким образом, регулятор тока на транзисторе выполняет преобразование тока быстро и без потерь.

Следует отдельно остановиться на регуляторах тока, предназначенных для активных нагрузок. В схемах этих устройств используются тиристоры триодного типа, способные пропускать сигналы в обоих направлениях. Ток анода в цепи снижается в тот период, когда понижается и предельная частота данного устройства. Частота может колебаться в пределах, установленных для каждого прибора. От этого будет зависеть и максимальное выходное напряжение. Для обеспечения такого режима используются резисторы полевого типа и обычные конденсаторы, способные выдерживать сопротивление до 9 Ом.

Очень часто в таких регуляторах применяются импульсные стабилитроны, способные преодолевать высокую амплитуду электромагнитных колебаний. Иначе, в результате быстрого роста температуры транзисторов, они сразу же придут в нерабочее состояние.

Схема регулятора напряжения и тока

Прежде чем рассматривать схему регулятора напряжения, необходимо хотя-бы в общих чертах ознакомиться с принципом его работы. В качестве примера можно взять тиристорный регулятор напряжения, широко распространенный во многих схемах.

Основной деталью таких устройств, как регулятор сварочного тока является тиристор, который считается одним из мощных полупроводниковых устройств. Лучше всего он подходит для преобразователей энергии с высокой мощностью. Управление этим прибором имеет свою специфику: он открывается импульсом тока, а закрывается при падении тока почти до нулевой отметки, то есть ниже тока удержания. В связи с этим, тиристоры преимущественно используются для работы с переменным током.

Регулировать переменное напряжение с помощью тиристоров можно разными способами. Один из них основан на пропуске или запрете целых периодов или полупериодов на выход регулятора. В другом случае тиристор включается не в начале полупериода напряжения, а с небольшой задержкой. В это время напряжение на выходе будет нулевым, соответственно мощность не будет передаваться на выход. Во второй части полупериода тиристором уже будет проводиться ток и на выходе регулятора появится напряжение.

Время задержки известно еще и как угол открытия тиристора. Если он имеет нулевое значение, все входное напряжение будет попадать на выход, а падение напряжения на открытом тиристоре будет потеряно. Когда угол начинает увеличиваться, под действием тиристорного регулятора выходное напряжение будет снижаться. Следовательно, если угол, равен 90 электрическим градусам, на выходе будет лишь половина входного напряжения, если же угол составляет 180 градусов – выходное напряжение будет нулевым.

Принципы фазового регулирования позволяют создать не только регулятор тока и напряжения для зарядного устройства, но и схемы стабилизации, регулирования, а также плавного пуска. В последнем случае напряжение повышается постепенно, от нулевой отметки до максимального значения.

На основе физических свойств тиристоров была создана классическая схема регулятора тока. В случае применения охладителей для диодов и тиристора, полученный регулятор сможет отдавать в нагрузку до 10 А. Таким образом, при напряжении 220 вольт появляется возможность регулировки напряжения на нагрузке, мощностью 2,2 кВт.

Подобные устройства состоят всего из двух силовых компонентов – тиристора и диодного моста, рассчитанных на ток 10 А и напряжение 400 В. Диодный мост осуществляет превращение переменного напряжения в однополярное пульсирующее напряжение. Фазовая регулировка полупериодов выполняется с помощью тиристора.

Для параметрического стабилизатора, ограничивающего напряжение, используется два резистора и стабилитрон. Это напряжение подается на систему управления и составляет 15 вольт. Резисторы включаются последовательно, увеличивая тем самым пробивное напряжение и рассеиваемую мощность. На основании самых простых деталей можно легко изготовить самодельные регуляторы тока, схема которых будет довольно простой. В качестве конкретного примера стоит подробнее рассмотреть тиристорный регулятор сварочного тока.

Схема тиристорного регулятора сварочного тока

Принципы дуговой сварки известны всем, кто сталкивался со сварочными работами. Для получения сварочного соединения, требуется создать электрическую дугу. Она возникает в том момент, когда напряжение подается между сварочным электродом и свариваемым материалом. Под действием тока дуги металл расплавляется, образуя между торцами своеобразную расплавленную ванну. Когда шов остывает, обе металлические детали оказываются крепко соединенными между собой.

В нашей стране частота переменного тока составляет 50 Гц, фазное напряжение питания – 220 В. В каждом сварочном трансформаторе имеется две обмотки – первичная и вторичная. Напряжение вторичной обмотки трансформатора или вторичное напряжение составляет 70 В.

Сварка может проводиться в ручном или автоматическом режиме. В домашних условиях, когда создан регулятор тока и напряжения своими руками, сварочные работы выполняются ручным способом. Автоматическая сварка используется в промышленном производстве при больших объемах работ.

Ручная сварка имеет ряд параметров, подлежащих изменениям и регулировкам. Прежде всего, это касается силы сварочного тока и напряжения дуги. Кроме того, может изменяться скорость электрода, его марка и диаметр, а также количество проходов, требующихся на один шов. В связи с этим, большое значение имеет правильный выбор параметров и поддержание их оптимальных значений в течение всего сварочного процесса. Только таким образом можно обеспечить качественное сварное соединение.

Изменение силы тока при сварке может выполняться различными способами. Наиболее простой из них заключается в установке пассивных элементов во вторичной цепи. В этом случае используется последовательное включение в сварочную цепь резистора или дросселя. В результате, сила тока и напряжение дуги изменяется за счет сопротивления и вызванного им падения напряжения. Дополнительные резисторы позволяют смягчить вольтамперные характеристики источника питания. Они изготавливаются из нихромовой проволоки диаметром 5-10 мм. Данный способ чаще всего используется, когда требуется изготовить регулятор тока. Однако такая конструкция обладает небольшим диапазоном регулировок и сложностями перестройки параметров.

Следующий способ регулировок связан с переключением количества витков трансформаторных обмоток. За счет этого происходит изменение коэффициента трансформации. Данные регуляторы просты в изготовлении и эксплуатации, достаточно всего лишь сделать отводы при намотке витков. Для коммутации применяется переключатель, способный выдерживать большие значения тока и напряжения.

Нередко регулировки осуществляются путем изменения магнитного потока трансформатора. Этот способ также применяется, когда необходимо сделать регулятор тока своими руками. В этом случае для регулировки используется подвижность обмоток, изменение зазора или ввод магнитного шунта.

Простые схемы регуляторов напряжения и тока

Как сделать простой регулятор напряжения своими руками

В электрических схемах для изменения уровня выходного сигнала используется регулятор напряжения. Основное его назначение — изменять подаваемую на нагрузку мощность. C помощью устройства управляют оборотами электродвигателей, уровнем освещённости, громкостью звука, нагревом приборов. В радиомагазинах можно приобрести готовое изделие, но несложно изготовить регулятор напряжения своими руками.

Описание устройства

Регулятором напряжения называется электронный прибор, служащий для повышения или понижения уровня выходного сигнала, в зависимости от величины разности потенциалов на его входе. То есть это устройство, с помощью которого можно управлять значением мощности, подводимой к нагрузке. При этом регулировать подаваемый уровень энергии можно как на реактивной, так и активной нагрузке.

Самым простым устройством, с помощью которого можно изменять уровень сигнала, считается реостат. Он представляет собой резистор, имеющий два вывода, один из которых подвижный. При перемещении ползункового вывода реостата изменяется сопротивление. Для этого он подключается параллельно нагрузке. Фактически это делитель напряжения, позволяющий регулировать величину разности потенциалов на нагрузке в пределах от нуля до значения, выдаваемого источником энергии.

Использование реостата ограничено мощностью, которую можно через него пропустить. Так как при больших значениях тока или напряжения он начинает сильно нагреваться и в итоге перегорает, поэтому на практике применение реостата ограничено. Его используют в параметрических стабилизаторах, элементах электрического фильтра, усилителях звука и регуляторах освещённости небольшой мощности.

Разновидности приборов

По виду выходного сигнала регуляторы разделяют на стабилизированные и нестабилизированные. Также они могут быть аналоговыми и цифровыми (интегральными). Первые строятся на основе тиристоров или операционных усилителей. Их управление осуществляется путём изменения параметров RC цепочки обратной связи. Совместно с ними для повышения мощности применяются биполярные или полевые транзисторы. Работа же интегральных устройств связана с использованием широтно-импульсной модуляции (ШИМ), поэтому в цифровой схемотехнике используются микроконтроллеры и силовые транзисторы, работающие в ключевом режиме.

При изготовлении самодельного регулятора напряжения могут быть использованы следующие элементы:

  • резисторы;
  • тиристоры или транзисторы;
  • цифровые или аналоговые интегральные микросхемы.

Первые два типа имеют несложные схемы и довольно просты к самостоятельной сборке. Их можно изготавливать без использования печатной платы с помощью навесного монтажа, в то время как импульсные регуляторы на основе микроконтроллеров требуют более обширных знаний в радиоэлектронике и программировании.

Характеристика регулятора

По своему виду приспособления могут изготавливаться в портативном или стационарном исполнении. Устанавливаются они в любом положении: вертикальном, потолочном, горизонтальном.

Устройства могут крепиться с использованием дин-рейки или встраиваться в различные блоки и приборы. Конструктивно регуляторы возможно изготовить как корпусными, так и без помещения в корпус.

К основным характеристикам устройств относят следующие параметры:

  1. Плавность регулировки. Обозначает минимальный шаг, с которым происходит изменение величины разности потенциалов на выходе. Чем он плавнее, тем точнее можно выставить значение напряжения на выходе.
  2. Рабочая мощность. Характеризуется значением силы тока, которое может пропускать через себя прибор продолжительное время без повреждения своих электронных связей.
  3. Максимальная мощность. Пиковая величина, которую кратковременно выдерживает устройство с сохранением своей работоспособности.
  4. Диапазон входного напряжения. Это значения входного сигнала, с которым устройство может работать.
  5. Диапазон изменяемого сигнала на выходе устройства. Обозначает значения разности потенциалов, которое может обеспечить устройство на выходе.
  6. Тип регулируемого сигнала. На вход устройства может подаваться как переменное, так и постоянное напряжение.
  7. Условия эксплуатации. Обозначает условия, при которых характеристики регулятора не изменяются.
  8. Способ управления. Выставление выходного уровня сигнала может осуществляться пользователем вручную или без его вмешательства.

Особенности изготовления

Изготовить регулирующее приспособление можно несколькими способами. Самый лёгкий -приобрести набор, содержащий уже готовую печатную плату и радиоэлементы, необходимые для сборки своими руками. Кроме них, набор содержит электрическую и принципиальную схему с описанием последовательности действий. Такие наборы называются KIT и предназначены для самых неопытных радиолюбителей.

Другой путь подразумевает самостоятельное приобретение радиокомпонентов и изготовление в случае необходимости печатной платы. Используя второй способ, можно будет сэкономить, но он занимает больше времени.

Существует множество схем разного уровня сложности для самостоятельного изготовления. Но чтобы сделать регулятор напряжения, кроме схемы, понадобится подготовить следующие инструменты, приборы и материалы:

  • паяльник;
  • мультиметр;
  • припой;
  • пинцет;
  • кусачки;
  • флюс;
  • технический спирт;
  • соединительные медные провода.

Если планируется собирать устройство, состоящее из 6 и более элементов, то целесообразно будет смастерить печатную плату. Для этого необходимо иметь фольгированный текстолит, хлорное железо и лазерный принтер.

Техника изготовления печатной платы в домашних условиях называется лазерно-утюжной (ЛУТ). Её суть заключается в распечатывании печатной платы на глянцевом листе бумаги, и переносом изображения на текстолит с помощью проглаживания утюгом. Затем плату погружают в раствор хлорного железа. В нём открытые участки меди растворяются, а закрытые с переведённым изображением формируют необходимые соединения.

При самостоятельном изготовлении прибора важно соблюдать осторожность и помнить про электробезопасность, особенно при работе с сетью переменного тока 220 В. Обычно правильно собранный регулятор из исправных радиодеталей не нуждается в настройке и сразу начинает работать.

Простые схемы

Для управления величиной выходного напряжения для слабо мощных устройств можно собрать простой регулятор напряжения на 2 деталях. Понадобится лишь транзистор и переменный резистор. Работа схемы проста: с помощью переменного резистора происходит индуцирование (отпирание транзистора).

Если управляющий вывод резистора находится в нижнем положении, то напряжение на выходе схемы равно нулю. А если вывод перемещается в верхнее положение, то транзистор максимально становится открытым, а уровень выходного сигнала будет равен напряжению источника питания за вычетом падения разности потенциалов на транзисторе.

При изменении сопротивления регулируется величина напряжения на выходе. В зависимости от типа транзистора изменяется и схема включения. Чем номинал переменного резистора будет меньше, тем регулировка будет плавней. Недостатком схемы является чрезмерный нагрев транзистора, поэтому чем больше будет разница между Uвх и Uвых, тем он будет сильнее нагреваться.

Такую схему удобно применять для регулировки вращения компьютерных вентиляторов или других слабых двигателей, а также светодиодов.

Симисторный вид

Для регулировки переменного напряжения используются симисторные регуляторы, с помощью которых можно управлять мощностью паяльника или лампочки. Собрав схему на недорогом и доступном симисторе BT136, можно изменять мощность нагрузки в пределах 100 ватт.

Для сборки схемы понадобится:

Наименование Номинал Аналог
Резистор R1 470 кОм
Резистор R2 10 кОм
Конденсатор С1 0,1 мкФ х. 400 В
Диод D1 1N4007 1SR35–1000A
Светодиод D2 BL-B2134G BL-B4541Q
Динистор DN1 DB3 HT-32
Симистор DN2 BT136 КУ 208

Принцип работы регулятора заключается в следующем: через цепочку, состоящую из динистора DN1, конденсатора C1 и диода D1, ток поступает на симистор DN2, что приводит к его открытию. Момент открытия зависит от ёмкости C1, которая заряжается через резисторы R1 и R2. Соответственно, изменением сопротивления R1 управляется скорость заряда C1.

Несмотря на простоту, такая схема отлично справляется с регулировкой вольтажа нагревательных устройств, использующих вольфрамовую нить. Но так как такая схема не имеет обратной связи, использовать её для управления оборотами коллекторного электродвигателя нельзя.

Реле напряжения

Для автолюбителей важным элементом является устройство, поддерживающее напряжение бортовой сети в установленных пределах при изменении различных факторов, например, оборотов генератора, включении или выключении фар. Использующиеся для этого приборы работают по одинаковому принципу – стабилизация напряжения путём изменения тока возбуждения. Иными словами, если уровень сигнала на входе изменяется, то устройство уменьшает или увеличивает ток возбуждения.

Собранная схема своими руками реле-регулятора напряжения должна:

  • работать в широком диапазоне температур;
  • выдерживать скачки напряжения;
  • иметь возможность отключения во время запуска мотора;
  • обладать малым падением разности потенциалов.

Упрощённо принцип работы можно описать в следующем виде: при величине напряжения, превышающей установленное значение, ротор отключается, а при её нормализации запускается вновь. Основным элементом схемы является ШИМ стабилизатор LM 2576 ADJ.

Микросхема TC4420EPA предназначена для моментального переключения транзистора. С помощью резистора R3, конденсатора C1 и стабилитронов VD1, VD2 осуществляется защита микросхемы и полевого транзистора. Резисторы R1 и R2 задают опорное напряжение для стабилизатора. DD1 управляет работой полевого транзистора и ротора. Диод D2 используется для ограничения управляющего напряжения. Индуктивность L1 обеспечивает плавность разрядки ротора через диоды D4 и D5 при размыкании цепи.

Управляемый блок питания

Конструируя различные схемы, радиолюбители часто собирают источники напряжений. Спаяв регулятор постоянного напряжения своими руками, его можно будет использовать как управляемый блок питания в диапазоне от 0 до 12В.

Собираемый источник напряжения состоит из 2 частей: блока питания и параметрического регулятора напряжения. Первая часть изготавливается по классической схеме: понижающий трансформатор — выпрямительный блок. Типом используемого трансформатора, выпрямительных диодов и транзистора определяется мощность устройства. Переменное напряжение сети понижается в трансформаторе до 11 вольт, после чего попадает на диодный мост VD1, где становится постоянным. Конденсатор C1 используется как сглаживающий фильтр. Сигнал поступает на параметрический стабилизатор, состоящий из резистора R1 и стабилитрона VD2.

Параллельно стабилитрону подключён резистор R2, которым и изменяется уровень выходного напряжения. Транзисторы включены по упрощённой схеме эмиттерного повторителя, и при появлении на их переходах напряжения начинают работать в режиме усиления тока. То есть сигнал, снятый с R2, поступает на выход прибора через транзисторы, которые снижают его значение на величину своего насыщения. Таким образом, чем больше подаётся на них напряжение, тем сильнее они открываются и больше мощности поступает на выход.

Этот регулируемый блок питания может работать с нагрузкой до трёх ампер, то есть обеспечивать мощность до 30 ватт. Если есть опыт, то схема паяется навесным монтажом с использованием проводов любого сечения.

Блок питания с регулировкой напряжения и тока

Друзья, сегодня хочу рассказать вам о своей новой самоделке, это блок питания с регулировкой напряжения и тока о котором мечтают все без исключения начинающие и опытные радиолюбители. Устройство можно использовать, как в качестве лабораторного блока для питания различных самоделок, так и в качестве зарядного устройства для зарядки автомобильных аккумуляторов. Блок питания имеет стабилизированный регулятор напряжения и систему ограничения силы тока, защиту от переполюсовки клейм аккумулятора со световой индикацией, а также автоматический регулятор скорости вентилятора, изменяющий обороты в зависимости от нагрева радиатора. На этом рисунке изображена схема блока питания с регулировкой напряжения и тока рассчитанная на ток до 10А. К этой схеме можно подключать любой трансформатор или импульсный источник питания от 12 до 30В. Для тех кто любит по мощнее, в этой статье вы также найдете схему рассчитанную на ток до 25А. Не буду торопить события. Внимательно читайте статью до конца.

Схема блока питания с регулировкой напряжения и тока 1.2…30В 10А

Регулируемый стабилизатор напряжения LM317 позволяет плавно регулировать напряжение в диапазоне от 1.2 до 30В. Регулировка напряжения выполняется переменным резистором Р1. Транзистор Т1 MJE13009 выполняет роль ключа пропускающего через себя большой ток.

Система ограничения силы тока выполнена на полевом транзисторе Т2 IRFP260, позволяет ограничивать ток от 0 до 10А, управление током осуществляется переменным резистором Р2, что позволяет использовать данный блок питания в качестве зарядного устройства для зарядки автомобильных аккумуляторов. Мощный резистор R6 с сопротивлением 0.1 Ом 20 Вт выполняет роль шунта. Купить его не проблема в Китае на Али Экспресс. Если не хочется долго ждать можно соединить несколько резисторов параллельно тогда получится один мощный резистор. Обратите внимание на то, что при параллельном соединении резисторов применяется специальная формула.

Общее сопротивление резисторов делится на количество резисторов. Как определить общее сопротивление, одинаковых резисторов? Надо просто взять сопротивление одного резистора и разделить на количество резисторов. Например, у меня есть 4 резистора, сопротивление каждого резистора 1 Ом и рассеиваемая мощность 10 Вт, следовательно общее сопротивление всех резисторов 1 Ом, если их соединить параллельно, то получится общее сопротивление четырех резисторов 0.25 Ом 40 Вт. Мощность всех резисторов суммируется. Таким образом можно сделать резистор любой мощности. На фотографиях и в видеоролике в моем блоке питания вы увидите сборку из 4 резисторов по 1 Ом 10 Вт с общим сопротивлением 0.25 Ом и мощностью 40 Вт. Сделал я так потому, что в тот момент у меня не было под рукой, да и в магазине тоже мощного резистора на 0.1 Ом 20 Вт. Но вот чудо, оказалось, что регулировка тока в данной схеме отлично работает даже с сопротивлением в 0. 25 Ом. Мне стало интересно и я решил провести серию экспериментов с резисторами пришедшими через пару недель из Китая, с сопротивлением в 0.1 Ом, 0.25 Ом, 0.5 Ом, и пришел к выводу, что с любым из этих сопротивлений регулировка тока работает отлично. То есть, в данную схему можно поставить резисторы с любым сопротивлением в диапазоне от 0.1 Ом до 0.5 Ом, что делает эту схему доступной для сборки начинающим радиолюбителям. Ведь не всегда можно найти в магазине резисторы с нужным сопротивлением и мощностью. Ещё я пробовал заменить резистор куском нихромовой спирали от электроплитки, все тоже самое на работу регулировки тока это никак не повлияло, единственный минус в том, что спираль сильно нагревалась и её пришлось залить в бетон.

В схеме имеется встроенная защита от переполюсовки. При правильном подключении блока питания к аккумулятору загорается зеленый светодиод Led1. В случае не правильного подключения загорается красный светодиод Led2, сигнализирующий о ошибке подключения. Система корректно работает только при выключенном питании блока питания. То есть сначала подключаем аккумулятор, когда загорится зеленый светодиод включаем блок питания в сеть.

Автоматический регулятор оборотов вентилятора предназначен для уменьшения уровня шума возникающего в процессе работы блока питания. Стабилизатор напряжения L7812CV поддерживает постоянное напряжение 12В поступающее на делитель состоящий из терморезистора R8 установленного на радиаторе и подстроечного резистора Р3. Напряжение с делителя поступает на базу транзистора Т3. В процессе работы блока питания от большой нагрузки радиатор нагревается, сопротивление терморезистора R8 установленного в радиаторе становится меньше сопротивления подстроечного резистора Р3, напряжение на базе транзистора увеличивается и транзистор приоткрывается, тем самым увеличивая скорость вращения вентилятора. Настройка чувствительности регулятора осуществляется подстроечным резистором Р3.

В данной схеме регулируемого блока питания имеется возможность подключения разных моделей вольтметров и амперметров, стрелочных и электронных. С аналоговой классикой обозначенной на схеме буквами V вольтметр и A амперметр все понятно подключаем согласно схеме. Амперметр лучше покупать со встроенным шунтом, так гораздо компактней и дешевле. Класс точности вольтметра и амперметра с Али Экспресс должен быть 2.5 эти приборы работают нормально. А вот с китайскими электронными придется повозиться. На данный момент существует две модели китайских универсальных измерительных приборов (КУИП). Первая модель с синим проводом со встроенным шунтом более точная менее глючная, в последнее время её трудно найти на Али Экспресс. Вторая модель с желтым проводом и встроенным шунтом не точная и очень глючная с прыгающими показаниями амперметра от 0 до 0.25А на холостом ходу без нагрузки. Не понятно зачем её вообще продают? Если вы будете ставить электронный КУИП, тогда надо разорвать участок электрической цепи отмеченный на схеме красным крестиком. По другому в данной схеме электронный КУИП работать правильно не будет .

А эта схема для тех, кто любит мощные блоки питания. Как и обещал до 25А.

Схема блока питания с регулировкой напряжения и тока 1.2…30В 25А

В схему добавлен дополнительный мощный транзистор Т2 TIP35C способный выдерживать ток до 25А и резистор R3 200 Ом. Диодный мост заменен на более мощный. Транзистор IRFP250 выдерживает 30А, а транзистор IRFP260 49А.

На этом рисунке изображена печатная плата блока питания с регулировкой напряжения и тока на 10А.

Печатная плата блока питания с регулировкой напряжения и тока 1.2…30В 10А

На этом рисунке изображена печатная плата блока питания с регулировкой напряжения и тока на 25А.

Печатная плата блока питания с регулировкой напряжения и тока 1.2…30В 25А

Стабилизатор напряжения LM317, транзисторы TIP35C, IRFP250, 260 устанавливаем на радиатор через изолирующие термопрокладки и термошайбы. Транзистор MJE13009 устанавливаем на радиатор без изоляции, иначе от сильного нагрева и плохого отвода тепла через термопрокладку будет перегреваться и выходить из строя. Стабилизатор напряжения L7812CV и транзистор BD139 устанавливаем на разные радиаторы. Терморезистор вставляем в просверленное в радиаторе отверстие и закрепляем с помощью Поксипола или Эпоксидной смолы. В процессе установки терморезистора проверяйте мультиметром отсутствие электрического контакта, между терморезистором и радиатором. Переменные резисторы, а также светодиоды при необходимости можно соединить проводами и вынести за пределы платы.

Готовый блок питания начинает работать сразу после подачи питания на плату. Единственное что надо настроить, так это скорость вращения вентилятора. Для этого надо при холодном радиаторе с помощью подстроечного резистора Р3 выставить напряжение на вентиляторе примерно 1 вольт. Вентилятор начнет вращаться при температуре радиатора примерно 45 градусов, обороты будут подниматься прямо пропорционально температуре радиатора. При охлаждении радиатора обороты вентилятора будут снижаться. Так работает автоматический регулятор оборотов вентилятора.

Как же пользоваться блоком питания?
Очень просто. Включаем питание и выставляем регулируемым резистором Р1 нужное вам напряжение. Ручку регулируемого резистора Р2 ставим в крайнее правое положение соответствующее максимальной силе тока. Подключаем нагрузку к блоку питания, при необходимости добавляем напряжение. Если надо резистором Р2 можно ограничить ток.

Как заряжать аккумулятор?
Легко! При подключении аккумулятора блок питания должен быть выключен из сети. Ставим ручки резисторов Р1 и Р2 в крайнее левое положение, минимальное напряжение и минимальный ток. Подключаем аккумулятор к блоку питания. Должен загореться зеленый светодиод, это означает что аккумулятор подключен правильно. В случае ошибки подключения загорится красный светодиод. После того, как вы убедились в правильности подключения аккумулятора, включите блок питания в сеть. Переменным резистором Р1 установите напряжение 14.5В. Далее резистором Р2 установите силу тока равную 10% от емкости аккумулятора, то есть для 60А/ч батареи начальный ток должен быть не более 6А.

После установки силы тока произойдет падение напряжения примерно до 13В. По мере заряда аккумулятора напряжение будет постепенно подниматься до 14.5В, а сила тока будет снижаться до 0.1А это будет означать, что батарея полностью заряжена.

Что будет с блоком питания в случае короткого замыкания?
Ничего страшного не произойдет. В случае короткого замыкания сработает защита ограничения тока. Согласно закону Ома: чем больше сопротивление цепи, тем меньше сила тока будет в нем. Следовательно при коротком замыкании будет максимально возможный ток. Напряжение упадет, а сила тока будет той, которую вы ограничили резистором Р2.

Радиодетали для сборки блока питания с регулировкой напряжения и тока на 10А

  • Диодный мост KBPC2510, KBPC3510, KBPC5010
  • Конденсатор С1 4700mf 50V
  • Регулируемый стабилизатор напряжения LM317
  • Транзисторы Т1 MJE13009, T2 IRFP250, IRFP260, T3 КТ815, BD139
  • Переменные резисторы Р1 5К, Р2 1К, Р3 10К
  • Стабилитрон 12V 5W 1N5349BRLG
  • Резисторы R1, R2 200R 0.25W, R3 1K 5W, R4 100R 0.25W, R5 47R 0.25W, R6 0.1R 20W, R7 3K 0.25W
  • Терморезистор R8 B57164-K 103-J сопротивление 10К
  • Светодиоды 5мм красный и зеленый, напряжение питания 3В
  • Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 2шт
  • Вентилятор 70х70 мм

Радиодетали для сборки блока питания с регулировкой напряжения и тока на 25А

  • Диодный мост KBPC2510, KBPC3510, KBPC5010
  • Конденсатор С1 4700mf 50V
  • Регулируемый стабилизатор напряжения LM317
  • Транзисторы Т1 MJE13009, T2 TIP35C, T3 IRFP250, IRFP260, T4 КТ815, BD139
  • Переменные резисторы Р1 5К, Р2 1К, Р3 10К
  • Стабилитрон 12V 5W 1N5349BRLG
  • Резисторы R1, R2, R3 200R 0.25W, R4 1K 5W, R5 100R 0.25W, R6 47R 0.25W, R7 0.1R 20W, R8 3K 0.25W
  • Терморезистор R9 B57164-K 103-J сопротивление 10К
  • Светодиоды 5мм красный и зеленый, напряжение питания 3В
  • Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 2шт
  • Вентилятор 70х70 мм

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать блок питания с регулировкой напряжения и тока

ДВА ПРОСТЫХ РЕГУЛЯТОРА НАПРЯЖЕНИЯ

Собранный однажды простейший регулятор напряжения на одном транзисторе был предназначен для определённого блока питания и конкретного потребителя, никуда больше его подключать было конечно не нужно, но как всегда наступает момент, когда правильно поступать мы перестаём. Следствием этого являются хлопоты и раздумья как жить-быть дальше и принятие решения восстанавливать сотворённое ранее или продолжать творить.

Схема номер 1

Имелся стабилизированный импульсный блок питания, дающий на выходе напряжение 17 вольт и ток 500 миллиампер. Требовалось периодическое изменение напряжения в пределе 11 – 13 вольт. И общеизвестная схема регулятора напряжения на одном транзисторе с этим прекрасно справлялась. От себя добавил к ней только светодиод индикации да ограничительный резистор. К слову, светодиод здесь это не только «светлячок» сигнализирующий о наличии выходного напряжения. При правильно подобранном номинале ограничительного резистора, даже небольшое изменение выходного напряжения отражается на яркости свечения светодиода, что даёт дополнительную информацию о его повышении или понижении. Напряжение на выходе можно было изменять от 1,3 до 16 вольт.

КТ829 — мощный низкочастотный кремниевый составной транзистор, был установлен на мощный металлический радиатор и казалось, что при необходимости он вполне может выдержать и большую нагрузку, но случилось короткое замыкание в схеме потребителя и он сгорел. Транзистор отличается высоким коэффициентом усиления и применяется в усилителях низкой частоты – видно действительно его место там а не в регуляторах напряжения.

Слева снятые электронные компоненты, справа приготовленные им на замену. Разница по количеству в два наименования, а по качеству схем, бывшей и той, что решено было собрать, она несопоставима. Напрашивается вопрос – «Стоит ли собирать схему с ограниченными возможностями, когда существует более продвинутый вариант «за те же деньги», в прямом и переносном смысле этого изречения?»

Схема номер 2

В новой схеме также присутствует трёхвыводной эл. компонент (но это уже не транзистор) постоянный и переменный резисторы, светодиод со своим ограничителем. Добавлено только два электролитических конденсатора. Обычно на типовых схемах указаны минимальные значения C1 и C2 (С1=0,1 мкФ и С2=1 мкФ) которые необходимы для устойчивой работы стабилизатора. На практике значения емкостей составляют от десятков до сотен микрофарад. Ёмкости должны располагаться как можно ближе к микросхеме. При больших емкостях обязательно условие C1>>C2. Если ёмкость конденсатора на выходе будет превышать ёмкость конденсатора на входе, то возникает ситуация при которой выходное напряжение превышает входное, что приводит к порче микросхемы стабилизатора. Для её исключения устанавливают защитный диод VD1.

У этой схемы уже совсем другие возможности. Входное напряжение от 5 до 40 вольт, выходное 1,2 – 37 вольт. Да, имеется падение напряжения вход – выход равное примерно 3,5 вольтам, однако роз без шипов не бывает. Зато микросхема КР142ЕН12А именуемая линейным регулируемым стабилизатором напряжения имеет неплохую защиту по превышению тока нагрузки и кратковременную защиту от короткого замыкания на выходе. Её рабочая температура до + 70 градусов по Цельсию, работает с внешним делителем напряжения. Выходной ток нагрузки до 1 А при длительной работе и 1,5 А при непродолжительной. Максимально допустимая мощность при работе без теплоотвода 1 Вт, если микросхему установить на радиатор достаточного размера (100 см.кв.) то Р макс. = 10 Вт.

Что получилось

Сам процесс обновлённого монтажа занял времени ни сколько не больше чем предыдущий. При этом получен не простой регулятор напряжения, который подключается к блоку питания стабилизированного напряжения, собранная схема при подключении даже к сетевому понижающему трансформатору с выпрямителем на выходе сама даёт необходимое стабилизированное напряжение. Естественно, что выходное напряжение трансформатора должно соответствовать допустимым параметрам входного напряжения микросхемы КР142ЕН12А. Вместо неё можно использовать и импортный аналог интегральный стабилизатор LM317Т. Автор Babay iz Barnaula.

Обсудить статью ДВА ПРОСТЫХ РЕГУЛЯТОРА НАПРЯЖЕНИЯ

Простые схемы регуляторов напряжения и тока

В сети очень много схем регуляторов напряжения для самых разных целей, а вот с регуляторами тока дела обстоят иначе. И я хочу немного восполнить этот пробел, и представить вам три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так, как они универсальны и могут быть использованы во многих самодельных конструкциях.

Регуляторы тока по идее не многим отличается от регуляторов напряжения. Прошу не путать регуляторы тока со стабилизаторами тока, в отличии от первых они поддерживают стабильный выходной ток не зависимо от напряжения на входе и выходной нагрузки.

Стабилизатор тока — неотемлимая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого на нагрузку. В этой статье мы рассмотрим пару стабилизаторов и один регулятор общего применения.

Во всех трех вариантах в качестве датчика тока использованы шунты, по сути низкоомные резисторы. Для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта. Нужное значение тока выставляют вручную, как правило вращением переменного резистора. Все три схемы работают в линейном режиме, а значит силовой транзистор при больших нагрузках будет сильно нагреваться.

Первая схема отличается максимальной простотой и доступностью компонентов. Всего два транзистора, один из них управляющий, второй является силовым, по которому и протекает основной ток.

Датчик тока представляет из себя низкоомный проволочный резистор. При подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение. Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт транзистор. Резистор R1, задает напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии. Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1 грубо говоря затухаеться или замыкается на массу питания через открытый переход маломощного транзистора, этим силовой транзистор будет закрываться, следовательно, ток протекающий по нему уменьшается вплоть до полного нуля.

Резистор R1 по сути обычный делитель напряжения, которым мы можем задать как бы степень приоткрытия управляющего транзистора, а следовательно, управлять и силовым транзистором ограничивая ток протекающий по нему.

Вторая схема построена на базе операционного усилителя. Ее неоднократно использовал в зарядных устройствах для автомобильного аккумулятора. В отличии от первого варианта — эта схема является стабилизатором тока.

Как и в первой схеме тут также имеется датчик тока (шунт), операционный усилитель фиксирует падение напряжения на этом шунте, все по уже знакомой нам схеме. Операционный усилитель сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение. Операционный усилитель в свою очередь постарается сбалансировать напряжение на входах путем изменения выходного напряжения.

Выход операционного усилителя управляет мощным полевым транзистором. То есть принцип работы мало чем отличается от первой схемы, за исключением того, что тут имеется источник опорного напряжения выполненный на стабилитроне.

Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться.

Последняя схема построена на базе популярной интегральной микросхеме стабилизатора LM317. Это линейный стабилизатор напряжения, но имеется возможность использовать микросхему в качестве стабилизатора тока.

Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов.

Максимально допустимый ток для микросхемы LM317 1,5 ампера, увеличить его можно дополнительным силовым транзистором. В этом случае микросхема уже будет в качестве управляющей, поэтому нагреваться не будет, взамен будет нагреваться транзистор и от этого никуда не денешься.

Регулятор тока своими руками: схема и инструкция. Регулятор постоянного тока

На сегодняшний день многие приборы производятся с возможностью регулировки тока. Таким образом пользователь имеет возможность контролировать мощность устройства. Работать указанные приборы способны в сети с переменным, а также постоянным током. По своей конструкции регуляторы довольно сильно отличаются. Основной деталью устройства можно назвать тиристоры.

Также неотъемлемыми элементами регуляторов являются резисторы и конденсаторы. Магнитные усилители используются только в высоковольтных приборах. Плавность регулировки в устройстве обеспечивается за счет модулятора. Чаще всего можно встретить именно поворотные их модификации. Дополнительно в системе имеются фильтры, которые помогают сглаживать помехи в цепи. За счет этого ток на выходе получается более стабильным, чем на входе.

Схема простого регулятора

Схема регулятора тока обычного типа тиристоры предполагает использовать диодные. На сегодняшний день они отличаются повышенной стабильностью и прослужить способны много лет. В свою очередь, триодные аналоги могут похвастаться своей экономичностью, однако, потенциал у них небольшой. Для хорошей проводимости тока транзисторы применяются полевого типа. Платы в системе могут использоваться самые разнообразные.

Для того чтобы сделать регулятор тока на 15 В, можно смело выбирать модель с маркировкой КУ202. Подача запирающего напряжения происходит за счет конденсаторов, которые устанавливаются в начале цепи. Модуляторы в регуляторах, как правило, применяются поворотного типа. По своей конструкции они довольно просты и позволяют очень плавно изменять уровень тока. Для того чтобы стабилизировать напряжение в конце цепи, применяются специальные фильтры. Высокочастотные их аналоги могут устанавливаться только в регуляторах свыше 50 В. С электромагнитными помехами они справляются довольно хорошо и большой нагрузки на тиристоры не дают.

Устройства постоянного тока

Схема регулятора постоянного тока характеризуется высокой проводимостью. При этом тепловые потери в устройстве являются минимальными. Чтобы сделать регулятор постоянного тока, тиристор требуется диодного типа. Подача импульса в данном случае будет высокой за счет быстрого процесса преобразования напряжения. Резисторы в цепи должны быть способны выдерживать максимальное сопротивление 8 Ом. В данном случае это позволит привести к минимуму тепловые потери. В конечном счете модулятор не будет быстро перегреваться.

Современные аналоги рассчитаны примерно на предельную температуру в 40 градусов, и это следует учитывать. Полевые транзисторы ток способны пропускать в цепи только в одном направлении. Учитывая это, располагаться в устройстве они обязаны за тиристором. В результате уровень отрицательного сопротивления не будет превышать 8 Ом. Высокочастотные фильтры на регулятор постоянного тока устанавливаются довольно редко.

Модели переменного тока

Регулятор переменного тока отличается тем, что тиристоры в нем применяются только триодного типа. В свою очередь, транзисторы стандартно используются полевого вида. Конденсаторы в цепи применяются только для стабилизации. Встретить высокочастотные фильтры в устройствах данного типа можно, но редко. Проблемы с высокой температурой в моделях решаются за счет импульсного преобразователя. Устанавливается он в системе за модулятором. Низкочастотные фильтры используются в регуляторах с мощностью до 5 В. Управление по катоду в устройстве осуществляется за счет подавления входного напряжения.

Стабилизация тока в сети происходит плавно. Для того чтобы справляться с высокими нагрузками, в некоторых случаях применяются стабилитроны обратного направления. Соединяются они транзисторами при помощи дросселя. В данном случае регулятор тока должен быть способным выдерживать максимум нагрузкуи в 7 А. При этом уровень предельного сопротивления в системе обязан не превышать 9 Ом. В этом случае можно надеяться на быстрый процесс преобразования.

Как сделать регулятор для паяльника?

Сделать регулятор тока своими руками для паяльника можно, используя тиристор триодного типа. Дополнительно потребуются биполярные транзисторы и низкочастотный фильтр. Конденсаторы в устройстве применяются в количестве не более двух единиц. Снижение тока анода в данном случае должно происходить быстро. Чтобы решить проблему с отрицательной полярностью, устанавливаются импульсные преобразователи.

Для синусоидального напряжения они подходят идеально. Непосредственно контролировать ток можно за счет регулятора поворотного типа. Однако кнопочные аналоги также встречаются в наше время. Чтобы обезопасить устройство, корпус используется термостойкий. Резонансные преобразователи в моделях также можно встретить. Отличаются они, по сравнению с обычными аналогами, своей дешевизной. На рынке их часто можно встретить с маркировкой РР200. Проводимость тока в данном случае будет невысокой, однако управляющий электрод со своими обязанностями справляться должен.

Приборы для зарядного устройства

Чтобы сделать регулятор тока для зарядного устройства, тиристоры необходимы только триодного типа. Запирающий механизм в данном случае будет контролировать управляющий электрод в цепи. Полевые транзисторы в устройствах используются довольно часто. Максимальной нагрузкой для них является 9 А. Низкочастотные фильтры для таких регуляторов не подходят однозначно. Связано это с тем, что амплитуда электромагнитных помех довольно высокая. Решить эту проблему можно просто, используя резонансные фильтры. В данном случае проводимости сигнала они препятствовать не будут. Тепловые потери в регуляторах также должны быть незначительными.

Применение симисторных регуляторов

Симисторные регуляторы, как правило, применятся в устройствах, мощность которых не превышает 15 В. В данном случае они предельное напряжение способны выдерживать на уровне 14 А. Если говорить про приборы освещения, то они использоваться могут не все. Для высоковольтных трансформаторов они также не подходят. Однако различная радиотехника с ними способна работать стабильно и без каких-либо проблем.

Регуляторы для активной нагрузки

Схема регулятора тока для активной нагрузки тиристоры предполагает использовать триодного типа. Сигнал они способны пропускать в обоих направлениях. Снижение тока анода в цепи происходит за счет понижения предельной частоты устройства. В среднем данный параметр колеблется в районе 5 Гц. Напряжение максимум на выходе должно составлять 5 В. С этой целью резисторы применяются только полевого типа. Дополнительно используются обычные конденсаторы, которые в среднем способны выдерживать сопротивление 9 Ом.

Импульсные стабилитроны в таких регуляторах не редкость. Связано это с тем, что амплитуда электромагнитных колебаний довольно большая и бороться с ней нужно. В противном случае температура транзисторов быстро возрастает, и они приходят в негодность. Чтобы решить проблему с понижающимся импульсом, преобразователи используются самые разнообразные. В данном случае специалистами также могут применяться коммутаторы. Устанавливаются они в регуляторах за полевыми транзисторами. При этом с конденсаторами они соприкасаться не должны.

Как сделать фазовую модель регулятора?

Сделать фазовый регулятор тока своими руками можно при помощи тиристора с маркировкой КУ202. В этом случае подача запирающего напряжения будет проходить беспрепятственно. Дополнительно следует позаботиться о наличии конденсаторов с предельным сопротивлением свыше 8 Ом. Плата для этого дела может быть взята РР12. Управляющий электрод в этом случае обеспечит хорошую проводимость. Импульсные преобразователи в регуляторах данного типа встречаются довольно редко. Связано это с тем, что средний уровень частоты в системе превышает 4 Гц.

В результате на тиристор оказывается сильное напряжение, которое провоцирует возрастание отрицательного сопротивления. Чтобы решить эту задачу, некоторые предлагают использовать двухтактные преобразователи. Принцип их работы построен на инвертировании напряжения. Изготовить самостоятельно регулятор тока данного типа в домашних условиях довольно сложно. Как правило, все упирается в поиски необходимого преобразователя.

Устройство импульсного регулятора

Чтобы сделать импульсный регулятор тока, тиристор потребуется триодного типа. Подача управляющего напряжения осуществляется им с большой скоростью. Проблемы с обратной проводимостью в устройстве решаются за счет транзисторов биполярного типа. Конденсаторы в системе устанавливаются только в парном порядке. Снижение тока анода в цепи происходит за счет смены положения тиристора.

Запирающий механизм в регуляторах данного типа устанавливается за резисторами. Для стабилизации предельной частоты фильтры могут применяться самые разнообразные. Впоследствии отрицательное сопротивление в регуляторе не должно превышать 9 Ом. В данном случае это позволит выдерживать большую токовую нагрузку.

Модели с плавным пуском

Для того чтобы сконструировать тиристорный регулятор тока с плавным пуском, нужно позаботиться о модуляторе. Наиболее популярными на сегодняшний день принято считать поворотные аналоги. Однако они между собой довольно сильно отличаются. В данном случае многое зависит от платы, которая применяется в устройстве.

Если говорить про модификации серии КУ, то они работают на самых простых регуляторах. Особой надежностью они не выделяются и определенные сбои все же дают. Иначе обстоят дела с регуляторами для трансформаторов. Там, как правило, применяются цифровые модификации. В результате уровень искажений сигнала значительно сокращается.

Простой источник питания с регулируемым напряжением

Что делает источник питания?

Вначале необходимо понять назначение источника питания.
• Он должен преобразовывать переменный ток, полученный из сети переменного тока, в постоянный ток.
• Он должен выдавать напряжение по выбору пользователя, в диапазоне от 2 В до 25 В.

Основные преимущества:
• Недорогой.
• Простой и удобный в применении.
• Универсальный.

Список необходимых компонентов

1. Понижающий трансформатор на 2 А (с 220 В до 24 В).
2. Регулятор напряжения lm317 IC с радиатором теплообменника.
3. Конденсаторы (поляризованные):
2200 микрофарад 50 В;
100 микрофарад 50 В;
1 микрофарада 50 В.
(замечание: номинал напряжения конденсаторов должен быть выше напряжения, подаваемого на их контакты).
4. Конденсатор (неполяризованный): 0.1 микрофарад.
5. Потенциометр 10 кОм.
6. Сопротивление 1 кОм.
7. Вольтметр с ЖК-дисплеем.
8. Плавкий предохранитель 2.5 А.
9. Винтовые зажимы.
10. Соединительный провод с вилкой.
11. Диоды 1n5822.
12. Монтажная плата.

Составление электрической схемы

• В верхней части рисунка трансформатор подключен к сети переменного тока. Он понижает напряжение до 24 В, но при этом ток остается переменным с частотой 50 Гц.
• В нижней половине рисунка показано соединение четырех диодов в мост выпрямителя. Диоды 1n5822 пропускают ток при прямом смещении, и блокируют прохождение тока при обратном смещении. В результате выходное напряжение постоянного тока пульсирует с частотой в 100 Гц.

• На этом рисунке добавлен конденсатор емкостью в 2200 микрофарад, который фильтрует выходной ток и обеспечивает устойчивое напряжение в 24 В постоянного тока.
• На этом этапе можно последовательно включить в схему плавкий предохранитель для обеспечения ее защиты.
• Итак, мы имеем:
1. Понижающий трансформатор переменного тока до 24 В.
2. Преобразователь перемененного тока в пульсирующий постоянный ток с напряжением до 24 В.
3. Отфильтрованный ток для получения чистого и стабильного напряжения 24 В.
• Все это будет подключено к схеме регулятора напряжения lm317, описанной ниже

Введение в Lm317

• Теперь наша задача заключается в управлении выходным напряжением, изменяя его в соответствие с нашими нуждами. Для этого мы используем регулятор напряжения lm317.
• Lm317, как показано на рисунке, имеет 3 контакта. Это контакт регулировки (pin1 — ADJUST), контакт вывода (pin2 — OUNPUT), и контакт ввода (pin3 — INPUT).
• Регулятор lm317 во время работы выделяет тепло, поэтому ему требуется радиатор теплообменника
• Радиатор теплообменника представляет собой металлическую пластину, соединенную с интегральной схемой для рассеивания выделяемого ею тепла в окружающее пространство.

Объяснение схемы подключения Lm317

• Это продолжение предыдущей электрической схемы. Для лучшего понимания, схема подключения lm317 показана здесь подробно.
• Для обеспечения фильтрации на входе рекомендуется использовать конденсатор емкостью в 0.1 микрофарады. Очень желательно не размещать его вблизи основного фильтрующего конденсатора (в нашем случае, это конденсатор емкостью 2200 микрофарад).
• Использование конденсатора в 100 микрофарад рекомендуется для улучшения гашения ряби. Он предотвращает усиление ряби, возникающее при увеличении устанавливаемого напряжения.
• Конденсатор емкостью в 1 микрофараду улучшает переходную характеристику, но не является необходимым для стабилизации напряжения.
• Диоды защиты D1 и D2 (оба — 1n5822) обеспечивают путь разряда с низким импедансом, предотвращая разряд конденсатора в выход регулятора напряжения.
• Сопротивления R1 и R2 нужны для установки выходного напряжения
• На рисунке приведено уравнение управления. Здесь сопротивление R1 равно 1 кОм, а сопротивление R2 (потенциометр с сопротивлением 10 кОм) является переменным. Поэтому получаемое на выходе напряжение, согласно данному аппроксимированному уравнению, задается изменением сопротивления R2.
• При необходимости получить дополнительную информацию по характеристикам lm317 на интегральной схеме, такую информацию найти в Интернете.
• Теперь выходное напряжение можно подключить к вольтметру с ЖК-дисплеем, или можно использовать мультиметр для замера напряжения.
• Замечание: Величины сопротивлений R1 и R2 выбираются из соображений удобства. Другими словами, нет какого-либо твердого правила, которое говорило бы, что сопротивление R1 должно всегда быть 1 кОм, а сопротивление R2 должно быть переменным до 10 кОм. Кроме того, если нужно фиксированное выходное напряжение, то можно установить фиксированное сопротивление R2 вместо переменного. Используя приведенную управляющую формулу, можно выбирать параметры R1 и R2 по своему усмотрению.

Завершение составления электрической схемы

• Окончательная электрическая схема выглядит так, как показано на рисунке.
• Теперь, пользуясь потенциометром (т.е. R2), можно получать требуемое напряжение на выходе.
• На выходе будет получено чистое, свободное от ряби, стабильное и постоянное напряжение, требуемое для питания конкретной нагрузки.

Простой регулятор тока своими руками

8 основных схем регуляторов своими руками. Топ-6 марок регуляторов из Китая. 2 схемы. 4 Самых задаваемых вопроса про регуляторы напряжения.+ ТЕСТ для самоконтроля

Регулятор напряжения – это специализированный электротехнический прибор, предназначенный для плавного изменения или настройки напряжения, питающего электрическое устройство.

Важно помнить! Приборы этого типа предназначены для изменения и настройки питающего напряжения, а не тока. Ток регулируется полезной нагрузкой!

4 вопроса по теме регуляторов напряжения

  1. Для чего нужен регулятор:

а) Изменение напряжения на выходе из прибора.

б) Разрывание цепи электрического тока

  1. От чего зависит мощность регулятора:

а) От входного источника тока и от исполнительного органа

б) От размеров потребителя

  1. Основные детали прибора, собираемые своими руками:

а) Стабилитрон и диод

б) Симистор и тиристор

  1. Для чего нужны регуляторы 0-5 вольт:

а) Питать стабилизированным напряжением микросхемы

б) Ограничивать токопотребление электрических ламп

Ответы.

2 Самые распространенные схемы РН 0-220 вольт своими руками

Схема №1.

Самый простой и удобный в эксплуатации регулятор напряжения — это регулятор на тиристорах, включенных встречно. Это создаст выходной сигнал синусоидального вида требуемой величины.

СНиП 3.05.06-85

Входное напряжение величиной до 220в, через предохранитель поступает на нагрузку, а по второму проводнику, через кнопку включения синусоидальная полуволна попадает на катод и анод тиристоров VS1 и VS2. А через переменный резистор R2 производится регулировка выходного сигнала. Два диода VD1 и VD2, оставляют после себя только положительную полуволну, поступающую на управляющий электрод одного из тиристоров, что приводит к его открытию.

Важно! Чем выше токовый сигнал на ключе тиристора, тем сильнее он откроется, то есть тем больший ток сможет пропустить через себя.

Для контроля входного питания предусмотрена индикаторная лампочка, а для настройки выходного – вольтметр.

Схема №2.

Отличительная особенность этой схемы — замена двух тиристоров одним симистором. Это упрощает схему, делает ее компактней и проще в изготовлении.

В схеме, также присутствует предохранитель и кнопка включения, и регулировочный резистор R3, а управляет он базой симистора, это один из немногих полупроводниковых приборов с возможностью работать с переменным током. Ток, проходя через резистор R3, приобретает определенное значение, оно и будет управлять степенью открытия симистора. После этого оно выпрямляется на диодном мосту VD1 и через ограничивающий резистор попадает на ключевой электрод симистора VS2. Остальные элементы схемы, такие как конденсаторы С1,С2,С3 и С4 служат для гашения пульсаций входного сигнала и его фильтрации от посторонних шумов и частот нерегламентированной частоты.

Как избежать 3 частых ошибок при работе с симистором.

  1. Буква, после кодового обозначения симистора говорит о его предельном рабочем напряжении: А – 100В, Б – 200В, В – 300В, Г – 400В. Поэтому не стоит брать прибор с буквой А и Б для регулировки 0-220 вольт — такой симистор выйдет из строя.
  2. Симистор как и любой другой полупроводниковый прибор сильно нагревается при работе, следует рассмотреть вариант установки радиатора или активной системы охлаждения.
  3. При использовании симистора в цепях нагрузок с большим потреблением тока, необходимо четко подбирать прибор под заявленную цель. Например, люстра, в которой установлено 5 лампочек по 100 ватт каждая будет потреблять суммарно ток величиной 2 ампера. Выбирая по каталогу необходимо смотреть на максимальный рабочий ток прибора. Так симистор МАС97А6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а МАС228А8 способен пропустить до 8 А и подойдет для этой нагрузки.

3 Основных момента при изготовлении мощного РН и тока своими руками

Прибор управляет нагрузкой до 3000 ватт. Построен он на использовании мощного симистора, а затвором или ключом его управляет динистор.

Динистор – это тоже, что и симистор, только без управляющего вывода. Если симистор открывается и начинает пропускать через себя ток, когда на его базе возникает управляющее напряжение и остается открытым пока оно не пропадет, то динистор откроется, если между его анодом и катодом появится разность потенциалов выше барьера открытия. Он будет оставаться незапертым, пока между электродами не упадет ток ниже уровня запирания.

СНиП 3.05.06-85

Как только на управляющий электрод попадет положительный потенциал, он откроется и пропустит переменный ток, и чем сильнее будет этот сигнал, тем выше будет напряжение между его выводами, а значит и на нагрузке. Что бы регулировать степень открытия используется цепь развязки, состоящая из динистора VS1 и резисторов R3 и R4. Эта цепь устанавливает предельный ток на ключе симистора, а конденсаторы сглаживают пульсации на входном сигнале.

2 основных принципа при изготовлении РН 0-5 вольт

  1. Для преобразования входного высокого потенциала в низкий постоянный используют специальные микросхемы серии LM.
  2. Питание микросхем производится только постоянным током.

Рассмотрим эти принципы подробнее и разберем типовую схему регулятора.

Микросхемы серии LM предназначены для понижения высокого постоянного напряжения до низких значений. Для этого в корпусе прибора имеется 3 вывода:

  • Первый вывод – входной сигнал.
  • Второй вывод – выходной сигнал.
  • Третий вывод – управляющий электрод.

Принцип работы прибора очень прост – входное высокое напряжение положительной величины, поступает на входной выход и затем преобразуется внутри микросхемы. Степень трансформации будет зависеть от силы и величины сигнала на управляющей «ножке». В соответствии с задающим импульсом на выходе будет создаваться положительное напряжение от 0 вольт до предельного для данной серии.

СНиП 3.05.06-85

Входное напряжение, величиной не выше 28 вольт и обязательно выпрямленное подается на схему. Взять его можно с вторичной обмотки силового трансформатора или с регулятора, работающего с высоким напряжением. После этого положительный потенциал поступает на вывод микросхемы 3. Конденсатор С1 сглаживает пульсацию входного сигнала. Переменный резистор R1 величиной 5000 ом задает выходной сигнал. Чем выше ток, который он пропускает через себя, тем выше больше открывается микросхема. Выходное напряжение 0-5 вольт снимается с выхода 2 и через сглаживающий конденсатор С2 попадает на нагрузку. Чем выше емкость конденсатор, тем ровнее оно на выходе.

Регулятор напряжения 0 — 220в

Топ 4 стабилизирующие микросхемы 0-5 вольт:

  1. КР1157 – отечественная микросхема, с пределом по входному сигналу до 25 вольт и током нагрузки не выше 0.1 ампер.
  2. 142ЕН5А – микросхема с максимальным выходным током 3 ампера, на вход подается не выше 15 вольт.
  3. TS7805CZ – прибор с допустимыми токами до 1.5 ампер и повышенным входным напряжением до 40 вольт.
  4. L4960 – импульсная микросхема с максимальным током нагрузки до 2.5 А. Входной вольтаж не должен превышать 40 вольт.

РН на 2 транзисторах

Данный вид применяется в схемах особо мощных регуляторов. В этом случае ток на нагрузку также передается через симистор, но управление ключевым выводом происходит через каскад транзисторов. Это реализуется так: переменным резистором регулируется ток, который поступает на базу первого маломощного транзистора, а тот через коллектор-эмиторный переход управляет базой второго мощного транзистора и уже он открывает и закрывает симистор. Это реализует принцип очень плавного управления огромными токами на нагрузке.

СНиП 3.05.06-85

Ответы на 4 самых частых вопроса по регуляторам:

  1. Какое допустимое отклонение выходного напряжения? Для заводских приборов крупных фирм, отклонение не будет превышать +-5%
  2. От чего зависит мощность регулятора? Выходная мощность напрямую зависит от источника питания и от симистора, который коммутирует цепь.
  3. Для чего нужны регуляторы 0-5 вольт? Эти приборы чаще всего используют для питания микросхем и различных монтажных плат.
  4. Зачем нужен бытовой регулятор 0-220 вольт? Они применяются для плавного включения и выключения бытовых электроприборов.

4 Схемы РН своими руками и схема подключения

Коротко рассмотрим каждую из схем, особенности, преимущества.

Схема 1.

Очень простая схема для подключения и плавной регулировки паяльника. Используется, чтобы предотвратить разгорание и перегрев жала паяльника. В схеме используется мощный симистор, которым управляет цепочка тиристор-переменный резистор.

СНиП 3.05.06-85

Схема 2.

Схема основанная на использовании микросхемы фазового регулирования типа 1182ПМ1. Она управляет степенью открытия симистора, который управляет нагрузкой. Применяются для плавного регулирования степени светимости лампочек накаливания.

СНиП 3.05.06-85

Схема 3.

Простейшая схема регулирования накалом жала паяльника. Выполнена по очень компактной схеме с использованием легкодоступных компонентов. Управляет нагрузкой один тиристор, степень включения которого регулирует переменный резистор. Также присутствует диод, для защиты от обратного напряжения.

СНиП 3.05.06-85

Схема 4.

Схема, предназначенная для управления уровнем освещения в комнате. Может регулировать степень накала лампочки. Выполнена на основе одного тиристора, который управляется диммером. Поворотом ручки резистора, изменяется воздействие на ключевой вывод тиристора, что изменяет его пропускную способность по электрическому току.

СНиП 3.05.06-85

В наше время товары из Китая стали довольно популярной темой, от общей тенденции не отстают и китайские регуляторы напряжения. Рассмотрим самые популярные китайские модели и сравним их основные характеристики.

Название Мощность Напряжение стабилизации Цена Вес Стоимость одного ватта
Module ME 4000 Вт 0-220 В 6.68$ 167 г 0.167$
SCR Регулятор 10 000 Вт 0-220 В 12.42$ 254 г 0.124$
SCR Регулятор II 5 000 Вт 0-220 В 9.76$ 187 г 0.195$
WayGat 4 4 000 Вт 0-220 В 4.68$ 122 г 0.097$
Cnikesin 6 000 Вт 0-220 В 11.07$ 155 г 0.185$
Great Wall 2 000 Вт 0-220 В 1.59$ 87 г 0.080$

Существует возможность выбрать любой регулятор именно под свои требования и необходимости. В среднем один ватт полезной мощности стоит менее 20 центов, и это очень выгодная цена. Но все же, стоит обращать внимание на качество деталей и сборки, для товаров из Китая она по-прежнему остается очень низким.

На сегодняшний день многие приборы производятся с возможностью регулировки тока. Таким образом пользователь имеет возможность контролировать мощность устройства. Работать указанные приборы способны в сети с переменным, а также постоянным током. По своей конструкции регуляторы довольно сильно отличаются. Основной деталью устройства можно назвать тиристоры.

Также неотъемлемыми элементами регуляторов являются резисторы и конденсаторы. Магнитные усилители используются только в высоковольтных приборах. Плавность регулировки в устройстве обеспечивается за счет модулятора. Чаще всего можно встретить именно поворотные их модификации. Дополнительно в системе имеются фильтры, которые помогают сглаживать помехи в цепи. За счет этого ток на выходе получается более стабильным, чем на входе.

Схема простого регулятора

Схема регулятора тока обычного типа тиристоры предполагает использовать диодные. На сегодняшний день они отличаются повышенной стабильностью и прослужить способны много лет. В свою очередь, триодные аналоги могут похвастаться своей экономичностью, однако, потенциал у них небольшой. Для хорошей проводимости тока транзисторы применяются полевого типа. Платы в системе могут использоваться самые разнообразные.

Для того чтобы сделать регулятор тока на 15 В, можно смело выбирать модель с маркировкой КУ202. Подача запирающего напряжения происходит за счет конденсаторов, которые устанавливаются в начале цепи. Модуляторы в регуляторах, как правило, применяются поворотного типа. По своей конструкции они довольно просты и позволяют очень плавно изменять уровень тока. Для того чтобы стабилизировать напряжение в конце цепи, применяются специальные фильтры. Высокочастотные их аналоги могут устанавливаться только в регуляторах свыше 50 В. С электромагнитными помехами они справляются довольно хорошо и большой нагрузки на тиристоры не дают.

Устройства постоянного тока

Схема регулятора постоянного тока характеризуется высокой проводимостью. При этом тепловые потери в устройстве являются минимальными. Чтобы сделать регулятор постоянного тока, тиристор требуется диодного типа. Подача импульса в данном случае будет высокой за счет быстрого процесса преобразования напряжения. Резисторы в цепи должны быть способны выдерживать максимальное сопротивление 8 Ом. В данном случае это позволит привести к минимуму тепловые потери. В конечном счете модулятор не будет быстро перегреваться.

Современные аналоги рассчитаны примерно на предельную температуру в 40 градусов, и это следует учитывать. Полевые транзисторы ток способны пропускать в цепи только в одном направлении. Учитывая это, располагаться в устройстве они обязаны за тиристором. В результате уровень отрицательного сопротивления не будет превышать 8 Ом. Высокочастотные фильтры на регулятор постоянного тока устанавливаются довольно редко.

Модели переменного тока

Регулятор переменного тока отличается тем, что тиристоры в нем применяются только триодного типа. В свою очередь, транзисторы стандартно используются полевого вида. Конденсаторы в цепи применяются только для стабилизации. Встретить высокочастотные фильтры в устройствах данного типа можно, но редко. Проблемы с высокой температурой в моделях решаются за счет импульсного преобразователя. Устанавливается он в системе за модулятором. Низкочастотные фильтры используются в регуляторах с мощностью до 5 В. Управление по катоду в устройстве осуществляется за счет подавления входного напряжения.

Стабилизация тока в сети происходит плавно. Для того чтобы справляться с высокими нагрузками, в некоторых случаях применяются стабилитроны обратного направления. Соединяются они транзисторами при помощи дросселя. В данном случае регулятор тока должен быть способным выдерживать максимум нагрузкуи в 7 А. При этом уровень предельного сопротивления в системе обязан не превышать 9 Ом. В этом случае можно надеяться на быстрый процесс преобразования.

Как сделать регулятор для паяльника?

Сделать регулятор тока своими руками для паяльника можно, используя тиристор триодного типа. Дополнительно потребуются биполярные транзисторы и низкочастотный фильтр. Конденсаторы в устройстве применяются в количестве не более двух единиц. Снижение тока анода в данном случае должно происходить быстро. Чтобы решить проблему с отрицательной полярностью, устанавливаются импульсные преобразователи.

Для синусоидального напряжения они подходят идеально. Непосредственно контролировать ток можно за счет регулятора поворотного типа. Однако кнопочные аналоги также встречаются в наше время. Чтобы обезопасить устройство, корпус используется термостойкий. Резонансные преобразователи в моделях также можно встретить. Отличаются они, по сравнению с обычными аналогами, своей дешевизной. На рынке их часто можно встретить с маркировкой РР200. Проводимость тока в данном случае будет невысокой, однако управляющий электрод со своими обязанностями справляться должен.

Приборы для зарядного устройства

Чтобы сделать регулятор тока для зарядного устройства, тиристоры необходимы только триодного типа. Запирающий механизм в данном случае будет контролировать управляющий электрод в цепи. Полевые транзисторы в устройствах используются довольно часто. Максимальной нагрузкой для них является 9 А. Низкочастотные фильтры для таких регуляторов не подходят однозначно. Связано это с тем, что амплитуда электромагнитных помех довольно высокая. Решить эту проблему можно просто, используя резонансные фильтры. В данном случае проводимости сигнала они препятствовать не будут. Тепловые потери в регуляторах также должны быть незначительными.

Применение симисторных регуляторов

Симисторные регуляторы, как правило, применятся в устройствах, мощность которых не превышает 15 В. В данном случае они предельное напряжение способны выдерживать на уровне 14 А. Если говорить про приборы освещения, то они использоваться могут не все. Для высоковольтных трансформаторов они также не подходят. Однако различная радиотехника с ними способна работать стабильно и без каких-либо проблем.

Регуляторы для активной нагрузки

Схема регулятора тока для активной нагрузки тиристоры предполагает использовать триодного типа. Сигнал они способны пропускать в обоих направлениях. Снижение тока анода в цепи происходит за счет понижения предельной частоты устройства. В среднем данный параметр колеблется в районе 5 Гц. Напряжение максимум на выходе должно составлять 5 В. С этой целью резисторы применяются только полевого типа. Дополнительно используются обычные конденсаторы, которые в среднем способны выдерживать сопротивление 9 Ом.

Импульсные стабилитроны в таких регуляторах не редкость. Связано это с тем, что амплитуда электромагнитных колебаний довольно большая и бороться с ней нужно. В противном случае температура транзисторов быстро возрастает, и они приходят в негодность. Чтобы решить проблему с понижающимся импульсом, преобразователи используются самые разнообразные. В данном случае специалистами также могут применяться коммутаторы. Устанавливаются они в регуляторах за полевыми транзисторами. При этом с конденсаторами они соприкасаться не должны.

Как сделать фазовую модель регулятора?

Сделать фазовый регулятор тока своими руками можно при помощи тиристора с маркировкой КУ202. В этом случае подача запирающего напряжения будет проходить беспрепятственно. Дополнительно следует позаботиться о наличии конденсаторов с предельным сопротивлением свыше 8 Ом. Плата для этого дела может быть взята РР12. Управляющий электрод в этом случае обеспечит хорошую проводимость. Импульсные преобразователи в регуляторах данного типа встречаются довольно редко. Связано это с тем, что средний уровень частоты в системе превышает 4 Гц.

В результате на тиристор оказывается сильное напряжение, которое провоцирует возрастание отрицательного сопротивления. Чтобы решить эту задачу, некоторые предлагают использовать двухтактные преобразователи. Принцип их работы построен на инвертировании напряжения. Изготовить самостоятельно регулятор тока данного типа в домашних условиях довольно сложно. Как правило, все упирается в поиски необходимого преобразователя.

Устройство импульсного регулятора

Чтобы сделать импульсный регулятор тока, тиристор потребуется триодного типа. Подача управляющего напряжения осуществляется им с большой скоростью. Проблемы с обратной проводимостью в устройстве решаются за счет транзисторов биполярного типа. Конденсаторы в системе устанавливаются только в парном порядке. Снижение тока анода в цепи происходит за счет смены положения тиристора.

Запирающий механизм в регуляторах данного типа устанавливается за резисторами. Для стабилизации предельной частоты фильтры могут применяться самые разнообразные. Впоследствии отрицательное сопротивление в регуляторе не должно превышать 9 Ом. В данном случае это позволит выдерживать большую токовую нагрузку.

Модели с плавным пуском

Для того чтобы сконструировать тиристорный регулятор тока с плавным пуском, нужно позаботиться о модуляторе. Наиболее популярными на сегодняшний день принято считать поворотные аналоги. Однако они между собой довольно сильно отличаются. В данном случае многое зависит от платы, которая применяется в устройстве.

Если говорить про модификации серии КУ, то они работают на самых простых регуляторах. Особой надежностью они не выделяются и определенные сбои все же дают. Иначе обстоят дела с регуляторами для трансформаторов. Там, как правило, применяются цифровые модификации. В результате уровень искажений сигнала значительно сокращается.

В статье стоит раскрыть тему того, как совершает работу тиристорный регулятор напряжения, схему которого можно более подробно осмотреть в интернете.

В повседневной жизни в большинстве случаев может развиться особая необходимость в регулировании общей мощности бытовых приборов, к примеру, электроплит, паяльника, кипятильника, а также ТЭНов, на транспорте — оборотов двигателя и прочего. В этом случае на помощь нам придёт простая и радиолюбительская конструкция — это особый регулятор мощности на тиристоре.

Создать такое устройство не составит особого труда, оно может стать тем первым самодельным прибором, который будет выполнять функцию регулировки температуры жала в паяльнике у любого начинающего радиолюбителя. Нужно отметить и тот факт, что готовые паяльники на станции с общим контролем температуры и остальными особенными функциями стоят намного больше, чем самые простые модели паяльников. Минимальное число деталей в конструкции поможет собрать несложный тиристорный регулятор мощности с навесным монтажом.

Следует отметить, что навесной тип монтажа — это вариант осуществления сборки радиоэлектронных компонентов без использования при этом специальной печатной платы, а при качественном навыке он помогает быстро собрать электронные устройства со средней сложностью производства.

Также вы можете заказать электронный тип конструктора тиристорного типа регулятора, а тот, кто хочет полностью разобраться во всём самостоятельно, должен изучить некоторые схемы и принцип функционирования прибора.

Между прочим, такое устройство является регулятором общей мощности. Такое устройство может быть применимо для управления общей мощностью либо управлением числа оборотов. Но для начала нужно полностью разобраться в общем принципе функционирования такого устройства, ведь это поможет понять, на какую нагрузку стоит рассчитывать при использовании такого регулятора.

Как совершает свою работу тиристор?

Тиристор — это управляемый полупроводниковый прибор, который способен быстро провести ток в одну сторону. Слово управляемый обозначает тиристор не просто так, так как с его помощью, в отличие от диода, который также проводит общий ток лишь к одному полюсу, можно выбирать отдельный момент, когда тиристор начнёт процесс проведения тока.

Тиристор обладает сразу тремя выводами тока:

Чтобы осуществить течение тока через такой тиристор, стоит выполнить следующие условия: деталь обязана в обязательном порядке расположена на самой цепи, которая будет находиться под общим напряжением, на управляющую часть электрода должен быть подан нужный кратковременный импульс. В отличие от транзистора, управление таким тиристор не будет требовать от пользователя удержания управляющего сигнала.

Но в этом все трудности использования такого прибора заканчиваться не будут: тиристор можно легко закрыть, если прервать поступление в него тока по цепи, либо создав обратное напряжение анод — катод. Это будет значить то, что применение тиристора в цепях постоянного тока считается довольно специфичным и в большинстве случаев полностью неблагоразумно, а в цепях переменного, к примеру, в таком устройстве как тиристорный регулятор, схема создана таким методом, чтобы было полностью обеспечено условие для закрытия прибора. Любая данная полуволна будет полностью закрывать соответствующий отдел тиристора.

Вам, скорее всего, сложно понять схему его строения. Но, не нужно расстраиваться — ниже будет более подробно описан процесс функционирования такого устройства.

Область использования тиристорных устройств

В каких целях можно использовать такое устройство, как регулятор мощности тиристор. Такой прибор позволяет более эффективно регулировать мощность нагревательных приборов, то есть осуществлять нагрузку на активные места. Во время работы с высокоиндуктивной нагрузкой тиристоры способны просто не закрыться, что может приводить к выходу такого оборудования из нормальной работы.

Можно ли самостоятельно осуществить регулирование оборотов в двигателе прибора?

Многие из пользователей, которые видели или даже на практике применяли дрели, углошлифовальные машины, которые по-другому называются болгарками, и другими электроинструментами. Они могли легко увидеть, что число оборотов в таких изделиях зависит, главным образом, от общей глубины нажатия на кнопку-курок в устройстве. Такой элемент как раз и будет находиться в тиристорном регуляторе мощности (общая схема такого прибора указана в интернете), при помощи которого и происходит изменение общего числа оборотов.

Стоит обратить своё внимание на то, что регулятор не может самостоятельно менять свои обороты в асинхронных двигателях. Таким образом, напряжение будет полноценно регулироваться на коллекторном двигателе, который оборудован специальным щелочным узлом.

Как работает такое устройство?

Описанные ниже характеристики будет соответствовать большинству схем.

  1. Тиристорный регулятор общей мощности, принцип и особенности работы которого будут основаны на фазовости управления величиной напряжения, изменяет и общую мощность в приборах. Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Выше, при описании принципа функционирования работы тиристора было сказано о том, что любой тиристор включает в себя функционирование лишь в одном направлении, то есть осуществляет управление своей полуволной от синусоидов. Что же это может означать?
  2. Если при помощи такого прибора, как тиристор со временем подключать нагрузку в строго определённое время, то показатель действующего напряжения будет довольно низким, так как половина от напряжения (действующее значение, которое и воспроизводит нагрузку) будет намного меньше, чем световое. Такое явление можно рассмотреть на графиках движения.

При этом происходит определённая область, которая будет находиться под особым напряжением. Когда воздействие положительной полуволны окончится и начнётся новый период движения с отрицательно полуволной, то один из таких тиристоров начнёт закрываться, и в это же время откроется новый тиристор.

Вместо слов положительная и отрицательная волна стоит использовать первая и вторая (полуволна).

В то время как на схему начинает своё воздействие первая полуволна, происходит особая зарядка ёмкости С1, а также С2. Скорость их полной зарядки будет ограничена потенциометром R 5. Такой элемент будет полностью переменным, и при его помощи будет задаваться выходное напряжение. В тот момент, когда на поверхности конденсатора С1 появится нужное для открытия диристора VS 3 напряжения, весь динистор откроется, а через него начнёт проходить ток, при помощи которого откроется тиристор VS 1.

Во время пробоя динистра и образуется точка на общем графике. После того как значение напряжение перейдёт нулевую отметку, и схема будет находиться под воздействием второй полуволны, тиристор VS 1, закроется, а процесс будет повторяться, только уже для второго динистра, тиристора, а также конденсатора. Резисторы R 3 и R 3 нужны для ограничения общего тока управления, а R 1 и R 2 — для процесса термостабилизации всей схемы.

Принцип действия второй схемы будет точно такой же, но в ней будет происходить управление лишь одной из полуволн переменного тока. После того, как пользователь будет понимать принцип работы устройства и его общую схему строение, он сможет понять как собрать или же в случае необходимости починить тиристорный регулятор мощности самостоятельно.

Тиристорный регулятор напряжения своими руками

Нельзя сказать о том, что данная схема не обеспечит гальваническую развязку от источника питания, поэтому есть определённая опасность поражения электрическими разрядами тока. Это будет означать то, что не нужно касаться руками элементов регулятора.

Следует спроектировать конструкцию вашего прибора таким образом, чтобы по возможности вы смогли спрятать её в регулируемом устройстве, а также найти более свободное место внутри корпуса. Если регулируемое устройство будет расположено на стационарном уровне, то имеет определённой смысл осуществить его подключение через выключатель с особым регулятором уровня яркости света. Такое решение сможет частично обезопасить человека от поражения током, а также избавит его от необходимости поиска подходящего корпуса у прибора, обладает привлекательным внешним строением, а также создано с использованием промышленных технологий.

Способы регулирования фазового напряжения в сети

  1. Есть сразу несколько способов осуществления регуляции переменного напряжения в тиристорах: можно совершать пропуск или же запрещать выход на регуляторе целых четыре полупериода (либо периода) переменного напряжения. Можно включать не в начале совершения полупериода сетевого напряжения, а с совершением некоторой задержки. В течение данного времени напряжение на выходе из регулятора будет равняется отметки нуль, а общая мощность не будет передаваться на выход устройства. Вторую часть полупериода тиристор начнёт проводить ток и на выходе регулятора будет возникать особое входное напряжение.
  2. Время задержки в большинстве случаев именуют углом открывания тиристора, так как во время нулевого значения угла почти всё напряжение от входа будет переходить к выходу, только падение на открытой области тиристора начнёт теряться. Во время увеличения общего тиристорного угла регулятор напряжения будет значительно снижать выходной параметр напряжения.
  3. Регулировочная характеристика у такого прибора во время своей работы, во время активной нагрузки осуществляется особо интенсивно. При угле равному 90 градусов (электрических) на выходе из разъёма будет половина входного напряжения, а при общем угле в 180 электрических градусов на выходе будет показатель нуль.

На основе принципов и особенностей фазового регулирования напряжения можно построить определённые схемы регулирования, стабилизации, а в отдельных случаях с плавного пуска. Для осуществления более плавного пуска напряжение стоит со временем повышать от нуля до максимального показателя. Таким образом, во время открывания тиристора максимальный показатель значения должен изменяться до отметки нуль.

Схемы на тиристорах

Регулировать общую мощность паяльника можно довольно просто, если использовать для этого аналоговые или же цифровые паяльные станции. Последние довольно дорогие совершать использование, и собрать их, не имея особого опыта, довольно сложно. В то время как аналоговые приборы (считаются по своей сути регуляторами общей мощности) не составит труда создать самостоятельно.

Довольно простая схема прибора, которая поможет регулировать показатель мощности на паяльнике.

  1. VD — КД209 (либо близкие по его общим характеристикам).
  2. R 1 — сопротивление с особым номиналом в 15 кОм.
  3. R 2 — это резистор, который обладает особым показателем переменного тока около 30 кОм.
  4. Rn — это общая нагрузка (в этом случае вместо неё будет использован особый маятник).

Такое устройство для регуляции может контролировать не только положительный полупериод, по этой причине мощность паяльника будет в несколько раз меньше номинальной. Управляется такой тиристор с помощью специальной цепи, которая несёт в себе два сопротивления, а также ёмкость. Время зарядки конденсата (оно будет регулироваться особым сопротивлением R2) влияет на длительность открытия такого тиристора.

Строительные, рабочие и проектные типы

Так же, как ситуации, в которых нам нужно регулировать напряжение в наших конструкциях, существуют сценарии, в которых нам нужно регулировать ток, который подается в определенную часть нашей цепи. В отличие от преобразования (перехода от одного уровня напряжения к другому), которое обычно является одной из основных причин регулирования напряжения, регулирование тока обычно заключается в поддержании постоянного тока, который подается, независимо от изменений сопротивления нагрузки или входного напряжения.Цепи (встроенные или нет), которые используются для обеспечения постоянного тока , называются (постоянными) регуляторами тока , и они очень часто используются в силовой электронике.

Хотя регуляторы тока использовались в нескольких приложениях на протяжении многих лет, возможно, до недавнего времени они не были одной из самых популярных тем в обсуждениях проектирования электроники. Текущие регуляторы теперь достигли своего рода повсеместного статуса благодаря их важным приложениям в светодиодном освещении среди других приложений.

В сегодняшней статье мы рассмотрим эти регуляторы тока и рассмотрим лежащие в их основе принципы работы, их конструкцию, типы и применение, среди прочего .

Принцип действия регулятора тока

Работа регулятора тока аналогична работе регулятора напряжения с основным отличием в параметре, который они регулируют, и величине, которую они изменяют для обеспечения своего выхода. В регуляторах напряжения ток изменяется для достижения необходимого уровня напряжения, в то время как регуляторы тока обычно включают изменения напряжения / сопротивления для достижения требуемого выходного тока.Таким образом, хотя это возможно, обычно трудно одновременно регулировать напряжение и ток в цепи.

Чтобы понять, как работают регуляторы тока, необходимо быстро взглянуть на закон Ома;

  В = ИК или I = В / П  

Это означает, что для поддержания постоянного тока на выходе эти два свойства (напряжение и сопротивление) должны поддерживаться постоянными в цепи или настраиваться таким образом, чтобы при изменении одного значения значение другого корректировалось соответствующим образом, чтобы сохранить такой же выходной ток.Таким образом, регулирование тока включает в себя регулировку напряжения или сопротивления в цепи или обеспечение неизменности значений сопротивления и напряжения независимо от требований / воздействий подключенной нагрузки.

Рабочий регулятор тока

Чтобы правильно описать, как работает регулятор тока, рассмотрим приведенную ниже принципиальную схему.

Переменный резистор в приведенной выше схеме используется для представления действия регулятора тока.Предположим, что переменный резистор автоматизирован и может автоматически регулировать собственное сопротивление. Когда схема находится под напряжением, переменный резистор регулирует свое сопротивление, чтобы компенсировать изменения тока из-за изменения сопротивления нагрузки или напряжения питания. Что касается базового класса электричества, вы должны помнить, что при увеличении нагрузки, которая по сути является сопротивлением (+ емкость / индуктивность), происходит эффективное падение тока, и наоборот. Таким образом, когда нагрузка в цепи увеличивается (увеличение сопротивления), а не падение тока, переменный резистор уменьшает свое собственное сопротивление, чтобы компенсировать повышенное сопротивление и обеспечить одинаковые токи.Таким же образом, когда сопротивление нагрузки уменьшается, переменное сопротивление увеличивает свое собственное сопротивление, чтобы компенсировать уменьшение, таким образом поддерживая значение выходного тока.

Другой подход к регулированию тока состоит в том, чтобы подключить достаточно высокий резистор параллельно нагрузке так, чтобы в соответствии с законами основного электричества ток протекал по пути с наименьшим сопротивлением, который в этом случае будет проходить через нагрузку, с только «незначительное» количество тока, протекающего через резистор с высоким номиналом.

Эти изменения также влияют на напряжение, поскольку некоторые регуляторы тока поддерживают ток на выходе, изменяя напряжение. Таким образом, практически невозможно регулировать напряжение на том же выходе, на котором регулируется ток.

Конструкция регуляторов тока

Стабилизаторы тока

обычно реализуются с использованием стабилизаторов напряжения на основе микросхем, таких как MAX1818 и LM317, или с использованием пассивных и активных компонентов, таких как транзисторы и стабилитроны.

Проектирование регуляторов тока с использованием регуляторов напряжения

Для проектирования регуляторов тока с использованием регулятора напряжения на основе IC метод обычно включает настройку регуляторов напряжения с постоянным сопротивлением нагрузки, и обычно используются линейные регуляторы напряжения, потому что напряжение между выходом линейных регуляторов и их землей обычно составляет Таким образом, жестко регулируемый, фиксированный резистор может быть вставлен между выводами, так что фиксированный ток течет к нагрузке.Хороший пример дизайна, основанного на этом, был опубликован Budge Ing в одной из публикаций EDN в 2016 году.

Используемая схема использует линейный стабилизатор LDO MAX1818 для создания стабилизированного источника постоянного тока на стороне высокого напряжения. Источник питания (показанный на изображении выше) был разработан таким образом, что он питает RLOAD постоянным током, который равен I = 1,5 В / ROUT. Где 1,5 В — предустановленное выходное напряжение MAX1818 , но его можно изменить с помощью внешнего резистивного делителя.

Для обеспечения оптимальной производительности конструкции напряжение на входной клемме MAX1818 должно быть до 2,5 В, но не выше 5,5 В, поскольку это рабочий диапазон, указанный в техническом паспорте. Чтобы удовлетворить это условие, выберите значение ROUT, которое позволяет от 2,5 В до 5,5 В между IN и GND. Например, при нагрузке, скажем, 100 Ом при 5 В VCC, устройство правильно работает с ROUT выше 60 Ом, так как это значение допускает максимальный программируемый ток 1,5 В / 60 Ом = 25 мА. Тогда напряжение на устройстве будет равно минимально допустимому: 5 В — (25 мА × 100 Ом) = 2.5В.

Другие линейные регуляторы, такие как LM317, также могут использоваться в аналогичном процессе проектирования, но одно из основных преимуществ , которые имеют микросхемы типа MAX1818 по сравнению с другими, заключается в том, что они включают тепловое отключение, которое может быть очень важным в текущем регламенте , поскольку температура ИС имеет тенденцию к нагреванию при подключении нагрузок с высокими требованиями к току.

Для стабилизатора тока на базе LM317 рассмотрите схему ниже;

LM317 сконструированы таким образом, что регулятор продолжает регулировать свое напряжение до тех пор, пока напряжение между его выходным контактом и его регулировочным контактом не достигнет 1.25 В и как таковой делитель обычно используется при реализации в ситуации регулятора напряжения. Но для нашего случая использования в качестве регулятора тока это на самом деле очень упрощает нам задачу, потому что, поскольку напряжение постоянно, все, что нам нужно сделать, чтобы сделать ток постоянным, — это просто вставить резистор последовательно между выводами Vout и ADJ. как показано на схеме выше. Таким образом, мы можем установить выходной ток на фиксированное значение, которое задается:

  I = 1,25 / R 
 

Значение R является определяющим фактором значения выходного тока.

Чтобы создать регулятор переменного тока, нам нужно только добавить переменный резистор в схему вместе с другим резистором, чтобы создать делитель на регулируемом выводе, как показано на изображении ниже.

Работа схемы такая же, как и в предыдущей, с той разницей, что ток можно регулировать в цепи, поворачивая ручку потенциометра для изменения сопротивления. Напряжение на R составляет;

  В = (1 + R1 / R2) x 1.25  

Это означает, что ток через R равен;

  I  R  = (1,25 / R) x (1+ R1 / R2). 
 

Это дает цепи диапазон тока I = 1,25 / R и (1,25 / R) x (1 + R1 / R2)

Зависит от установленного тока; Убедитесь, что номинальная мощность резистора R может выдерживать ток, протекающий через него.

Преимущества и недостатки использования LDO в качестве регулятора тока

Ниже приведены некоторые преимущества для выбора подхода линейного регулятора напряжения.

    ИС регулятора

  1. имеют защиту от перегрева, которая может пригодиться при подключении нагрузок с повышенными требованиями к току.
  2. ИС регулятора

  3. имеют больший допуск для больших входных напряжений и в значительной степени поддерживают высокое рассеивание мощности.
  4. Подход ИС регулятора предполагает использование меньшего количества компонентов с добавлением лишь нескольких резисторов в большинстве случаев, за исключением случаев, когда требуются более высокие токи и подключены силовые транзисторы.Это означает, что вы можете использовать одну и ту же микросхему для регулирования напряжения и тока.
  5. Уменьшение количества компонентов может означать сокращение стоимости внедрения и времени разработки.

Недостатки:

С другой стороны, конфигурации, описанные в рамках подхода ИС регулятора, позволяют пропускать тока покоя от регулятора к нагрузке в дополнение к регулируемому выходному напряжению. Это вносит ошибку, которая может быть недопустимой в некоторых приложениях.Однако это можно уменьшить, выбрав регулятор с очень низким током покоя.

Еще одним недостатком подхода к регулятору IC является отсутствие гибкости в конструкции.

Помимо использования интегральных схем регуляторов напряжения, регуляторы тока также могут быть спроектированы с использованием желейных деталей, включая транзисторы, операционные усилители и стабилитроны с необходимыми резисторами. Стабилитрон используется в схеме, вероятно, просто, как если бы вы помните, что стабилитрон используется для регулирования напряжения.Конструкция регулятора тока с использованием этих деталей является наиболее гибкой, поскольку их обычно легко интегрировать в существующие схемы.

Регулятор тока на транзисторах

В этом разделе мы рассмотрим два дизайна. В первом будут использованы только транзисторы, а во втором — операционный усилитель и силовой транзистор .

Для транзисторов рассмотрим схему ниже.

Стабилизатор тока, описанный на схеме выше, является одной из простейших конструкций регуляторов тока. Это регулятор тока низкой стороны ; Подключил после нагрузки до земли. Он состоит из трех основных компонентов; управляющий транзистор (2N5551), силовой транзистор (TIP41) и шунтирующий резистор (R). Шунт, который по сути представляет собой резистор малой мощности, используется для измерения тока, протекающего через нагрузку. При включении цепи на шунте отмечается падение напряжения.Чем выше значение сопротивления нагрузки RL, тем больше падение напряжения на шунте. Падение напряжения на шунте действует как триггер для управляющего транзистора, так что чем выше падение напряжения на шунте, тем больше транзистор проводит и регулирует напряжение смещения, приложенное к базе силового транзистора, для увеличения или уменьшения проводимости с помощью резистор R1, действующий как резистор смещения.

Как и в других схемах, переменный резистор может быть добавлен параллельно шунтирующему резистору для изменения уровня тока путем изменения величины напряжения, приложенного к базе управляющего транзистора.

Регулятор тока с операционным усилителем

В качестве второго варианта проектирования рассмотрим схему ниже;

Эта схема основана на операционном усилителе , и, как и в примере с транзистором, также использует шунтирующий резистор для измерения тока. Падение напряжения на шунте подается в операционный усилитель, который затем сравнивает его с опорным напряжением, установленным стабилитроном ZD1.Операционный усилитель компенсирует любые расхождения (высокие или низкие) в двух входных напряжениях, регулируя свое выходное напряжение. Выходное напряжение операционного усилителя подключается к мощному полевому транзистору, и проводимость зависит от приложенного напряжения.

Основным отличием этой конструкции от первой является опорное напряжение, реализуемое стабилитроном. Обе эти конструкции являются линейными, и при высоких нагрузках будет выделяться большое количество тепла, поэтому к ним следует присоединить радиаторы для отвода тепла.

Преимущества и недостатки

Основным преимуществом этого подхода к проектированию является гибкость, которую он предоставляет проектировщику. Детали могут быть выбраны, а конструкция сконфигурирована по вкусу без каких-либо ограничений, связанных с внутренней схемой, которая характерна для подхода на основе регуляторов на основе ИС.

С другой стороны, этот подход имеет тенденцию быть более утомительным, трудоемким, требует большего количества деталей, громоздких, подверженных сбоям и более дорогих по сравнению с подходом на основе регуляторов.

Применение регуляторов тока

Регуляторы постоянного тока находят применение во всех видах устройств, от цепей питания до цепей зарядки аккумуляторов, драйверов светодиодов и других приложений, где необходимо регулировать фиксированный ток независимо от приложенной нагрузки.

Вот и все! Надеюсь, вы узнали одну или две вещи.

До следующего раза!

регуляторы напряжения и тока

регуляторы напряжения и тока

Elliott Sound Products Регуляторы напряжения и тока

© 20013, Род Эллиотт

верхний


Указатель статей

Главный указатель


Содержание


Введение

Потребность в регулировании источника питания является общим требованием, но не все знают, почему необходимо регулировать источник питания или когда цепь может безопасно работать от нерегулируемого источника питания.Существует много неправильных представлений о регулирующих органах в целом и много дезинформации о том, что необходимо, а что просто чрезмерно. К сверхстабильным регулируемым источникам питания предъявляются некоторые требования, но в подавляющем большинстве приложений это бывает редко.

Необходимость регулирования часто понимается неправильно, утверждая, что основные схемы операционных усилителей в аудио (например) должны работать от жестко регулируемых источников питания, иначе звуковая сцена пострадает, или будет потеряна « авторитетность » низких частот (что бы это ни было может означать), или, возможно, высокие частоты будут «завуалированы», а средние частоты будут «загромождены».По большей части это ерунда, но эти мифы широко распространяются до тех пор, пока они каким-то образом не становятся «самоочевидными» из-за количества ссылок, перекрестных ссылок и людей, ссылающихся на сайты, на которых есть информация, которая, по их мнению, «подтверждает» их точку зрения.

Регуляторы напряжения можно найти почти в каждом элементе электронного оборудования и варьируются от типов с очень низким напряжением (например, 3,3 В для многих микропроцессоров) до сотен вольт, используемых в некоторых ламповых усилителях и другом оборудовании, которое работает с высоким напряжением.

Не каждое напряжение нужно регулировать. Обычно операционные усилители, используемые в аудиосистеме, поставляются с регулируемыми источниками питания (обычно ± 15 В), но в первую очередь это делается для обеспечения низких пульсаций (100 или 120 Гц) и шума. Операционные усилители не особо заботятся о том, есть ли шум в источнике питания, и они совершенно счастливы, даже если напряжения питания немного изменяются во время работы. При условии, что их максимальное рабочее напряжение не превышается, а источники питания остаются достаточно высокими, чтобы пропускать сигнал без искажений, колебания напряжения питания не приведут к значительным изменениям выходного сигнала.

Однако обычно это считается неприемлемым. Подача на операционные усилители должна регулироваться , потому что ни один операционный усилитель не имеет бесконечного PSRR , и он ухудшается на высоких частотах, поскольку коэффициент усиления разомкнутого контура падает из-за внутренней (или внешней) частотной компенсации. Во многих случаях может быть достаточно простого стабилизатора на стабилитроне, но он неэффективен и по современным стандартам считается очень «низкотехнологичным».

Регуляторы напряжения

IC очень недорогие и дают отличные результаты.Конечно, есть ограничения. Дифференциальное напряжение входа-выхода никогда не должно превышаться, некоторые из них сравнительно шумны, и необходим радиатор, если они используются для передачи выходного тока от умеренного до высокого. До регуляторов IC люди обычно использовали дискретные версии, и их можно было заставить работать очень хорошо. Естественно, высокая производительность требует большей сложности схемы, и в наши дни мало случаев, когда дискретный стабилизатор является лучшим предложением, чем версия IC.

Эту статью следует читать вместе с блоками питания малой мощности.Эти две статьи охватывают схожие области, но эта версия больше нацелена на полное понимание концепции , а не на предоставление идей для конструкторов.

Стабилитроны тоже имеют свою страничку. Примечание по применению AN008 — Как использовать стабилитроны описывает многие из основных характеристик стабилитронов, а также некоторые основные характеристики и другую полезную информацию. Особый интерес представляет динамическое сопротивление, которое представляет собой спецификацию, которая показывает, насколько хорошо стабилитрон может уменьшить пульсации и шум.Чем ниже динамическое сопротивление, тем лучше стабилитрон будет регулировать и подавлять шум.

Существует ряд терминов, которые используются для описания работы любого регулятора. Приведенная ниже таблица взята из статьи «Источники питания малой мощности» и включает краткие пояснения.

Параметр Пояснение
Регулировка нагрузки Процент, представляющий собой изменение напряжения при заданном изменении выходного тока
Постановление о линии Процент.являющееся изменением выходного напряжения для данного изменения входного напряжения
Падение напряжения Минимальный перепад напряжения между входом и выходом, прежде чем регулятор перестанет поддерживать приемлемую производительность
Максимальное входное напряжение Абсолютное максимальное напряжение, которое может быть приложено к входной клемме регулятора относительно земли
Подавление пульсаций Выражается в дБ, отношение входной пульсации (от нерегулируемого источника постоянного тока) к выходной пульсации
Шум Где указано, количество случайных (тепловых) шумов, присутствующих в регулируемом выходном напряжении постоянного тока.
Переходная характеристика Обычно отображается графически, показывает мгновенную производительность с изменениями линейного напряжения или тока нагрузки

Не все из вышеперечисленных спецификаций будут даны, и не все они важны для многих приложений.Переходный отклик важен для любого регулятора, который подает быстро меняющуюся нагрузку, например логику TTL. Пульсации и шум важны для низкоуровневых аудиоприложений, особенно тех, которые используют дискретные транзисторы, где схема может иметь относительно низкое подавление шума источника питания.

Иногда думают, что простого резистивного делителя напряжения достаточно, чтобы обеспечить «регулируемое» напряжение. Если выход не буферизован с помощью повторителя (интегрированного или дискретного), он не регулируется .Делитель напряжения чувствителен к нагрузке, поэтому он может выдавать номинальное напряжение только в разомкнутой цепи (без нагрузки). Как только вы потребляете ток, напряжение упадет. Кроме того, любой шум (гудение, гудение и т. Д.) На питающем делитель источнике также будет попадать на выход. Простые делители были обычным явлением в ламповых усилителях, где основной источник питания может проходить через несколько резисторов с конденсаторами для заземления на каждом переходе и каскады клапанов, образующие нагрузку.Это не «регулирование» ни в каком виде, это просто фильтрация, и здесь не рассматривается, кроме как часть надлежащего регулятора (где такие схемы фильтрации также довольно распространены).


Зачем регулировать?

Итак, зачем нам стабилизированное напряжение?

При большом количестве источников напряжения и во множестве схемных топологий мы этого не делаем. Однако теперь это так просто сделать и дает столько преимуществ, что было бы почти глупо не сделать этого. Основным преимуществом является то, что пульсации источника питания (при 100 или 120 Гц) почти полностью устраняются, и мы можем работать с операционными усилителями при напряжении, близком к их максимальному напряжению, не беспокоясь о низком сетевом напряжении, вызывающем преждевременное ограничение, или о высоком сетевом напряжении, вызывающем сбои.Нерегулируемый источник питания будет изменять свое напряжение при изменении напряжения сети (что обычно изменяется на величину от + 10% до -15%). Многие люди живут в районах, где напряжение изменяется сильнее, и если подача не регулируется, оно будет колебаться примерно на тот же процент, что и входящая сеть.

Нерегулируемый источник питания также изменяет свое выходное напряжение с нагрузкой, поэтому по мере того, как схема потребляет энергию, напряжение падает. Точно так же, когда нагрузка уменьшается, напряжение возрастает. Это называется регулированием нагрузки, и при нерегулируемом питании включает отклонения от сети.Небольшая нагрузка при максимальном напряжении сети означает, что питаемые цепи получат максимально возможное напряжение, которое может превышать абсолютное максимальное значение, указанное производителем ИС. ИС логики TTL имеют очень ограниченную устойчивость к перенапряжению, и они откажутся от , если будет превышено максимальное значение. Рекомендуемое напряжение — 5 В, допустимый диапазон — от 4,5 до 5,5 вольт. Каждый использует регулируемое питание для ИС TTL просто потому, что было бы глупо (и рискованно) поступать иначе.КМОП-логика обычно будет вполне довольна очень простым стабилитронным шунтирующим стабилизатором, потому что потребление тока очень низкое. Электропитание должно быть правильно обведено с соответствующей емкостью.

Во многих ранних транзисторных усилителях мощности использовались стабилизированные источники питания, поскольку они использовали один источник питания, а колебания напряжения могли создавать дозвуковой выходной сигнал. Кроме того, во многих из этих ранних усилителей использовались транзисторы, которые работали при напряжении, близком к предельному, и если бы напряжение увеличивалось слишком сильно, они выходили из строя.В наши дни почти никто не использует регулируемые источники питания для усилителей мощности, потому что это увеличивает стоимость и значительную тепловую нагрузку и, как правило, не служит полезной цели. В некоторых ламповых усилителях используются регулируемые напряжения экранной сетки для получения максимальной мощности без нагрузки на клапаны. Другие просто подчеркнули клапаны (и даже во многих последних разработках это делается до сих пор).

Очень редко можно увидеть предусилитель, использующий операционные усилители или дискретные транзисторы, в котором , а не , использует стабилизированные источники питания. Большинство людей используют регуляторы IC, но есть и те, кто считает, что дискретный регулятор даст лучшую производительность.Я не буду вступать в дебаты о предполагаемой «слышимости» регулятора и «звуке постоянного тока», потому что, насколько я понимаю, это в основном принятие желаемого за действительное, без научных оснований или подтверждения правильным проведением слепого AB-тестирования. По определению, постоянный ток — это постоянный ток, поэтому его не слышно. В некоторых случаях может быть слышен шум , наложенный на DC .

Большинство импульсных источников питания (SMPS) регулируются и могут использоваться напрямую, без дополнительных действий.Тем не менее, они почти всегда относительно шумные, имея существенное свидетельство частоты коммутации (и ее гармоник) в источнике постоянного тока. Хотя эти артефакты переключения почти всегда неслышны, они сбивают с толку и могут сильно затруднить разумные измерения в цепи.

Далее, зачем нам стабилизированный ток?

Помимо источников тока, раковин и зеркал (см. Статью), регуляторы тока раньше были более диковинкой, чем что-либо еще.Они использовались во многих областях в течение многих лет, но только недавно стали повсеместными — светодиодное освещение. Подавляющее большинство из них работают в импульсном режиме, потому что в противном случае потери энергии будут чрезмерными, что снижает общую эффективность светодиодного источника света. Тем не менее, все еще есть примеры, когда линейный регулятор имеет больше смысла.

В частности, простой линейный стабилизатор тока легко подключить к плате Veroboard, что нелегко сделать с любой схемой переключения.Требования к линейным регуляторам тока незначительны по сравнению с регуляторами напряжения, но вы никогда не узнаете, когда он вам понадобится. В некоторых случаях вам понадобится регулировка напряжения и тока , и зарядка аккумулятора — один из наиболее очевидных случаев, когда они будут совмещены.

В целом потребность в прецизионном регуляторе тока (в отличие от источника тока в составе, например, схемы усилителя) очень ограничена, но поскольку принципы и результаты во многом одинаковы для регулирования как напряжения, так и тока, они того стоят. покрытие.


1 — Базовый дискретный регулятор напряжения

Первыми использованными регуляторами были газоразрядные трубки [1] . Питание трубки осуществлялось через резистор, и напряжение разряда было достаточно стабильным при условии, что ток не слишком сильно менялся. Если требовался большой ток, то для его подачи в качестве катодного повторителя использовался традиционный мощный вентиль (вакуумная трубка). Добавление дополнительных клапанов позволило получить хорошо регулируемое питание, на которое не повлияли изменения тока нагрузки или колебания входного напряжения.

Современный эквивалент газоразрядной трубки — стабилитрон. Они по-прежнему очень часто используются для регулирования либо в качестве простого шунтирующего регулятора (например, газоразрядная трубка), либо с дополнительными частями для формирования дискретного регулятора. Поскольку основной шунтирующий регулятор является самым простым, на него стоит обратить внимание в первую очередь. Более подробная информация об использовании стабилитронов представлена ​​на странице Application Note 008 на веб-сайте ESP.

Рисунок 1 — Базовый стабилитрон шунтирующего регулятора

Одним из основных недостатков простого шунтирующего стабилитрона является то, что он постоянно потребляет максимально допустимый ток от источника питания.Как показано выше, напряжение питания составляет 15 В, и это только один источник питания. Я буду использовать эту же общую компоновку для большинства диаграмм, потому что это делает их менее загроможденными и более легкими для понимания. Если необходим отрицательный источник питания, обычно это просто обратное значение, показанное для положительного напряжения. Сам источник питания (трансформатор и конденсатор фильтра) используется в большинстве примеров, но не будет показан, если только понимание схемы не является важным.

В вышеупомянутом источнике питания R1 должен обеспечивать достаточный ток, чтобы всегда оставаться в оптимальном диапазоне стабилитрона, а также обеспечивать нагрузку.Стабилизаторы на стабилитронах не рекомендуются для любых схем, в которых ток изменяется более чем на несколько процентов. Ток стабилитрона должен составлять (примерно) от 10% до 50% максимального тока стабилитрона, который очень просто получается из напряжения и номинальной мощности. Стабилитрон 15 В и 1 Вт может выдерживать максимальный ток …

.

I = P / V
I = 1/15 = 66,7 мА

Ток стабилитрона не должен превышать 50% от максимального, чтобы поддерживать повышение температуры стабилитрона до разумного значения. Кроме того, при таком токе он будет довольно горячим, и на напряжение не будет сильно влиять температура окружающей среды.Таким образом, мы должны стремиться к 33 мА и не менее 7 мА, чтобы гарантировать, что динамическое сопротивление стабилитрона достаточно низкое, чтобы быть полезным. Поскольку номинальное входное напряжение составляет около 21 В, это означает, что сопротивление резистора должно быть около 180 Ом (R = V / I). 180 Ом дает ток стабилитрона 33 мА, но только когда ток нагрузки равен нулю, а напряжение в сети составляет точно 230 В (или 120 В), и при условии, что выходное напряжение трансформатора равно 15 В RMS.

На самом деле ничего из вышеперечисленного обычно не соответствует действительности. Нет смысла иметь стабилизированное напряжение, но без нагрузки, поэтому нам нужно знать, какой ток потребляет цепь с питанием.Это может быть доступно из таблиц данных (для операционных усилителей), или вам, возможно, придется либо рассчитать, либо измерить фактический потребляемый ток. Для этих упражнений мы предполагаем, что ток нагрузки составляет 20 мА.

Теперь, если нагрузка потребляет 20 мА, это означает, что ток стабилитрона теперь снижен до 13 мА (33–20 мА), что находится в желаемом диапазоне. Чтобы сохранить 33 мА, которые мы рассмотрели вначале, общий ток , потребляемый от источника питания, будет равен требуемому току стабилитрона (33 мА) плюс ток нагрузки (20 мА), всего 53 мА.R1 теперь нужно пересчитать, и он станет 113 Ом. 120 Ом в этом случае вполне нормально. Поскольку общий потребляемый ток выше ожидаемого, на конденсаторе фильтра будет больше пульсаций, чем мы ожидали. Из-за избыточного тока напряжение будет меньше запланированного нами 21 В (нерегулируемого), но, к счастью, эти ошибки обычно не настолько велики, чтобы вызвать катастрофу. Если нагрузка отключена, теоретический ток стабилитрона будет 33 мА (нормальный ток стабилитрона) плюс 20 мА, которые потребляла бы нагрузка — всего 53 мА.Стабилитрон нагревается до , и этот тип простого шунтирующего регулятора обычно не следует использовать без нагрузки.

Показанные характеристики питания должны быть разумными. Симулятор сообщает мне, что при входном среднеквадратичном напряжении 15 В мы получаем 19,4 В постоянного тока после выпрямителя и фильтра с пульсацией 94 мВ RMS (300 мВ P-P) на частоте 100 Гц. Регулируемое напряжение составляет 15,1 В с пульсацией 4,9 мВ RMS (16 мВ P-P). Ток нагрузки составляет 20 мА, но ток стабилитрона намного ниже запланированного, всего 15.7 мА. Хотя R1 можно уменьшить, чтобы обеспечить больший ток в стабилитрон, это также вызовет повышение напряжения пульсаций и немного снизит исходное напряжение постоянного тока. Суммарный ток от выпрямителя и фильтра составляет 35,7 мА … 20 мА на нагрузку и 15,7 мА на стабилитрон. R1 рассеивает 152,7 мВт, а рассеивание стабилитрона составляет 235,5 мВт (15 В x 15,7 мА). Как выяснилось, это безопасная общая конфигурация, и стабилитрон выживет, даже если входное напряжение сети повысится до максимально возможного.

Ток трансформатора составляет немногим более 113 мА (среднеквадратичное значение), состоящий из резких пиков ± 480 мА. Обратите внимание, что ток трансформатора с мостовым выпрямителем более чем в 3 раза превышает постоянный ток в этом примере, но он может быть выше или ниже в зависимости от выходного импеданса трансформатора (я использовал значение 0,2 Ом для моделирования). Если импеданс увеличивается, среднеквадратичное значение и пиковый ток снижаются, но вместе с тем уменьшается и напряжение постоянного тока.

Как видно из вышеизложенного, необходимо учитывать несколько взаимосвязанных факторов.Когда также принимаются во внимание обычные колебания напряжения в сети, количество возможностей резко возрастает. К счастью, ошибки и отклонения от теоретических значений всегда будут, но пока проектировщик делает поправки, конечный результат все равно будет удовлетворительным. Важно знать, что почти никогда все не будет так просто, как кажется на первый взгляд.

Если R1 разделен на два резистора равного номинала (2 x 56 Ом будет работать), то второй конденсатор от центрального отвода до земли уменьшит пульсации напряжения.При всего лишь 220 мкФ пульсации сокращаются до менее четверти (около 1,2 мВ RMS). Два резистора необходимы для отделения дополнительной емкости от основной крышки фильтра и стабилитрона, оба из которых имеют очень низкий импеданс (вы также увидите, как этот трюк используется ниже). Возможно, неожиданно, пульсации напряжения немного больше при подключенной нагрузке. Это связано с тем, что стабилитрон пропускает меньше тока и его динамическое сопротивление немного увеличивается.

Обратите внимание, что на Рисунке 1 показан конденсатор оконечного фильтра, и это важно в большинстве случаев.Он не так эффективен, как можно было бы надеяться, потому что он подключен параллельно стабилитрону с низким сопротивлением, но он немного снижает шум и (что более важно) обеспечивает мгновенный пиковый ток, который может потребоваться некоторым схемам. Фактически, очень и очень мало регуляторов любого типа следует использовать без разумной емкости на выходе. 10 мкФ часто бывает достаточно, но более высокие значения в большинстве случаев не вызовут никаких проблем.


2 — Следующий шаг к регулированию напряжения

Шунтирующее регулирование, описанное выше, по-прежнему является очень полезным инструментом, и во многих случаях это, безусловно, самый простой и дешевый способ получить, например, слаботочный стабилизированный источник питания для вспомогательных цифровых схем.Однако регулирование линии и нагрузки не является прекрасным, поэтому этот метод не подходит для нагрузок, которые имеют быстрые (или большие) изменения тока. Следующая разработка — это простой последовательный транзистор, добавляемый к стабилитрону, и это описано в статье о малых источниках питания. Здесь это повторяться не будет. Когда ток нагрузки регулятора проходит через транзистор, схема называется «последовательным» регулятором, потому что активное выходное устройство включено последовательно с током нагрузки.

Ниже показан базовый дискретный регулятор.Раньше это была очень распространенная схема до появления 3-контактных IC-регуляторов. Производительность может быть неплохой, но это ни в коем случае не точный регулятор. В основную форму схемы внесено несколько хитрых дополнений, которые описаны ниже. Трансформатор и мостовой выпрямитель точно такие же, как на рис. 1. C4 часто требуется для предотвращения высокочастотных колебаний, и его значение обычно находится где-то между 47 пФ и 1 нФ. Более высокие значения замедлят схему, и она не сможет достаточно быстро отреагировать на быстрые изменения нагрузки (плохая переходная характеристика).

Рисунок 2 — Простой дискретный регулятор серии

Хотя показанная схема имеет (почти) такое же выходное напряжение, что и шунтирующий стабилизатор, показанный выше, она потребляет меньше тока от выпрямителя. При той же подключенной нагрузке 20 мА (750 Ом) он потребляет 29,8 мА (а не постоянные 35,7 мА, независимо от того, подключена нагрузка или нет). Уменьшение тока означает, что входная пульсация уменьшается, а обратная связь, используемая в цепи, помогает еще больше.

В частности, обратите внимание, что есть два резистора (R1 и R2) для обеспечения тока базы для последовательного каскада Дарлингтона.Центральный отвод подключается к C2, и это снижает пульсации напряжения с ~ 78 мВ RMS на C1 до примерно 500 мкВ на C2 и менее 100 мкВ на базе Q1. Пульсации на выходе составляют всего 28 мкВ — на 70 дБ меньше пульсаций на C1. Сравните это с рисунком 1, на котором подавление пульсации составляет около 25 дБ.

Следующий хитрый трюк использует R6. Если бы этого не было, ток стабилитрона был бы максимум ~ 630 мкА, что слишком мало для обеспечения стабильной работы. R1 и R2 можно было бы уменьшить, но тогда C2 нужно было бы больше.Таким образом, регулируемое и сглаженное выходное напряжение используется для подачи тока, достаточного для правильной работы стабилитрона. Он добавляет немного более 8,7 мА стабилитрона (в моделировании общее значение составляет 9,4 мА). Это превышает минимум 5%, необходимый для стабильности (стабилитрон 6,2 В 1 Вт может потреблять до 161 мА при 25 ° C).

Чтобы учесть допуск стабилитрона (до ± 10%), было принято делать R5 переменной. В показанном примере вы можете использовать банк в 20k (что было бы довольно грубо) или R5 можно было бы уменьшить до 8.2к с банком 5к последовательно. Эта схема имеет обратную связь, а коэффициент усиления регулятора устанавливается R4 и R5. Стабилитрон — это опорное напряжение. Этот регулятор представляет собой ту же базовую схему, которую я использовал для Project 96, источника фантомного питания 48 В для микрофонов.

Опорное напряжение (стабилитрон) должно быть близко к 1/2 выходного напряжения, если возможно, но может быть и меньше 1/4. Так что, если вам нужен выход 100 В, вы можете использовать стабилитрон на 24 В.

R4 и R5 образуют цепь обратной связи и определяют коэффициент усиления схемы.Если они равны, коэффициент усиления схемы равен 2. Напряжение база-эмиттер Q3 добавляется к опорному напряжению, так что на самом деле это не 6,2 В, а 6,85 В для схемы, показанной на рисунке 2. Это также добавляет ошибку из-за до температуры перехода Q3, которая обычно принимается равной -2 мВ / ° C. При условии, что температура Q3 не сильно изменится, ошибка не имеет большого значения.

Выходное напряжение можно определить следующим образом …

Усиление = (R4 / R5) + 1
Усиление = (12/10) + 1 = 2.2
В ВЫХ = В REF × усиление
В ВЫХ = 6,85 × 2,2 = 15,07 В постоянного тока

Для разработки дискретного регулятора, такого как показанный на рисунке 2, есть несколько общих рекомендаций. R1 + R2 должны обеспечивать достаточный базовый ток для последовательной комбинации Q1 и Q2. Необходимый базовый ток определяется коэффициентом усиления пары (предположим, 1000 для типичной комбинации), и должен быть абсолютным минимумом удвоенных , который необходим при максимальном выходном токе.Если оно меньше этого, Q3 (усилитель ошибки) не будет иметь достаточного тока для работы, и вы потеряете регулирование. Согласно общепринятому практическому правилу, базовый ток последовательного транзистора (транзисторов) должен быть в 5-10 раз больше наихудшего. Однако это можно смягчить, если вам не нужна идеальная регулировка.

Итак, для приведенной выше схемы мы можем использовать следующие основные уравнения для R1 и R2 …

R1 + R2 = V IN — V OUT / I B × 10 — где I B определяется…
I B = I OUT / h FE (Q1 × Q2) … (предположим усиление 1000), поэтому …
I OUT = 20 мА
I B = 20 мкА × 10 = 200 мкА
В IN — V OUT = 19,4 — 15 = 4,4 В
R1 + R2 = 4,4 В / 200 мкА = 22 кОм, поэтому R1 = R2 = 11 кОм

Хотя это можно было бы заставить работать, это было бы довольно глупо, потому что регулятор мог бы выдавать только 20 мА, если вы придерживаетесь рекомендаций по проектированию. Уменьшая значения R1 и R2 до 2.2k, схема будет отлично работать с выходным током не менее 100 мА. При 100 мА выходное напряжение упадет до 14,99 В, а пульсации увеличатся до 115 мкВ. Учитывая относительную простоту схемы, производительность неплохая!

Обратите внимание, что устройство последовательного прохода показано как пара транзисторов, подключенных в конфигурации Дарлингтона, но транзистор Дарлингтона и N-канальный MOSFET также будут работать. Стабилитрон должен быть подключен между затвором и истоком полевого МОП-транзистора — 4.Стабилитрон 7 В обеспечит более чем достаточный ток при использовании МОП-транзистора IRF540 (или аналогичного), а также обеспечит базовое ограничение тока или . Поскольку коэффициент усиления полевого МОП-транзистора не такой высокий, как у пары Дарлингтона, регулирование и характеристики пульсации не так хороши. Однако затвор не потребляет ток, поэтому значения R1 и R2 могут быть выше, чем это необходимо для биполярных транзисторов.

Добавив некоторую сложность, схему можно заставить работать еще лучше, но для 99% приложений в этом нет никакого смысла.Единственное, чего нет у , — это защиты от короткого замыкания. Если выход закорочен, последовательные транзисторы (Q1 и Q2) выйдут из строя. Если мы просто ограничим ток до заранее установленного максимума, мы можем обнаружить, что рассеивание Q2 выходит за пределы допустимой безопасной области. При 20 В на входе (достаточно близко) и (скажем) на выходе 100 мА и закороченном выходе рассеивание в Q2 будет 20 * 0,1 = 2 Вт. Очевидно, это не проблема при низком входном напряжении и малом токе регулятора, но становится серьезной проблемой при увеличении напряжения или тока.

Рисунок 3 — Простой дискретный серийный регулятор с ограничением тока

Добавляя Q4 и R7, мы можем применить базовую защиту от короткого замыкания с помощью простого ограничения тока. Когда напряжение на R7 достигнет 0,6–0,7 В, Q4 будет проводить и «красть» ток из последовательно проходящих транзисторов. Это только самая простая форма защиты, и хотя она работает, это определенно не высокотехнологичное решение проблемы. Как показано, ток ограничен примерно 130 мА, а рассеивание в Q2 составляет примерно 2.4 Вт (радиатор будет обязательно). Показанная компоновка ни в коем случае не единственный метод, но он работает достаточно хорошо. Дополнительное сопротивление снижает характеристики регулирования, и при приближении к пределу тока наблюдается заметный провал напряжения.

Более продвинутое ограничение тока включает в себя так называемое ограничение «обратного отсчета», когда доступный ток постепенно уменьшается по мере падения выходного напряжения. Например, до тех пор, пока выходное напряжение близко к 15 В, предел может быть установлен на (скажем) 1 А, но если выход закорочен, максимальный доступный ток может быть уменьшен до 100 мА.Ограничение обратного тока является более сложным и в некоторых случаях может привести к отказу источника питания от запуска — например, если схема с питанием потребляет ток, превышающий нормальный, при низких входных напряжениях. Поскольку эта статья посвящена общим принципам, ограничение тока обратной связи не будет включено.


2.1 — Дифференциальное напряжение ввода-вывода

Дискретная схема по-прежнему имеет преимущества, когда вам нужен источник питания с более высокими требованиями к напряжению, чем могут удовлетворить стандартные 3-контактные ИС.Хотя доступны высоковольтные версии, их бывает трудно получить, и они по-прежнему имеют ограниченный перепад входного-выходного напряжения. Вы можете представить, что LM317HV (например) подойдет, так как он имеет максимальное дифференциальное напряжение на входе и выходе 60 В.

Легко упустить из виду тот факт, что максимальное входное напряжение действительно составляет всего 60 В с LM317HV, потому что при первом включении выходной конденсатор разряжен и близок к короткому замыканию. Точно так же регуляторы серии 317/337 имеют защиту от короткого замыкания, но если входное напряжение превышает максимальное дифференциальное напряжение на входе-выходе, есть большая вероятность того, что ИС выйдет из строя.

Можно сделать дискретную схему с любым входным напряжением, которое вам нравится, ограниченное только выбором последовательно проходных транзисторов и других необходимых компонентов. Если вам нужен стабилизированный источник питания на 250 В, то вам просто не повезло, если вы попытаетесь использовать любой доступный стабилизатор IC. Если вы знаете, как построить дискретный регулятор, то (почти) нет ограничений на входное или выходное напряжение.

При разработке регуляторов высокого напряжения необходимо учитывать множество факторов, особенно защиту от короткого замыкания.Если у вас есть нерегулируемое напряжение (скажем) 500 В и вам нужно регулируемое 400 В, представьте мгновенное рассеивание мощности в устройстве последовательного прохода, если выход закорочен! Без продуманных мер защиты короткое замыкание вызовет мгновенный отказ устройства последовательного прохода, и чрезвычайно сложно обеспечить какую-либо достаточно быструю схему защиты. Это можно сделать, но здесь мы не будем рассматривать, поскольку для этого потребуется обширное тестирование, чтобы убедиться, что схема защиты будет работать должным образом (это не конструкторская статья — она ​​предназначена только для объяснения принципов).

Рисунок 4 — Дифференциальное напряжение ввода-вывода

Схема слева на Рисунке 4 (A) выглядит безопасной, но в момент включения выходная крышка разряжается и представляет собой кратковременное короткое замыкание. Колпачок большего размера может некоторое время казаться очень низким импедансом, как показано справа (B). Таким образом, дифференциальное напряжение представляет собой полное входное напряжение (45 В), которое может значительно превышать номинальные значения для регулятора и вызвать отказ. Если выход закорочен (возможно, в оборудовании есть танталовые конденсаторы для развязки источника питания ¹), регулятор будет иметь полное входное напряжение на нем до тех пор, пока не будет отключено питание или он не выйдет из строя!

Примечание 1: Танталовые конденсаторы (и всегда были) самые ненадежные конденсаторы из когда-либо созданных.Они совершенно не переносят сильные импульсные токи, и
уникальны тем, что их режим отказа — короткое замыкание (которое может быть прерывистым). Как известно постоянным читателям, я никогда не рекомендую танталовые крышки для чего-либо.

Очень важно, чтобы входное и выходное дифференциальное напряжение не превышалось, и для IC-регуляторов это значение указано в спецификации (обычно как абсолютное максимальное значение). Для дискретного регулятора это максимальное напряжение на последовательном и других транзисторах, которое ограничивается напряжением пробоя коллектор-эмиттер или напряжением сток-исток для полевого МОП-транзистора.

Вы можете спросить, а зачем на регуляторе диод. В некоторых случаях общая емкость на выходе регулятора может быть такой, что он сохраняет заряд дольше, чем крышка основного фильтра (C1). Это особенно верно, если перед регулятором берется дополнительная нерегулируемая нагрузка. Если регулятор должен быть смещен в обратном направлении, он почти наверняка выйдет из строя, поэтому вы не сможете подключить стационарный источник питания непосредственно к цепи, не повредив регулятор.Добавление диода означает, что любое напряжение на выходе передается на вход регулятора, что предотвращает возможное повреждение внутренней цепи. Диод также следует добавить к дискретным регуляторам, если есть вероятность, что на выходе может быть напряжение, но не на входе.


2.2 — Требования к дифференциальному напряжению ввода-вывода

Несмотря на то, что важно гарантировать, что максимальный дифференциал ввода-вывода никогда не будет превышен, также важно убедиться, что имеется достаточно дифференциала для предотвращения проблем.Минимум обычно указывается в даташите, и это не относится к среднему значению! Мгновенное входное напряжение никогда не должно падать настолько (из-за пульсаций напряжения), чтобы регулятор больше не мог поддерживать выходное напряжение. Например, если регулятору требуется минимум 2 В дифференциала для поддержания регулирования, мгновенное входное напряжение всегда должно быть более чем на 2 В выше выходного напряжения.

Сюда входят пульсации напряжения и любое снижение сетевого напряжения, которое находится в пределах обычно ожидаемого диапазона для входящего источника переменного тока.Некоторые люди спрашивали, почему я рекомендую трансформатор 15–0–15 В для источников постоянного тока ± 15 В, когда я знаю, что напряжение трансформатора обычно будет выше, чем указано при небольшой нагрузке. В общем, вы можете ожидать около 25 В постоянного тока на входе регулятора, что может показаться чрезмерным. Тем не менее, это включает в себя значительную скидку на низкое напряжение в сети, пульсации и дополнительное сглаживание.

Рисунок 5 — Пульсация входного напряжения по сравнению с измерением. Регулируемая мощность

На рисунке 5 вы можете увидеть, что произойдет, если входящий постоянный ток упадет ниже минимума, необходимого для поддержания регулирования.Поскольку крышка входного фильтра слишком мала, пульсации позволяют входному напряжению упасть ниже предела, при котором регулятор может поддерживать выходное напряжение на уровне 15 В. В результате пульсация передается от входа к выходу.

В случае, показанном выше, очевидным ответом является увеличение емкости фильтрующего конденсатора так, чтобы пульсации уменьшились до разумного значения, и проблема была решена. Однако вам все же нужно рассмотреть случай, когда напряжение в сети падает — это может иметь точно такой же эффект.Если напряжение сети упадет на 20% (с 230 В до 184 В или с 120 до 96 В), то же самое произойдет и с выходом трансформатора. Это означает, что вместо номинальных 15 В переменного тока выходная мощность будет снижена до 12 В переменного тока, и этого недостаточно, чтобы позволить ИС поддерживать регулирование — даже при условии, что ноль пульсации напряжения!

Неважно, является ли регулятор дискретным или основанным на ИС — результаты будут одинаковыми. Единственным решением было бы либо использовать трансформатор с более высоким напряжением (например, 18 В RMS), либо использовать конструкцию стабилизатора с малым падением напряжения (LDO), либо в виде интегральной схемы, либо в виде дискретного.У регуляторов LDO могут быть проблемы со стабильностью из-за их конструкции, и, как правило, их следует избегать, если нет другого варианта. См. Регуляторы LDO, если вы хотите узнать о них больше.


3 — Регуляторы IC
Регуляторы

IC (3-полюсные) в настоящее время являются наиболее распространенными из всех аналоговых / линейных типов. В течение многих лет у нас были регуляторы 78xx (положительный) и 79xx (отрицательный), а также множество аналогичных устройств с разными номерами деталей, и было доступно несколько стандартных напряжений.Были доступны версии на 5, 8, 12, 15, 18 и 24 В, но они (в основном) рационализированы до 3–5 В, 12 В и 15 В. Некоторые из странных напряжений все еще могут быть доступны, если вы внимательно присмотритесь. Регулируемые регуляторы (LM317 / 337) позволяют людям создавать источники питания практически для любого напряжения, которое им нравится, от 1,25 В до 50 В, если вы используете версии с высоким напряжением.

Они удобны, фиксированные регуляторы также доступны в маломощных версиях в корпусе TO-92. 78L05 особенно распространен, поскольку он может обеспечивать регулируемое питание для небольших микроконтроллеров, проектов на основе PIC и других логических схем с низким энергопотреблением.Внутренняя схема этих микросхем в настоящее время довольно развита, и они обладают очень хорошими характеристиками. Все они имеют защиту от короткого замыкания и включают внутренние предохранители от перегрева, поэтому они практически неразрушимы … почти!

Многие энтузиасты аудио часто считают обычные регуляторы серий 78xx / 79xx «низшими», но это неоправданно. Да, они несколько шумные, но типичный выходной шум низкий и очень редко вызывает проблемы со схемами операционных усилителей, но это может быть проблема с простыми схемами с плохим отклонением источника питания.Стоит отметить, что выходной конденсатор нужен в первую очередь для стабильности, и без него регулятор, вероятно, будет колебаться. Неважно, 10 мкФ или 1000 мкФ, пульсация на выходе не изменится.

Это явно странное поведение связано с выходным сопротивлением регулятора. Согласно таблице данных на 7815, он имеет выходное сопротивление 0,008 Ом (8 миллиом) на частотах до 1 кГц, после чего оно возрастает до 6 дБ / октаву. На частоте 100 Гц конденсатор 1 мФ (1000 мкФ) имеет реактивное сопротивление 1.59 Ом, и это абсолютно не влияет на 8 миллиомов регулятора. Выходное сопротивление остается ниже 1 Ом на любой частоте до 1 МГц, и на крайних частотах конденсатор будет иметь некоторое влияние.

Подавление пульсаций заявлено как минимум 54 дБ (7815) при типичном значении 70 дБ. Типичный выходной шум заявлен как 90 мкВ. Простой способ снизить уровень шума и пульсаций напряжения — это добавить на выходе регулятора простой резистивно-конденсаторный фильтр. Для выходных токов 100 мА или менее резистор 10 Ом и конденсатор на 1000 мкФ уменьшат выходное напряжение на 1 В при 100 мА, но уменьшат пульсации 100 Гц еще на 16 дБ (минимум).Это также уменьшит широкополосный шум. На частоте 1 кГц любой шум регулятора уменьшается на 36 дБ, а на частоте 10 кГц — на 56 дБ. В сочетании с уже и без того низким уровнем шума и пульсации остаточная величина незначительна. Как и ожидалось, эту технику можно успешно использовать только при сравнительно небольших токах.

Также можно использовать фильтр, состоящий из катушки индуктивности и конденсатора, но необходимо очень внимательно следить за тем, чтобы частота -3 дБ была намного ниже частоты пульсаций, иначе вы можете легко получить больше пульсаций вместо меньших! Например, LC-фильтр, состоящий из индуктора 1 мГн и конденсатора 1 мФ (1000 мкФ), имеет частоту 159 Гц и увеличит пульсацию на 4 дБ.Увеличение индуктивности до 10 мГн приводит к уменьшению пульсации на 10 дБ, а также к быстрому ослаблению всех частот выше 50 Гц. В идеале катушка индуктивности (или конденсатор) должна быть больше, а любой LC-фильтр чувствителен к импедансу нагрузки и может вызывать переходные колебания при изменении нагрузки — рекомендуется соблюдать особую осторожность!

Многие люди также думают, что добавление большого конденсатора к выходу уменьшит шум и пульсации. Как отмечалось выше, это не работает. Ясно, что параллельное включение емкостного реактивного сопротивления более 1 Ом и менее 20 мОм не даст многого.На более высоких частотах выходное сопротивление регулятора будет расти, поэтому емкость от 10 мкФ до 100 мкФ имеет смысл для ограничения ВЧ-шума и обеспечения стабильности регулятора.

Обратите внимание, что LDO (регуляторы с низким падением напряжения) часто имеют строгие критерии стабильности, поэтому я предлагаю вам прочитать статью, в которой рассматриваются эти потенциально сварливые ИС. В основном они ведут себя прилично, но это не гарантируется, если вы не сделаете все правильно.


3.1 — Регулируемые регуляторы IC

LM317 / 337 рекомендуются для замены фиксированных регуляторов и обеспечивают гораздо большую гибкость.Они стабильны и хорошо работают. Самое главное, у них нет вредных привычек, и это важный фактор для любого дизайна. Project 05 — это пример двойного регулятора, использующего эти универсальные ИС. При использовании, как показано в проекте, производительность примерно такая же, как у фиксированного регулятора. Это можно улучшить, но для этого потребуется несколько дополнительных деталей. Дополнительные конденсаторы включены в плату Project 05.

Выходное напряжение устанавливается с помощью пары резисторов. Нормальный ток от вывода «Adj» (регулировка) может варьироваться от ~ 50 до 100 мкА, и необходимо обеспечить больший постоянный ток, который, по крайней мере, на порядок больше, чем нормальный ток от этого вывода.Обычно это делается путем добавления резистора между выходом и регулировочным контактом, обычно 100 или 120 Ом. Опорное напряжение номинально составляет 1,25 В, но оно может варьироваться от 1,2 В до 1,3 В от одной микросхемы к другой. Предполагая, что 1,25 В, ток через внешний резистор на 100 Ом составляет 12,5 мА, что значительно превышает ток регулировочного штыря. Полная схема подключения показана ниже.

Рисунок 6 — Регулируемый регулятор, показан LM317

Как отмечалось выше, внутреннее опорное напряжение равно 1.25 В, поэтому через R1 проходит 12,5 мА. Мы можем игнорировать ток регулировочного штыря, потому что он будет не более 0,1 мА, и хотя это вызывает небольшую ошибку, это меньше, чем изменение опорного напряжения. Значение R1 довольно важно. Если он слишком велик, внутренний рабочий ток ИС приведет к увеличению выходного напряжения без нагрузки. Максимальное значение зависит от устройства — отрицательная версия требует меньшего сопротивления. Большинство дизайнеров используют значения от 100 до 220 Ом.Минимальный выходной ток для LM317 составляет около 5 мА или 10 мА для LM337. Использование резисторов 100 Ом гарантирует стабильный выходной сигнал как для положительных, так и для отрицательных регуляторов.

Значение для R2 вычислить легко, потому что мы знаем, что он передает 12,5 мА и всегда будет на 1,25 В меньше выходного напряжения. Следовательно, на выходе 15В получаем …

I R2 = 12,5 мА
V R2 = V OUT — 1,25 = 13,75
R2 = V / I = 13,75 / 12.5 = 1,1 тыс.

Это сильно отличается от формулы, представленной в таблице данных, и хотя процесс немного дольше, по крайней мере, вы можете вспомнить, как это делать, потому что он основан на простой математике (закон Ома), которую гораздо легче запомнить, чем формула. Из-за допуска опорного напряжения (1,2 — 1,3 В) фактическое выходное напряжение может варьироваться от 14,4 В до 15,6 В (± 1%), хотя большинство ИС будут ближе к расчетному значению. Разница напряжений не имеет значения для схем операционных усилителей.Формула, представленная в таблицах данных: …

V ВЫХ = 1,25 × (1 + R2 / R1) + I ADJ × R2

Это учитывает ток регулировочного штыря (обычно 50 мкА), который прибавит около 55 мВ при использовании резисторов 1,1 кОм. В общем, нет смысла стремиться к такому уровню точности, потому что IC представляет собой регулятор напряжения , а не прецизионный эталон. Если вам нужна точность, вы должны использовать прецизионный источник опорного напряжения, такой как TL431, LM336, LT1009, или решение, описанное в SLYT183 — Прецизионные источники опорного напряжения от Texas Instruments.

Назначение D1 такое же, как описано выше — он предотвращает повреждение, приложенное к выходу регулятора. D2 должен разрядить C2. Если этот диод не установлен, регулировочный штифт может на мгновение стать больше, чем выходное значение (например, если выход закорочен), что приведет к повреждению ИС. D3 немного сложнее.

Если вы построите один регулятор, D3 можно не устанавливать. Однако, если вы собираете источник питания с двойной полярностью (например, ± 15 В), D3 должен быть включен (на оба источника).Это защитный диод, который предотвращает отрицательное смещение выхода регулятора, что может привести к отключению ИС … , и она не восстановится! Но как это может случиться? Когда используются два источника питания, неизбежно, что один будет немного быстрее другого. Нагрузка (операционные усилители или другие схемы) обычно использует только заземление в качестве опорного, поэтому мощность потребляется между источниками питания, а , а не , от каждого источника питания к земле. Тот, который появляется первым, может принудить выход более медленного регулятора к противоположной полярности, и это может привести к фиксации ИС в состоянии неисправности, из которого она не может восстановиться.

Это реальная проблема, и диоды (D3 и его противоположный номер на отрицательном питании) должны быть включены. Это можно увидеть на принципиальной схеме Project 05. Что может еще больше усугубить, так это то, что проблема может быть периодической, и ее трудно отследить, если вы не знаете, что искать.


4 — Повышение тока от регуляторов IC

Совсем не редкость, что вам может потребоваться гораздо больший выходной ток, чем вы можете получить от микросхемы трехконтактного стабилизатора.Существуют версии TO-3 с более высоким током, но этого может быть недостаточно, например, если вы запитываете большую микшерную консоль. Существует очень распространенный прием, который используется для увеличения выходной мощности, а для положительного регулятора требуется просто добавить один резистор и силовой транзистор PNP. Если вы используете TIP36C (самый доступный и дешевый силовой транзистор, который вы можете получить), его легко получить до 10 А, хотя вам нужно установить очень хороший радиатор и тщательно управлять входным напряжением, чтобы обеспечить безопасную рабочую зону. не превышено.

Рисунок 7 — Регулируемый регулятор с усилением, использующий LM317 и TIP36C

ИС регулятора будет обеспечивать ток до предела, определенного R3. Как только напряжение на R3 превысит 0,7 В, Q1 и Q2 включатся и подадут столько тока, сколько потребует нагрузка. Входное напряжение должно быть достаточно высоким, чтобы обеспечить правильное регулирование при более высоком токе, и крышка основного фильтра также должна иметь соответствующий размер, чтобы минимизировать входные пульсации. Вышеупомянутая схема обычно требует обмотки на трансформаторе 20 В RMS, а диоды также должны выдерживать максимальный непрерывный ток.

Будьте осторожны — здесь нет защиты от короткого замыкания, потому что регулятор не сможет отключить добавленные транзисторы в случае неисправности. Вы, , могли бы спасти транзисторы, включив предохранитель, как показано, но не рассчитывайте на это. Несмотря на очевидные ограничения, это очень полезная схема, и ее часто предлагают в технических описаниях и примечаниях к применению. В показанной конфигурации и при условии, что на входе 25 В постоянного тока, стабилизатор будет обеспечивать максимум около 320 мА плюс базовый ток транзисторов, а два TIP36C обеспечивают остальное.Рассеивание на Q1 и Q2 будет почти 50 Вт при выходном токе 5 А, поэтому радиатор и монтаж должны быть отличными. Тепловое сопротивление между корпусом и радиатором всего 0,5 ° C / Вт вызовет повышение температуры каждого транзистора на 12,5 ° C, поэтому использование транзисторов с параллельным проходом абсолютно необходимо.

В некоторых примечаниях к применению предлагается использовать транзистор драйвера и транзисторы с параллельным проходом, но это необходимо только в том случае, если регулятор не может обеспечить ток, достаточный для обеспечения необходимого тока базы.Если учесть в техническом описании TIP35C / 36C h FE 25, стабилизатор на 1 А может запитать достаточно транзисторов, чтобы получить выходной ток 25 А. У кого-нибудь есть схема, на которую нужно 10 000 операционных усилителей?


5 — Базовый регулятор тока

«Самый простой» регулятор тока — это просто высоковольтный источник питания и резистор. Например, если у вас есть источник питания постоянного тока 1 кВ и резистор 1 кОм, это даст вам 1 А при нагрузке от нуля до примерно 20 Ом (при регулировке 2%). Хотя концепция проста, реализация совсем не похожа — источник питания 1 кВ при 1 А — действительно серьезная проблема, и для резистора потребуется номинальная мощность 1000 Вт (1 А при 1 кВ — это 1 кВт).Итак, хотя концепция проста, реализация трудна, дорога и опасна.

В отличие от регулирования напряжения не существует простого диода, который мог бы регулировать ток. «Диоды» регулятора тока существуют, но на самом деле это не диоды — это микросхемы (обычно содержащие полевой транзистор и резистор). Номинальная мощность обычно очень ограничена, и они подходят только для работы с довольно низким током. Любой полевой транзистор с режимом истощения (JFET) можно использовать в качестве простого регулятора тока, но доступный ток будет довольно низким, как и максимальное напряжение.В отличие от стабилитронов, стабильность невелика, и они действительно полезны только там, где точность не требуется. Большинство из них ограничены до ~ 20 мА или около того и при относительно низких напряжениях (<100 В). Рассеиваемая мощность обычно не превышает 500 мВт.

Однако пара транзисторов может использоваться для получения очень точного регулирования тока, а приложенное напряжение ограничивается только напряжением пробоя транзисторов. Максимальный доступный ток в основном определяется безопасной рабочей зоной проходного транзистора.Как и в случае с регулятором напряжения, вам необходимо знать требования перед тем, как начать. Как и в случае со всем электронным, необходимо идти на компромиссы, и вам нужно знать основные параметры, прежде чем переходить к кремнию.


6 — Более продвинутый регулятор тока

Не существует по-настоящему простого регулятора тока, который можно было бы использовать при токе, который может потребоваться для светодиодов — наиболее распространенной нагрузки, которую вы можете найти на данный момент. Ток, необходимый для типичных мощных светодиодов, составляет от 350 мА до 700 мА с прямым напряжением ~ 3.5V для каждого серийного белого светодиода. Если у нас есть 5 светодиодов по 1 Вт последовательно, нам потребуется минимальное напряжение 17,5 В (мы будем использовать источник постоянного тока 22 В) при токе 300 мА.

Схема на дискретных транзисторах, использующая дешевый полевой МОП-транзистор, будет работать на удивление хорошо, и ее довольно просто реализовать. У него есть небольшая проблема с термической стабильностью, но мы можем использовать это в наших интересах. Схема показана ниже, и это просто мощная версия очень распространенного источника тока. MOSFET рассеивает чуть больше 1.2 Вт, и эта мощность полностью тратится (радиатор для полевого МОП-транзистора необходим). Однако это не намного больше, чем мы ожидаем в потерях от импульсного регулятора тока, работающего при том же напряжении и токе, а в некоторых случаях могут быть даже меньше.

D5 (стабилитрон 12 В) не является обязательным и защищает затвор от перенапряжения. Схема регулирования достаточно быстрая, чтобы гарантировать, что напряжение на затворе никогда не будет превышать примерно 6 В, даже если повышение напряжения питания происходит мгновенно.Однако включение стабилитрона обеспечивает защиту затвора, если нагрузка отключена (или становится разомкнутой), или если цепь подключена неправильно (если вы ее построите).

Рисунок 8 — Источник дискретного тока на основе полевого МОП-транзистора

Почему я решил использовать MOSFET, а не биполярный транзистор для Q2? В этом случае все сводится к минимизации потерь тока в базе проходного транзистора, а MOSFET не нуждается в токе затвора. Резистор 10 кОм подает ток коллектора ~ 2 мА на Q1, и это необходимо, чтобы транзистор мог функционировать и обеспечивать напряжение затвора.Ток контролируется Q1, который включается, когда напряжение на R2 достигает ~ 0,7 В. Когда Q1 включается, Q2 выключается (частично), потому что напряжение затвора уменьшается. Состояние равновесия наступает за микросекунды, и система устойчива. При изменении импеданса нагрузки или входящего напряжения схема будет компенсировать. Если бы компенсация была идеальной, не было бы пульсаций тока через нагрузку — это был бы чистый постоянный ток. Показанная схема генерирует пульсацию на нагрузке примерно 380 мкА (117 мкА, среднеквадратичное значение) со средним током 308 мА.

Q1 имеет нормальный отрицательный температурный коэффициент 2 мВ / ° C любого кремниевого транзистора, поэтому, если он нагревается, ток будет падать. Мы можем использовать это, чтобы определить, нагреваются ли светодиоды, и уменьшить ток для компенсации. Если Q1 имеет температуру 50 ° C, ток снижается до 290 мА. Хотя это нельзя считать полным уровнем компенсации, это все же лучше, чем вообще ничего. Эта общая форма линейного регулятора тока может использоваться везде, где требуется, чтобы ток оставался постоянным независимо от изменений нагрузки.Однако вы должны знать о температурной зависимости Q1, потому что она есть, полезна она или нет.

Схема регулятора тока не будет иметь значительных отклонений между нагрузкой с нулевым сопротивлением и максимальной нагрузкой (16,7 В, что при 300 мА эквивалентно 55,5 Ом). Его можно использовать с любыми светодиодами мощностью от 1 до 5 1 Вт без изменения тока, хотя рассеиваемая мощность полевого МОП-транзистора, естественно, увеличится при использовании менее 5 светодиодов. На самом деле, это настолько хорошо, что даже измерить текущее изменение в симуляторе сложно.Однако, если объединенное напряжение на полевом МОП-транзисторе и R2 меньше ~ 1,5 В, он больше не сможет обеспечивать номинальный ток.

У схемы на Рисунке 8 есть одна проблема, заключающаяся в том, что выходной ток зависит от напряжения питания. Это связано с переменным током через Q1 (через R1). Однако изменение невелико и становится довольно линейным, когда напряжение превышает необходимое для регулирования. Ток варьируется от 308 мА (вход 19 В) до 312 мА (вход 30 В). Это более чем приемлемо, но это можно улучшить, запитав Q1 от источника тока.Это добавляет сложности, которую трудно оправдать, но для некоторых других приложений это может быть требованием.

В показанной схеме «опорное напряжение» составляет 0,7 В и представляет собой просто напряжение база-эмиттер Q1. Чтобы сделать источник тока, который не меняется в зависимости от температуры, необходимо использовать прецизионный эталон с температурной компенсацией. Само собой разумеется, что это добавляет сложности с небольшой выгодой в реальном выражении.


6.1 — Дифференциальное напряжение ввода-вывода

Регулятор тока ничем не отличается от регулятора напряжения в том, что он должен иметь достаточно «запасного» напряжения, чтобы он мог нормально функционировать.В случае схемы, показанной выше, полевой МОП-транзистор почти ничего не требует (около 200 милливольт), а на R2 должно быть напряжение — 650-700 мВ. Как только входное напряжение падает ниже этих комбинированных напряжений (около 1 В), либо из-за низкого напряжения в сети, либо из-за слишком высокого напряжения пульсаций, схема больше не может регулироваться. Ток через нагрузку никогда не может быть выше, чем предполагалось, но он может быть намного ниже при слабом питании или высокой пульсации.

Необходимое дополнительное напряжение зависит от схемы, но неразумно ожидать, что схема будет регулировать ток в узких пределах, если запас по напряжению недостаточен.Если напряжение слишком велико, рассеивание в устройстве последовательного прохода увеличивается и энергия расходуется в виде тепла. Если предполагается, что нагрузка представляет собой резистор, потребляющий тот же ток, что и нормальная нагрузка, закон Ома гласит, что доступное напряжение должно быть на выше, чем необходимое для проталкивания желаемого тока через резистор.

Например, как указано выше, для 5 светодиодов мощностью 1 Вт при 300 мА потребуется напряжение ~ 16,7 В, что эквивалентно резистору на 55,5 Ом. Мгновенное напряжение питания всегда должно быть не менее 17.7 В, чтобы полевой МОП-транзистор мог снова регулировать ток до 300 мА. Стоит отметить, что со стандартным импульсным источником питания с регулируемым током ситуация не отличается — входное напряжение всегда должно быть больше, чем максимальное напряжение на нагрузке в худшем случае. Пониженно-повышающие импульсные регуляторы могут изменять свой режим работы в зависимости от входного напряжения.

Импульсный стабилизатор выигрывает, когда входное напряжение намного больше, чем требуется для нагрузки, так как эффективность будет намного выше.При том же токе нагрузки ток от источника с импульсным стабилизатором фактически уменьшается с увеличением напряжения питания. С линейным регулятором ток остается прежним, а потери мощности (в виде тепла) увеличиваются. Однако регуляторы переключения выходят за рамки этой статьи.


7 — IC Регулятор тока

ИС общего регулируемого регулятора также могут использоваться в качестве регуляторов тока. В таблицах данных (и ниже) показаны примеры, и они работают достаточно хорошо.Эти схемы полагаются на опорное напряжение 1,25 В, поэтому резистор, чувствительный к току, должен понижать это напряжение во время нормальной работы ограничителя тока. В отличие от версии, показанной выше, в которой используется чувствительный резистор 2,2 Ом на 300 мА (резистор рассеивает ~ 200 мВт), если вы используете, например, LM317, чувствительный резистор должен быть около 4,2 Ом и рассеивать ближе к 400 мВт. Конечно, в этом нет ничего страшного, но это также означает, что на регуляторе требуется немного более высокий перепад напряжения.

Стандартный LM317, используемый в качестве регулятора тока, имеет отличные характеристики.Обратной стороной является то, что опорное напряжение составляет 1,25 В, в то время как «опорное» напряжение для дискретной версии, показанной выше, составляет всего 0,7 В. Это означает, что LM317 требует большего запаса по напряжению. Моделирование показывает, что показанная ниже схема не будет регулировать ток должным образом, пока входное напряжение не превысит 19,8 В, включая минимальный уровень пульсаций напряжения. C2 используется, чтобы гарантировать, что цепь не колеблется.

Рисунок 9 — LM317 как источник тока

Разницу в опорном напряжении легко увидеть, посмотрев на резистор считывания тока — R1 на рисунке 9 и R2 на рисунке 8.В то время как 2,2 Ом достаточно для схемы на Рисунке 8, для LM317 требуется резистор 4,15 Ом, который должен быть рассчитан на 1 Вт. LM317 интересует только одно — напряжение на R1. При условии, что это напряжение может поддерживаться на уровне внутреннего опорного напряжения (1,25 В), выходной ток фиксируется на уровне 300 мА. Ток равен …

I = V REF / R1
I = 1,25 / 4,15 = 301,2 мА

Если у вас есть запасное напряжение, R1 может быть 4,7 Ом, с резистором и подстроечным резистором, включенными параллельно, как показано на рисунке 10.Стеклоочиститель подключается к регулировочной клемме LM317, позволяя изменять ток. Показанная схема позволяет изменять ток от 267 мА до 340 мА с помощью VR1.

Рисунок 10 — LM317 как регулируемый источник тока

Вы можете использовать LM317 в качестве регулируемого регулятора тока до максимально допустимого тока и рассеиваемой мощности. Он далеко не так эффективен, как импульсный стабилизатор тока, но легко собирается на макетной плате или даже на бирках.Его можно использовать для создания прототипов и проверки концепции или даже в качестве автономного тестового источника для управления мощными светодиодами при тестировании радиаторов и схем освещения (например). Как и в схеме на Рисунке 8, ток будет практически одинаковым независимо от количества используемых светодиодов мощностью 1 Вт. Это предполагает, что прямое напряжение светодиодов примерно на 4-5 В меньше, чем напряжение питания.


8 — Отрицательные регуляторы

В этой статье рассматриваются только положительные регуляторы, но отрицательные регуляторы легко сделать с использованием тех же основных схем, но с частями противоположной полярности (обратные стабилитроны, PNP вместо транзисторов NPN и наоборот и т. Д.)). Таким образом, негативные регуляторы не рассматриваются сами по себе. Отрицательным эквивалентом регуляторов 78xx является серия 79xx, а LM317 соответствует LM337.

Однако есть одна конфигурация, которая на первый взгляд не выглядит так, как будто она будет работать, но она настолько полезна, что показана здесь. Требуется немного нестандартного мышления, чтобы понять, что если одна сторона источника питания регулируется (например, положительная), то по определению другая сторона (отрицательная) должна также регулироваться.Если бы было иначе, электроника в целом просто не имела бы смысла и не работала бы.

Рисунок 11 — Положительное и отрицательное напряжение с использованием только положительных регуляторов

Фактически, источники питания могут быть полностью раздельными и просто подключаться к минусу верхнего регулятора / источника питания, соединенному с плюсом нижнего. Таким образом могут быть подключены два отдельных импульсных источника питания, и он работает с любым типом источника питания, при условии, что между их вторичными источниками нет другого соединения, кроме того, которое вы делаете сами.Вы даже можете иметь разные напряжения для источников питания + ve и -ve, если хотите (но это не всегда полезно).


9 — Методы опорного напряжения

Для всех регуляторов напряжения и тока требуется источник опорного напряжения, поскольку он используется в качестве фиксированной точки, с которой можно сравнивать выходное напряжение или ток. Идеальное опорное напряжение будет совершенно нечувствительным к дрейфу, связанному с возрастом, изменениям температуры и входного напряжения, поэтому оно будет всегда оставаться на одном и том же напряжении.Излишне говорить, что идеального эталона не существует, но некоторые хитрости схемы действительно подходят.

Как отмечалось во введении, в схеме клапана используются газоразрядные трубки, и они не являются ни особенно точными, ни стабильными. С появлением кремниевых полупроводников ситуация значительно улучшилась, и стабилитроны стали предпочтительнее. Стабилитрон 6,2 В имеет дополнительный положительный и отрицательный температурный коэффициент (tempco) и довольно стабилен в разумном диапазоне температур.Однако напряжение действительно изменяется с током , поэтому простой резистор не обеспечит опорное напряжение с желаемой стабильностью. Это препятствие обычно преодолевается за счет питания стабилитрона от источника постоянного тока — обычно два, причем один обеспечивает эталонный ток для второго.

Если бы можно было создать источник тока, нечувствительный как к приложенному напряжению, так и к температуре, то самым простым из известных источников опорного напряжения был бы резистор. Если определенный (и идеально регулируемый) ток проходит через резистор с очень низкой температурой, то напряжение на этом резисторе должно быть постоянным.Конечно, вы не можете потреблять ток нагрузки, и для создания прецизионного источника тока вам понадобится прецизионный источник опорного напряжения. Совершив полный круг, очевидно, что нужно что-то более практичное.

Стабилитроны с напряжением пробоя около 6,2 В могут работать при определенном токе и будут показывать очень близкую к нулю температуру, если ток правильный. К сожалению, это не указано в технических данных, и оптимальный ток варьируется от одного диода к другому.Точный необходимый ток можно найти экспериментально, но этот метод требует много времени, и мало кто будет так склонен (в том числе и я). Это особенно верно, когда прецизионные эталонные диоды можно получить легко и дешево.

В µA723 (и LM723) используется стабилитрон 5,7 В с низкой температурой. Еще лучше стабилитрон 5,6 В с температурой + 2 мВ / ° C (типовая), включенный последовательно с диодом, смещенным в прямом направлении, с температурой -2 мВ / ° C — результат равен нулю. Никогда не получится добиться идеального результата, и прямой ток по-прежнему должен строго контролироваться, чтобы получить стабильное напряжение.

В современных ИС наиболее распространенным эталоном является запрещенная схема. Обратите внимание, что хотя схема называется запрещенной зоной, на самом деле она не зависит от ширины запрещенной зоны кремния (около 1,205 эВ — электрон-вольт), а просто имеет примерно такое же эффективное напряжение. Да, я знаю, что это не имеет особого смысла и сбивает с толку, но так оно и есть. Существует много различных версий, которые широко используются, и большинство из них в значительной степени зависят от методов обработки IC. Если бы вы построили его из отдельных частей, его почти наверняка нельзя было бы использовать.Находясь на едином куске кремния и все части находятся в непосредственной близости, означает, что все переходы имеют одинаковую температуру друг с другом. В эталонных значениях ширины запрещенной зоны используются схемы с равными, но противоположными температурными коэффициентами — точно так же, как стабилитрон и диод, описанные выше, но при более низком и более полезном напряжении. «Стандартное» (если такое есть) опорное напряжение запрещенной зоны имеет напряжение от 1,2 до 1,5 В — например, номинальное опорное напряжение для LM317 составляет 1,25 В.

Если вы хотите точно знать, как делается ссылка на запрещенную зону, в сети есть много информации.Однако большая часть из них не особенно полезна, потому что она очень техническая, и большинство статей посвящено методам изготовления ИС. Конечно, в этом есть смысл, потому что для создания работоспособного эталона запрещенной зоны необходимо изготовить ИС. Однако для полноты картины ниже показана типовая схема. Идея состоит в том, что есть две взаимодополняющие части схемы с равными, но противоположными температурными коэффициентами. Ток часто жестко регулируется, и нередко в схемах с запрещенной зоной в ИС используется опорное напряжение запрещенной зоны для стабилизации тока питания, который питает опорную цепь!

Рисунок 12 — Концептуальная схема эталонной ширины запрещенной зоны

Некоторые примеры прецизионных источников опорного напряжения включают LM113 (первый, датированный 1971 годом и разработанный Бобом Видларом), TL431 и LM336 (оба регулируемые), а также многие другие.Концептуальная схема LM113 показана выше. Обратите внимание, что физическая площадь Q2 сделана в 16 раз больше, чем Q1, и это один из нескольких факторов, которые заставляют схему работать. Большинство используют похожую технику.

Интересно отметить, что если вам понадобится прецизионный источник тока, вам понадобится прецизионный источник опорного напряжения. В идеале, особенно если входное напряжение может изменяться более чем на небольшую величину, лучший способ питания прецизионного опорного напряжения — через источник тока.Однако это не должно создавать головоломки, потому что эталонный источник тока должен быть только хорошим, а не идеальным. Мир прецизионных источников (будь то напряжение или ток) требует большого внимания к деталям, и необходимо минимизировать колебания входного напряжения, тока нагрузки и температуры. Операционные усилители часто необходимы, потому что они имеют близко согласованные входные транзисторы, которые будут оставаться при практически одинаковых температурах.

Там, где требуется максимальная точность , всегда было обычной практикой использовать печь с электронным управлением для повышения температуры окружающей среды схемы, чтобы гарантировать, что изменения температуры окружающей среды будут иметь минимальное влияние на температуру схемы или совсем не повлиять на нее.Излишне говорить, что это необходимо только тогда, когда выполняются измерения с гораздо более высокой точностью, чем обычно — такие методы были обычными для счетчиков с очень высокой точностью, но не являются необходимыми для большинства повседневных приложений. Современный эталон ширины запрещенной зоны часто обеспечивает точность, необходимую для большинства измерений.


10 — Змеиное масло

К сожалению, но неизбежно, что некоторые люди будут ассоциировать регуляторы напряжения с «магическими» свойствами, способными каким-то образом влиять на «темп, ритм, время и пространство» (и нет, я тоже не знаю, что это должно означать). как звуковая сцена, басовый «авторитет», высокие «воздух» и, в более широком смысле, вкус и ощущение во рту хлопьев для завтрака.Это последнее утверждение (к сожалению) не глупее всех остальных. Почти все без исключения, это вопиющая чушь, и никогда не будет подкреплен результатами двойного слепого теста.

Есть несколько «особых» дизайнов, которые, кажется, привлекли внимание, но я не собираюсь придавать им какое-либо значение, называя имена. Есть несколько (очень немного!) Конструкций, которые требуют лучшего, чем обычно, регулирования, обычно требующего более низкого уровня шума, чем можно достичь с помощью стандартных ИС регуляторов.Часто это происходит потому, что конструкция схемы также сильно пропитана змеиным маслом и может иметь особенно плохое отклонение от источника питания или быть чрезмерно чувствительной к сопротивлению источника питания.

Нет сомнений в том, что некоторые из «специальных» регуляторов могут иметь превосходные характеристики с гораздо более низким уровнем шума, чем обычные типы ИС. Если вы хотите поэкспериментировать, они могут быть очень полезными и могут доставить массу удовольствия, пока вы экспериментируете с ними. Тем не менее, они , а не , сделают любой грамотный звуковой дизайн «лучше» или даже «иначе» — особенно те, которые используют операционные усилители.

Ничто из того, что я скажу или другие разумные дизайнеры, конечно, никого не изменит. Если люди склонны верить в «волшебный» аспект звука, они почти наверняка услышат разницу, и это мнение не будет оспорено двойным слепым тестированием, что укрепляет веру в то, что мы можем слышать вещи, которые невозможно измерить или количественно оценить с помощью наука или физика.


Выводы

Регулируемые источники питания используются повсеместно и во многих случаях считаются необходимыми, даже если схемы могут работать достаточно хорошо без регулирования.Простой факт заключается в том, что регулировка источников питания дает нам свободу использовать схемы, которые в противном случае вносили бы в схемы большое количество шума. Обычно дешевле (и конечный результат меньше) использовать регулятор, чем пытаться использовать более продвинутые фильтры для удаления гула и шума 100/120 Гц из источника питания.

В первые дни, когда вентили (вакуумные лампы) были единственными доступными усилителями, регулирование было трудным и дорогостоящим. Клапанные регуляторы использовались только в случае крайней необходимости из-за их стоимости и дополнительной надежности.По сегодняшним меркам стабильность регулирования была довольно обычной, но ее было достаточно для приложений того времени. В большинстве случаев разработчики пошли на все, чтобы использовать фильтрацию для удаления гула (100 Гц или 120 Гц) от источников питания. В фильтрах использовались катушки индуктивности, резисторы и конденсаторы для удаления шума из наиболее чувствительных частей цепи, а регулируемые источники питания были практически неслыханными для потребительского оборудования.

Сегодня у нас есть огромное количество ИС стабилизаторов, ИС прецизионного опорного напряжения и доступ к схемам, которые было бы невероятно дорого реализовать всего 50 лет назад.Одной из первых микросхем регуляторов была почтенная микросхема µA723, которая была произведена рядом компаний после ее появления. Впервые он был выпущен Fairchild в 1967 году и сохранился до сих пор. Сомнительно, что многие люди потрудились бы использовать его больше, чем для ремонта существующего продукта, и поэтому я не включил схему, использующую его. Несмотря на свой возраст, это все еще очень хорошая ИС, и ее часто используют, например, в настольных источниках питания.

Для повышения точности в некоторых случаях вы найдете один регулятор, обеспечивающий напряжение для второго регулятора — это схема с двойным регулированием, иногда известная как «суперрегулятор».Это только изолирует второй регулятор от колебаний входного напряжения, но если шум, регулировка нагрузки или температурная стабильность второго регулятора не идеальны, конечный результат, вероятно, не стоит затраченных усилий. Вы, вероятно, получите очень хорошее неприятие гула, но этого в любом случае легко добиться. Имейте в виду, что один слегка сбитый провод или заземление шасси в источнике питания может легко нейтрализовать влияние регуляторов с точки зрения уменьшения шума / гудения.

Существует множество различных ИС регуляторов напряжения от разных производителей, и было бы сложно попытаться включить их все.Прецизионные эталоны также используются в АЦП и ЦАП , особенно в тех, которые предназначены для точных функций измерения. Вы также должны включить микросхемы импульсных регуляторов как напряжения, так и тока — некоторые из них оптимизированы для того или другого. Количество устройств огромно, особенно с коммутационными типами. Каждый год в каталоги поставщиков добавляется больше, и большая часть спроса на новые устройства обусловлена ​​требованиями к «твердотельному» (светодиодному) освещению.

Линейные регуляторы намного проще спроектировать и построить, чем любые регуляторы импульсного режима, потому что здесь не используются высокие частоты и нет магнитных компонентов, о которых следует беспокоиться.Это делает линейный вариант разумным выбором для тестирования конструкции, даже если заранее известно, что конечный источник питания будет переключателем. Необходимо завершить проектирование и в первую очередь установить требуемые требования к напряжению, току и температуре. Когда все они известны, пора работать над окончательной конструкцией режима переключения.


Список литературы

  1. Трубки газоразрядного регулятора — Википедия
  2. Таблицы данных 78xx и 79xx (включая версии с низким энергопотреблением)
  3. LM317 / 337 Лист данных
  4. Диод постоянного тока — Википедия
  5. Current Regulator (Regulative [sic]) диоды — Semitec
  6. Искусство электроники, Пол Горовиц, Cambridge University Press (© 1989)
  7. Опорные значения ширины запрещенной зоны — Аналоговые инновации
  8. Дизайн ссылок на запрещенную зону: испытания и невзгоды — Боб Пиз


Основной индекс

Указатель статей

Уведомление об авторских правах. Эта статья, включая, но не ограничиваясь, весь текст и диаграммы, является интеллектуальной собственностью Рода Эллиотта и защищена авторским правом © 2012. Воспроизведение или повторная публикация любыми средствами, электронными, механическими или электромеханическими, строго запрещены. в соответствии с международными законами об авторском праве. Автор предоставляет читателю право использовать эту информацию только для личного использования, а также разрешает сделать одну (1) копию для справки при создании проекта. Коммерческое использование запрещено без письменного разрешения Рода Эллиотта.

Страница опубликована и защищена авторскими правами © Род Эллиотт, июнь 2013 г.

Цепь регулируемого регулятора напряжения с высоким током, 0-30 В, 20 А

Если вам нужна схема с регулируемым регулятором напряжения с высоким током . Это может быть лучшим выбором для вас.

Он может выдавать выходной ток 20 А или 400 Вт и может регулировать напряжение от 4 до 20 В или легко подавать напряжение от 0 до 30 В. Это хорошее качество, отличная производительность и долговечность с печатной платой.

Для использования в электронной телекоммуникации, радиопередатчике большой мощности и т. Д.

В этом проекте используется несколько компонентов. Из-за использования четырёх стабилизаторов напряжения LM338-5A и популярного операционного усилителя IC-741 в режиме линейного питания.

Попробуйте построить и вам понравится!

Как это работает

LM338K, который мы используем, представляет собой схему регулятора напряжения постоянного тока плавающего типа. Простой стиль применения этой ИС Как показано на рисунке 1

Как использовать LM338 IC basic

Рисунок 1 Схема , в нормальных условиях напряжение между выводом Adj и выводом равно 1.25 В стабильно, что поток R1, R2 также будет постоянным.

Выходное напряжение равно напряжению на выводе Adj + 1,25 В или Рассчитывается следующим образом

Vo = 1,25 (R1 + R2) / R1

Высокий ток при параллельном подключении LM338

Нормально IC-LM338 Может подавать до 5 ампер, но чтобы ток нагрузки не превышал 20 ампер, мы приведем его в параллель.

На что обращать внимание, когда мы соединяем много микросхем параллельно, так это на средний ток, протекающий по цепи.Каждому одинаково.

Самый простой способ — подключить резистор к выходному выводу IC, как показано на рис. 2 .

Номинал резисторов-R, используемых к нему, будет намного меньше, чем R1.

Исходя из схемы, мы можем установить.

IoRs = 1,25 — Vo (R1 / (R1 + R2))

И от работы цепей, установленных ниже, будет.

IiRs = 1,25 — Vo (R1 / (R1 + R2))

Из этих двух одинаковых уравнений следует, что Io = Ii.

Или просто, ток через микросхему LM338 одинаков.

Соединение LM338 в параллельной форме

На практике мы не используем схемы для его использования. Поскольку падение напряжения Rs будет изменяться в зависимости от тока, протекающего через нагрузку, и эталонного напряжения IC. Кроме того, они отличаются друг от друга.

Внешнее управление LM338 с использованием uA741

Следовательно, нам необходимо управлять внешними цепями.Для управления напряжением на выводе adj, как показано на Рис. 3.

Из схемы мы увидим, что на отрицательном выводе IC должно быть половинное напряжение от выходного напряжения. И на положительном выводе должно быть равное номинальному напряжению.

Это вызвано постоянным током, протекающим через транзистор к Rs и P1.

От свойств схемы операционного усилителя до регулируемого уровня выходного напряжения, что. Пока не будет такое же напряжение на штыревом входе.

Итак, напряжение на базе вывода транзистора Q1 равно напряжению на отрицательном выводе IC.

Напряжение, которое изменяет сопротивление транзистора, вызывая изменение напряжения в контрольной точке.

Сопротивление транзистора обратно пропорционально выходному напряжению, чтобы компенсировать потерю напряжения в размере Rs. Из-за неравномерного протекания этих нагрузочных токов.

Регулятор постоянного тока большой мощности 4-20 вольт 20 ампер от LM338

  • Исходя из всех вышеперечисленных принципов, у нас есть схемы применения, как показано на Рисунок 4 , если вы хотите добавить IC-LM338, что позволяет они должны быть выше по току.
  • Для трансформатора, который может подавать не менее 30 ампер, а напряжение вторичной обмотки должно быть не менее 18 вольт.

Для оптимизации схем на конденсаторе С2 лучше использовать 20000uF.

Чтение: Как использовать LM317 Datasheet и распиновка

Список деталей
IC1: LM741
IC2-IC5: LM338K или LM338P
Q1: BD140
D1: диодный мостик D1148 Diodes 75V, мА
R1: 150 Ом резистор 0,5 Вт
R2: 100 Ом резистор 0.5 Вт
R3, R4: резисторы 4,7 кОм 1/2 Вт
R5-R8: резисторы 0,3 Ом 5 ​​Вт
C1: 0,01 мкФ 200 В, полиэфирный конденсатор
C2, C5: 4700 мкФ 50 В, электролитические конденсаторы
C3: 0,1 мкФ 63 В, полиэфирный конденсатор
C4: 10 мкФ 25 В Тантал
C6: 47 мкФ 35 В, электролитические конденсаторы

Печатная плата регулятора постоянного тока большой мощности-4-20-вольт-20-ампер

Build 20A Регулируемый источник питания высокого тока

  • Все устройства в схемах. Устройства можно припаять к печатной плате, как показано на Рисунок 5 .Если вы не измените входной конденсатор-C2, они увеличились. Мне придется установить его за пределами печатной платы.
  • Мостовой диод должен быть аккуратно прикреплен к радиатору. Чтобы продлить срок службы и долговечность.
  • Для IC-LM338, который также необходимо установить на радиатор большого размера. Будьте осторожны, корпус ИС к радиатору Коротко решительно.
  • Когда все будет готово к пайке оборудования, протестируйте входное питание переменного тока для этого проекта.
  • Затем отрегулируйте VR1 до необходимого выходного напряжения, проверьте нагрузку и отрегулируйте VR1 до тех пор, пока выходное напряжение не останется неизменным.

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Цепи ограничителя тока источника питания »Электроника

Технологии и схемы ограничителей тока с использованием диодов и транзисторов для обеспечения функции ограничения тока для источников питания и других цепей.


Схемы линейного источника питания Праймер и руководство Включает:
Линейный источник питания
Шунтирующий регулятор
Регулятор серии
Ограничитель тока
Регуляторы серий 7805, 7812 и 78 **

См. Также:
Обзор электроники блока питания
Импульсный источник питания
Защита от перенапряжения
Характеристики блока питания
Цифровая мощность
Шина управления питанием: PMbus
Бесперебойный источник питания


Цепи ограничителя тока являются ключевыми для источников питания, защищая их в случае короткого замыкания или других условий перегрузки.

Ввиду возможного повреждения источника питания в случае перегрузки почти всегда устанавливаются ограничители тока, и они являются стандартной функцией, встроенной в ИС регулируемых источников питания.

Как следует из названия, схема ограничения тока ограничивает ток от регулируемого источника питания до максимальной величины, определяемой цепью, и таким образом можно избежать серьезного повреждения цепей, как источника питания, так и цепи, на которую подается питание. .

Эти схемы больше подходят для линейных источников питания, хотя аналогичные методы измерения могут использоваться в импульсных источниках питания.

Виды ограничения тока

Как и в случае с любой технологией и типом электронной схемы, есть несколько вариантов, из которых можно выбрать. То же самое и с ограничителями тока, используемыми в регулируемых источниках питания.

Существует два основных типа цепи ограничителя тока:

  • Ограничение постоянного тока: Используя ограничение постоянного тока, выходное напряжение поддерживается по мере увеличения тока до тех пор, пока не будет достигнута точка, в которой достигается максимум.В этот момент ток поддерживается на этом уровне, в то время как напряжение падает с увеличением нагрузки.

    Это основная форма ограничения тока, используемая в регулируемых источниках питания. Схема проста и использует всего несколько электронных компонентов, но не снижает ток в случае короткого замыкания — он поддерживается на максимальном уровне, и это может привести к повреждению схемы.

    Один из недостатков заключается в том, что когда начинает действовать ограничение тока, потребляется максимальный ток, но в этот момент выходное напряжение падает, а это означает, что на транзисторе последовательного прохода в регулируемом источнике питания повышается напряжение на нем.Это увеличивает рассеиваемую мощность внутри устройства.

    В точке, где выходное напряжение почти равно нулю, протекает максимальный ток, в то время как напряжение на нем — это полное входное напряжение от схем сглаживания и выпрямителя. Это не идеально, потому что на этапе проектирования электронной схемы необходимо сделать поправку на это, что потребует, возможно, большего последовательного транзистора, а также дополнительных возможностей теплоотвода, что приведет к дополнительным затратам и размерам регулируемого источника питания.

  • Обратное ограничение тока: В этом типе ограничения тока, используемом в регулируемых источниках питания, выходное напряжение поддерживается до момента, когда ограничение тока начинает действовать. В этот момент, вместо того, чтобы просто ограничивать ток, он фактически начинает уменьшаться. Таким образом, ток уменьшается по мере увеличения перегрузки, и тем самым снижается риск повреждения.

    Ограничение тока обратной связи в регуляторе напряжения снижает потребление энергии, поскольку по мере увеличения перегрузки ток уменьшается и общая потребляемая мощность падает, сохраняя тепловыделение последовательного транзистора в более разумных пределах.

    Ограничение тока обратной связи, хотя и немного более сложное, может быть реализовано с использованием относительно небольшого количества электронных компонентов. Поскольку эта функция обычно встроена в интегральные схемы регулируемого источника питания, дополнительные затраты на использование ограничения обратного хода по сравнению с ограничением постоянного тока не заметны. Соответственно, в этих ИС практически всегда используется ограничение тока обратной связи.

    Ограничитель обратной связи усложняет линейный источник питания, поскольку требует большего количества электронных компонентов, чем простой ограничитель постоянного тока.Также существует вероятность состояния, известного как «блокировка», с неомическими устройствами, потребляющими постоянный ток независимо от напряжения питания. Ограничитель тока с обратной связью может также включать временную задержку, чтобы помочь избежать проблемы с блокировкой.

Две разные формы линейного ограничения тока источника питания, как правило, используются в разных областях, фактический тип, используемый для любого конкретного приложения, выбирается на этапе проектирования электронной схемы проекта.

Основная схема ограничения постоянного тока

Существует ряд схем, которые можно использовать для ограничения постоянного тока для защиты источника питания, но в одной из простейших схем используются всего три электронных компонента: два диода и резистор.

Простой регулируемый источник питания с ограничением тока

В схеме ограничителя тока источника питания используется считывающий резистор, включенный последовательно с эмиттером выходного проходного транзистора. Два диода, помещенные между выходом схемы и базой проходного транзистора, обеспечивают действие по ограничению тока.

Когда схема работает в нормальном рабочем диапазоне, на последовательном резисторе присутствует небольшое напряжение. Это напряжение плюс напряжение база-эмиттер транзистора меньше, чем падение на двух диодных переходах, необходимое для включения двух диодов, чтобы они могли проводить ток.Однако с увеличением тока так же напряжение на резистор.

Когда оно равно напряжению включения диода, напряжение на резисторе плюс падение на переходе база-эмиттер транзистора равняется двум падениям на диоде, и в результате это напряжение появляется на двух диодах, которые начинают проводить. Это начинает понижать напряжение на базе транзистора, тем самым ограничивая потребляемый ток.

Схема этого диодного ограничителя тока для линейного источника питания особенно проста, и, соответственно, конструкция электронной схемы также очень проста.

Значение последовательного резистора можно рассчитать так, чтобы напряжение на нем возрастало до 0,6 В (напряжение включения кремниевого диода) при достижении максимального тока. Однако всегда лучше убедиться, что есть некоторый запас, ограничивая ток от простого регулятора источника питания до того, как будет достигнут абсолютный максимальный уровень.

Двухтранзисторный линейный стабилизатор питания с ограничением тока

Такая же простая диодная форма ограничения тока может быть включена в схемы линейного источника питания, которые используют обратную связь для определения фактического выходного напряжения и обеспечения более точно регулируемого выходного сигнала.Если точка измерения выходного напряжения берется после резистора измерения последовательного тока, то падение напряжения на нем можно скорректировать на выходе.

Схема линейного источника питания с обратной связью и ограничением тока

Схема ограничения тока обратной связи транзистора

Схема ограничения тока обратной связи дает гораздо лучшие характеристики, чем обычная схема ограничения постоянного тока, используемая в более простых источниках питания.

Транзисторный линейный стабилизатор источника питания с ограничением тока обратной связи

В схеме обратной связи используется еще несколько электронных компонентов, в том числе транзистор и несколько резисторов, но она обеспечивает гораздо лучшую защиту источника питания и схемы, на которую подается питание.

Схема работает, потому что по мере увеличения нагрузки возрастающая пропорция напряжения между эмиттером и землей падает на резисторе R3 — по мере уменьшения нагрузки эффект делителя потенциала означает, что большее напряжение падает на R3.

Достигнута точка, когда транзистор Tr3 начинает включаться. Когда это происходит, он начинает ограничивать ток.

Если сопротивление нагрузки становится меньше, тогда напряжение на R3 увеличивается, включает Tr3 больше, и это дополнительно снижает ток, уменьшая уровень подаваемого тока.

Существует несколько уравнений, которые можно использовать для определения ключевых значений схемы, чтобы обеспечить требуемый максимальный ток для линейного регулятора напряжения, а также уровень обратного тока при коротком замыкании.

Для максимального тока от линейного регулятора напряжения:

Imax = 1R3 ((1 + R1R2) VBE + R1R2Vreg)

Для тока короткого замыкания линейного регулятора напряжения:

Отношение максимального тока к току короткого замыкания:

ImaxISC = 1 + (R1R1 + R2) VregVBE

Где:
I max = максимальный ток регулятора напряжения до ограничения тока
В BE = напряжение, при котором транзистор начинает включаться — обычно 0.6V
V reg = выходное регулируемое напряжение
I SC = ток, обеспечиваемый при коротком замыкании.

Ввиду того, что точка считывания регулятора находится после резистора считывания тока, любое падение напряжения на резисторе не повлияет на выходное напряжение схемы, так как оно будет компенсироваться регулятором. (Это предполагает, что на последовательном транзисторе имеется достаточное напряжение для его правильной регулировки.) Таким образом, резистор измерения тока не вызовет никакого снижения выходного напряжения схемы регулятора источника питания.

Схема ограничителя тока источника питания может быть включена в различные схемы с использованием транзисторов и полевых транзисторов в качестве элемента последовательного прохода. Операционные усилители могут использоваться в качестве дифференциальных усилителей для обеспечения требуемого опорного напряжения для выходных устройств.

Основная проблема с обратным ограничением тока заключается в том, что оно не всегда хорошо работает с нелинейными нагрузками. Например, если бы он управлял лампой накаливания, где сопротивление в холодном состоянии намного ниже, чем в горячем, регулятор напряжения с ограничителем тока обнаружит очень низкое сопротивление и войдет в откидную крышку, не допуская лампу нагреть и запустить.Индуктивные нагрузки могут столкнуться с аналогичными проблемами — двигатели и т. Д. Имеют большой пусковой ток. Это означает, что базовое ограничение тока обратной связи в большинстве случаев не подходит для этих типов нагрузки.

Ограничение тока — ключевая особенность всех источников питания. Поскольку электронные устройства остаются включенными почти постоянно и часто остаются без присмотра, функции безопасности, такие как ограничение тока, имеют важное значение в линейных источниках питания, а также в импульсных источниках питания.

К счастью, ограничение тока легко реализовать, оно не требует включения множества дополнительных электронных компонентов, а если оно содержится в интегральной схеме, дополнительные затраты не заметны.

Другие схемы и схемотехника:
Основы операционных усилителей
Схемы операционных усилителей
Цепи питания
Конструкция транзистора
Транзистор Дарлингтона
Транзисторные схемы
Схемы на полевых транзисторах
Условные обозначения схем

Вернуться в меню «Конструкция схемы». . .

Регуляторы тока

Регуляторы тока

Теперь вы должны знать, как работают регуляторы напряжения для обеспечения постоянного выходного напряжения.В
в некоторых цепях может потребоваться регулировка токового выхода. Схема, которая
обеспечивает постоянный ток на выходе, называется регулятором постоянного тока или просто ТОК
РЕГУЛЯТОР. Схема, показанная на рисунке 4-40, представляет собой упрощенную схему для тока.
регулятор. Переменный резистор, показанный на схеме, используется для иллюстрации концепции.
действующего регулирования. Изучая регуляторы напряжения, вы должны знать, что
переменный резистор не реагирует достаточно быстро, чтобы компенсировать изменения.Уведомление
что в эту цепь включен амперметр, чтобы указать, что показанная цепь
что из текущего регулятора. Когда схема работает правильно, текущее показание
амперметр остается постоянным. В этом случае переменный резистор (R V )
компенсирует изменения нагрузки или входного постоянного напряжения. Адекватное текущее регулирование
приводит к потере регулирования напряжения. Изучая показанную схему, следует вспомнить
что любое увеличение сопротивления нагрузки вызывает падение тока.Для поддержания постоянного
тока, сопротивление R V должно быть уменьшено всякий раз, когда сопротивление нагрузки
увеличивается. Это приводит к тому, что общее сопротивление остается постоянным. Увеличение
входное напряжение необходимо компенсировать увеличением сопротивления R В ,
тем самым поддерживая постоянный ток. Работа регулятора тока
аналогичен регулятору напряжения. Основное отличие в том, что регулируется ток.
а другой регулирует напряжение.

Рисунок 4-40. — Регулятор тока (упрощенно).

Поскольку использование переменного резистора не является практичным способом контроля колебаний тока
или вариант, используются транзистор и стабилитрон вместе с необходимыми резисторами.
Напомним, что стабилитрон обеспечивает постоянное опорное напряжение. Схема показана на
Рисунок 4-41 — это схема регулятора тока. За исключением добавления R1,
Схема, показанная на рисунке, аналогична схеме последовательного регулятора напряжения.Резистор
подключается последовательно с нагрузкой и определяет любые изменения тока нагрузки. Уведомление
падение напряжения на R1 и отрицательная полярность напряжения, приложенного к эмиттеру Q1.
Полярность напряжения является результатом тока, протекающего через R1, и это отрицательное напряжение
выступает против смещения вперед для Q1. Однако, поскольку регулируемое напряжение на CR1 имеет
противоположной полярности, фактическое смещение транзистора — это разница между двумя
напряжения. Вы должны увидеть, что цель R2 — функционировать как ограничивающий ток.
резистор для стабилитрона.

Рисунок 4-41. — Регулятор тока.

Назначение регулятора тока — обеспечить постоянный ток независимо от
изменения входного напряжения или тока нагрузки. Схема, показанная на рисунке 4-42, показывает, что
цепи, рассчитанной на постоянный ток 400 миллиампер. Вольтметры бывают
показано на схеме, чтобы подчеркнуть падение напряжения на определенных компонентах.Эти
напряжения помогут понять, как работает регулятор тока. Падение напряжения
через переход база-эмиттер Q1 составляет 0,6 В. Это напряжение — разница между
напряжение стабилитрона и падение напряжения на R1. Прямое смещение 0,6 В Q1 позволяет
правильная работа транзистора. Выходное напряжение на R L составляет 6 вольт как
показывает вольтметр. При регулируемом выходном токе 400 мА
сопротивление транзистора (R Q1 ) составляет 9 Ом.Это можно доказать с помощью закона Ома.
и значения, показанные на схеме. В этом случае ток (I) равен напряжению
падение (E) деленное на сопротивление (R). Следовательно:

12 вольт, разделенное на 30 Ом, равняется 0,4 ампера или 400 миллиампер.

Рисунок 4-42. — Регулятор тока (со схемными значениями).

Поскольку вы знакомы с базовой схемой регулирования тока, давайте рассмотрим в
подробно описать, как различные компоненты работают для поддержания постоянного выходного сигнала 400 мА.См. Схему, показанную на рисунке 4-43. Помните, что уменьшение сопротивления нагрузки вызывает
соответствующее увеличение тока. В показанном примере сопротивление нагрузки R L
упало с 15 Ом до 10 Ом. Это приводит к большему падению напряжения на R1.
из-за повышенного тока. Падение напряжения увеличилось с 2,4 вольт до
2,5 вольта. Конечно, падение напряжения на CR1 остается постоянным на уровне 9 вольт из-за его
регулирующая способность.Из-за повышенного падения напряжения на R1 прямое смещение на
Q1 теперь 0,5 вольт. Поскольку прямое смещение Q1 уменьшилось, сопротивление
транзистор увеличивается с 9 Ом до 14 Ом. Обратите внимание, что увеличение сопротивления на 5 Ом
на транзисторе соответствует уменьшению сопротивления нагрузки на 5 Ом. Таким образом
общее сопротивление вокруг внешнего контура цепи остается постоянным. Поскольку
схема представляет собой регулятор тока, вы знаете, что выходное напряжение будет изменяться в зависимости от регулятора
поддерживает постоянный выходной ток.На рисунке выходное напряжение уменьшено до 4
вольт, которое вычисляется умножением тока (I) на сопротивление (R) (400 мА X 10 Ом
= 4 вольта).

Рисунок 4-43. — Регулятор тока (с уменьшением R L ).

Q.36 На рисунке 4-40 при увеличении сопротивления нагрузки (R L ),
сопротивление R V увеличивается / уменьшается (какой именно) для компенсации
перемена.
Q.37 На рисунке 4-43 любое уменьшение прямого смещения база-эмиттер в Q1 приводит к
увеличение / уменьшение
(какой именно) сопротивления транзистора.

Как использовать LM317 для создания схемы переменного источника питания

В этом посте мы подробно обсудим, как построить простую схему регулируемого источника питания на основе LM317, используя минимальное количество внешних компонентов.

Как следует из названия, регулируемая схема источника питания предоставляет пользователю ряд линейно изменяющихся выходных напряжений посредством вращения потенциометра с ручным управлением.

LM317 — это универсальное устройство, которое помогает любителю электроники быстро, дешево и очень эффективно создать источник питания с регулируемым напряжением.

Введение

Будь то новичок в области электроники или профессиональный профессионал, регулируемый блок питания необходим каждому в этой области. Это основной источник энергии, который может потребоваться для различных электронных процедур, от питания сложных электронных схем до надежных электромеханических устройств, таких как двигатели, реле и т. Д.

Блок питания с регулируемой мощностью является обязательным для каждого электрического и электронного рабочего места, и он доступен в различных формах и размерах на рынке, а также в виде схем.
Они могут быть построены с использованием дискретных компонентов, таких как транзисторы, резисторы и т. Д., Или включать одну микросхему для активных функций. Независимо от типа, блок питания должен обладать следующими характеристиками, чтобы стать универсальным и надежным по своей природе:

Основные характеристики

  • Он должен быть полностью и плавно регулируемым с помощью выходов напряжения и тока.
  • Функция переменного тока может рассматриваться как дополнительная функция, поскольку она не является абсолютным требованием для источника питания, если только ее использование не находится в диапазоне критических оценок.
  • Вырабатываемое напряжение должно идеально регулироваться.

С появлением микросхем или ИС, таких как LM317, L200, LM338, LM723, настройка цепей питания с переменным выходным напряжением с вышеуказанными исключительными качествами в настоящее время стала очень простой.

Как использовать LM317 для создания переменного выходного сигнала

Здесь мы попытаемся понять, как построить простейшую схему источника питания с использованием IC LM317.Эта ИС обычно выпускается в корпусе TO-220 и имеет три вывода.

Выводы очень просты для понимания, так как они состоят из входа, выхода и регулировочных штифтов, которые просто необходимо подключить к соответствующим соединениям.

Входной контакт используется с выпрямленным входом постоянного тока, предпочтительно с максимально допустимым входным напряжением, то есть 24 В в соответствии со спецификациями IC. Выходной сигнал поступает с вывода «out» ИС, в то время как компоненты установки напряжения соединены вокруг регулировочного вывода.

Как подключить LM317 к источнику питания с регулируемым напряжением

Как видно из схемы, сборка практически не требует каких-либо компонентов и, на самом деле, легко установить все на свои места.

Регулировка потенциометра создает линейно изменяющееся напряжение на выходе, которое может быть в пределах от 1,25 В до максимального уровня, подаваемого на вход Ic.

Хотя показанная конструкция является самой простой и, следовательно, включает только функцию управления напряжением, функция управления током также может быть включена в ИС.

Добавление функции управления током

На рисунке выше показано, как можно эффективно использовать микросхему LM317 для создания переменных напряжений и токов по желанию пользователя. Потенциал 5 кОм используется для регулировки напряжения, в то время как резистор измерения тока 1 Ом выбирается соответствующим образом, чтобы получить желаемый предел тока.

Расширение с помощью устройства для сильноточного вывода

ИС можно дополнительно усовершенствовать для создания токов, превышающих номинальные значения.На диаграмме ниже показано, как IC 317 можно использовать для выработки тока более 3 ампер.

LM317 Регулятор переменного напряжения, тока

Наша универсальная микросхема IC LM317 / 338/396 может использоваться в качестве регулируемого регулятора напряжения и тока в простых конфигурациях.

Идея была разработана и протестирована одним из заядлых читателей этого блога г-ном Стивеном Чивертоном и использовалась для управления специальными лазерными диодами, которые, как известно, имеют строгие рабочие характеристики и могут управляться только через специализированные схемы драйверов.

Обсуждаемая конфигурация LM317 настолько точна, что становится идеально подходящей для всех таких специализированных приложений с регулируемым током и напряжением.

Работа схемы

Ссылаясь на показанную принципиальную схему, конфигурация выглядит довольно простой, можно увидеть две микросхемы LM317, одна из которых настроена в стандартном режиме регулятора напряжения, а другая — в режиме управления током.

Если быть точным, верхний LM317 образует ступень регулятора тока, а нижняя действует как ступень регулятора напряжения.

Источник входного питания подключен между Vin и землей верхней цепи регулятора тока, выход этого каскада поступает на вход нижнего каскада регулируемого регулятора напряжения LM317. По сути, оба каскада соединены последовательно для реализации полного надежного регулирования напряжения и тока для подключенной нагрузки, которой в данном случае является лазерный диод.

R2 выбран для получения диапазона максимального предельного тока около 1,25 А, минимально допустимое значение составляет 5 мА, когда на пути установлены полные 250 Ом, что означает, что ток лазера может быть установлен по желанию в диапазоне от 5 мА до 1 усилитель

Расчет выходного напряжения

Выходное напряжение цепи источника питания LM317 можно определить по следующей формуле:

VO = VREF (1 + R2 / R1) + (IADJ × R2)

где is = VREF = 1,25

Токовый ADJ обычно составляет около 50 мкА и поэтому в большинстве приложений слишком мал. Вы можете игнорировать это.

Расчет предела тока

Вышеуказанное вычисляется по следующей формуле:

R = 1.25 / макс. Допустимый ток

Управляемое по току напряжение, полученное с верхней ступени, затем подается на нижнюю схему регулятора напряжения LM317, что позволяет установить желаемое напряжение в пределах от 1,25 В до 30 В, здесь максимальный диапазон составляет 9 В, поскольку Источник — батарея 9В. Это достигается регулировкой R4.

Обсуждаемая схема предназначена для обработки не более 1,5 ампер, если требуется более высокий ток, обе микросхемы могут быть заменены на LM338 для получения максимального тока 5 ампер или LM396 для максимального тока 10 ампер.

Следующие прекрасные фотографии были присланы мистером Стивеном Чивертоном после того, как схема была им построена и успешно проверена.

Изображения прототипа

Обновление LM317 с помощью кнопочного управления напряжением

До сих пор мы узнали, как сконфигурировать LM317 для создания регулируемого выхода с помощью потенциометра, теперь давайте разберемся, как можно использовать кнопки для включения выбора напряжения с цифровым управлением. Мы исключаем использование механического потенциометра и заменяем его парой кнопок для выбора желаемых уровней напряжения вверх / вниз.

Нововведение преобразует традиционную конструкцию источника питания LM317 в конструкцию цифрового источника питания, устраняя низкотехнологичный потенциометр, который может быть подвержен износу в долгосрочной перспективе, что приведет к неустойчивой работе и неправильным выходным напряжениям.

Модифицированная конструкция LM317, которая позволила бы ему реагировать на выбор кнопки, можно увидеть на следующей диаграмме:

Сопутствующие резисторы R2 необходимо рассчитать относительно R1 (240 Ом) для настройки предполагаемого нажатия. кнопка выбирает выходы напряжения.

Сильноточный источник питания LM317 Bench Power Suuply

Этот сильноточный источник питания LM317 можно универсально использовать в любых приложениях, требующих высококачественного регулируемого сильноточного источника постоянного тока, таких как автомобильные сабвуферные усилители, зарядка аккумуляторов и т. Д. Этот источник питания разработан чтобы быть максимально универсальным, а также гарантировать, что количество запчастей остается низким и доступным.

Этот простой источник питания LM317 с фиксированной ОС и регулируемым напряжением идеально удовлетворяет требованиям и способен обеспечить до 10 ампер.Выходное напряжение регулируется каскадом цепи, содержащим R4, R5 и S3; обратите внимание, что переключатель S3 является частью R4.

Для получения фиксированного выходного напряжения необходимо определить резистор R4 для получения нулевого сопротивления (полностью против часовой стрелки). В этой ситуации переключатель S3 должен находиться в разомкнутом положении.

В этом случае предустановку R5 следует настроить так, чтобы схема генерировала выходное напряжение 12 В (или все, что требуется для вашего личного приложения). Чтобы иметь переменный выход, R4 можно перевернуть по часовой стрелке, при этом S3 находится в закрытом положении, и избавиться от R5 из схемы.

Выходное напряжение теперь может управляться только резистором R4. Когда переключатель S2 SPDT находится в положении 1, максимальный выходной ток может быть достигнут, если две половины T1 подают ток на каскад фильтра, чтобы увеличить общий выходной ток в 2 раза.

При этом максимальное выходное напряжение будет уменьшено на 50% в этом положении. Это действительно очень продуктивная настройка, учитывая, что силовой транзистор не должен терять значительный потенциал.

В положении 2 максимальное напряжение практически равно силовым характеристикам Т1. Здесь мы использовали трансформатор с центральным отводом на 24 В для T1. Наконец, D1 и D2 были включены для защиты LM317 IC в случае отключения питания с индуктивной нагрузкой на выходе

Ссылки: http://www.ti.com/lit/ds/symlink/lm317.pdf

https://en.wikipedia.org/wiki/LM317

Типы регуляторов напряжения и принцип работы | Статья

.

СТАТЬЯ

Получайте ценные ресурсы прямо на свой почтовый ящик — рассылается раз в месяц

Мы ценим вашу конфиденциальность

Как работает регулятор напряжения?

Стабилизатор напряжения — это схема, которая создает и поддерживает фиксированное выходное напряжение независимо от изменений входного напряжения или условий нагрузки.

Регуляторы напряжения (VR) поддерживают напряжение источника питания в диапазоне, совместимом с другими электрическими компонентами. Хотя регуляторы напряжения чаще всего используются для преобразования мощности постоянного / постоянного тока, некоторые из них также могут выполнять преобразование мощности переменного / переменного или переменного / постоянного тока. В этой статье речь пойдет о регуляторах постоянного / постоянного напряжения.

Типы регуляторов напряжения: линейные и импульсные

Существует два основных типа регуляторов напряжения: линейные и импульсные. Оба типа регулируют напряжение в системе, но линейные регуляторы работают с низким КПД, а импульсные регуляторы работают с высоким КПД.В высокоэффективных импульсных регуляторах большая часть входной мощности передается на выход без рассеивания.

Линейные регуляторы

В линейном стабилизаторе напряжения используется устройство активного прохода (например, BJT или MOSFET), которое управляется операционным усилителем с высоким коэффициентом усиления. Чтобы поддерживать постоянное выходное напряжение, линейный регулятор регулирует сопротивление проходного устройства, сравнивая внутреннее опорное напряжение с дискретизированным выходным напряжением, а затем сбрасывая ошибку до нуля.

Линейные регуляторы — это понижающие преобразователи, поэтому по определению выходное напряжение всегда ниже входного. Однако у этих регуляторов есть несколько преимуществ: они, как правило, просты в конструкции, надежны, экономичны и обладают низким уровнем шума, а также малыми колебаниями выходного напряжения.

Линейные регуляторы, такие как MP2018, требуют только входной и выходной конденсаторы для работы (см. Рисунок 1) . Их простота и надежность делают их интуитивно понятными и простыми устройствами для инженеров, а зачастую и очень рентабельными.

Рисунок 1: Линейный регулятор MP2018

Импульсные регуляторы

Схема импульсного регулятора обычно более сложна в разработке, чем линейный регулятор, и требует выбора значений внешних компонентов, настройки контуров управления для обеспечения стабильности и тщательного проектирования компоновки.

Импульсные регуляторы

могут быть понижающими преобразователями, повышающими преобразователями или их комбинацией, что делает их более универсальными, чем линейный регулятор.

Преимущества импульсных регуляторов заключаются в том, что они высокоэффективны, имеют лучшие тепловые характеристики и могут поддерживать более высокие токи и более широкие приложения VIN / VOUT.Они могут достичь эффективности более 95% в зависимости от требований приложения. В отличие от линейных регуляторов, для импульсной системы питания могут потребоваться дополнительные внешние компоненты, такие как катушки индуктивности, конденсаторы, полевые транзисторы или резисторы обратной связи. HF920 является примером импульсного стабилизатора, который обеспечивает высокую надежность и эффективное регулирование мощности (см. Рисунок 2) .

Рисунок 2: Импульсный регулятор HF920

Ограничения регуляторов напряжения

Одним из основных недостатков линейных регуляторов является то, что они могут быть неэффективными, поскольку в определенных случаях использования они рассеивают большое количество энергии.Падение напряжения линейного регулятора сравнимо с падением напряжения на резисторе. Например, при входном напряжении 5 В и выходном напряжении 3 В между клеммами возникает падение на 2 В, а эффективность ограничивается 3 В / 5 В (60%). Это означает, что линейные регуляторы лучше всего подходят для приложений с более низкими дифференциалами VIN / VOUT.

Важно учитывать расчетную рассеиваемую мощность линейного регулятора в приложении, поскольку использование более высоких входных напряжений приводит к значительному рассеиванию мощности, что может привести к перегреву и повреждению компонентов.

Еще одним ограничением линейных регуляторов напряжения является то, что они способны только к понижающему (понижающему) преобразованию, в отличие от импульсных регуляторов, которые также предлагают повышающее (повышающее) и понижающее-повышающее преобразование.

Импульсные регуляторы

очень эффективны, но к их недостаткам относится то, что они, как правило, менее рентабельны, чем линейные регуляторы, больше по размеру, более сложны и могут создавать больше шума, если их внешние компоненты не выбраны тщательно. Шум может быть очень важным для конкретного приложения, поскольку шум может повлиять на работу и производительность схемы, а также на характеристики электромагнитных помех.

Топологии импульсного регулятора: понижающий, повышающий, линейный, LDO и регулируемый

Существуют различные топологии линейных и импульсных регуляторов. Линейные регуляторы часто используют топологию с малым падением напряжения (LDO). Для импульсных регуляторов существует три распространенных топологии: понижающие преобразователи, повышающие преобразователи и повышающие-понижающие преобразователи. Каждая топология описана ниже:

Регуляторы LDO

Одной из популярных топологий линейных регуляторов является стабилизатор с малым падением напряжения (LDO).Линейные регуляторы обычно требуют, чтобы входное напряжение было как минимум на 2 В выше выходного напряжения. Тем не менее, стабилизатор LDO разработан для работы с очень небольшой разницей напряжения между входными и выходными клеммами, иногда до 100 мВ.

Понижающие и повышающие преобразователи

Понижающие преобразователи

(также называемые понижающими преобразователями) принимают большее входное напряжение и производят более низкое выходное напряжение. И наоборот, повышающие преобразователи (также называемые повышающими преобразователями) принимают более низкое входное напряжение и производят более высокое выходное напряжение.

Пониженно-повышающие преобразователи

Понижающий-повышающий преобразователь — это одноступенчатый преобразователь, который сочетает в себе функции понижающего и повышающего преобразователя для регулирования выхода в широком диапазоне входных напряжений, которые могут быть больше или меньше выходного напряжения.

Управление регулятором напряжения

Четыре основных компонента линейного регулятора — это проходной транзистор, усилитель ошибки, опорное напряжение и цепь обратной связи через резистор. Один из входов усилителя ошибки установлен двумя резисторами (R1 и R2) для контроля процентного значения выходного напряжения.Другой вход — это стабильное опорное напряжение (VREF). Если дискретизированное выходное напряжение изменяется относительно VREF, усилитель ошибки изменяет сопротивление проходного транзистора для поддержания постоянного выходного напряжения (VOUT).

Для работы линейных регуляторов

обычно требуется только внешний входной и выходной конденсатор, что упрощает их внедрение.

С другой стороны, импульсный стабилизатор требует большего количества компонентов для создания цепи. Силовой каскад переключается между VIN и землей для создания пакетов заряда для доставки на выход.Подобно линейному стабилизатору, есть операционный усилитель, который производит выборку выходного постоянного напряжения из сети обратной связи и сравнивает его с внутренним опорным напряжением. Затем сигнал ошибки усиливается, компенсируется и фильтруется. Этот сигнал используется для модуляции рабочего цикла ШИМ, чтобы вернуть выход в режим регулирования. Например, если ток нагрузки быстро увеличивается и вызывает падение выходного напряжения, контур управления увеличивает рабочий цикл ШИМ, чтобы обеспечить больший заряд нагрузки и вернуть шину в режим регулирования.

Приложения для линейных и импульсных регуляторов

Линейные регуляторы часто используются в приложениях, которые чувствительны к затратам, чувствительны к шуму, слаботочны или ограничены в пространстве. Некоторые примеры включают бытовую электронику, такую ​​как наушники, носимые устройства и устройства Интернета вещей (IoT). Например, в таких приложениях, как слуховой аппарат, можно использовать линейный регулятор, поскольку в них нет переключающего элемента, который мог бы создавать нежелательный шум и влиять на работу устройства.

Более того, если проектировщики в основном заинтересованы в создании недорогого приложения, им не нужно беспокоиться о рассеивании мощности, и они могут полагаться на линейный регулятор.

Импульсные регуляторы полезны для более общих приложений и особенно полезны в приложениях, требующих эффективности и производительности, таких как потребительские, промышленные, корпоративные и автомобильные приложения (см. Рисунок 3) . Например, если приложение требует большого понижающего решения, лучше подходит импульсный стабилизатор, так как линейный регулятор может создать большое рассеивание мощности, которое может повредить другие электрические компоненты.

Рисунок 3: Понижающий регулятор MPQ4430-AEC1

Каковы основные параметры микросхемы регулятора напряжения?

Некоторые из основных параметров, которые следует учитывать при использовании регулятора напряжения, — это входное напряжение, выходное напряжение и выходной ток. Эти параметры используются для определения того, какая топология VR совместима с ИС пользователя.

Другие параметры, включая ток покоя, частоту переключения, тепловое сопротивление и напряжение обратной связи, могут иметь значение в зависимости от приложения.

Ток покоя важен, когда приоритетом является эффективность в режимах малой нагрузки или ожидания. Если рассматривать частоту коммутации как параметр, максимальное увеличение частоты коммутации приводит к меньшим системным решениям.

Кроме того, термическое сопротивление имеет решающее значение для отвода тепла от устройства и его рассеивания по системе. Если контроллер включает в себя внутренний полевой МОП-транзистор, то все потери (проводящие и динамические) рассеиваются в корпусе и должны учитываться при расчете максимальной температуры ИС.

Напряжение обратной связи — еще один важный параметр, который необходимо изучить, поскольку он определяет минимальное выходное напряжение, которое может поддерживать регулятор напряжения. Стандартно смотреть на параметры опорного напряжения. Это ограничивает нижнее выходное напряжение, точность которого влияет на точность регулирования выходного напряжения.

Как правильно выбрать регулятор напряжения

Чтобы выбрать правильный регулятор напряжения, разработчик должен сначала понять их ключевые параметры, такие как V IN , V OUT , I OUT , системные приоритеты (например,грамм. эффективность, производительность, стоимость), а также любые дополнительные ключевые функции, такие как индикация хорошего энергопотребления (PG) или включение управления.

После того, как разработчик определил эти требования, используйте таблицу параметрического поиска, чтобы найти лучшее устройство, отвечающее желаемым требованиям. Таблица параметрического поиска — ценный инструмент для дизайнеров, поскольку она предлагает различные функции и пакеты, доступные для удовлетворения требуемых параметров для вашего приложения.

Каждое устройство MPS поставляется с таблицей данных, в которой подробно описано, какие внешние компоненты необходимы и как рассчитать их значения для достижения эффективной, стабильной и высокопроизводительной конструкции.Таблицу данных можно использовать для расчета таких значений компонентов, как выходная емкость, выходная индуктивность, сопротивление обратной связи и другие ключевые компоненты системы. Кроме того, вы можете использовать инструменты моделирования, такие как программное обеспечение DC / DC Designer или MPSmart, ознакомиться с примечаниями к применению или задать вопросы в местном FAE.

MPS предлагает множество эффективных, компактных линейных и импульсных стабилизаторов напряжения, включая семейство HF500-x, семейство MP171x, MP20056, MP28310, MPQ4572-AEC1 и MPQ2013-AEC1.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *