Схема электронного счетчика электроэнергии: Как устроен электрический счетчик Энергомера. Конструкция, схема, фото. – СамЭлектрик.ру

Схема

Содержание

Обзор и устройство современных счётчиков электроэнергии / Хабр

За последнее время на смену индукционным счётчикам электроэнергии пришли электронные. В данных счётчиках счётный механизм приводится во вращение не с помощью катушек напряжения и тока, а с помощью специализированной электроники. Кроме того, средством счёта и отображения показаний может являться микроконтроллер и цифровой дисплей соответственно. Всё это позволило сократить габаритные размеры приборов, а также, снизить их стоимость.


В состав практически любого электронного счётчика входит одна или несколько специализированных вычислительных микросхем, выполняющие основные функции по преобразованию и измерению. На вход такой микросхемы поступает информация о напряжении и силе тока с соответствующих датчиков в аналоговом виде. Внутри микросхемы данная информация оцифровывается и преобразуется определённым образом. В результате, на выходе микросхемы формируются импульсные сигналы, частота которых пропорциональна текущей потребляемой мощности нагрузки, подключенной к счётчику. Импульсы поступают на счётный механизм, который представляет собой электромагнит, согласованный с зубчатыми передачами на колёсики с цифрами. В случае с более дорогостоящими счётчиками с цифровым дисплеем применяется дополнительный микроконтроллер. Он подключается к вышесказанной микросхеме и к цифровому дисплею по определённому интерфейсу, ведёт накопление результата измерения электроэнергии в энергонезависимую память, а также, обеспечивает дополнительный функционал прибора.

Рассмотрим несколько подобных микросхем и моделей счётчиков, которые мне попадались под руку.

Ниже на рисунке в разобранном виде изображён один из наиболее дешёвых и популярных однофазных счётчиков «НЕВА 103». Как видно из рисунка, устройство счётчика довольно простое. Основная плата состоит из специализированной микросхемы, её обвески и узла стабилизатора питания на основе балластового конденсатора. На дополнительной плате размещён светодиод, индицирующий потребляемую нагрузку. В данном случае – 3200 импульсов на 1 кВт*ч. Также есть возможность снимать импульсы с зелёного клеммника, расположенного вверху счётчика. Счётный механизм состоит из семи колёсиков с цифрами, редуктора и электромагнита. На нём отображается посчитанная электроэнергия с точностью до десятых кВт*ч. Как видно из рисунка, редуктор имеет передаточное отношение 200:1. По моим замечаниям, это означает «200 импульсов на 1 кВт*ч». То есть, 200 импульсов, поданных на электромагнит, поспособствуют прокрутке последнего красного колёсика на 1 полный оборот. Это соотношение кратно соотношению для светодиодного индикатора, что весьма не случайно. Редуктор с электромагнитом размещён в металлической коробке под двумя экранами с целью защиты от вмешательства внешним магнитным полем.

В данной модели счётчика применяется микросхема ADE7754. Рассмотрим её структуру.

На пины 5 и 6 поступает аналоговый сигнал с токового шунта, который расположен на первой и второй клеммах счётчика (на фотографии в этом месте видно повреждение). На пины 8 и 7 поступает аналоговый сигнал, пропорциональный напряжению в сети. Через пины 16 и 15 есть возможность устанавливать усиление внутреннего операционного усилителя, отвечающий за ток. Оба сигнала с помощью узлов АЦП преобразуются в цифровой вид и, проходя определённую коррекцию и фильтрацию, поступают на умножитель. Умножитель перемножает эти два сигнала, в результате чего, согласно законам физики, на его выходе получается информация о текущей потребляемой мощности. Данный сигнал поступает на специализированный преобразователь, который формирует готовые импульсы на счётное устройство (пины 23 и 24) и на контрольный светодиод и счётный выход (пин 22). Через пины 12, 13 и 14 конфигурируются частотные множители и режимы вышеперечисленных импульсов.

Стандартная схема обвески практически представляет собой схему рассматриваемого счётчика.

Общий минусовой провод соединён с нулём 220В. Фаза поступает на пин 8 через делитель на резисторах, служащий для снижения уровня измеряемого напряжения. Сигнал с шунта поступает на соответствующие входы микросхемы также через резисторы. В данной схеме, предназначенной для теста, конфигурационные пины 12-14 подключены к логической единице. В зависимости от модели счётчика, они могут иметь разную конфигурацию. В данном кратком обзоре эта информация не столь важна. Светодиодный индикатор подключен к соответствующему пину последовательно вместе с оптической развязкой, на другой стороне которой подключается клеммник для снятия счётной информации (К7 и К8).

Из этого же семейства микросхем существуют похожие аналоги для трёхфазных измерений. Вероятнее всего, они встраиваются в дешёвые трёхфазные счётчики. В качестве примера на рисунке ниже представлена структура одной из таких микросхем, а именно ADE7752.

Вместо двух узлов АЦП, здесь применено их 6: по 2 на каждую фазу. Минусовые входы ОУ напряжения объединены вместе и выводятся на пин 13 (ноль). Каждая из трёх фаз подключается к своему плюсовому входу ОУ (пины 14, 15, 16). Сигналы с токовых шунтов по каждой фазе подключаются по аналогии с предыдущим примером. По каждой из трёх фаз с помощью трёх умножителей выделяется сигнал, характеризующий текущую мощность. Эти сигналы, кроме фильтров, проходят через дополнительные узлы, которые активируются через пин 17 и служат для включения операции математического модуля. Затем эти три сигнала суммируются, получая, таким образом, суммарную потребляемую мощность по всем фазам. В зависимости от двоичной конфигурации пина 17, сумматор суммирует либо абсолютные значения трёх сигналов, либо их модули. Это необходимо для тех или иных тонкостей измерения электроэнергии, подробности которых здесь не рассматриваются. Данный сигнал поступает на преобразователь, аналогичный предыдущему примеру с однофазным измерителем. Его интерфейс также практически аналогичен.

Стоит отметить, что вышеописанные микросхемы служат для измерения активной энергии. Более дорогие счётчики способны измерять как активную, так и реактивную энергию. Рассмотрим, например, микросхему ADE7754. Как видно из рисунка ниже, её структура намного сложнее структуры микросхем из предыдущих примеров.

Микросхема измеряет активную и реактивную трёхфазную электроэнергию, имеет SPI интерфейс для подключения микроконтроллера и выход CF (пин 1) для внешней регистрации активной электроэнергии. Вся остальная информация с микросхемы считывается микроконтроллером через интерфейс. Через него же осуществляется конфигурация микросхемы, в частности, установка многочисленных констант, отражённых на структурной схеме. Как следствие, данная микросхема, в отличие от предыдущих двух примеров, не является автономной, и для построения счётчика на базе этой микросхемы требуется микроконтроллер. Можно зрительно в структурной схеме пронаблюдать узлы, отвечающие по отдельности за измерение активной и реактивной энергии. Здесь всё гораздо сложнее, чем в предыдущих двух примерах.

В качестве примера рассмотрим ещё один интересный прибор: трёхфазный счётчик «Энергомера ЦЭ6803В Р32». Как видно из фотографии ниже, данный счётчик ещё не эксплуатировался. Он мне достался в неопломбированном виде с небольшими механическими повреждениями снаружи. При всё при этом он находился полностью в рабочем состоянии.

Как можно заметить, глядя на основную плату, прибор состоит из трёх одинаковых узлов (справа), цепей питания и микроконтроллера. С нижней стороны основной платы расположены три одинаковых модуля на отдельных платах по одному на каждый узел. Данные модули представляют собой микросхемы AD71056 с минимальной необходимой обвеской. Эта микросхема является однофазным измерителем электроэнергии.

Модули запаяны вертикально на основную плату. Витыми проводами к данным модулям подключаются токовые шунты.

За пару часов удалось срисовать электрическую схему прибора. Рассмотрим её более детально.

Справа на общей схеме изображена схема однофазного модуля, о котором говорилось выше. Микросхема D1 этого модуля AD71056 по назначению похожа на микросхему ADE7755, которая рассматривалась ранее. На четвёртый контакт модуля поступает питание 5В, на третий – сигнал напряжения. Со второго контакта снимается информация в виде импульсов о потребляемой мощности через выход CF микросхемы D1. Сигнал с токовых шунтов поступает через контакты X1 и X2. Конфигурационные входы микросхемы SCF, S1 и S0 в данном случае расположены на пинах 8-10 и сконфигурированы в «0,1,1».

Каждый из трёх таких модулей обслуживает соответственно каждую фазу. Сигнал для измерения напряжения поступает на модуль через цепочку из четырёх резисторов и берётся с нулевой клеммы («N»). При этом стоит обратить внимание, что общим проводом для каждого модуля является соответствующая ему фаза. А вот, общий провод всей схемы соединён с нулевой клеммой. Данное хитрое решение по обеспечению питанием каждого узла схемы расписано ниже.

Каждая из трёх фаз поступает на стабилитроны VD4, VD5 и VD6 соответственно, затем на балластовые RC цепи R1C1, R2C2 и R3C3, затем – на стабилитроны VD1, VD2 и VD3, которые соединены своими анодами с нулём. С первых трёх стабилитронов снимается напряжение питания для каждого модуля U3, U2 и U1 соответственно, выпрямляется диодами VD10, VD11 и VD12. Микросхемы-регуляторы D1-D3 служат для получения напряжения питания 5В. Со стабилитронов VD1-VD3 снимается напряжение питания общей схемы, выпрямляется диодами VD7-VD9, собирается в одну точку и поступает на регулятор D4, откуда снимается 5В.

Общую схему составляет микроконтроллер (МК) D5 PIC16F720. Очевидно, он служит для сбора и обработки информации о текущей потребляемой мощности, поступающей с каждого модуля в виде импульсов. Эти сигналы поступают с модулей U3, U2 и U1 на пины МК RA2, RA4 и RA5 через оптические развязки V1, V2 и V3 соответственно. В результате на пинах RC1 и RC2 МК формирует импульсы для механического счётного устройства M1. Оно аналогично устройству, рассматриваемому ранее, и также имеет соотношение 200:1. Сопротивление катушки высокое и составляет порядка 500 Ом, что позволяет подключать её непосредственно к МК без дополнительных транзисторных цепей. На пине RC0 МК формирует импульсы для светодиодного индикатора HL2 и для внешнего импульсного выхода на разъёме XT1. Последний реализуется через оптическую развязку V4 и транзистор VT1. В данной модели счётчика соотношение составляет 400 импульсов на 1 кВт*ч. На практике при испытании данного счётчика (после небольшого ремонта) было замечено, что электромагнитная катушка счётного механизма срабатывает синхронно со вспышкой светодиода HL2, но через раз (в два раза реже). Это подтверждает соответствие соотношений 400:1 для индикатора и 200:1 для счётного механизма, о чём говорилось ранее.

Слева на плате расположено место для 10-пинового разъёма XS1, который служит для перепрошивки, а также, для UART интерфейса МК.

Таким образом, трёхфазный счётчик «Энергомера ЦЭ6803В Р32» состоит из трёх однофазных измерительных микросхем и микроконтроллера, обрабатывающий информацию с них.

В заключение стоит отметить, что существует ряд моделей счётчиков куда более сложней по своей функциональности. К примеру, счётчики с удалённым контролем показаний по электролинии, или даже через модуль мобильной связи. В данной статье я рассмотрел только простейшие модели и основные принципы построения их электрических схем. Заранее приношу извинения за возможно неправильную терминологию в тексте, ибо я старался излагать простым языком.

Электрический счетчик – подключение, устройство, принцип работы

Электрический счетчик – это измерительный прибор, предназначенный для учета количества израсходованной потребителем электроэнергии. Измеряется потребляемая электрическая мощность в кВт×час или А×час.

По принципу действия и устройству электрические счетчики бывают: электромеханические, гибридные и электронные (статические), показан на фотографии.

Как самостоятельно выбрать счетчик для дома

Несмотря на кажущуюся сложность выбора для замены или установки нового электрического счетчика, домашнему электрику будет сделать это просто, если ознакомиться с основными критериями выбора.

Типы счетчиков по принципу работы

До недавних пор для учета расхода электроэнергии устанавливались только индукционные механические (электромеханические) счетчики. В них, потребляемый ток протекает через измерительную катушку медного провода, возбуждая магнитное поле. Это поле, воздействуя на диск, заставляет его вращаться со скоростью пропорциональной величине потребляемого тока. Через систему шестеренок вращательное движение передается на счетное устройство.

На смену электромеханическим счетчикам пришли гибридные, которые встречаются в двух конструктивных исполнениях: Индукционный электронный и Электронный механический.

В индукционном электронном счетчике, как и в механическом, имеется катушка, вращающая диск. Вращаясь, он воздействует на сенсор, который вырабатывает импульсы, поступающие на электронное устройство с цифровым дисплеем.

В электронном механическом счетчике все наоборот. Датчиком тока служит твердотельный элемент, как в статическом счетчике, а счетное устройство установлено механическое, как в индукционном счетчике.

В настоящее время вышеупомянутые счетчики вытесняются современными статическими счетчиками, не имеющие механических деталей. В качестве датчиков расхода электроэнергии в них применяется твердотельный электронный элемент, с которого сигнал подается на электронный блок с цифровым дисплеем.

Выбор счетчика по принципу работы

В таблице приведены основные технические характеристики счетчиков учета электрической энергии. Для установки в квартире или доме подойдет любой из них. Поэтому при выборе нужно исходить из объема и времени суток потребления электроэнергии.

Если в ночное время электроэнергия потребляется в незначительных объемах, то лучшим выбором будет Индукционный механический или Индукционный электронный счетчик, так как недорогой, надежный, долговечный и практически не потребуется нести затраты на его ремонт.

Стоит отметить, что индукционные счетчики, в отличии от электронных имеют меньшую чувствительность, и если ток потребления мал, например, включен только на зарядку сотовый телефон, то счетчик считать не будет.

Хотя Статические счетчики в два раза дороже и менее надежны, но если в ночное время суток потребляется более 30% электроэнергии, то они быстро себя окупают и дают хорошую экономию, так как в них заложена функция тарификации. Это когда есть возможность вести учет потребляемой электроэнергии в ночное и дневное время отдельно. Стоимость ночной электроэнергии существенно ниже.

Поставляющие электроэнергию компании тоже заинтересованы в установке статических электронных счетчиков по причине избыточных мощностей в ночное время и исключения снижения показаний индукционных счетчиков с помощью магнитов и укладкой в горизонтальное положение.

На основании вышеизложенного можно сделать вывод, что для частного жилья подойдет однофазный двухпроводный электрический счетчик любого принципа работы, рассчитанный на напряжение 220 В и ток 60 А (максимальная мощность определяется умножением величины тока на напряжение и составит 13,2 кВт).

Мощность потребления электроприборами

Теоретическую максимальную мощность, которая будет потребляться в случае включения одновременно всех электроприборов в квартире не сложно подсчитать по данным приведенной в таблице. Для этого нужно сложить мощности всех имеющихся электроприборов. Но такой случай маловероятен.

Для более точного расчета теоретической суммарной мощности потребления электроприборами ее нужно взять из этикеток или инструкций по эксплуатации на них. Мощность указывается в ваттах (Вт или VA) или киловаттах (кВт или кVA). 1 кВт=1000 Вт.

Электрическая схема подключения
электрического однофазного счетчика

На чертеже изображена электрическая схема щитка и квартирой электропроводки. Электрический счетчик обычно устанавливается в электрическом щитке вместе с автоматическими выключателями и УЗО.

На однофазный счетчик электрическая энергия подается из электросети через щиток, установленный в подъезде дома. В щитке на каждую квартиру устанавливается отдельный автоматический выключатель и с него провода идут непосредственно на счетчик. Один провод называется фазой, второй – нулем, а третий – заземлением.

В квартирах и домах старой постройки электропроводка прокладывалась без заземляющего провода. Он непосредственно в работе электропроводки участие не принимает и предназначен исключительно для повышения безопасности при эксплуатации электроприборов.

Согласно ГОСТ Р 52320-2005 на корпусе счетчика рядом с клеммами для подключения проводов обязательно должна быть нанесена схема его подключения. На фотографии это табличка желтого цвета.

Согласно правил фазный провод L, идущий от электросети, подключается к первому (левому на фотографии) зажиму клеммы. А со второго подается в бытовую электропроводку. Третий и четвертый контакты клеммы соединены внутри счетчика между собой и предназначены для подключения нулевого провода N.

Трехфазный счетчик подключается по такому же принципу. На первый контакт подается фаза А, а со второго – снимается. На третий подается фаза В, а с четвертого выходит. На пятый подается фаза С, а с шестого снимается. Нулевой провод N подается и снимается соответственно с седьмого и восьмого контакта.

Внимание! Перед работой по замене или установке счетчика необходимо отключить подачу на него напряжения отключением автоматического выключателя в распределительном щитке на лестничной площадке и проверить отсутствие фазы на подводящих проводах с помощью индикатора фазы.

Устройство электросчетчика

У знакомого в счетчике перестал работать дисплей. Вызвал электрика и тот недолго думая, заменил счетчик новым. В результате мне для изучения устройства попал этот электроприбор.

Лицевая панель счетчика фиксировалась на трех защелках. После ее снятия открылась картина, как на фотографии. Вся электрическая схема счетчика собрана на печатной плате с двухсторонним монтажом. С лицевой стороны припаян дисплей, кнопки управления и батарейка типа CR2032 на напряжение 3 В, такие же устанавливаются в компьютерах. Батарейка необходима для сохранения настроек и показаний счетчика в случае пропадания электроэнергии.

Батарейка является узким местом в счетчике, так как срок ее годности составляет около 10 лет. Если она выйдет из строя, то настройки день-ночь и показания счетчика при пропадании электроэнергии обнулятся. Батарейка приварена к клеммам, которые впаяны в плату. Для замены батарейки придется заняться пайкой паяльником.

Печатная плата зафиксирована на четырех защелках и легко снимается. Все остальные элементы схемы распаяны на обратной стороне печатной платы. Пайки выполнены аккуратно, следов флюса нет. Качество изготовления счетчика Меркурий мне понравилось.

Измерительным датчиком потребляемой электроэнергии служит шунт, представляющий собой металлическую пластину с калиброванным сопротивлением очень малой величины. При протекании через шунт тока на нем, согласно Закона Ома, происходит падение напряжения, которое подается на микропроцессор.

Аналоговый сигнал микропроцессором преобразуется в цифровой, который запоминаются

Принцип работы электронного счетчика электроэнергии

Никто не спорит с тем, что электричество – это благо, но за него надо платить.

Счетчики электроэнергии, установленные во многих домах, призваны помочь стабилизировать оплату и, по возможности, минимизировать ее.

Виды приборов

Принцип работы любого счетчика заключается в измерении активной энергии и подсчете потраченного.

При этом различают несколько вариантов счетчиков.

Определиться с выбором электронного счётчика поможет данный материал: https://teplo.guru/elektrichestvo/schetchiki/kakoj-luchshe-postavit-v-kvartire.html

Они делятся:

  • по принципу подключения – на приборы прямого и трансформаторного включения;
  • по измеряемым величинам – на однофазные и трехфазные;
  • по конструкции – на механические, электронные и гибридные;
  • по количеству тарифов – на одно- и многотарифные.

В основном, для учета электричества используют электронные устройства, которые обладают рядом преимуществ: они более точные и позволяют использовать несколько тарифов, на которые они переводятся самостоятельно, без участия владельцев.

Стоит отметить: существуют также гибридные счетчики, имеющие цифровой интерфейс и механическое вычислительное устройство, но, судя по отзывам, применяются они крайне редко.

Об установке электросчётчика в частном доме можно прочитать здесь: https://teplo.guru/elektrichestvo/schetchiki/ustanovka-v-chastnom-dome.html

Как работает

Электрический учет устроен на прямом измерении напряжения и тока: вся информация о потреблении электричества подается на индикатор и сохраняется в памяти устройства.

При этом, устройство обладает рядом преимуществ:

  1. Оно позволяет точнее считывать информацию, что препятствует краже электроэнергии.
  2. Обладает меньшими размерами по сравнению с механическими.
  3. Может автоматически переключаться по разным тарифам, не требуя присутствия человека, что позволяет экономить деньги.
  4. Электронные модели проверяют раз в 4-16 лет. Это необходимо для проверки правильности начислений. Проверкой занимается Сфера государственного регулирования обеспечения единства измерений.

Примите к сведению: первая проверка проводится на заводе – ее дата указывается в паспорте прибора.

Одновременно с достоинствами обычно выделяют некоторые недостатки. К ним относят более высокую стоимость и их ненадежность: несмотря на уверения производителей, электронные модели приходится менять чаще механических. Последние способны работать несколько десятков лет, так как в них практически нечему ломаться.

Принципиальная схема электронного счетчика. (Для увеличения нажмите)

Подсчет электричества производится за счет преобразования сигналов тока и напряжения, «входящих» в прибор, в импульс, который он и подсчитывает.

Число последних при этом изменяется в соответствии с поступающей энергией. То есть, чем больше электричества будет израсходовано, тем больше импульса получит устройство и посчитает.

Вместе с подсчитывающим устройством электронный счетчик имеет дисплей, на котором отражаются изменения в потреблении тока, максимальное и минимальное значения, текущий тариф и другие необходимые хозяевам данные.

Однофазные и трехфазные модели

Главным принципом деления электронных счетчиков являются сами измеряемые величины и технические характеристики.

Они бывают:

  1. Однофазными: их используют в квартирах, отдельных домах, небольших офисах и других площадках, питающихся от сети в 3-7 кВт с напряжением 220 В. Такие приборы рассчитаны на токи в 13-32 А (1 кВт = 4,5А, соответственно, 3 кВт – это 13,5 А). При выборе прибора необходимо учесть, что на нем должны быть обозначены номинальное и максимальное значения тока, обычно это соответствует 5-40 А.
  2. Трехфазными: их обычно применяют в промышленных и бытовых зданиях с большой «проходимостью» тока, а также в частных коттеджах, где ввод происходит только по трехфазной системе. Самым простым способом выбрать подходящее устройство станет обращение в соответствующие службы: они смогут помочь в выборе, назвав основные характеристики или модели.

Стоит обратить внимание, что трехфазный счетчик должен иметь внутренний тарификатор. Он осуществляет формирование графика нагрузки и отслеживает переход тарифов, отмечает перенапряжения и отсутствие тока, его работу, спад или увеличение напряжения. Это помогает в снятии показаний счетчика.

Возьмите на заметку: электронные трехфазные счетчики обычно имеют журнал событий, в которых отмечаются все изменения в «работе» тока для своевременного устранения неисправностей.

При выборе электронного электросчетчика лучше остановиться на моделях в большим гарантийным сроком и указанным сроком службы, а также проследить, чтобы в городе была мастерская компании.

Чтобы безошибочно снять показания с электросчётчика рекомендуется изучить данный материал: https://teplo.guru/elektrichestvo/schetchiki/kak-snyat-pokazaniya.html

Это поможет сократить расходы в случаи поломки или установки нового.

Электронный вариант счетчика на сегодняшний день пользуется большим спросом в квартирах и домах. Благодаря расширенным возможностям он предотвращает хищения энергии и может помочь сберечь деньги владельцу жилплощади.

Выбирая модель, не стоит скупиться: дешевый вариант, сделанный из непрочных материалов, прослужит намного меньше, чем более дорогой.

Смотрите видео, в котором на примере конкретной марки рассмотрены особенности электронных счетчиков электроэнергии:

Оцените статью: Поделитесь с друзьями!

Принцип работы электросчетчика: импульсный, индукционный и трехфазный

Содержание статьи:

Первые приборы учета электроэнергии появились в 19 столетии. Объяснить это можно массовыми исследованиями электромагнетизма, которые проводили ученые. Сегодня электросчетчики делятся на несколько видов и устанавливаются во всех помещениях, где люди потребляют электричество. Основная его задача – стабилизировать и при правильном использовании свести к минимуму оплату за коммунальные услуги.

Классификация приборов учета электроэнергии

Различные виды электросчетчиков

Все счетчики для электроэнергии классифицируются по видам в зависимости от типа подключения, конструктивных особенностей и измеряемых величин. Приборы делятся на прямо включаемые в силовую магистраль и устройства, которые подсоединяются к электрической цепи при помощи измерительных трансформаторов.

В зависимости от конструктивных особенностей электрические счетчики делятся на следующие виды:

  • Электромеханические или индукционные. Принцип действия электросчетчика следующий: на подвижную деталь, изготавливаемую из проводящего материала, оказывает непосредственное влияние магнитное поле, которое формируется неподвижными токопроводящими катушками. Подвижная деталь – это диск, а катушки продуцируют токи, приводя в действие этот диск. Объем потребляемого ресурса прямо пропорционален числу оборотов этого диска.

    Счетчик индукционный однотарифный

  • Статический или электронный прибор учета. Принцип работы электронного счетчика электроэнергии следующий: электронные, они же твердотельные, детали восприимчивы к воздействию напряжения и переменного тока, что на выходе создает импульсы, количество которых равно объему измеряемого энергоресурса. Такое устройство электросчетчика позволяет измерять активную энергию на преобразовании напряжения и аналоговых сигналов тока на счетные импульсы.
  • Гибридные типы приборов учета встречаются довольно редко. Особенность устройства электрического счетчика заключается в схожести конструкции механических и электронных приборов.

Электрические счетчики классифицируют на несколько видов по измеряемым величинам и по количеству тарифов. В первом случае приборы учета бывают однофазными и трехфазными, во втором – одно- и двухтарифными.

Устройство и принцип работы электросчетчика

Устройство индукционного счетчика

Чтобы в режиме реального времени и непрерывно производить учет активного энергопотребления переменного тока, требуется устанавливать однофазные или трехфазные индукционные приборы учета. Если же важен учет постоянного тока, который широко распространен на железной дороге и всех видах электротранспорта, монтируют электродинамические приборы учета.

Индукционные электрические счетчики оснащены диском, изготовленным из алюминия, при потреблении ресурса этот подвижный элемент вращается из-за вихревых потоков, созданных индукционными катушками. В данном случае встречаются две разные силы – магнитное поле индукционных катушек и магнитное поле вихревых токов. Образованные в результате токи протекают в цепи параллельной нагрузки. Каждая катушка оснащена сердечником, который намагничивается переменным током. Воздействие непрерывного переменного тока приводит к тому, что полюса электромагнитов постоянно изменяются. Это приводит к прохождению между ними магнитного поля. Именно оно тянет за собой алюминиевый диск, образуя вращение.

Скорость вращения диска прямо пропорциональна величине токов, находящихся в обеих катушках. При производстве электросчетчиков применяются простые соединительные приемы из механики, благодаря чему вращающийся диск связан с цифровыми показаниями на панели.

Учет потребляемого ресурса основывается на прямом напряжении напряжения и тока. Все данные подаются на индикатор, в усовершенствованных моделях данные сохраняются в памяти устройства.

Последние годы люди все чаще отдают предпочтение электронным двухтарифным конструкциям. Непрерывно увеличивающийся спрос объясним следующим перечнем достоинств:

  • Приборы более точно считывают информацию, что позволяет сократить расходы на оплату коммунальных услуг.
  • В сравнении с механическими электросчетчиками они имеют компактные размеры и более привлекательный внешний вид.
  • Автоматически переключаются на дневной и ночной тарифы, участие человека не требуется. Еще на этапе производства прибор программируют на два временных интервала – с 07:00 до 23:00 и с 23:00 до 07:00.
  • Усовершенствованные модели нуждаются в проверке один раз в течение 5-16 лет. Требуется такая проверка для правильности учета и начисления средств. Проверкой должна заниматься энергопоставляющая компания.

Первая проверка работоспособности устройства проводится еще в заводских условиях, дата обязательно должна быть указана в сопроводительной документации.

Среди недостатков двухтарифных приборов учета выделяют высокую стоимость и их ненадежность в сравнении с механическими аналогами. Как показывает практика, электронные модели чаще выходят из строя.

Принципиальная схема электросчетчика

Принципиальная схема счетчика электроэнергии на микросхеме AD7755

Схема работы всех видов электрических приборов не имеет принципиальных отличий, все они похожи.

Для замера мощности задействовано несколько простых датчиков:

  • Датчики напряжения, работа которых основывается на схеме известного делителя.
  • Датчики тока на основе обыкновенного шунта, сквозь который проходит фаза электрической магистрали.

Сигнал, который фиксируется этими датчиками, мал, поэтому его требуется усиливать при помощи электронных усилителей. Потом осуществляется аналогово-цифровая обработка для трансформации сигналов и их перемножения.

Следующие этапы – фильтрация оцифрованного сигнала и вывод на дисплей прибора данных:

  • интегрирования;
  • индикации;
  • передачи вычислений;
  • преобразование.

В этой схеме используемые входные датчики не способны обеспечить измерения высокого класса точности векторов, следовательно, и расчет мощности.

Если требуется высокая точность измерений, схему дополнительно оснащают специальными измерительными трансформаторами.

Если в сравнении рассматривать принципиальную схему работы однофазного электронного прибора учета, в ней дополнительно ТН подсоединен к нулю и фазе, а ТТ – неотъемлемая составляющая разрыва фазного провода. Поскольку сигналы поступают из двух трансформаторов, дополнительное усиление сигнала не требуется. Все дальнейшие преобразования выполняет микроконтроллер, он осуществляет управление дисплеем, оперативным запоминающим устройством и электронным реле. Выходной сигнал через ОЗУ может дальше передаваться в информационный канал.

принцип работы, схема прибора и инструкция

Размер платы за электроэнергию зависит не только от количества подключенных приборов, но и от точности и типа счетчика. Один из самых надежных — электронный электросчетчик.

Виды

Суть работы любого счетчика заключается в измерении активной энергии и расчете потребления. В то же время имеются несколько вариантов конструкции счетчика. Данные приборы делятся:

  • В соответствии с принципом подключения — оборудование напрямую подключено или подключено в трансформаторную цепь.
  • В зависимости от измеряемых значений — однофазные и трехфазные.

Подключение однофазного счетчика

  • По типу конструкции — механические, электронные и гибридные.
  • По числу тарифов — одно- или многотарифные.

Трехфазный прибор в сети

Электронные устройства имеют ряд преимуществ: они более точны и позволяют использовать несколько цен на электроэнергию, при этом показания пересчитываются по этим ценам независимо от владельца.

Важно! Существуют также гибридные счетчики с цифровым интерфейсом и механическим вычислительным устройством, но используются они редко.

Технические параметры

Общие требования:

  • Уровень точности не менее 0,5S.
  • Соответствие требованиям ГОСТ Р (52320-2005, 52323-2005, 52425-2005).
  • Сертификат об утверждении типа.

Функциональные требования:

  • Измерение и расчет активной и реактивной мощности (общая мощность для непрерывной работы), мощность в одном или двух направлениях (30-минутные приращения мощности).
  • Сохранять результаты измерений (на время не менее 35 дней) и информацию о состоянии измерительного прибора.
  • Наличие энергонезависимых часов, обеспечивающих точный показ даты и времени (с использованием внешней синхронизации с ежедневной точностью не менее ± 5,0 секунд в составе SOEV).
  • Поддержание автоматической коррекции времени.
  • Автоматическая самодиагностика через обобщенные сигналы в журнале событий.
  • Предотвращение несанкционированный доступ к информации и программному обеспечению.
  • Прибор должен обеспечивать работу в диапазоне температур, определяемых условиями эксплуатации. (-40 .. + 550С).
  • Среднее время наработки на отказ составляет не менее 35 000 часов.
  • Интервал тестирования — не менее 8 лет.

Принцип работы и схема подключения

Принцип работы счетчика основан на непосредственном измерении напряжения и тока: вся информация о потребляемой мощности подается в индикатор и сохраняется в памяти устройства.

Как устроен электронный счетчик электроэнергии

Электронный электросчетчик имеет следующие преимущества:

  • Позволяет более точно считывать информацию, тем самым предотвращая большую погрешности измерения электроэнергии.
  • Его размер намного меньше механического.
  • Он может автоматически переключаться между тарифами без необходимости присутствия хозяина. Это существенно экономит средства.
  • Электронная модель проверяется каждые 4-16 лет. Это необходимо для проверки правильности исчисления. Проверка выполняется в рамках правил для обеспечения согласованности измерений.

Важно! Первая проверка выполняется на заводе-изготовителе, дата указана в паспорте прибора.

Помимо преимуществ имеются и некоторые недостатки. К ним относятся более высокие затраты на приобретение самого приборов и их ненадежность: несмотря на гарантию производителя, электронные модели приходится заменять чаще, чем механические модели. Последние работают в течение десятилетий, потому что их устройство очень простое, и ломаться, по сути, нечему.

Напряжение тока внутри счетчика преобразуется в электрические импульсы. Их количество варьируется в зависимости от входной энергии. То есть чем больше потребляемая мощность, тем больше импульсов получает и считает устройство.

Электронный счетчик вместе со счетным устройством имеет дисплей, который показывает изменения в потреблении тока, максимальных и минимальных значениях и других данных, требуемых владельцем.

Инструкция по применению

Инструкция по эксплуатации и монтажу содержит следующие пункты:

  • Прибор может устанавливать персонал, прошедший инструктаж по мерам безопасности и имеющий квалификационную группу по электробезопасности не ниже уровня III (электрическая установка до 1000 В).
  • Перед установкой надо извлечь прибор из транспортной упаковки и провести внешний осмотр.
  • Убедиться, что корпус и защитная крышка распределительной коробки не имеют значительных повреждений.
  • Установить счетчик на рабочем месте, снять защитную крышку распределительной коробки и подключить к цепи напряжения

Важно! Подключение к сети проводить только с отключением питания

  • Установить крышку распределительной коробки и закрепить ее двумя винтами.
  • Включить питание и убедиться, что счетчик включен: индикатор показывает значение энергии, учитываемое в текущей зоне.
  • Отметить в таблице дату установки и дату ввода в эксплуатацию.

Монтаж счетчика в щит

Как самостоятельно проверить счетчик

Чтобы проверить работоспособность счетчика, нужно провести несколько шагов:

  1. Нужно убедиться, что прибор правильно подключен к сети 220 или 380 В в соответствии со схемой.
  2. Проверить, что диск не вращается произвольно. Для этого нужно отключить все автоматы в щитке и подождать некоторое время. Если счетчик все равно вращается, то он неисправен.
  3. Проверка намагниченности. Влияние магнита также меняет работу прибора. Проверить его наличие можно с помощью небольшой металлической иголкой или специальным прибором.

Проверка прибора с помощью специальных приборов

Электронный счетчик — дорогой, но точный прибор, который в дальнейшем поможет сэкономить на плате за электроэнергию. Сложность конструкции обеспечивает удобство работы, но также является причиной частых поломок.

Как работает счетчик электроэнергии старого и нового образца

В статье подробно рассмотрена конструкция и принцип действия счетчика электроэнергии, как индукционного, так и электронного.

Все мы знаем, зачем нужен счетчик электроэнергии – для правильного учета расхода электричества. На основании показаний электросчетчика осуществляется оплата «за свет». В этой статье мы хотели бы рассказать читателям самэлектрик.ру об устройстве и принципе работы счетчика электроэнергии. Для вас мы рассмотрим как электронную модель, так и старого образца – индукционную. Содержание:

Индукционный

Старые электросчетчики состоят из следующих элементов:

  1. Последовательная обмотка, именуемая также токовой катушкой. Состоит из нескольких витков толстого провода.
  2. Параллельная обмотка (катушка напряжения). Устроена, наоборот, из большого количества витков провода маленькой толщины.
  3. Счетный механизм. Устанавливается на оси алюминиевого диска.
  4. Постоянный магнит, назначение которого – тормозить и обеспечивать плавный ход диска.
  5. Диск из алюминия. Крепится на подшипниках и подпятниках.

Как видно на схеме, устройство индукционного счетчика электроэнергии достаточно простое. Что касается принципа работы, он также несложен. Сначала переменное напряжение подается на параллельную обмотку (катушку напряжения) и далее протекает на вторую, токовую катушку. Между двумя электромагнитами катушек возникают магнитные вихревые токи, которые, собственно, и способствуют вращению диска. Чем больше сила тока, тем быстрее будет крутиться диск. В свою очередь счетный механизм работает по следующему принципу: вращение от диска передается к барабану за счет червячной передачи (этому способствует установленный на оси диска червяк, который передает вращение через шестеренку, что видно на схеме выше).

Наглядно увидеть, как работает индукционный электросчетчик, вы можете на видео ниже:

Схема работы прибора учета электроэнергии старого типа

Обращаем ваше внимание на то, что принцип работы однофазного счетчика электроэнергии старого образца аналогичен трехфазной модели.

Электронный

В электронном счетчике, к примеру, Энергомера ЦЭ6803В, нет ни диска, ни червячной передачи. Устройство счетчиков электроэнергии нового образца показано на схеме и фото ниже:

Принцип действия электронной модели заключается в том, что датчики тока и напряжения передают сигналы на преобразователь. Последний, в свою очередь, передает код на микроконтроллер для дальнейшей расшифровки и передачи данных на дисплей. В результате мы видим, сколько киловатт электроэнергии израсходовано на данный момент.

На этом видео подробно рассматривается устройство электронного и индукционного счетчика:

Как устроены электросчетчики

Что касается многотарифных приборов учета, типа «день-ночь» или трехтарифные модели, в их устройстве дополнительно встроен модуль памяти, который запоминает количество тока, «намотанное» в разных режимах: днем и ночью. Это нужно для того, чтобы правильно подсчитывать оплату за электроэнергию (с 23:00 до 7:00 стоимость киловатта меньше, чем в остальное время суток). Про преимущества и недостатки двухтарифных электросчетчиков можете прочитать в нашей статье.

Существуют также модели приборов учета электроэнергии с пультом. В их конструкцию внесен механизм, который может блокировать систему подсчета израсходованного электричества.

Вот и все, что хотелось рассказать вам о том, какое устройство и принцип работы счетчиков электроэнергии. Надеемся, информация была для вас понятной и полезной!

Будет полезно прочитать:

  • Как работает магнитный пускатель
  • Как снимать показания с электросчетчика
  • Устройство и принцип действия реле напряжения

Схема работы прибора учета электроэнергии старого типа

Как устроены электросчетчики

Нравится0)Не нравится0)

Электронный счетчик электроэнергии: характеристики и определение показателей

Содержание статьи:

Для контроля затрат электричества в квартирах многоэтажек используется электронный счетчик электроэнергии. Подключение цифрового прибора осуществляется через общий трансформатор. В процессе работы счетчик постоянно измеряет мощность заданного участка сети и выводит ее величину в удобочитаемом виде.

Конструкция и принцип работы

Прибор состоит из трёх одинаковых узлов (справа), цепей питания и микроконтроллера

Измерительный аппарат совместим с однофазными и трехфазными цепями переменного тока. Его конструкция представлена:

  • корпусом из термостойкого пластика или металла с клеммной колодкой;
  • дисплеем – ЖК-индикатором, где отображаются данные и время, или механическим;
  • источником запитки электронной схемы;
  • токовым трансформатором – выполняет функции измерителя;
  • микроконтроллером, преобразующим сигнал на входе в электрические величины;
  • телеметрическим выходом для интеграции с АСКУЭ;
  • часами – позволяют отслеживать реальное время и даты;

    Внешний вид электронного электросчетчика

  • супервизором – отслеживает колебания напряжения на входе и подает команду сброса микроконтроллеру, когда напряжение выключается либо включается;
  • системой управления;
  • оптическим портом, позволяющим снимать показания устройства.

Через оптический порт можно запрограммировать цифровой счетчик.

Принцип работы цифрового счетчика электроэнергии заключается в прямом замере напряжения и тока. Он оцифровывает информацию, передавая ее на индикатор и сохраняя в памяти. Импульсы входных электронных твердотелых элементов создают под воздействием тока напряжения. Количество импульсов зависит от активности энергии.

Основные характеристики цифровых счетчиков

На территории РФ приборы начали применять с момента приватизации энергетической отрасли и подорожания электричества. Электронные устройства обладают рядом положительных характеристик:

  • точность показаний при быстрой перемене напряжения или его снижении;
  • учет электроэнергии по нескольким тарифам;
  • подсчет различных типов энергии с помощью одного аппарата;
  • одновременно замеряется мощность, количество и качество энергоресурсов;
  • хранение данных в памяти и наличие к ним пользовательского доступа;
  • предотвращение несанкционированного доступа и хищения электричества;
  • дистанционное снятие показаний и предварительный подсчет потерь;
  • совместимость с автоматическими сервисами коммерческого учета электроэнергии.

Прибор не могут взломать злоумышленники и подключиться к нему для кражи электричества. Интервал проверки изделия составляет 16 лет.

Отличия электронных счетчиков от индукционных

Устройство индукционного счетчика электроэнергии

Индукционные модели работают по принципу создания электромагнитного поля в катушке и его взаимодействия с токопроводящим диском. Однофазный аппарат подключается к катушке-сети переменного тока параллельно. Магнитные потоки и вихревые токи взаимодействуют между собой только в диске. Индукционный счетчик будет функционировать нормально при фазовом сдвиге в 90 градусов. Энергозатраты зависят от интенсивности вращения диска, которая соответствует мощности потребления.

Принцип работы эл счетчика основывается на подсчетах мощности активного и реактивного типа. Это позволяет точно подсчитывать энергозатраты, если в помещении трехфазный тип подключения.

Индукционные модели считают расход по единому тарифу, цифровые приборы отслеживают параметры в зависимости от времени суток. Точность измерения нового счетчика – 1-й категории, традиционные выпускаются с классом точности 2,5.

По сравнению с индукционным цифровой счетчик на собственные нужды затрачивает минимум энергоресурсов. Традиционные устройства нельзя поставить снаружи, а электронные могут работать в условиях мороза, защищены от воздействия влаги и пыли.

Надежность показаний и необходимость ремонта

Качественный цифровой электросчетчик отличается высокой точностью. Проверить параметры без нарушения целостности корпуса и пломб можно так:

  1. После прекращения подачи напряжения индикатор останавливается. Если учет продолжается – устройство неисправно.
  2. Счетчик всегда жужжит при работе, о неполадках свидетельствует самоход.
  3. Показания искажаются при отключении всех бытовых приборов. Обязательно проверяется наличие самохода.

Тестирования лучше производить ночью, в условиях минимальной нагрузки на электросеть. Если самохода нет, импульсы индикатора отсутствуют на протяжении 15 минут. Импульс, возникший, когда подключение не произведено, означает поломку.

Заниматься ремонтом цифрового счетчика должны только сотрудники компании энергосбережения. Пользователь обращается в инстанцию для получения разрешения на проверку и замену аппарата.

Обозначение показателей цифрового счетчика

На основании данных электронного счетчика определяется несколько показаний:

  • Энергозатраты за конкретный временной период. Понадобится вычесть из конечных показаний начальные. При необходимости расчетные данные умножают на коэффициент трансформации;
  • Подключение бытовой техники и освещения в определенный момент. Устанавливается по загоранию/выключению светового индикатора.
  • Параметры мощности, величины проходящего тока, процессы перегрузки сети и счетчика.

Цифровые приборы можно запрограммировать на дневную и ночную тарификацию. Для этого достаточно выбрать время подсчета.

Критерии подбора

Один из критериев выбора электросчетчика – количество тарифов

Перед покупкой устройства стоит обращать внимание на ряд параметров:

  • Допустимая величина тока. Цифровые модели рассчитаны на ток 5-60А, что подходит для квартир и частных домов.
  • Дата проверки. На трехфазном счетчике должна находится пломба не старше 1 года.
  • Количество пломб. Первое опломбирование делают государственные органы – отметку проставляют на кожухе. Вторая пломба на зажимной крышке – от предприятия энергоснабжения.
  • Опционал. Чем больше функций, тем дороже счетчик. Но внутренний тарификатор создает график нагрузки, а в журнале событий отмечается повышение и понижение напряжения в каждой фазе.
  • Обслуживание и гарантии. Качественные модели имеют большой гарантийный период. Сервисный центр бренда есть в городе покупателя.
  • Интервал проверки. Оптимально – от 10 до 16 лет.
  • Интеграция с АСКУЭ. Показания автоматически передаются провайдеру.
  • Фазность. Информация указывается на табло. Однофазный аппарат имеет маркировку 220 или 230 В, трехфазный – 220/380 В или 230/400 В.
  • Количество тарифов. Двухтарифная схема исключает переплаты за электричество в ночное время.
  • Способ монтажа. Цифровой аппарат крепится на винтах (корпус S или Ш) или дин-рейках (корпус R или P).

Продавец обязан поставить печать на приборе и записать его стартовые показания.

Список лучших аппаратов учета

Потребители и профессиональные электрики рекомендуют несколько устройств.

Меркурий 201.8

Прочный бюджетный прибор с разрешением ЖК-экрана 7 разряда и классом точности 1. Рассчитан на сеть с напряжением 220-230 В и силой тока 5-80 А. Исправно работает в условиях жары и мороза при влажности до 90 %. Оснащен:

  • модульным корпусом;
  • измерительным токовым конвертером;
  • винтовыми клеммами;
  • светодиодной подсветкой зоны показаний.

Эксплуатационный срок модели – 30 лет, ревизионный – 16 лет.

Нева М. Т.123

Аппарат с рабочим напряжением 230 В и номинальным током 5 А. Гарантия изготовителя – 30 лет. Предназначен для измерения:

  • частоты напряжения в сети;
  • активной мощности электролинии;
  • показателей токового напряжения и силы.

Модель имеет 1 класс точности, может устанавливаться в офисах, домах, торговых залах и квартирах.

Энергомера CE102M S7 145-JV

Класс точности модели – 1. Она не подвергается климатическим, электромагнитным и механическим повреждениям. Устройство рассчитано на силу тока 5-60 А, рабочее напряжение 220-230 В. Может работать без сбоев при температуре от -45 до +70 градусов и влажности 98 %. Дополнительные возможности:

  • шпунт;
  • память энергонезависимого типа;
  • интерфейсы связи;
  • пользовательское перепрограммирование;
  • вывод данных за нужный период времени;
  • снятие информации без напряжения.

В память счетчика нельзя внести корректировки.

Электронные счетчики – это современные учетные аппараты с широкими функциональными возможностями. Они гарантируют точность измерений, отличаются надежностью и стойкостью к внешним воздействиям.

10 вещей, которые нужно знать о счетчике электроэнергии

Счетчик электроэнергии: он работает на вас постоянно, но что вы о нем знаете? В этой статье мы объясним все, что вам нужно знать о счетчике электроэнергии.

Что такое счетчик электроэнергии?

Электросчетчик — это устройство, которое измеряет потребление электроэнергии, используемой вашим домом, когда она проходит в ваш дом. Обычно его устанавливают в том месте, где линии электропередач входят в ваше здание.Подобно дисплею пробега в вашем автомобиле, который показывает вам общее расстояние, которое ваша машина проехала, электросчетчик отображает общее количество энергии, которое было использовано с момента его установки, и работает постоянно. Он измеряет потребление электроэнергии в киловатт-часах. Чтобы узнать, сколько электроэнергии вы израсходовали за определенный период времени, вы должны снять два показания и вычесть второе показание из первого.

Хотя существуют разные типы счетчиков, все они выполняют одну и ту же функцию и включают одни и те же базовые компоненты:

  • Уникальный номер счетчика, который используется для определения вашего потребления
  • Отображение общего потребления электроэнергии

Номер счетчика

Электросчетчику, подключенному к вашему дому, присваивается уникальный номер , чтобы ваше потребление можно было идентифицировать и правильно выставить счет.Вам нужно будет указать номер вашего счетчика, когда вы отправите показания счетчика своему поставщику услуг по передаче / распределению (TDSP — также известному как ваша электроэнергетическая компания). Это не то же самое, что ESI ID #, который используется для локализации номера вашего счетчика и привязки вашего потребления к номеру счетчика.

Где найти номер счетчика

Номер счетчика указан на лицевой стороне счетчика. На аналоговом счетчике номер счетчика находится в нижней части счетчика. В приведенном ниже примере номер счетчика — 320х312121241.

На цифровом счетчике номер счетчика находится под экраном потребления.

Виды электросчетчиков

Существует два основных типа электросчетчиков, используемых большинством коммунальных предприятий: электромеханические счетчики и автоматизированные («умные») счетчики. Однако американцы, устанавливающие мощности микрогенерации, должны установить счетчик третьего типа — двунаправленный счетчик . Ознакомьтесь с нашим руководством для получения дополнительной информации о различных типах счетчиков.

Как работают электромеханические счетчики?

Электромеханические счетчики состоят из следующих компонентов:

  • Пластиковая или стеклянная крышка .Крышка опломбирована , чтобы уменьшить вероятность того, что она может быть повреждена или взломана
  • Регистр
  • Заводская табличка
  • Уникальный номер для конкретного счетчика
  • Диск , который вращается при потреблении энергии
  • Набирает , который показывает общее количество потребляемой мощности

Электромеханические индукционные счетчики являются наиболее распространенным типом счетчиков электроэнергии, которые в настоящее время используются в США.Они содержат токопроводящий немагнитный металлический диск, который вращается со скоростью, пропорциональной количеству потребляемой электроэнергии. Диск приводится в движение за счет взаимодействия магнитных полей, создаваемых двумя электромагнитами, окружающими диски: один питается за счет энергии, подаваемой от входящих линий электропередач, а другой — за счет тока, требуемого электрическими цепями здания. Вращение диска замедляется двумя постоянными магнитами, которые действуют пропорционально противоположной силе.Цифры на циферблате меняются по мере вращения диска.

Как работают автоматизированные «умные» счетчики?

Автоматические счетчики (или «умные» счетчики) работают аналогично традиционным электромеханическим счетчикам, но они также содержат батарею и коммуникационный чип . Эта коммуникационная микросхема отправляет данные показаний счетчика по радиосигналу на мобильный коллектор несколько раз в день (и между этими временами находится в неактивном состоянии). Эта информация о показаниях счетчика отправляется электроэнергетической компании по линиям электропередач, по радиочастотным или сотовым сетям.Коммунальное предприятие отправляет информацию о потреблении потребителями своему поставщику энергии для выставления счетов.

Батарея в микросхеме связи в автоматических счетчиках рассчитана на срок службы от 15 до 20 лет. Коммуникационный чип (который иногда называют устройством кодирования, приемника, передатчика или ERT) работает на той же радиочастоте, что и многие беспроводные телефоны, но спроектирован так, чтобы не мешать другим устройствам (он автоматически переключится на другую частоту, если он обнаруживает помехи).

Зачем нужен умный счетчик ? Потому что это позволяет вашему поставщику энергии определять не только, сколько электроэнергии вы использовали, но и , когда вы ее потребляли . Традиционный автоматический счетчик (AMR) отслеживает потребление электроэнергии, и ваша коммунальная компания применяет среднюю цену за предыдущий месяц, чтобы определить ваш счет. Однако цены на электроэнергию меняются на в течение дня, резко повышаясь в периоды высокого спроса и резко падая в периоды низкого спроса, например, ночью.

Поскольку регулирование рынков электроэнергии было прекращено, компании искали более эффективные способы ценообразования на поставляемую ими электроэнергию, чтобы взимать с потребителей плату за электроэнергию, которую они используют, , когда они ее используют . Кроме того, поскольку интеллектуальных счетчиков можно считывать удаленно , электроэнергетические и газовые компании рассматривают их как способ сэкономить деньги на эксплуатационных и трудовых затратах . Хотя интеллектуальные счетчики сами по себе не составляют «интеллектуальную сеть», они составляют ее неотъемлемую часть.

Таким образом, интеллектуальные счетчики могут помочь вам сэкономить деньги каждый месяц, если вы можете потреблять в периоды непиковой нагрузки (или, наоборот, в конечном итоге обходятся вам дороже).

Живете в Техасе? Ознакомьтесь с нашим подробным руководством о том, как интеллектуальные счетчики влияют на ваш счет

Двунаправленные измерители

Все владельцы микрогенерации должны иметь b

.

Счетчик электроэнергии — Простая английская Википедия, бесплатная энциклопедия

Счетчик электроэнергии (или счетчик электроэнергии ) — это устройство, которое измеряет количество электроэнергии, потребляемой домом или бизнесом. Обычно измерения ведутся в киловатт-часах (кВтч).

Счетчики электроэнергии стали популярными, когда в 1880-х годах все больше и больше домов были подключены к электричеству. Вместо того, чтобы заряжать дома в зависимости от того, сколько у них электрических нагрузок, тарификация на основе того, сколько электричества они использовали, стала более точной и справедливой.

Счетчик электроэнергии в разобранном виде

Электромеханические счетчики [изменить | изменить источник]

Счетчик электроэнергии этого типа использует силу, создаваемую током при прохождении через магнитное поле, для вращения вращающегося диска внутри счетчика. Затем диск поворачивает число, чтобы указать, сколько электроэнергии было использовано, что регистрируется счетчиком.

Электронные счетчики [изменить | изменить источник]

Счетчики электроэнергии этого типа преобразуют электроэнергию напрямую с помощью аналого-цифрового преобразователя внутри микропроцессора, чтобы получить точные показания потребления электроэнергии.

Счетчики электроэнергии легко поддаются взлому. Это может позволить клиентам использовать электроэнергию бесплатно. Взлом счетчиков электроэнергии является незаконным и может повлечь за собой штрафы или судебные иски.

.

Электрическая схема — Простая английская Википедия, бесплатная энциклопедия

Электрическая схема — это путь, по которому текут электроны от источника напряжения или тока.

Точка, где эти электроны входят в электрическую цепь, называется «источником» электронов. Точка, в которой электроны покидают электрическую цепь, называется «возвращением» или «землей». Точка выхода называется «возвращением», потому что электроны всегда попадают в источник, когда они завершают свой путь в электрической цепи.

Часть электрической цепи, которая находится между начальной точкой электронов и точкой, где они возвращаются к источнику, называется «нагрузкой» электрической цепи. Нагрузка электрической цепи может быть такой же простой, как нагрузка на бытовые приборы, такие как холодильники, телевизоры или лампы, или более сложной, например, нагрузка на выходе гидроэлектростанции.

В цепях используется два вида электроэнергии: переменный ток (AC) и постоянный ток (DC).Переменный ток часто питает большие приборы и двигатели и вырабатывается электростанциями. Постоянный ток питает автомобили, работающие от батарей, а также другие машины и электронику. Преобразователи могут преобразовывать переменный ток в постоянный и наоборот. Для передачи постоянного тока высокого напряжения используются большие преобразователи.

Экспериментальная электронная схема

В электронных схемах обычно используются источники постоянного тока. Нагрузка электронной схемы может быть такой же простой, как несколько резисторов, конденсаторов и лампы, соединенных вместе, чтобы создать вспышку в камере.Или электронная схема может быть сложной, соединяя тысячи резисторов, конденсаторов и транзисторов. Это может быть интегральная схема, такая как микропроцессор в компьютере.

Резисторы и другие элементы схемы можно подключать последовательно или параллельно. Сопротивление в последовательной цепи — это сумма сопротивлений.

Цепь или электрическая схема — это визуальное отображение электрической цепи. Электрические и электронные схемы могут быть сложными. Чертеж соединений всех компонентов в нагрузке схемы упрощает понимание того, как соединяются компоненты схемы.Чертежи электронных схем называются «принципиальными схемами». Чертежи электрических схем называют «электрическими схемами». Как и другие диаграммы, эти диаграммы обычно рисуются чертежниками, а затем распечатываются. Диаграммы также могут быть созданы в цифровом виде с использованием специализированного программного обеспечения.

Схема — это схема электрической цепи. Схемы — это графические изображения основных соединений в цепи, но они не являются реалистичным изображением цепи. На схемах используются символы для обозначения компонентов в цепи.Условные обозначения используются в схеме, чтобы обозначить путь электричества. Мы используем обычное соглашение: от положительной клеммы к отрицательной. Реалистичный путь перетока электричества — от отрицательной клеммы к положительной.

На принципиальных схемах используются специальные символы. Символы на чертежах показывают, как соединяются между собой такие компоненты, как резисторы, конденсаторы, изоляторы, двигатели, розетки, фонари, переключатели и другие электрические и электронные компоненты. Диаграммы очень помогают, когда рабочие пытаются выяснить, почему схема работает некорректно.

Ток, протекающий в электрической или электронной цепи, может внезапно возрасти при выходе из строя компонента. Это может вызвать серьезные повреждения других компонентов цепи или создать опасность возгорания. Для защиты от этого в цепь можно подключить плавкий предохранитель или устройство, называемое «автоматический выключатель». Автоматический выключатель размыкает или «разрывает» цепь, когда ток в этой цепи становится слишком большим, или предохранитель «перегорает». Это дает защиту.

Прерывание от замыкания на землю (G.F.I.) устройства [изменить | изменить источник]

Стандартный вывод для электрических и электронных цепей — заземление. Когда электрическое или электронное устройство выходит из строя, оно может размыкать обратную цепь на землю. Пользователь устройства может стать частью электрической цепи устройства, обеспечив обратный путь для электронов через тело пользователя вместо заземления цепи. Когда наше тело становится частью электрической цепи, пользователь может быть серьезно шокирован или даже убит электрическим током.

Для предотвращения опасности поражения электрическим током и возможности поражения электрическим током устройства прерывания замыкания на землю обнаруживают обрыв цепи на землю в подключенных электрических или электронных устройствах. При обнаружении обрыва цепи на землю G.F.I. устройство немедленно открывает источник напряжения для устройства. G.F.I. устройства похожи на автоматические выключатели, но предназначены для защиты людей, а не компонентов цепей.

Короткие замыкания — это цепи, которые возвращаются к источнику питания неиспользованным или с той же мощностью, что и отключенная.Обычно они перегорают, но иногда этого не происходит. Выполнение этого с аккумулятором может вызвать электрический пожар.

.

0 0 vote
Article Rating
Подписаться
Уведомление о
guest
0 Комментарий
Inline Feedbacks
View all comments