Схема подключения последовательного: 5 применений последовательного соединения ламп

Схема

Содержание

5 применений последовательного соединения ламп

Как известно, в быту повсеместно используется параллельное подключение ламп. Однако последовательная схема также может применяться и быть полезна.

Давайте рассмотрим все нюансы обеих схем, ошибки которые можно допустить при сборке и приведем примеры практической их реализации в домашних условиях.

Последовательная схема подключения

В начале рассмотрим простейшую сборку из двух последовательно подключенных лампочек накаливания.

Имеем:

  • две лампы вкрученные в патроны
  • два провода питания выходящие из патронов

Что нужно, чтобы подключить их последовательно? Ничего сложного здесь нет.

Просто берете любой конец провода от каждой лампы и скручивает их между собой.

На два оставшихся конца вам необходимо подать напряжение 220 Вольт (фазу и ноль).

Как будет работать такая схема? При подаче фазы на провод, она пройдя через нить накала одной лампы, через скрутку попадает на вторую лампочку. И далее встречается с нулем.

Почему такое простое соединение практически не применяется в квартирах и домах? Объясняется это тем, что лампы в этом случае будут гореть менее чем в полнакала.

При этом напряжение будет распределяться на них равномерно. К примеру, если это обычные лампочки по 100 Ватт с рабочим напряжением 220 Вольт, то на каждую из них будет приходиться плюс-минус 110 Вольт.

Соответственно и светить они будут менее чем в половину от своей изначальной мощности.

Грубо говоря, если вы подключите параллельно две лампы по 100Вт каждая, то в итоге получите светильник мощностью в 200Вт. А если эту же схему собрать последовательно, то общая мощность светильника будет гораздо меньше, чем мощность всего одной лампочки.

Вот результат измерения силы тока такой сборки при фактическом питающем напряжении 240В.

Исходя из формулы расчета получаем, что две лампочки светят с мощностью равной всего: P=I*U=69.6Вт

При этом, падение яркости будет равномерным только при условии, что лампочки у вас одинаковой мощности.

Если они отличаются, допустим одна из них 60Вт, а другая 40Вт, то и напряжение на них будет распределяться уже по другому.

Что это дает нам в практическом смысле при реализации данных схем?

Какая лампочка будет светить ярче и почему

Лучше и ярче будет гореть лампа, у которой нить накала имеет большее сопротивление.

Возьмите к примеру лампочки, кардинально отличающиеся по мощности — 25Вт и 200Вт и соедините последовательно.

Какая из них будет светиться почти в полный накал? Та, что имеет P=25Вт.

Удельное сопротивление ее вольфрамовой нити значительно больше чем у двухсотки, а следовательно падение напряжения на ней сравнимо с напряжением в сети. При последовательном соединении ток будет одинаков в любом участке цепи.

При этом величина силы тока, способная разжечь 25-ти ваттку, никак не способна «поджечь» двухсотку. Грубо говоря, источник света с лампой 200Вт и более, будет восприниматься относительно 25Вт как обычный участок провода, через который течет ток.

Можно увеличить количество ламп и добавить в схему еще одну. Делается это опять все просто.

Два конца питающего провода третьей лампы, скручиваете с любыми концами от первых двух. А на оставшиеся опять подаете 220В.

Как будет светиться в этом случае данная гирлянда? Падение напряжения будет еще больше, а значит лампочки загорятся не то что в полсилы, а вообще будут еле-еле гореть.

Недостатки схемы

Помимо существенного падения напряжения, вторым отрицательным моментом такой схемы, является ее ненадежность.

Если у вас сгорит всего одна из лампочек в этой цепочке, то сразу же потухнут и все остальные.

Еще нужно сделать замечание, что такая последовательная схема будет хорошо работать на обычных лампах накаливания. На некоторых других видах, в том числе светодиодных, никакого эффекта можете и не дождаться.

У них в конструкции может быть заложена электронная схема, которой нужно питание порядка 220В. Безусловно, они могут работать и от пониженных значений в 150-160В, но 90В и менее, для них уже будет недостаточно.

Ошибки при сборке схемы и подключении выключателя

Кстати, некоторые электрики при монтаже освещения в квартире могут совершить случайную ошибку, которая как раз таки связана с последовательным подключением источников освещения.

В результате, у вас будет наблюдаться следующий эффект. При включении выключателя света будет загораться одна лампочка в комнате, а при его выключении — другая.

При этом невозможно будет добиться того, чтобы потухли обе сразу. Как такое возможно?

Ошибка кроется в том, что электрик просто перепутал место присоединения одного из проводов выключателя и воткнул его в разрыв между двух ламп разной мощности. Вот наглядная схема такой неправильной сборки.

Как видно из нее, при включении напряжения, через контакты одноклавишника на второй источник освещения подается напряжение 220V, и он как положено загорается.

При этом первый источник остается без питания, т.к. с обоих сторон к нему подведена «одноименка».

А когда вы разрываете цепь, здесь уже образуется та самая последовательная схема и лампа меньшей мощности будет светиться.

В то время как большей, практически потухнет. Все как и было описано выше.

Применение в быту

Где же можно в быту, применить такую казалось бы не практичную схему?

Самое широко известное использование подобных конструкций — это елочные новогодние гирлянды.

Также можно сделать последовательную подсветку в длинном проходном коридоре и без особых затрат получить освещение в стиле лофт.

Постоянно горят лампочки в подъезде или дома из-за большого напряжения? Самый дешевый выход — включить последовательно еще одну.

Вместо одной 60Вт, включаете две сотки и пользуетесь ими практически «вечно». Из-за пониженного напряжения в 110В, вероятность выхода их из строя снижается в сотни раз.

Еще одно оригинальное применение, которым я все таки не рекомендую пользоваться, но отдельные электрики в безвыходных ситуациях к нему прибегают. Это так называемая фазировка трехфазных цепей.

Как выполнить фазировку вводов лампочками накаливания

Допустим, вам нужно подключить параллельно между собой два трехфазных (380В) ввода, от одного источника питания. Вольтметра, мультиметра или тестера у вас под рукой нет. Что делать?

Ведь если перепутать фазы, то запросто можно создать междуфазное КЗ! И здесь вам опять поможет последовательная сборка всего из двух лампочек.

Собираете их по самой первой приведенной схеме и подсоединив один конец провода питания на фазу ввода №1, другим концом поочередно касаетесь жил ввода №2.

При одноименных фазах, лампочки светиться не будут (например фА ввод№1 — фА ввод№2).

А при разных (фА ввод№1 — фВ ввод№2) — они загорятся.

Такой эксперимент только с одной лампой, вам бы никогда не удался, так как она бы моментально взорвалась от повышенного для нее напряжения в 380В. А в последовательной сборке с двумя изделиями одинаковой мощности, к ним будет приложено напряжение в пределах нормы.

Но самое лучшее и практичное применение — это использовать данную схему вовсе не для освещения, а для обогрева. То есть, ваши источники света в первую очередь будут работать не как светильники, а как обогреватели.

Как сделать такую простую и незамысловатую инфракрасную печку, читайте в статье по ссылке ниже.

Что-то подобное зачастую применяется в инкубаторах.

Схема параллельного подключения

Теперь давайте рассмотрим параллельную схему соединения.

При параллельном включении концы питающих проводов двух лампочек, просто скручиваются между собой. Далее, на них подается напряжение 220V.

Таким образом можно подключить любое количество светильников. Самое главное, чтобы сечение питающих проводников было рассчитано на такую нагрузку.

В этом случае все светиться и гореть у вас будет ровно с такой яркостью, на которую изначально и были рассчитаны светильники.

На практике, конечно в одну кучу все провода не скручиваются, а поступают несколько иначе. Пускают один общий протяженный кабель, а уже к нему, в виде отпаек, подсоединяются отдельные лампочки.

Пи этом схема может быть как шлейфная, так и лучевая. Но обе они являются параллельными.

Данная схема применяется повсеместно — в многорожковых люстрах, в уличных светильниках, в домашних декоративных светильниках и т.д.

И если при этом перегорит любая лампочка, остальные как ни в чем ни бывало продолжат светиться.

Напряжение на них подается одновременно и всегда составляет номинальные 220В.

Но все таки при монтаже освещения у себя дома, используя параллельное подключение, не забывайте и о последовательном.

Как было указано выше, оно тоже имеет свои преимущества в определенных ситуациях и может здорово помочь с решением множества задач (декоративная подсветка, светильники-обогреватели, «вечная» лампочка и т.д).

Последовательное и параллельное соединение ламп

Здравствуйте, уважаемые читатели сайта sesaga. ru. Сегодня мы рассмотрим практичные схемы последовательного и параллельного соединения ламп накаливания.

В статье схемы подключения трех и более ламп я рассказывал про параллельное соединение, а вот про последовательное упустил. В этой статье мы рассмотрим оба вида соединений используемых в быту.

Пойдем от простого к сложному. Обыкновенная лампа на принципиальных схемах обозначается таким образом:

Следующий момент Вы должны понять и запомнить:

Соединительные провода на схемах показываются линиями. Места соединения трех и более проводов показываются точками, а если провода пересекаются без соединения, то в месте их пересечения точка не ставится.

На рисунке ниже показано, когда провода просто пересекаются, то есть проходят рядом и не касаются друг друга, и когда провода уже соединены между собой — об этом говорит точка, стоящая в пересечении.

А теперь рассмотрим виды соединений:

Последовательное соединение ламп накаливания.

Последовательное соединение ламп накаливания в домашнем быту используется редко. В свое время я подключал две лампы последовательно у себя в подъезде, но это был единичный случай.

Тут ситуация была такая, что подъездная лампа перегорала с периодичностью в один месяц, и надо было что-то делать.

Обычно, в таких случаях лампу включают через диод, чтобы она питалась пониженным напряжением 110В и долго служила. Вариант проверенный, но при этом сама лампа мерцает, да и светит в полнакала.

Когда же стоят две последовательно, то они так же питаются пониженным напряжением 110В, не мерцают, долго служат, светят и потребляют энергии как одна. Причем их можно развести по разным углам помещения, что тоже плюс.
Но повторюсь – это редкий случай.

Посмотрите на рисунок ниже. Здесь изображены две схемы последовательного соединения ламп накаливания. В верхней части рисунка показана принципиальная схема, а в нижней части – монтажная. Причем для лучшего восприятия, монтажная схема показана с реальным изображением ламп и двужильного провода.

Здесь в линии коричневого цвета, лампы HL1 и HL2 соединены последовательно – одна за другой. Поэтому такое соединение называют последовательным.

Если подать напряжение питания 220В на концы L и N, то загорятся обе лампы, но гореть они будут не в полную силу, а в половину накала. Так как сопротивление нитей ламп рассчитано на питающее напряжение 220В, и когда они стоят в цепи последовательно, одна за другой, то за счет добавления сопротивления нити накала следующей лампы, общее сопротивление цепи будет увеличиваться, а значит, для следующей лампы напряжение всегда будет меньше согласно закону Ома.

Поэтому при последовательном соединении двух ламп напряжение 220В будет делиться пополам, и составит 110В для каждой.

На следующем рисунке показаны три лампы соединенные последовательно.

На этой схеме напряжение на каждой лампе составит около 73 Вольт, так как будет делиться уже между тремя лампами.

Так же примером последовательного соединения могут служить новогодние гирлянды. Здесь из миниатюрных лампочек с низким питанием создается одна лампа на напряжение 220В.

Например, берем лампочки, рассчитанные на 6,3 Вольта и делим их на 220 Вольт. Получается 35 штук. То есть, чтобы сделать одну лампу на напряжение 220В, нам нужно соединить последовательно 35 штук с напряжением питания 6,3 Вольта.

P.S. Так как напряжение в сети не постоянно, то расчет лучше производить исходя из 245 – 250 Вольт.

Как Вы знаете, у гирлянд есть один недостаток. Перегорает одна из ламп, например, канала зеленого цвета, значит, не горит канал зеленого цвета. Тогда мы идем на базар, покупаем лампочки зеленого цвета, а потом дома по одной вынимаем, вставляем новую, и пока не заработает канал, перебираем его весь.

Вывод:

Недостатком последовательного соединения является то, что если выйдет из строя хоть одна из ламп, гореть не будут все, так как нарушается электрическая цепь.

А вторым недостатком, как Вы уже догадались, является слабое свечение. Поэтому последовательное соединение ламп накаливания на напряжение 220В в домашних условиях практически не применяется.

Параллельное соединение ламп.

Параллельным соединением называют такое соединение, где все элементы электрической цепи, в данном случае лампы накаливания, находятся под одним и тем же напряжением. То есть получается, что каждая лампа, своими контактами, подключена и к фазе и к нулю. И если перегорит любая из ламп, то остальные будут гореть. Именно такое соединение ламп, рассчитанных на напряжение питания 220В, используется в домашнем быту, и не только.

На следующем рисунке так же изображено параллельное соединение. Здесь все три лампы соединены в одном месте. Еще такое соединение называют «звезда»

Бывают моменты, что когда именно из одной точки нужно развести проводку в разные направления.

Кстати, именно «звездой» делают разводку по квартире при монтаже розеток.

Ну вот в принципе и все. И как всегда по традиции ролик о последовательном и параллельном подключении ламп

Теперь я думаю, у Вас не должно возникнуть проблем с последовательным и параллельным соединением ламп.
Удачи!

Последовательное и параллельное соединение. Применение и схемы

В электрических цепях элементы могут соединяться по различным схемам, в том числе они имеют последовательное и параллельное соединение.

Последовательное соединение

При таком соединении проводники соединяются друг с другом последовательно, то есть, начало одного проводника будет соединяться с концом другого. Основная особенность данного соединения заключается в том, что все проводники принадлежат одному проводу, нет никаких разветвлений. Через каждый из проводников будет протекать один и тот же электрический ток. Но суммарное напряжение на проводниках будет равняться вместе взятым напряжениям на каждом из них.

Рассмотрим некоторое количество резисторов, соединенных последовательно. Так как нет разветвлений, то количество проходящего заряда через один проводник, будет равно количеству заряда, прошедшего через другой проводник. Силы тока на всех проводниках будут одинаковыми. Это основная особенность данного соединения.

Это соединение можно рассмотреть иначе. Все резисторы можно заменить одним эквивалентным резистором.

Ток на эквивалентном резисторе будет совпадать с общим током, протекающим через все резисторы. Эквивалентное общее напряжение будет складываться из напряжений на каждом резисторе. Это является разностью потенциалов на резисторе.

Если воспользоваться этими правилами и законом Ома, который подходит для каждого резистора, можно доказать, что сопротивление эквивалентного общего резистора будет равно сумме сопротивлений. Следствием первых двух правил будет являться третье правило.

Применение

Последовательное соединение используется, когда нужно целенаправленно включать или выключать какой-либо прибор, выключатель соединяют с ним по последовательной схеме. Например, электрический звонок будет звенеть только тогда, когда он будет последовательно соединен с источником и кнопкой. Согласно первому правилу, если электрический ток отсутствует хотя бы на одном из проводников, то его не будет и на других проводниках. И наоборот, если ток имеется хотя бы на одном проводнике, то он будет и на всех других проводниках. Также работает карманный фонарик, в котором есть кнопка, батарейка и лампочка. Все эти элементы необходимо соединить последовательно, так как нужно, чтобы фонарик светил, когда будет нажата кнопка.

Иногда последовательное соединение не приводит к нужным целям. Например, в квартире, где много люстр, лампочек и других устройств, не следует все лампы и устройства соединять последовательно, так как никогда не требуется одновременно включать свет в каждой из комнат квартиры. Для этого последовательное и параллельное соединение рассматривают отдельно, и для подключения осветительных приборов в квартире применяют параллельный вид схемы.

Параллельное соединение

В этом виде схемы все проводники соединяются параллельно друг с другом. Все начала проводников объединены в одну точку, и все концы также соединены вместе. Рассмотрим некоторое количество однородных проводников (резисторов), соединенных по параллельной схеме.

Этот вид соединения является разветвленным. В каждой ветви содержится по одному резистору. Электрический ток, дойдя до точки разветвления, разделяется на каждый резистор, и будет равняться сумме токов на всех сопротивлениях. Напряжение на всех элементах, соединенных параллельно, является одинаковым.

Все резисторы можно заменить одним эквивалентным резистором. Если воспользоваться законом Ома, можно получить выражение сопротивления. Если при последовательном соединении сопротивления складывались, то при параллельном будут складываться величины обратные им, как записано в формуле выше.

Применение

Если рассматривать соединения в бытовых условиях, то в квартире лампы освещения, люстры должны быть соединены параллельно. Если их соединить последовательно, то при включении одной лампочки мы включим все остальные. При параллельном же соединении мы можем, добавляя соответствующий выключатель в каждую из ветвей, включать соответствующую лампочку по мере желания. При этом такое включение одной лампы не влияет на остальные лампы.

Все электрические бытовые устройства в квартире соединены параллельно в сеть с напряжением 220 В, и подключены к распределительному щитку. Другими словами, параллельное соединение используется при необходимости подключения электрических устройств независимо друг от друга. Последовательное и параллельное соединение имеют свои особенности. Существуют также смешанные соединения.

Работа тока

Последовательное и параллельное соединение, рассмотренное ранее, было справедливо для величин напряжения, сопротивления и силы тока, являющихся основными. Работа тока определяется по формуле:

А = I х U х t, где А – работа тока, t – время течения по проводнику.

Для определения работы при последовательной схеме соединения, необходимо заменить в первоначальном выражении напряжение. Получаем:

А=I х (U1 + U2) х t

Раскрываем скобки и получаем, что на всей схеме работа определяется суммой на каждой нагрузке.

Точно также рассматриваем параллельную схему соединения. Только меняем уже не напряжение, а силу тока. Получается результат:

А = А1+А2

Мощность тока

При рассмотрении формулы мощности участка цепи снова необходимо пользоваться формулой:

Р=U х I

После аналогичных рассуждений выходит результат, что последовательное и параллельное соединение можно определить следующей формулой мощности:

Р=Р1 + Р2

Другими словами, при любых схемах общая мощность равна сумме всех мощностей в схеме. Этим можно объяснить, что не рекомендуется включать в квартире сразу несколько мощных электрических устройств, так как проводка может не выдержать такой мощности.

Влияние схемы соединения на новогоднюю гирлянду

После перегорания одной лампы в гирлянде можно определить вид схемы соединения. Если схема последовательная, то не будет гореть ни одной лампочки, так как сгоревшая лампочка разрывает общую цепь. Чтобы выяснить, какая именно лампочка сгорела, нужно проверять все подряд. Далее, заменить неисправную лампу, гирлянда будет функционировать.

При применении параллельной схемы соединения гирлянда будет продолжать работать, даже если одна или несколько ламп сгорели, так как цепь не разорвана полностью, а только один небольшой параллельный участок. Для восстановления такой гирлянды достаточно увидеть, какие лампы не горят, и заменить их.

Последовательное и параллельное соединение для конденсаторов

При последовательной схеме возникает такая картина: заряды от положительного полюса источника питания идут только на наружные пластины крайних конденсаторов. Конденсаторы, находящиеся между ними, передают заряд по цепи. Этим объясняется появление на всех пластинах равных зарядов с разными знаками. Исходя из этого, заряд любого конденсатора, соединенного по последовательной схеме, можно выразить такой формулой:

qобщ= q1 = q2 = q3

Для определения напряжения на любом конденсаторе, необходима формула:

U= q/С

Где С — емкость. Суммарное напряжение выражается таким же законом, который подходит для сопротивлений. Поэтому получаем формулу емкости:

С= q/(U1 + U2 + U3)

Чтобы сделать эту формулу проще, можно перевернуть дроби и заменить отношение разности потенциалов к заряду емкости. В результате получаем:

1/С= 1/С1 + 1/С2 + 1/C3

Немного иначе рассчитывается параллельное соединение конденсаторов.

Общий заряд вычисляется как сумма всех зарядов, накопившихся на пластинах всех конденсаторов. А величина напряжения также вычисляется по общим законам. В связи с этим формула суммарной емкости при параллельной схеме соединения выглядит так:

С= (q1 + q2 + q3)/U

Это значение рассчитывается как сумма каждого прибора в схеме:

С=С1 + С2 + С3

Смешанное соединение проводников

В электрической схеме участки цепи могут иметь и последовательное и параллельное соединение, переплетающихся между собой. Но все законы, рассмотренные выше для отдельных видов соединений, справедливы по-прежнему, и используются по этапам.

Сначала нужно мысленно разложить схему на отдельные части. Для лучшего представления ее рисуют на бумаге. Рассмотрим наш пример по изображенной выше схеме.

Удобнее всего ее изобразить, начиная с точек Б и В. Они расставляются на некотором расстоянии между собой и от края листа бумаги. С левой стороны к точке Б подключается один провод, а справа отходят два провода. Точка В наоборот, слева имеет две ветки, а после точки отходит один провод.

Далее нужно изобразить пространство между точками. По верхнему проводнику расположены 3 сопротивления с условными значениями 2, 3, 4. Снизу будет идти ток с индексом 5. Первые 3 сопротивления включены в схему последовательно, а пятый резистор подключен параллельно.

Остальные два сопротивления (первый и шестой) подключены последовательно с рассматриваемым нами участком Б-В. Поэтому схему дополняем 2-мя прямоугольниками по сторонам от выбранных точек.

Теперь используем формулу расчета сопротивления:
  • Первая формула для последовательного вида соединения.
  • Далее, для параллельной схемы.
  • И окончательно для последовательной схемы.

Аналогичным образом можно разложить на отдельные схемы любую сложную схему, включая соединения не только проводников в виде сопротивлений, но и конденсаторов. Чтобы научиться владеть приемами расчета по разным видам схем, необходимо потренироваться на практике, выполнив несколько заданий.

Похожие темы:

параллельное, последовательное соединение, последовательность работ

После того как составили план расположения точечных светильников на потолке, в подсветке шкафа, приходится задуматься об их электрическом подключении. Как подключить точечные светильники, по каким схемам, какими проводами и кабелями — обо всем этом дальше. 

Содержание статьи

Последовательное соединение

Подключить точечные светильники можно последовательно, хотя это — не лучший выход. Несмотря на то, что этот тип соединения требует минимального количества проводов, в быту он практически не используется. Все потому что имеет два существенных недостатка:

  1. Лампы светятся не в полную силу, так как на них подается пониженное напряжение. Насколько пониженное — зависит от количества подключенных лампочек. Например, подключено к 220 В три лампы — делить надо на 3. Это значит, что на каждый светильник приходит по 73 В. Если подключено 5 ламп, делим на 5 и т.д.

    Принцип последовательного соединения

  2. Если перегорает одна лампочка — не работают все. Найти причину неисправности можно только последовательно меняя лампочки во всей цепочке.

Именно по этим причинам такой тип подключения применяется исключительно в елочных гирляндах, где собрано большое количество маломощных источников света. Можно, конечно, первый недостаток использовать: подключить последовательно к сети 220 В лампочки на 12 В в количестве 18 или 19 штук. В сумме они дадут 220 В (при 18 штуках 216 В, при 19 — 228 В). В этом случае не понадобиться трансформатор и это плюс. Но при перегорании одной из них (или даже ухудшении контакта), искать причину придется долго. И это большой минус, который сводит на нет все положительные моменты.

Схема последовательного соединения лампочек (точечных светильников)

Если вы решили подключить точечные светильники последовательно, сделать это просто: фаза обходит все светильники один за другим, ноль подается на второй контакт последней лампочки в цепи.

Если говорить о фактической реализации, то фаза от распределительной коробки подается на выключатель, оттуда — на первый точечный светильник, со второго его контакта — на следующий…. и так до конца цепочки. Ко второму контакту последнего светильника подключается нулевой провод (нейтраль).

Схема последовательного подключения точечных светильников через одноклавишный выключатель

У этой схемы есть одно практическое применение — в подъездах домов. Можно параллельно подключить две лампочки накаливания к обычной сети 220 В. Они будут светиться в пол накала, но перегорать будут крайне редко.

Параллельное соединение

В большинстве случаев используется параллельная схема подключения точечных светильников (ламп). Даже несмотря на то что требуется большое количество проводов. Зато напряжение на все осветительные приборы подается одинаковое, при перегорании не работает одна, все остальные — в работе. Соответственно, никаких проблем с поиском места поломки.

Схема параллельного подключения точечных светильников

Как подключить точечные светильники параллельно

Есть два способа параллельного соединения:

  • Лучевой. На каждый осветительный прибор идет отдельный кабель (двух или трехжильный — зависит от того, есть у вас заземление или нет).
  • Шлейфное. Пришедшая от выключателя фаза и нейтраль со щитка заходят на первый светильник. От этого светильника идет кусок кабеля на второй, и так далее. В результате к каждому светильнику, кроме последнего, оказывается подключенным по четыре куска кабеля.

    Способы реализации параллельного подключения

Лучевая

Лучевая схема подключения более надежна — если проблемы случаются, то не горит только эта лампочка. Есть два минуса. Первый — большой расход кабеля. С ним можно смириться, так как делается проводка один раз и надолго, а надежность такой реализации высокая. Второй минус — в одной точке сходится большое количество проводов. Качественное их соединение — непростая задача, но решаемая.

Соединить большое количество проводов можно при помощи обычной клеммной колодки. В этом случае с одной стороны подается фаза, при помощи перемычек она разводится на нужное число контактов. С противоположной стороны подключаются провода, идущие к лампочкам.

Способы соединения проводов при лучевом исполнении

Практически так же можно использовать клеммники Ваго на соответствующее число контактов. Выбрать надо модель для параллельного соединения. Лучше — чтобы они были заполнены пастой, предотвращающей окисление. Этот способ хорош — легок в исполнении (зачистить провода, вставить в гнезда и все), но очень много низкокачественных подделок, а оригиналы стоят дорого (и то не факт, что вам продадут оригинал). Потому многие предпочитают пользоваться обычной клеммной колодкой. Кстати, есть они нескольких видов, но более надежными считаются карболитовые с защитным экраном (на рисунке выше они черного цвета).

И последний приемлемый способ — скрутка всех проводников с последующей сваркой (пайка тут не пойдет, так как проводов слишком много, обеспечить надежный контакт очень сложно). Минус в том, что соединение получается неразъемным. В случае чего, придется удалять сваренную часть, потому нужен «стратегический» запас проводов.

Подробнее о способах соединения электрических проводов читаем тут.

Пример исполнения лучевого подключения точечных светильников

Чтобы уменьшить расход кабеля при лучевом способе соединения, от выключателя до середины потолка тянут линию, там ее закрепляют, и от нее разводят провода к каждому светильнику. Если надо сделать две группы, ставят двухклавишный (двухпозиционный) выключатель, от каждой клавиши тянут отдельную линию, потом расключают светильники по выбранной схеме.

Шлейфное соединение

Шлейфное соединение применяют тогда, когда светильников очень много и тянуть к каждому отдельную магистраль очень уж накладно. Проблема при таком способе реализации в том, что при проблеме соединения в одном месте, все остальные тоже оказываются неработоспособны. Зато локализация повреждения проста: после нормально работающего светильника.

Фактическая реализация параллельного соединения шлейфным способом

В этом случае также можно разделить светильники на две или больше группы. В этом случае понадобиться выключатель с соответствующим количеством клавиш. Схема подключения в этом случае выглядит не очень сложно — добавиться еще одна ветка.

Как подключить точечные светильники к двойному выключателю

Собственно, схема справедлива для обоих способов реализации параллельного подключения. При необходимости можно сделать и три группы. Такие — трехпозиционные — выключатели тоже есть. Если же нужны четыре группы — придется ставить два двухпозиционных.

Подключение встроенных потолочных светильников со светодиодными лампами на 12 в

Точечные светильники могут работать и от пониженного напряжения 12 В. В них тогда ставят светодиодные лампочки. Подключатся они по параллельной схеме, питание подается с трансформатора (преобразователя напряжения). Его ставят после выключателя, с его выходов подают напряжение на светильники.

Схема подсоединения точечных светильников на 12 В через общий трансформатор

В этом случае мощность трансформатора находят как суммарная мощность подключенной к нему нагрузки, с запасом в 20-30%. Например, установить надо 8 точек освещения по 6 ватт (это мощность светодиодных лампочек). Общая нагрузка — 48 Вт, запас берем 30% (для того чтобы транс не работал на пределе возможностей и служил дольше). Получается надо искать преобразователь напряжения мощностью не ниже 62,4 Вт.

Если хочется источники света разбить на несколько групп, нужны будут несколько трансформаторов — по одному на каждую группу. Также нужен будет многопозиционный выключатель (или несколько обычных).

Подключение светильников на 12 В через двойной выключатель

Обе эти схемы имеют один недостаток — при выходе из строя адаптера не работает группа лам или даже все. При желании можно подключить точечные светильники  на 12 вольт так, чтобы повысить надежность их работы. Для этого к каждому источнику света устанавливают свой трансформатор.

Подключение точечных светильников на 12 В с персональным трансформатором

С точки зрения эксплуатации практически идеальная схема подключения светильников на 12 вольт — с трансформатором на каждый элемент освещения.

Схема подключения точечных светильников на 12 В с персональным трансформатором

В этом случае параллельно подключаются трансформаторы, а к их выходам — сами светильники. Такой способ получается более затратный. Но при выходе из строя трансформатора не горит только одна лампа и никаких проблем с выявлением участка повреждения.

Выбор сечения проводов

При подаче низкого напряжения ток на светильники идет большой и потери по длине будут значительные. Потому для подключения точечных светильников на 12 В важно выбрать правильное сечение кабеля. Проще всего это сделать по таблице, ориентируясь на длину кабеля, прокладываемого к каждому светильнику и потребляемый ток.

Таблица для определения сечения кабеля при подключении точечных светильников на 12 В

Ток можно высчитать: разделить мощность на напряжение. Например, подключаем четыре точечных светильника со светодиодными лампами по 7 Вт. Напряжение — 12 В. Суммарная мощность — 4*7 = 28 Вт. Ток — 28 Вт/12 В = 2,3 А. В таблице берем ближайшее большее значение силы тока. В данном случае это 4 А. При длине линии до 8,5 метров можно брать медный кабель сечением 0,75 мм2. Такое малое сечение получается исключительно из-за малой мощности светодиодных ламп. При использовании экономок, галогенок или ламп накаливания, сечение будет намного больше, так как токи значительно возрастают.

Этот способ расчета сечения кабеля подходит для шлейфного типа параллельного соединения с одним трансформатором. При лучевом те же самые действия приходится производить для каждого светильника.

 Особенности монтажа

Монтируют точечные светильники обычно в подвесные или натяжные потоки. Еще вариант — подсветка шкафов. В любом случае, согласно ПУЭ, прокладка получается скрытой, и рекомендовано использовать кабель в негорючей оболочке. Наиболее популярный вариант — подключить точечные светильники кабелем ВВГнг. По желанию можно выбрать еще более безопасную его версию — ВВГнг Ls, которая во время пожара выделяет мало дыма.

Использование кабелей или проводов, не содержащих в маркировке буквы НГ — только на ваш страх и риск. Так как при работе освещения выделяется тепло, что может привести к возгоранию.

Если точечные светильники монтируются в подвесной потолок, кабель можно уложить в поперечные профили, к которым гипсокартон не крепится. В продольные его класть не стоит, так как высок шанс повредить саморезом изоляцию при монтаже гипсокартонных листов. Еще один вариант — крепить кабели на профили сбоку, притягивая их пластиковыми стяжками.

Укладывать кабель для подключения точечных светильников можно в поперечные профили, которые находятся повыше

В таком случае сначала собирают каркас, затем растягивают провода, оставляя концы в 20-30 см для удобства монтажа. При использовании светильников на 12 В трансформаторы располагают в непосредственной близости от одного из отверстий. При повреждении или необходимости обслуживания к нему можно добраться вытащив светильник.

Если планируется натяжной потолок, кабели крепят  в первую очередь, непосредственно к потолку. В этом случае их часто укладывают в гофрошланг — для повышения пожарной безопасности. Использовать можно любой подходящий крепеж для кабеля — стяжки, дюбель-стяжки, клипсы подходящего размера, проволочные лотки и др.

Способы подключения ламп: последовательное, параллельное

Когда проводка в квартире или доме уже присутствует и нет надобности подключать дополнительные источники света, то вопрос — как подключить лампу, не является актуальным. Но как же выполнить эту работу когда появляется такая необходимость. Тут без элементарных знаний электротехники и умения составить принципиальную, казалось бы, элементарную схему уже не обойтись.

Все источники света люминесцентные (экономки), лампы накаливания, светодиодные светильники могут быть подключены, как в принципе и все имеющиеся в электрической цепи сопротивления, параллельно, последовательно, смешанно. Смешанное соединение не используется для подключения ламп, так как в нём просто нет необходимости. А вот на параллельном и последовательном подключении стоит остановить своё внимание поподробнее.

Последовательное и параллельное подключение двух и более источников света

Для того чтобы подключить самую простую лампочку накаливания, как в принципе и любую другую, нужно подключить её один контакт к фазе, а другой к нулю, самому распространённому в бытовых условиях стран СНГ переменному напряжению 220 вольт.

Параллельное подключение устройств освещения подразумевает под собой подключение двух и более источников светового потока в параллель, то есть одни контакты ламп подключаются только к фазе, а все другие только к нулю, как показано на рисунке 1.

Через каждую лампочку пройдёт ток, который будет зависеть от её мощности, так же как и яркость светового потока, излучаемого ими, будет тоже зависеть от мощности каждой лампы. Естественно, что ток I будет равен сумме всех трёх токов, поэтому диаметр сечения основных проводников следует выбирать согласно ему. Это подключение считается самым распространённым и приемлемым, так как к нему можно будет, при необходимости в будущем, добавлять источники света и они не будут влиять на уже установленные.

При последовательном соединении, изображённом на рисунке, ток, протекающий по одной лампочке, будет зависеть от мощности, каждого источника света, а напряжение на них будет разделено на количество ламп и при данном входящем напряжении 220 вольт, будет равняется 110 вольт на каждом источнике света.

Такое подключение нужно обязательно выполнять со светильниками, которые имеют равную мощность. Рассмотреть это можно на примере двух ламп накаливания. Так как если подключить одну лампу 20 Ватт, а другую, например, на 200 Ватт, то лампа с меньшей мощностью тут же выйдет из строя, так как по ней пройдёт ток такой же, как и во второй лампе мощностью 200 Ватт, а это в 10 раз больше её номинала. Такое подключение может быть использовано для увеличения срока службы ламп накаливания, например, в подъездах и на лестничных клетках. Подключив две лампы на 220 вольт и мощностью, например, по 60 Ватт, они будут гореть вполсилы и прослужат очень долго. Нужно учесть, что это возможно только при подключении ламп накаливания. Последовательное подключение двух и более светодиодных ламп (светильников) и экономичных ламп нецелесообразно, так как они и так обладают довольно большим сроком службы.

Подключение лампы на один выключатель или на несколько

Как подключить лампу через выключатель? Главным нюансом при подключении является то, что нулевой провод питания непосредственно подключается к сети 220 вольт, а через выключатель разрывается фаза. Это делается для того чтобы можно было смело решать проблемами с патроном осветительного прибора, отключив лишь выключатель. Если подключение двух выключателей выполнить последовательно, то только при нажатии обеих клавиш лампа загорится. Такие виды подключения выключателей освещения очень редко используются, только при определённых индивидуальных условиях.

Интереснее является подключение так называемого проходного выключателя.

Суть такой схемы подключения одной лампы заключается в том, что включение и отключение лампы может быть произведено как от первого, так и от второго выключателя, вне зависимости в каком положении каждый из них. Например, это удобно, допустим, в длинном коридоре при входе в него человек нажимает на клавишу выключателя 2, и спокойно идёт по освещённому помещению, дойдя до конца коридора, не нужно возвращаться для выключения света, а можно лёгким нажатием выключателя 1, установленного в конце коридора, произвести отключение данного источника света. При таком подключении фаза тоже проходит через выключатели.

Усовершенствование освещения путём установки датчика движения

Главная функция установки датчика движения и подключения его к системе освещения, это автоматическое включение освещения без нажатия на клавишу выключателя освещения. То есть человек зашел помещение или в зону срабатывания датчика и свет включился, после ухода свет самостоятельно (автоматически) выключился. При выборе датчика движения необходимо в первую очередь учесть максимальную мощность ламп освещения.

Схема подключения датчика движения тоже не вызывает особых сложностей. Её можно устанавливать как с выключателем, так и без него. Просто при включении контакта выключателя датчик движения выводится из сети освещения, и осветительный прибор включается напрямую без датчика.

В любом случае работая с напряжением обязательно выполнять требования техники безопасности, а в частности:

  • проверять наличие и отсутствие напряжения на токоведущих элементах, к которым человек дотрагивается при монтаже;
  • автоматы питания освещения должны быть под замком;
  • работы производить исправным инструментом.

Видео о подключении ламп

Схема последовательного соединения — советы электрика

Подключение розеток последовательно

Очень сложно встретить электрическую проводку, которая находится в квартире без розеток. Невозможно осуществить подключение электроприборов без наличия качественной розетки в квартире.

В современном мире токовая нагрузка очень увеличена. Важно правильно осуществить параллельное соединение розеток. Это один из способов соединения розеток.

Параллельное соединение розеток является самым безопасным.Большое значение имеет тип розетки. На сегодняшний день всё чаще встречаются розетки с гравером. Он способен автоматическим путем восстанавливать контакт. Параллельное соединение розеток можно совершить самостоятельно.

Обратите внимание

Прежде всего, необходимо запомнить, что при подключении необходимых проводов непосредственно к контактам, обязательно сверните конец провода. Это нужно сделать в форме кольца, для того, чтобы создать достаточную площадку для контакта.

Это послужит своеобразной гарантией к правильному подключению электропотребителей мощного типа. параллельное соединение розеток очень часто используется в быту.

Бывает, что в комнате не достаточно одной функциональной розетки, и тогда принимается решение установить еще одну, которая поможет разрядить нагрузку на первую. Для этого случая идеально подойдет параллельное соединение. Не стоит тянуть новые провода от, имеющегося электроблока. Все можно сделать намного проще.

Параллельное соединение розеток следует осуществлять очень внимательно. В данном случае есть некоторые особенности. Прежде всего, концы нового провода подсоединяются именно параллельно, отсюда такое название. Подсоединение происходит именно к проводам, которые подходят к первой розетке.

Это очень важный нюанс. Чтобы вам было проще понять, мы объясним весь механизм соединения более подробно. Вам необходимо подключить «фазу» к «фазе». а в свою очередь, «ноль» — к «нолю». Мы рекомендуем вам фазный провод подключить именно к гнезду розетки, которое располагается справа.

При осуществлении параллельного соединения розеток очень важно соблюдать технику безопасности. Не упускайте из виду мелкие нюансы. Примите во внимание, что в процессе подсоединения параллельной розетки, важно обратить внимание на материал проводов.

Необходимо, чтобы материал всех используемых провалов был идентичен. Это очень важный момент. Нельзя осуществлять соединение проводов, изготовленных из меди с алюминиевыми проводами. В том случае, если соединение проводов из различных материалов избежать нельзя рекомендуется произвести их залудивание.

Параллельное соединение двух розеток

Параллельное подключение двух розеток применяется в том случае, если имеются электрические розетки одной группы. Параллельное подключение двух розеток может осуществляться в несколько способов. Вы можете соединить провода параллельно.

Соединять провода нужно в распределительных коробках. Вы также можете пойти иным путем и осуществить подключение розетки с помощью шельфа.

Второй вариант стоит выбирать, если хотите подключить розетки, находящиеся очень близко друг от друга. Прежде чем устанавливать розетки проведите несколько необходимых операций. Для начала смонтируйте коробки подразеточного типа и проложите провод к щитку распределительного типа.

Параллельное и последовательное соединение розеток

Соединить розетки можно параллельно либо последовательно. Параллельное и последовательное соединение розеток следует осуществлять в разных случаях. Электрики не рекомендуют осуществлять последовательное соединение розеток.

Но это спорный вопрос. Для начала следует разобрать, в чем же состоит отличие между этими двумя способами. Стоит начать с того, что все розетки, которые находятся в одной группе, имеют идентичную схему соединения. Она называется параллельной.

Вопрос в том, что параллельное соединение можно осуществлять несколькими различными способами. Вы можете осуществить соединение розеток, путем их рапоячивания в коробках, включив при этом скрутку, пайку и клемму, либо можете осуществить их соединение на клеммах, при этом не за действуя коробки.

Последний способ называется соединение шлейфом

Что вам было проще определиться какое соединение розеток выбрать – параллельное, или все же последовательное, мы предлагаем провести подробное сравнение этих двух способов. Что касается соединения шлейфом, этот способ может помочь сэкономить на материале. Таким образом, вам придется выполнять меньший объем работы и затрачивать меньше ресурсов.

Но в данном случае существует риск, ведь на сегодняшний день не разрешается разрывать РЕ проводник. Это прописано в общепринятых нормах.

Эти правила можно обойти, только в том случае, если вы занимаетесь заменой проводки в собственной квартире либо доме. Вам не понадобиться сдавать приведенные объекты в эксплуатации, а, следовательно, и проверять их никто не будет. Какой способ выбрать зависит только от вас, но мы не рекомендуем вам лишний раз рисковать своей безопасность и безопасностью своих близких.

Можно осуществить соединение шлейфом и при этом избежать нарушения правил безопасности. Для этого вам потребуется всего лишь оставить неразрывными провода токоведущего типа, а именно фазный и нулевой провода. Это позволит вам снизить нагрузку на основные клеммы первой розетки.

Если вы осуществите изложенный порядок верно, то это позволит сохранить РЕ проводник целым, и вы таким образом не нарушите общепринятые правила безопасности.

А также вы можете посмотреть видео подключение розетки и выключателя

Как выполнить подключение розеток шлейфом

Работы, связанные с электричеством, в том числе и монтаж/демонтаж розеток, безусловно, относятся к числу тех, что требуют профессионального подхода. На сегодняшний день подключение розеток производят одним из следующих способов: используя для каждого места отдельную линию электропроводки или подключив несколько точек к одному источнику (шлейфом).

Первый вариант требует больших финансовых затрат, кроме того, с ним возникает ряд дополнительных трудностей в случае, если монтаж осуществляется при уже выполненной отделке. Однако все это с лихвой компенсируется надежностью.

Если речь идет об обслуживании мощных электроприборов, то рекомендуется использовать только розетки с отдельной линией. При этом нужно помнить, что образованная подобным образом цепь рассчитана на определенную суммарную нагрузку и в случае несоблюдения условий эксплуатации в любой момент могут возникнуть проблемы.

Данная статья предназначается в помощь тем, кто решил, что именно подключение розеток шлейфом является оптимальным вариантом для его жилища.

Важно

Итак, подключение шлейфом это параллельное соединение всех элементов (в нашем случае розеток) к одной линии электропроводки. Кабель от силового щита идет к подрозетнику, где подсоединяется к первой розетке, к той добавляется вторая, ко второй третья и т.д.

Недостатком такой схемы является то, что если в месте контакта повредится одна из жил, то в определенной точке цепи перестанут работать, как минимум, все идущие далее элементы. Отсюда вывод: чем меньше розеток входит в систему, тем надежнее она будет.

Электропроводка может быть как спрятанной в стенах, так и пролегать по их поверхности. Открытый вариант проще и удобнее, однако, не всегда хорошо смотрится с эстетической точки зрения. Если нет желания постоянно задевать кабель, то имеет смысл поместить его в небольшие предварительно проделанные борозды (штробы), после чего аккуратно их заделать.

Минусом скрытой проводки является необходимость лишний раз «раскурочивать» стены, когда возникнет потребность произвести какие-либо работы. Каждый из вариантов прокладки имеет свои плюсы и минусы, поэтому выбор здесь индивидуален.

Этапы подключения и установки блока розеток

Для осуществления монтажных работ при соединении розеток. естественно, потребуются инструменты. Их набор достаточно стандартен:

Последний покупать не обязательно, его можно просто одолжить или взять в аренду. Все-таки инструмент не из дешевых и нет смысла лишний раз тратиться, если в том нет особой надобности. Со всем остальным инвентарем проблем возникнуть точно не должно.

При креплении подрозетника на поверхность стены используются шурупы. Если он будет располагаться внутри, то потребуется проделать в поверхности полость. Мы будем рассматривать стандартную ситуацию, при которой к подрозетнику от щитка подводится только один кабель.

За то, поместятся ли все кабели в коробку, и без того занятую розеткой, особо переживать не стоит. Стандартный 42-х миллиметровый подрозетник спокойно вместит все, что нужно.

Схема подключения розеток шлейфом

После того как подрозетники будут установлены необходимо подготовить кабель для перемычек. Отмеряем кабель с запасом для каждого блока, но не стоит делать слишком длинные перемычки. Их длина должна быть такой, чтобы после подключения розетки, ее можно было установить в подрозетнике. Я использовал для перемычек кабель такой же марки и сечения, как и питающий.

Соединение розеток шлейфом предусматривает подключение нескольких электрических розеток к одной линии проводки. Для реализации данного метода необходимо соединить шлейфом приходящий и уходящий кабели прямо на контактной части розетки. Все провода: фазный, нулевой, заземление – подключаются параллельно.

При подключении розетки с одной стороны к ней присоединяют кабель от силового щита, с другой выводится провод следующего «шлейфа». В данном примере используется кабель с тремя жилами: «фазы» — коричневого цвета, «нуля» — синего цвета и «земли» — желто-зеленая расцветка.

Совет

В одном контакте розетки подключаем фазный провод питающего кабеля и фазный провод шлейфа идущего на вторую розетку. Во втором контакте подключаем нулевые провода питающего кабеля и шлейфа второй розетки. Аналогично выполняем подключение во второй, третьей и т.д. пока не подключим все розетки.

Особенностью такого подключения в том, что все провода соединяются непосредственно в контактах розетки. Качество соединения также во многом зависит от типа контакта.

Специалисты рекомендуют использовать модели с плоско пружинным контактом, который считается самым надежным. Более-менее сносно, если он будет выполнен в форме прижимаемой болтом пластины. Хуже всего, когда роль контакта исполняет просто болт.

Однако в целях соблюдения норм электробезопасности выполняя подключение розеток шлейфом необходимо сохранить неразрывность заземляющего проводника. Для этого подключаем его с помощью ответвления, а не шлейфованием. Такой способ соединения повысит надежность контакта и позволит избежать его разрывов на протяжении всей длины проводника.

Ответвление заземляющей жилы выполняется одним из самых испытанных и надежных соединений – опрессовкой. Таким образом, после обычной скрутки, соединения проводов способом опрессовки гильзой и изолирования сохраняется по всей длине проводника постоянный надежный контакт.

Важное замечание. Соединение розеток шлейфом допустимо только в том случае, если гарантирована целостность нулевого защитного проводника РЕ. То есть каждая розетка подключается к сети заземления не шлейфованием, а отдельным ответвлением.

Источник: http://remontonly.ru/podklyuchenie-rozetok-posledovatelno.html

Чем отличается последовательное соединение от параллельного?

Что было вначале — курица или яйцо?

Обычно все затрудняются ответить. А вот загадка эта в применении к электричеству решается вполне определенно.

Электричество начинается с закона Ома

А уж если рассматривать дилемму в контексте параллельного или последовательного соединений — считая одно соединение курицей, а другое — яйцом, то сомнений вообще нет никаких.

Простейшая электрическая цепь

Потому что закон Ома — это и есть самая первоначальная электрическая цепь. И она может быть только последовательной.

Да, придумали гальванический элемент и не знали, что с ним делать, поэтому сразу придумали еще лампочку. И вот что из этого получилось. Здесь напряжение в 1,5 В немедленно потекло в качестве тока, чтобы неукоснительно выполнять закон Ома, через лампочку к задней стенке того же элемента питания.

А уж внутри самой батарейки под действием волшебницы-химии заряды снова оказались в первоначальной точке своего похода. И поэтому там, где напряжение было 1,5 вольта, оно таким и остается.

То есть, напряжение постоянно одно, а заряды непрерывно движутся и последовательно проходят лампочку и гальванический элемент.

И это обычно рисуют на схеме вот так:

Схема простейшей электоцепи

По закону Ома I=U/R

Тогда сопротивление лампочки (с тем током и напряжением, которые я написал) получится

R = 1/U, где R = 1 Ом 

А мощность будет выделяться  P = I * U , то есть P=2,25 Вm

В последовательной цепи, особенно на таком простом и несомненном примере, видно, что ток, который бежит по ней от начала до конца, — все время один и тот же.

А если мы теперь возьмем две лампочки и сделаем так, чтобы ток пробегал сначала по одной, а потом по другой, то будет опять то же самое — ток будет и в той лампочке, и в другой снова одинаковым. Хотя другим по величине.

Обратите внимание

Ток теперь испытывает сопротивление двух лампочек, но у каждой из них сопротивление как было, так и осталось, ведь оно определяется исключительно физическими свойствами самой лампочки. Новый ток вычисляем опять по закону Ома.

Схема последовательного подключения

Он получится равным I=U/R+R,то есть 0,75А, ровно половина того тока, который был сначала.

В этом случае току приходится преодолевать уже два сопротивления, он становится меньше. Что и видно по свечению лампочек — они теперь горят вполнакала. А общее сопротивление цепочки из двух лампочек будет равно сумме их сопротивлений.

Зная арифметику, можно в отдельном случае воспользоваться и действием умножения: если последовательно соединены N одинаковых лампочек, то общее их сопротивление будет равно N, умноженное на R, где R — сопротивление одной лампочки.

Логика безупречная.

Схема последовательного подключения с двумя сопротивлениями

А мы продолжим наши опыты.

 Теперь сделаем нечто подобное, что мы провернули с лампочками, но только на левой стороне цепи: добавим еще один гальванический элемент, точно такой, как первый.

Как видим, теперь у нас в два раза увеличилось общее напряжение, а ток стал снова 1,5 А, о чем и сигнализируют лампочки, загоревшись снова в полную силу.

Делаем вывод:

  • При последовательном соединении электрической цепи сопротивления и напряжения ее элементов суммируются, а ток на всех элементах остается неизменным.

Легко проверить, что это утверждение справедливо как для активных компонентов (гальванических элементов), так и для пассивных (лампочек, резисторов).

То есть это значит, что напряжение, измеренное на одном резисторе (оно называется падением напряжения), можно смело суммировать с напряжением, измеренным на другом резисторе, и в сумме получатся те же 3 В. А на каждом из сопротивлений оно окажется равным половине — то есть 1,5 В.

И это справедливо. Два гальванических элемента вырабатывают свои напряжения, а две лампочки их потребляют.

Потому что в источнике напряжения энергия химических процессов превращается в электроэнергию, принявшую вид напряжения, а в лампочках та же самая энергия из электрической превращается в тепловую и световую.

Последовательное и параллельное соединение проводников

Вернемся к первой схеме, подключим в ней еще одну лампочку, но иначе.

Теперь напряжение в точках, соединяющих две ветки, то же, что и на гальваническом элементе — 1,5 В. Но так как сопротивление у обеих лампочек тоже такое, как и было, то и ток через каждую из них пойдет 1,5 А — ток «полного накала».

Последовательное и параллельное соединение проводников

Гальванический элемент теперь питает их током одновременно, следовательно, из него вытекают сразу оба эти тока. То есть общий ток из источника напряжения будет равен 1,5 А + 1,5 А = 3,0 А.

В чем же отличие этой схемы от схемы, когда те же самые лампочки были включены последовательно? Только в накале лампочек, то есть только в токе.

Тогда ток был 0,75 А, а теперь он стал сразу 3 А.

Получается, если сравнить с первоначальной схемой, то при последовательном соединении лампочек (схема 2) току сопротивления оказывалось больше (отчего он уменьшался, и лампочки теряли светимость), а параллельное подключение оказывает МЕНЬШЕ сопротивления, хотя сопротивление лампочек осталось неизменным. В чем тут дело?

Важно

А дело в том, что мы забываем одну интересную истину, что всякая палка о двух концах.

Когда мы говорим, что резистор сопротивляется току, то как бы забываем, что он ток все-таки проводит.

И теперь, когда подключили лампочки параллельно, увеличилось суммарное для них свойство проводить ток, а не сопротивляться ему.

Ну и, соответственно, некую величину G, по аналогии с сопротивлением R и следовало бы назвать проводимостью. И должна она в параллельном соединении проводников суммироваться.

Ну и вот она

Закон Ома тогда будет выглядеть

И в случае параллельного соединения ток I будет равен U*(G+G) = 2*U*G, что мы как раз и наблюдаем.

Замена элементов цепи общим эквивалентным элементом

Инженерам часто приходится узнавать токи и напряжения во всех частях схем. А реальные электрические схемы бывают достаточно сложными и разветвленными и могут содержать множество элементов, активно потребляющих электроэнергию и соединенных друг с другом в совершенно разных сочетаниях. Это называется расчет электрических схем.

Он делается при проектировании энергоснабжения домов, квартир, организаций. При этом очень важно, какие токи и напряжения будут действовать в электрической цепи, хотя бы для того, чтобы выбрать подходящие им сечения проводов, нагрузки на всю сеть или ее части, и так далее.

А уж насколько сложны бывают электронные схемы, содержащие тысячи, а то и миллионы элементов, думаю, понятно всякому.

Совет

Самое первое что, напрашивается — это воспользоваться знанием того, как ведут себя токи напряжения в таких простейших соединениях сети, как последовательное и параллельное.

Делают так: вместо найденного в сети последовательного соединения двух или более активных устройств-потребителей (как наши лампочки) нарисовать один, но чтобы его сопротивление было таким же, как у обоих. Тогда картина токов и напряжений в остальной части схемы не изменится.

Аналогично и с параллельным соединением: вместо них нарисовать такой элемент, ПРОВОДИМОСТЬ которого была бы такой же, как у обоих.

Теперь если схему перерисовать, заменив последовательные и параллельные соединения одним элементом, то получим схему, которая называется «схемой эквивалентного замещения».

Такую процедуру можно продолжать до тех пор, пока у нас не останется наипростейшая — которой мы в самом начале иллюстрировали закон Ома. Только вместо лампочки будет стоять одно сопротивление, которое и называют эквивалентным сопротивлением нагрузки.

Это первая задача. Она дает нам возможность по закону Ома рассчитать общий ток во всей сети, или общий ток нагрузки.

Далее обычно решают задачу обратную: идут в обратном порядке, все усложняя схему — возвращая элементы «на место» вместо эквивалентных, и рассчитывают токи во всех ветвях сети.

Вот это и есть полный расчет электрической сети.

Примеры

Пусть цепь содержит 9 активных сопротивлений. Это могут быть лампочки или что-то другое.

На ее входные клеммы подано напряжение в 60 В.

Цепь с активными сопротивлениями

Значения сопротивлений для всех элементов следующие:

Найти все неизвестные токи и напряжения.

Надо пойти по пути поиска параллельных и последовательных участков сети, рассчитывать эквивалентные им сопротивления и постепенно упрощать схему. Видим, что R3, R9 и R6 соединены последовательно. Тогда им эквивалентное сопротивление Rэ 3, 6, 9 будет равно их сумме Rэ 3, 6, 9= 1 + 4 + 1 Ом = 6 Ом.

Цепь с активными сопротивлениями

Теперь заменяем параллельный кусочек из сопротивлений R8 и Rэ 3, 6, 9, получая R э 8, 3, 6, 9. Только при параллельном соединении проводников, складывать придется проводимости.

Проводимость измеряется в единицах, называемых сименсами, обратных омам.

Если перевернуть дробь, получим сопротивление R э 8, 3, 6, 9 = 2 Ом

Совершенно так же, как в первом случае, объединяем сопротивления R2 , R э 8, 3, 6, 9 и R5, включенные последовательно, получая R э 2, 8, 3, 6, 9, 5= 1 + 2 + 1 = 4 Ом.

Цепь с активными сопротивлениями

Осталось два шага: получить сопротивление, эквивалентное двум резисторам параллельного соединения проводников R7 и R э 2, 8, 3, 6, 9, 5.

Оно равно R э 7, 2, 8, 3, 6, 9, 5 = 1/(1/4+1/4)=1/(2/4)=4/2 = 2 Ом

Цепь с активными сопротивлениями

На последнем шаге просуммируем все последовательно включенные сопротивления R1 , R э 7, 2, 8, 3, 6, 9, 5  и R4 и получим сопротивление, эквивалентное сопротивлению всей цепи Rэ и равное сумме этих трех сопротивлений

Rэ = R1 + R э 7, 2, 8, 3, 6, 9, 5 + R4 = 1 + 2 + 1 = 4 Ом

Ну и вспомним, в честь кого назвали единицу сопротивлений, написанную нами в последней из этих формул, и вычислим по его закону общий ток во всей цепи I

Цепь с активными сопротивлениямиЦепь с активными сопротивлениями

Теперь, двигаясь в обратном направлении, в сторону все большего усложнения сети, можно получать по закону Ома токи и напряжения во всех цепочках нашей достаточно простой схемы.

Так обычно и рассчитывают схемы электроснабжения квартир, которые состоят из параллельных и последовательных участков. Что, как правило, не годится в электронике, потому что там многое по-другому устроено, и все гораздо замысловатее. И вот такую, например, схему, когда не поймешь, параллельное это соединение проводников или последовательное, рассчитывают по законам Кирхгофа.

Цепь с активными сопротивлениями

Источник: https://domelectrik.ru/baza/teoriya/parallelnoe-i-posledovatelnoe-soedinenie-provodnikov

Последовательное и параллельное соединение лампочек

Лампы накаливания – это весьма распространенный источник света. В люстрах и других светильниках, так же как в подвесных и натяжных потолках, их может быть три, пять, а то и несколько десятков.

Каждый такой источник света – это один из элементов электрической цепи, которые, как нам известно еще из школьной программы, могут по-разному соединяться как между собой, так и с другими элементами на схемах.

Далее напомним нашим читателям:

  • на каких схемах лампы соединены параллельно;
  • на каких – последовательно;
  • и в чем суть различных соединений ламп.

Увидев, как соединены между собой лампы на схемах, наши читатели впоследствии смогут сделать оптимальный выбор осветительной системы.

Люстра с большим числом лампочек

Электрическая цепь с последовательным соединением

Элементы электрических цепей могут соединяться либо последовательно, либо параллельно. Точно так же делается последовательное подключение и параллельное подключение ламп.

Это совершенно разные соединения, которые приводят к различным результатам их работы. Чтобы наглядно понять детали этих соединений, рассмотрим пример с лампами накаливания.

Берем две лампочки, два патрона и присоединяем к их клеммам провода.

Чтобы хорошо различать проводники при соединении, выбираем для них красный и черный цвета. Для ламп накаливания, которые по сути являются резисторами, эти провода будут как бы равноправными. Перемена их местами никак не будет сказываться на работе лампы.

Сделаем последовательное соединение лампочек:

  • укладываем их на стол с расправленными проводами, с концами, зачищенными от изоляции;
  • выбираем произвольно по одному проводу в каждой лампе. Для наглядности выберем оба черных провода;
  • скручиваем концы двух выбранных проводов.

Если свободные концы двух красных проводов присоединить к источнику питания, через лампочки потечет электрический ток. В каждой лампе он будет одинаковым. Причем независимо от того, какие у этой лампы характеристики.

Для того чтобы определить мощность лампы накаливания, потребуется узнать как величину тока, так и величину напряжения. В результате последовательного соединения каждая лампа оказывает влияние на работу остальных лампочек.

На лампе, как и на любом резисторе в электрической цепи, получается падение напряжения. Его величина определяется по закону Ома для участка цепи как произведение величин тока и напряжения.

Обратите внимание

При накале спирали, который соответствует правильному режиму работы лампочки, ее сопротивление таково, что выделяемая энергия, включая свет, обеспечивает ее оптимальную яркость и продолжительность работы.

Поэтому каждая лампочка может эффективно работать только при определенном напряжении. А ему будет соответствовать сопротивление горячей светящейся спирали.

Чем слабее, тем ярче

При последовательном соединении двух лампочек напряжения на них будут одинаковыми только при одинаковых сопротивлениях их спиралей. А это получится лишь при их одинаковой конструкции.

По этой причине перед тем как подключить последовательно соединенные лампы к источнику питания, необходимо обязательно знать их рабочие напряжения (или токи) и мощность.

Если этих характеристик нет, правильно оценить на глаз яркость, оптимальную для лампочки, сложно.

Можно, конечно же, подключить каждую лампочку к регулятору напряжения (ЛАТРу или диммеру). Плавно изменяя и при этом измеряя величину напряжения на лампе, получаем более или менее яркое ее свечение.

Но лампочка при такой оценке может работать неправильно и, что наиболее опасно, давать слишком много света. Это сократит срок ее службы.

Поэтому сделанные замеры тока или напряжения для расчетов параметров других присоединяемых лампочек получатся не такими, какими они должны быть на самом деле.

  • При последовательном соединении лампочек необходимо пользоваться только заводскими данными мощности и напряжения для них.

Особую бдительность надо соблюдать тогда, когда напряжение источника питания заметно больше рабочего напряжения каждой из ламп последовательного соединения.

При неоптимально подобранных параметрах некоторые из них могут перегореть по причине неправильного распределения напряжения между ними.

В этом легко убедиться, если вкрутить в уже подготовленные нами патроны лампочки разной мощности, но для напряжения 220 В. Что из этого получилось, видно на изображении, которое приведено ниже.

Используя соединительную колодку и проводной выключатель, выполняем монтаж проводов испытуемых лампочек. Подключаем вилку к розетке и включаем выключатель. Мы видим разную яркость источников света.

Менее мощная лампочка 40 Вт из-за большего сопротивления работает при более высоком напряжении. Поэтому она светит заметно ярче 60-ваттной. Теперь должно быть понятно, что лампочки остаются работоспособными по причине их более высокого рабочего напряжения.

Оно существенно больше падения напряжения питания на каждой из них.

Последовательное соединение и разная яркость лампочек 40 Вт и 60 Вт

Перед последовательным соединением

Если бы лампочки 40 Вт и 60 Вт были, к примеру, подключены на напряжение 127 В, одна из них непременно сгорела бы. Рекомендуется сделать расчет суммы падений напряжения на каждой лампе перед тем как соединить их последовательно. При этом результат меньше напряжения питания соединенных ламп должен быть получен на основании заводских данных.

  • Самым большим неудобством при последовательном соединении большого числа лампочек является перегорание одной из них. После этого перестает работать вся цепочка из ламп. Приходится брать тестер и проверять каждую.

Последовательное соединение других типов ламп также возможно. Однако давать общие рекомендации по этому поводу сложно. Дело в том, что все прочие электрические источники света, а это различные газоразрядные и светодиодные лампы, являются нелинейными элементами, к которым неприменим закон Ома для участка цепи. К тому же их надо подключать через балласты различной конструкции.

Современные электронные балласты работают совершенно иначе, чем традиционные индуктивные. Определить все необходимые параметры расчетным путем не получится. По этой причине для газоразрядных и светодиодных источников света более подходящей будет схема параллельного соединения.

Параллельное соединение лампочек

Лучше соединять параллельно

Когда существует параллельное соединение ламп, напряжение источника питания всегда оказывается на клеммах каждой из них. Между ними могут быть только проводники электрического тока.

Их сопротивлением пренебрегают по причине крайне малой величины. Схема параллельного подключения исключает взаимное электрическое влияние между источниками света.

Каждый из них светит в полную силу, если подключается к выходу источника питания с напряжением, соответствующим их номинальному значению.

  • Последовательно соединять лампы накаливания и светодиоды рекомендуется только при необходимости подсоединить самый простой и дешевый источник питания для низковольтных источников света – электрическую сеть на 220 вольт. С источниками света, подключенными по такой схеме, сталкивались все. Это елочная гирлянда.
  • Соединение ламп накаливания, а также подключение светильников рекомендуется в основном делать параллельно. Эта схема подключения не оставит совсем без света при перегорании даже нескольких лампочек.

Источник: https://LampaGid.ru/vidy/lampy-nakalivaniya/posledovatelnoe-i-parallelnoe-soedinenie

Разводка электропроводки

Разводка электропроводки, в числе прочего, подразумевает соединение между собой различных коммутационных, иных электротехнических устройств и изделий. Здесь будет рассмотрено подключение к электропроводке выключателей, розеток, осветительных приборов.

Разводка проводов производится в распределительных (разветвительных) коробках, при отсутствии должного опыта может представлять определенную сложность. Поэтому изложение материала по этой теме я постарался сделать максимально наглядным.

На рисунке 1 представлены:

  1. Собственно сама распределительная коробка.
  2. Условное обозначение приведенного варианта на схеме электропроводки.
  3. Детализация предыдущего обозначения, которую буду применять впоследствии.

При рассмотрении вариантов разводки, для удобства восприятия на фотографиях саму коробку показывать не буду. Считайте, что все, что Вы видите, находится внутри нее.

Соединения и изоляцию проводов при монтаже электропроводки можно выполнять различными способами, про это отдельно написано здесь.

Далее на всех рисунках изображено:

  1. Внешний вид рассматриваемого соединения.
  2. Его условное обозначение на схемах электропроводки.
  3. Принципиальная схема разводки. Все что находится внутри распределительной коробки обозначено пунктиром. Номера точек соединения соответствуют приведенным на фотографии.

Примеры соединений электропроводки

Подключение электрической розетки

Здесь расположение фазового (L) и нулевого (N) проводов не принципиально. Данный вариант еще может быть использован для разветвления проводки, тогда вместо розетки будет еще одна соединительная линия.

Разводка электропроводки для одноклавишного выключателя

При подключении выключателей порядок фаз следует соблюдать.

Подключение к электропроводке двухклавишного выключателя

Двухклавишный выключатель используется для управления трехпроводной люстрой. Соответственно, здесь применяется трехпроводный электрический кабель.

Данные варианты рассмотрены, когда электропроводка, после подключения к ней рассмотренных устройств, уходит к другим потребителям (провод справа). Если распределительная коробка в линии является последней, то указанный провод отсутствует, соответственно разводку делать проще.

© 2012-2019 г. Все права защищены.

Все представленные на этом сайте материалы имеют исключительно информационный характер и не могут быть использованы в качестве руководящих и нормативных документов

Источник: https://eltechbook.ru/jelektroprovodka_razvodka.html

Виды соединения проводников

При решении задач принято преобразовывать схему, так, чтобы она была как можно проще. Для этого применяют эквивалентные преобразования. Эквивалентными называют такие преобразования части схемы электрической цепи, при которых токи и напряжения в не преобразованной её части остаются неизменными.

Существует четыре основных вида соединения проводников: последовательное, параллельное, смешанное и мостовое.

Последовательное соединение

Последовательное соединение – это такое соединение, при котором сила тока на всем участке цепи одинакова. Ярким примером последовательного соединения является старая елочная гирлянда.

Там лампочки подключены последовательно, друг за другом. Теперь представьте, одна лампочка перегорает, цепь нарушена и остальные лампочки гаснут.

Выход из строя одного элемента, ведет за собой отключение всех остальных, это является существенным недостатком последовательного соединения.

При последовательном соединении сопротивления элементов суммируются. 

Параллельное соединение

Параллельное соединение – это соединение, при котором напряжение на концах участка цепи одинаково. Параллельное соединение наиболее распространено, в основном потому, что все элементы находятся под одним напряжением, сила тока распределена по-разному и при выходе одного из элементов все остальные продолжают свою работу.

При параллельном соединении эквивалентное сопротивление находится как:

В случае двух параллельно соединенных резисторов

В случае трех параллельно подключенных резисторов:

Смешанное соединение

Смешанное соединение – соединение, которое является совокупностью последовательных и параллельных соединений. Для нахождения эквивалентного сопротивления нужно, “свернуть” схему поочередным преобразованием параллельных и последовательных участков цепи.

Сначала найдем эквивалентное сопротивление для параллельного участка цепи, а затем прибавим к нему оставшееся сопротивление R3. Следует понимать, что после преобразования эквивалентное сопротивление R1R2 и резистор R3, соединены последовательно.

Итак, остается самое интересное и самое сложное соединение проводников.

Мостовая схема

Мостовая схема соединения представлена на рисунке ниже.

Для того чтобы свернуть мостовую схему, один из треугольников моста, заменяют эквивалентной звездой.

И находят сопротивления R1, R2 и R3. 

Затем находят общее эквивалентное сопротивление, учитывая, что резисторы R3,R4 и R5,R2 соединены между друг другом последовательно, а в парах параллельно. 

На этом всё! Примеры расчета сопротивления цепей тут.

1 1 1 1 1 1 1 1 1 1 4.83 (3 Голоса)

Источник: https://electroandi.ru/toe/dc/vidy-soedineniya-provodnikov.html

Различные способы подключения одной, двух и более ламп

Когда проводка в квартире или доме уже присутствует и нет надобности подключать дополнительные источники света, то вопрос — как подключить лампу, не является актуальным. Но как же выполнить эту работу когда появляется такая необходимость. Тут без элементарных знаний электротехники и умения составить принципиальную, казалось бы, элементарную схему уже не обойтись.

Все источники света люминесцентные (экономки), лампы накаливания, светодиодные светильники могут быть подключены, как в принципе и все имеющиеся в электрической цепи сопротивления, параллельно, последовательно, смешанно. Смешанное соединение не используется для подключения ламп, так как в нём просто нет необходимости. А вот на параллельном и последовательном подключении стоит остановить своё внимание поподробнее.

Последовательное и параллельное подключение двух и более источников света

Для того чтобы подключить самую простую лампочку накаливания, как в принципе и любую другую, нужно подключить её один контакт к фазе, а другой к нулю, самому распространённому в бытовых условиях стран СНГ переменному напряжению 220 вольт.

Параллельное подключение устройств освещения подразумевает под собой подключение двух и более источников светового потока в параллель, то есть одни контакты ламп подключаются только к фазе, а все другие только к нулю, как показано на рисунке 1.

Через каждую лампочку пройдёт ток, который будет зависеть от её мощности, так же как и яркость светового потока, излучаемого ими, будет тоже зависеть от мощности каждой лампы.

Естественно, что ток I будет равен сумме всех трёх токов, поэтому диаметр сечения основных проводников следует выбирать согласно ему.

Это подключение считается самым распространённым и приемлемым, так как к нему можно будет, при необходимости в будущем, добавлять источники света и они не будут влиять на уже установленные.

При последовательном соединении, изображённом на рисунке, ток, протекающий по одной лампочке, будет зависеть от мощности, каждого источника света, а напряжение на них будет разделено на количество ламп и при данном входящем напряжении 220 вольт, будет равняется 110 вольт на каждом источнике света.

Такое подключение нужно обязательно выполнять со светильниками, которые имеют равную мощность. Рассмотреть это можно на примере двух ламп накаливания.

Важно

Так как если подключить одну лампу 20 Ватт, а другую, например, на 200 Ватт, то лампа с меньшей мощностью тут же выйдет из строя, так как по ней пройдёт ток такой же, как и во второй лампе мощностью 200 Ватт, а это в 10 раз больше её номинала.

Такое подключение может быть использовано для увеличения срока службы ламп накаливания, например, в подъездах и на лестничных клетках. Подключив две лампы на 220 вольт и мощностью, например, по 60 Ватт, они будут гореть вполсилы и прослужат очень долго.

Нужно учесть, что это возможно только при подключении ламп накаливания. Последовательное подключение двух и более светодиодных ламп (светильников) и экономичных ламп нецелесообразно, так как они и так обладают довольно большим сроком службы.

Подключение лампы на один выключатель или на несколько

Как подключить лампу через выключатель? Главным нюансом при подключении является то, что нулевой провод питания непосредственно подключается к сети 220 вольт, а через выключатель разрывается фаза.

Это делается для того чтобы можно было смело решать проблемами с патроном осветительного прибора, отключив лишь выключатель. Если подключение двух выключателей выполнить последовательно, то только при нажатии обеих клавиш лампа загорится.

Такие виды подключения выключателей освещения очень редко используются, только при определённых индивидуальных условиях.

Интереснее является подключение так называемого проходного выключателя.

Суть такой схемы подключения одной лампы заключается в том, что включение и отключение лампы может быть произведено как от первого, так и от второго выключателя, вне зависимости в каком положении каждый из них.

Например, это удобно, допустим, в длинном коридоре при входе в него человек нажимает на клавишу выключателя 2, и спокойно идёт по освещённому помещению, дойдя до конца коридора, не нужно возвращаться для выключения света, а можно лёгким нажатием выключателя 1, установленного в конце коридора, произвести отключение данного источника света. При таком подключении фаза тоже проходит через выключатели.

Усовершенствование освещения путём установки датчика движения

Главная функция установки датчика движения и подключения его к системе освещения, это автоматическое включение освещения без нажатия на клавишу выключателя освещения.

То есть человек зашел помещение или в зону срабатывания датчика и свет включился, после ухода свет самостоятельно (автоматически) выключился.

При выборе датчика движения необходимо в первую очередь учесть максимальную мощность ламп освещения.

Совет

Схема подключения датчика движения тоже не вызывает особых сложностей. Её можно устанавливать как с выключателем, так и без него. Просто при включении контакта выключателя датчик движения выводится из сети освещения, и осветительный прибор включается напрямую без датчика.

В любом случае работая с напряжением обязательно выполнять требования техники безопасности, а в частности:

  • проверять наличие и отсутствие напряжения на токоведущих элементах, к которым человек дотрагивается при монтаже;
  • автоматы питания освещения должны быть под замком;
  • работы производить исправным инструментом.

Видео о подключении ламп

Способы подключения двухклавишных и других выключателей

Источник: https://amperof.ru/osveshenie/podkluchenie/razlichnye-sposoby-podklyucheniya-odnoj-dvuh-i-bolee-lamp.html

Параллельное и последовательное соединение лампочек – схемы подключения

При самостоятельно обустройстве системы освещения может быть использовано параллельное и последовательное соединение лампочек.

Оба варианта имеют характерные достоинства и некоторые недостатки, поэтому к выбору типа подсоединения нужно подойти очень внимательно.

Последовательное и параллельное подключение ламп

Подключение любой, даже самой простой лампочки, предполагает подсоединение одного контакта на фазу, а второго – к нулю в условиях стабильного бытового напряжения в 220В.

При самостоятельном выполнении параллельного подключения в обязательном порядке соблюдается правило, при котором одни контакты всех ламп подсоединяются на фазу, а все другие контакты – исключительно к нулю.

В этом случае, через каждый источник света проходит электрический ток, показатели которого зависят от мощности лампы.

Такой способ подключения принято считать наиболее удобным и распространённым, что обусловлено возможностью со временем легко дополнять осветительную систему другими лампами без ущерба для уже установленных источников света.

Последовательное подсоединение предполагает разделение подаваемого напряжения на все источники света, мощность которых примерно равна. При таком способе важно учитывать, что лампа, имеющая слишком низкую мощность по сравнению с другим подключаемым источником света, очень быстро выйдет из строя.

Как показывает практика, выполнение последовательного подсоединения двух или более источников света светодиодного или люминесцентного является нецелесообразным, что обусловлено заложенной конструктивной долговечностью.

Лампочки, соединенные параллельно

Параллельное соединение может быть лучевым и шлейфным:

  • первый вариант предполагает подсоединение отдельного двухжильного или трёхжильного кабеля на каждый источник света;
  • второй вариант заключается в подсоединения «фазы» и «нейтрали» от щитка к первому источнику света и далее, кроме последнего осветительного прибора, к которому подключается по два кабеля.

Параллельное соединение лампочек

Лучевая схема является более надежной, но с большим расходом кабеля, и схождением в одной точке значительного количество электрических проводов. Шлейфное подсоединение отличается тем, что при сбое на определенном участке, все расположенные дальше светильники перестают работать.

Основным преимуществом параллельного лучевого соединения осветительных приборов является сохранение работоспособности всех источников освещения при выходе из строя какой-либо одной лампы.

Лампочки, соединенные последовательно

Последовательный вариант соединения ламп в бытовых условиях используется достаточно редко, что обусловлено особенностями эксплуатации осветительных приборов от электрической сети в 220В.

При последовательном типе соединения, подключение каждого последующего резистора к предыдущему осуществляется с образованием неразрывной цепи, но без наличия разветвлений. Общие показатели напряжения, приложенного к электрической цепи, равняется суммарному напряжению на всех элементах, которые входят в эту цепь.

Последовательное соединение лампочек и параллельное – схема

Например, при общем напряжении в 220В, количество последовательно соединяемых низковольтных осветительных приборов, которые рассчитаны на потребление в 10В, может составлять 22 штуки.

Способ последовательного соединения носит бытовое название «гирляндный», поэтому обрыв даже на одном из участков сопротивления способствует выключению или «разрыву» всей электрической цепи.

Типы ламп и схемы подключения

Подсоединение традиционных ламп накаливания, как правило, не вызывает особых сложностей, но при подключении осветительных приборов галогенного и люминесцентного типа, существует целый ряд существенных отличий, который обязательно должны учитываться.

Например, запитывание галогенных ламп пониженным напряжением позволяет обезопасить эксплуатацию таких осветительных приборов, а лампочки в этом случае, должны подключаться к вторичной обмотке на 12В параллельно, при помощи специальных клеммных колодок.

Люминесцентные лампы характеризуются так называемым «эффектом мерцания», поэтому должны эксплуатироваться с применением стандартных пускорегулирующих устройств.

В этом случае целесообразно использовать параллельный вариант подключения нескольких источников света к сети с переменным напряжением, что способствует снижению суммарной пульсации исходящего светового потока.

Видео на тему

Источник: https://proprovoda.ru/osveshhenie/lampy/parallelnoe-i-posledovatelnoe-soedinenie-lampochek.html

Коллекционная кукольная миниатюра

ПодробностиКатегория: СтатьиСоздано: 06.09.

2017 19:48Автор: Бельская Анна

Когда вы задумываетесь о том как сделать освещение в кукольном домике или румбоксе, где не один, а несколько светильников, то встает вопрос о том, как их подключить, объединить в сеть. Существует два типа подключения: последовательное и параллельное, о которых мы слышали со школьной скамьи. Их и рассмотрим в этой статье.

Я постараюсь описать всё простым доступным языком, чтобы всё было понятно даже самым-самым гуманитариям, не знакомым с электрическими премудростями.

Примечание: в этой статье рассмотрим только цепь с лампочками накаливания. Освещение диодами более сложное и будет рассмотрено в другой статье.

 Для понимания каждая схема будет сопровождена рисунком и рядом с чертежом электрической монтажной схемой.
Сначала рассмотрим условные обозначения на электрических схемах.

 Название элемента Символ на схеме Изображение
 батарейка/ элемент питания
 выключатель
 провод
 пересечение проводов ( без соединения)
 соединение проводов (пайкой, скруткой)
 лампа накаливания
 неисправная лампа
 неработающая лампа
 горящая лампа

Как уже было сказано, существуют два основных типа подключения: последовательное и параллельное. Есть ещё третье, смешанное: последовательно-параллельное, объединяющее то и другое. Начнем с последовательного, как более простого.

Последовательное подключение

Выглядит оно вот так.

Лампочки располагаются одна за другой, как в хороводе держась за руки. По этому принципу были сделаны старые советские гирлянды.

Достоинства – простота соединения.
Недостатки – если перегорела хоть одна лампочка, то не будет работать вся цепь.

Надо будет перебирать, проверять каждую лампочку, чтобы найти неисправную. Это может быть утомительным при большом количестве лампочек. Так же лампочки должны быть одного типа: напряжение, мощность.

При этом типе подключения напряжения лампочек складываются. Напряжение обозначается буквой U, измеряется в вольтах V. Напряжение источника питания должно быть равно сумме напряжений всех лампочек в цепи.

Пример №1: вы хотите подключить в последовательную цепь 3 лампочки напряжением 1,5V. Напряжение источника питания, необходимое для работы такой цепи 1,5+1,5+1,5=4,5V.У обычных пальчиковых батареек напряжение 1,5V. Чтобы из них получить напряжение 4,5V их тоже нужно соединить в последовательную цепь, их напряжения сложатся.

Подробнее о том, как выбрать источник питания написано в этой статье

 Пример №2: вы хотите подключить к источнику питания 12V лампочки по 6V. 6+6=12v. Можно подключить 2 таких лампочки.

Пример №3: вы хотите соединить в цепь 2 лампочки по 3V. 3+3=6V. Необходим источник питания на 6 V.

Подведем итог: последовательное подключение просто в изготовлении, нужны лампочки одного типа. Недостатки: при выходе из строя одной лампочки не горят все. Включить и выключить цепь можно только целиком.

Обратите внимание

Исходя из этого , для освещения кукольного домика целесообразно соединять последовательно не более 2-3 лампочек. Например, в бра. Чтобы соединить большее количество лампочек, необходимо использовать другой тип подключения –  параллельное.

Читайте так же статьи по теме:

  • Обзор миниатюрных ламп накаливания
  • Диоды или лампы накаливания

Параллельное подключение лампочек

Вот так выглядит параллельное подключение лампочек.

В этом типе подключения у всех лампочек и источника питания одинаковые напряжения. То есть при источнике питания 12v каждая из лампочек должна иметь тоже напряжение 12V. А количество лампочек может быть различным. А если у вас, допустим, есть лампочки 6V, то и источник питания нужно брать 6V.

При выходе из строя одной лампочки другие продолжают гореть.

Лампочки можно включать независимо друг от друга. Для этого к каждой нужно поставить свой выключатель.

 По этому принципу подключены электроприборы в наших городских квартирах. У всех приборов одно напряжение 220V, включать и выключать их можно независимо друг от друга, мощность электроприборов может быть разной.

Вывод: при множестве светильников в кукольном домике оптимально параллельное подключение, хотя оно чуть сложнее, чем последовательное.

Рассмотрим ещё один вид подключения, соединяющий в себе последовательное и параллельное.

Комбинированное подключение

Пример комбинированного подключения.

Три последовательные цепи, соединенные параллельно

А вот другой вариант:

Три параллельные цепи, соединенные последовательно.

Участки такой цепи, соединенные последовательно, ведут себя как последовательное соединение. А параллельные участки – как параллельное соединение.

Пример

При такой схеме перегорание одной лампочки выведет из строя весь участок, соединенный последовательно, а две другие последовательные цеписохранят работоспособность.

Соответственно, и включать-выключать участки можно независимо друг от друга. Для этого каждой последовательной цепи нужно поставить свой выключатель.

Но нельзя включить одну-единственную лампочку.

При параллельно-последовательном подключении при выходе из строя одной лампочки цепь будет вести себя так:

А при нарушении на последовательном участке вот так:

Для того, чтобы рассчитать такую сложную последовательно-параллельную цепь, её нужно разбить на участки последовательные и параллельные. Каждый участок просчитать отдельно.

Пример:

Есть 6 лампочек по 3V, соединенные в 3 последовательные цепи по 2 лампочки. Цепи в свою очередь соединены параллельно. Разбиваем на 3 последовательных участка и просчитываем этот участок.

На последовательном участке напряжения лампочек складываются, 3v+3V=6V. У каждой последовательной цепи напряжение 6V. Поскольку цепи соединены параллельно, то их напряжение не складывается, а значит нам нужен источник питания на 6V.

Пример

У нас 6 лампочек по 6V. Лампочки соединены по 3 штуки в параллельную цепь, а цепи в свою очередь – последовательно. Разбиваем систему на три параллельных цепи.

В одной параллельной цепи напряжение у каждой лампочки 6V, поскольку напряжение не складывается, то и у всей цепи напряжение 6V. А сами цепи соединены уже последовательно и их напряжения уже складываются. Получается 6V+6V=12V. Значит, нужен источник питания 12V.

Пример

Для кукольных домиков можно использовать такое смешанное подключение.

Допустим, в каждой комнате по одному светильнику, все светильники подключены параллельно. Но в самих светильниках разное количество лампочек: в двух – по одной лампочке,  есть двухрожковое бра из двух лампочек и трехрожковая люстра.  В люстре и бра лампочки соединены последовательно.

У каждого светильника свой выключатель. Источник питания 12V напряжения. Одиночные лампочки, соединенные параллельно, должны иметь напряжение 12V.

А у тех, что соединены последовательно напряжение складывается на участке цепи.

Соответственно, для участка бра из двух лампочек 12V (общее напряжение)делим на 2 (количество лампочек), получим 6V (напряжение одной лампочки). Для участка люстры 12V:3=4V (напряжение одной лампочки люстры).

Больше трех лампочек в одном светильнике соединять последовательно не стоит.

Теперь вы изучили все хитрости подключения лампочек накаливания разными способами. И, думаю, что не составит труда сделать освещение в кукольном домике со многими лампочками, любой сложности. Если же что-то для вас ещё представляет сложности, прочитайте статью о простейшем способе сделать свет в кукольном домике , самые базовые принципы. Удачи!

Полностью уникальный авторский текст. Копирование любых материалов с сайта www.miniartdom.ru разрешено только при условии открытой ссылки на первоисточник.

Источник: http://www.miniartdom.ru/ru/statya/92-parallelnoe-i-posledovatelnoe-podklyuchenie

Параллельное и последовательное соединение лампочек

При самостоятельно обустройстве системы освещения может быть использовано параллельное и последовательное соединение лампочек.

Оба варианта имеют характерные достоинства и некоторые недостатки, поэтому к выбору типа подсоединения нужно подойти очень внимательно.

Последовательное и параллельное подключение ламп

Подключение любой, даже самой простой лампочки, предполагает подсоединение одного контакта на фазу, а второго – к нулю в условиях стабильного бытового напряжения в 220В.

При самостоятельном выполнении параллельного подключения в обязательном порядке соблюдается правило, при котором одни контакты всех ламп подсоединяются на фазу, а все другие контакты – исключительно к нулю.

В этом случае, через каждый источник света проходит электрический ток, показатели которого зависят от мощности лампы.

Такой способ подключения принято считать наиболее удобным и распространённым, что обусловлено возможностью со временем легко дополнять осветительную систему другими лампами без ущерба для уже установленных источников света.

Последовательное подсоединение предполагает разделение подаваемого напряжения на все источники света, мощность которых примерно равна. При таком способе важно учитывать, что лампа, имеющая слишком низкую мощность по сравнению с другим подключаемым источником света, очень быстро выйдет из строя.

Как показывает практика, выполнение последовательного подсоединения двух или более источников света светодиодного или люминесцентного является нецелесообразным, что обусловлено заложенной конструктивной долговечностью.

Лампочки, соединенные параллельно

Параллельное соединение может быть лучевым и шлейфным:

  • первый вариант предполагает подсоединение отдельного двухжильного или трёхжильного кабеля на каждый источник света;
  • второй вариант заключается в подсоединения «фазы» и «нейтрали» от щитка к первому источнику света и далее, кроме последнего осветительного прибора, к которому подключается по два кабеля.

Параллельное соединение лампочек

Лучевая схема является более надежной, но с большим расходом кабеля, и схождением в одной точке значительного количество электрических проводов. Шлейфное подсоединение отличается тем, что при сбое на определенном участке, все расположенные дальше светильники перестают работать.

Основным преимуществом параллельного лучевого соединения осветительных приборов является сохранение работоспособности всех источников освещения при выходе из строя какой-либо одной лампы.

Лампочки, соединенные последовательно

Последовательный вариант соединения ламп в бытовых условиях используется достаточно редко, что обусловлено особенностями эксплуатации осветительных приборов от электрической сети в 220В.

При последовательном типе соединения, подключение каждого последующего резистора к предыдущему осуществляется с образованием неразрывной цепи, но без наличия разветвлений. Общие показатели напряжения, приложенного к электрической цепи, равняется суммарному напряжению на всех элементах, которые входят в эту цепь.

Последовательное соединение лампочек и параллельное – схема

Например, при общем напряжении в 220В, количество последовательно соединяемых низковольтных осветительных приборов, которые рассчитаны на потребление в 10В, может составлять 22 штуки.

Способ последовательного соединения носит бытовое название «гирляндный», поэтому обрыв даже на одном из участков сопротивления способствует выключению или «разрыву» всей электрической цепи.

Одним из наиболее эффективных источников освещения является натриевая лампа высокого давления, заявленный срок эксплуатации которой 15000 часов.

Что такое диммер для ламп накаливания и как правильно выбрать прибор, читайте тут.

Обзор основных типов поломок люстр с пультом д/у читайте на этой странице. Эта статья поможет вам самостоятельно наладить люстру.

Типы ламп и схемы подключения

Подсоединение традиционных ламп накаливания, как правило, не вызывает особых сложностей, но при подключении осветительных приборов галогенного и люминесцентного типа, существует целый ряд существенных отличий, который обязательно должны учитываться.

Например, запитывание галогенных ламп пониженным напряжением позволяет обезопасить эксплуатацию таких осветительных приборов, а лампочки в этом случае, должны подключаться к вторичной обмотке на 12В параллельно, при помощи специальных клеммных колодок.

Лампы накаливания все больше уходят в прошлое. Как выбрать энергосберегающую лампочку – основные виды ламп и критерии выбора.

Знаете ли вы для чего нужен балласт для люминесцентных ламп? Об этом вы можете узнать тут.

Люминесцентные лампы характеризуются так называемым «эффектом мерцания», поэтому должны эксплуатироваться с применением стандартных пускорегулирующих устройств.

В этом случае целесообразно использовать параллельный вариант подключения нескольких источников света к сети с переменным напряжением, что способствует снижению суммарной пульсации исходящего светового потока.

Видео на тему

Последовательная связь

— learn.sparkfun.com

Добавлено в избранное

Любимый

93

Введение

Встроенная электроника — это объединение схем (процессоров или других интегральных схем) для создания симбиотической системы. Чтобы эти отдельные каналы могли обмениваться информацией, они должны использовать общий протокол связи. Для этого обмена данными определены сотни протоколов связи, каждый из которых можно разделить на две категории: параллельный или последовательный.

Параллельный и последовательный

Параллельные интерфейсы одновременно передают несколько битов. Обычно им требуется шин и данных — передача по восьми, шестнадцати или более проводам. Данные передаются огромными, грохочущими волнами единиц и нулей.

8-битная шина данных, управляемая часами, передающая байт за каждый тактовый импульс. Используется 9 проводов.

Последовательные интерфейсы передают свои данные по одному биту за раз. Эти интерфейсы могут работать всего с одним проводом, обычно не более четырех.

Пример последовательного интерфейса, передающего один бит за каждый тактовый импульс. Требуется всего 2 провода!

Думайте о двух интерфейсах как о потоке автомобилей: параллельный интерфейс будет представлять собой мегамагистраль с 8 и более полосами движения, а последовательный интерфейс больше похож на двухполосную сельскую дорогу. За установленный промежуток времени мегамагистраль потенциально может доставить больше людей к месту назначения, но эта сельская двухполосная дорога служит своей цели и стоит небольшую часть средств, чтобы построить.

Параллельная связь, безусловно, имеет свои преимущества. Это быстро, просто и относительно легко реализовать. Но для этого требуется гораздо больше линий ввода / вывода (I / O). Если вам когда-либо приходилось переносить проект с базовой Arduino Uno на Mega, вы знаете, что линии ввода-вывода на микропроцессоре могут быть драгоценными и немногочисленными. Таким образом, мы часто выбираем последовательную связь, жертвуя потенциальной скоростью ради полезности контактов.

Асинхронный последовательный

За прошедшие годы были созданы десятки последовательных протоколов для удовлетворения конкретных потребностей встраиваемых систем.USB (универсальная шина serial ) и Ethernet — это пара наиболее известных компьютерных последовательных интерфейсов. Другие очень распространенные последовательные интерфейсы включают SPI, I 2 C и стандарт последовательного порта, о котором мы здесь сегодня поговорим. Каждый из этих последовательных интерфейсов можно разделить на две группы: синхронные или асинхронные.

Синхронный последовательный интерфейс всегда связывает свою линию (линии) данных с тактовым сигналом, поэтому все устройства на синхронной последовательной шине используют общие часы.Это делает последовательную передачу более простой и часто более быстрой, но также требует как минимум одного дополнительного провода между взаимодействующими устройствами. Примеры синхронных интерфейсов включают SPI и I 2 C.

Асинхронный означает, что данные передаются без поддержки внешнего тактового сигнала . Этот метод передачи идеально подходит для минимизации необходимых проводов и контактов ввода / вывода, но это означает, что нам нужно приложить дополнительные усилия для надежной передачи и приема данных.Последовательный протокол, который мы будем обсуждать в этом руководстве, является наиболее распространенной формой асинхронной передачи. На самом деле это настолько распространено, что, когда большинство людей говорят «серийный», они имеют в виду именно этот протокол (что вы, вероятно, заметите в этом руководстве).

Последовательный протокол без тактовой частоты, который мы обсудим в этом руководстве, широко используется во встроенной электронике. Если вы хотите добавить в свой проект модуль GPS, Bluetooth, XBee, ЖК-дисплеи с последовательным интерфейсом или многие другие внешние устройства, вам, вероятно, потребуется добавить несколько последовательных интерфейсов.

Рекомендуемая литература

Это руководство основано на нескольких концепциях электроники нижнего уровня, в том числе:

двоичный

Двоичная система — это система счисления в электронике и программировании … поэтому важно научиться этому. Но что такое двоичный? Как это переводится в другие системы счисления, такие как десятичная?

Логические уровни

Узнайте разницу между 3.Устройства 3V и 5V и логические уровни.

Аналоговые и цифровые

В этом руководстве рассматривается концепция аналоговых и цифровых сигналов в их отношении к электронике.

Как читать схему

Обзор обозначений схем компонентов, а также советы и рекомендации для лучшего чтения схем. Щелкните здесь и станьте схематически грамотным уже сегодня!

Шестнадцатеричный

Как интерпретировать шестнадцатеричные числа и как преобразовать их в / из десятичных и двоичных чисел.

ASCII

Краткая история того, как появился ASCII, как он полезен для компьютеров, и некоторые полезные таблицы для преобразования чисел в символы.

Если вы не очень хорошо знакомы с какой-либо из этих концепций, подумайте о проверке этих ссылок.

А теперь давайте отправимся в серийное путешествие …

Правила серийного номера

Асинхронный последовательный протокол имеет ряд встроенных правил — механизмов, которые помогают обеспечить надежную и безошибочную передачу данных.Вот эти механизмы, которые мы получаем для исключения внешнего тактового сигнала:

  • Биты данных,
  • бит синхронизации,
  • Биты четности,
  • и скорость передачи.

Благодаря разнообразию этих сигнальных механизмов вы обнаружите, что не существует единого способа для последовательной передачи данных. Протокол легко настраивается. Важнейшей частью является обеспечение того, чтобы оба устройства на последовательной шине были настроены на использование одинаковых протоколов .

Скорость передачи

Скорость передачи определяет скорость передачи данных по последовательной линии.Обычно выражается в битах в секунду (бит / с). Если вы инвертируете скорость передачи, вы можете узнать, сколько времени требуется для передачи одного бита. Это значение определяет, как долго передатчик удерживает высокий / низкий уровень последовательной линии или в какой период принимающее устройство производит выборку своей линии.

Скорость передачи может быть практически любой в разумных пределах. Единственное требование — чтобы оба устройства работали с одинаковой скоростью. Одна из наиболее распространенных скоростей передачи, особенно для простых вещей, где скорость не критична, — 9600 бит / с .Другие «стандартные» скорости: 1200, 2400, 4800, 19200, 38400, 57600 и 115200.

Чем выше скорость передачи, тем быстрее отправляются / принимаются данные, но существуют ограничения на скорость передачи данных. Обычно вы не увидите скорости, превышающей 115200 — это быстро для большинства микроконтроллеров. Поднимитесь слишком высоко, и вы начнете видеть ошибки на принимающей стороне, так как часы и периоды выборки просто не успевают.

Обрамление данных

Каждый блок (обычно байт) передаваемых данных фактически отправляется в пакете или кадре бит.Кадры создаются путем добавления к нашим данным битов синхронизации и четности.

Серийный корпус. Некоторые символы в кадре имеют настраиваемый размер бит.

Давайте подробно рассмотрим каждую из этих частей рамы.

Блок данных

Настоящая суть каждого последовательного пакета — это данные, которые он несет. Мы неоднозначно называем этот блок данных чанком , потому что его размер специально не указан. Количество данных в каждом пакете может быть установлено от 5 до 9 бит.Конечно, стандартный размер данных — это ваш базовый 8-битный байт, но другие размеры имеют свое применение. 7-битный блок данных может быть более эффективным, чем 8-битный, особенно если вы просто передаете 7-битные символы ASCII.

После согласования длины символа оба последовательных устройства также должны согласовать порядок байтов своих данных. Отправляются ли данные из старшего разряда в младший или наоборот? Если не указано иное, обычно можно предположить, что данные передаются младших битов (LSB), сначала .

Биты синхронизации

Биты синхронизации — это два или три специальных бита, передаваемых с каждым блоком данных. Это стартовый бит и стоповый бит . Как следует из названия, эти биты отмечают начало и конец пакета. Всегда есть только один стартовый бит, но количество стоповых битов можно настроить на один или два (хотя обычно его оставляют равным одному).

Стартовый бит всегда указывается незанятой строкой данных, переходящей от 1 до 0, в то время как стоповый бит (ы) переходит обратно в состояние ожидания, удерживая строку на 1.

Биты четности

Четность — это форма очень простой низкоуровневой проверки ошибок. Он бывает двух видов: четный и нечетный. Для создания бита четности все 5-9 битов байта данных складываются, и четность суммы определяет, установлен ли бит или нет. Например, предполагая, что четность установлена ​​на четность и добавляется к байту данных, например 0b01011101 , который имеет нечетное число 1 (5), бит четности будет установлен на 1 . И наоборот, если бы режим четности был установлен как нечетный, бит четности был бы 0 .

Четность — необязательный и не очень широко используется. Это может быть полезно для передачи через шумные среды, но это также немного замедлит вашу передачу данных и требует, чтобы и отправитель, и получатель реализовали обработку ошибок (обычно полученные данные, которые терпят неудачу, должны быть отправлены повторно).

9600 8Н1 (пример)

9600 8N1 — 9600 бод, 8 бит данных, без контроля четности и 1 стоповый бит — это один из наиболее часто используемых последовательных протоколов. Итак, как будут выглядеть один или два пакета данных 9600 8N1? Приведем пример!

Устройство, передающее символы ASCII «O» и «K», должно создать два пакета данных.Значение ASCII O (это верхний регистр) — 79, которое разбивается на 8-битное двоичное значение 01001111 , а двоичное значение K 01001011 . Осталось только добавить биты синхронизации.

Это конкретно не указано, но предполагается, что данные передаются в первую очередь младшим битом. Обратите внимание, как каждый из двух байтов отправляется при чтении справа налево.

Поскольку мы передаем со скоростью 9600 бит / с, время, затрачиваемое на поддержание высокого или низкого уровня каждого из этих битов, составляет 1 / (9600 бит / с) или 104 мкс на бит.

Для каждого переданного байта данных фактически отправляется 10 бит: стартовый бит, 8 бит данных и стоповый бит. Итак, при 9600 бит / с мы фактически отправляем 9600 бит в секунду или 960 (9600/10) байтов в секунду.


Теперь, когда вы знаете, как создавать последовательные пакеты, мы можем перейти к разделу оборудования. Там мы увидим, как эти единицы и нули, а также скорость передачи данных реализованы на уровне сигнала!

Электропроводка и оборудование

Последовательная шина состоит всего из двух проводов — один для отправки данных, а другой для приема.Таким образом, последовательные устройства должны иметь два последовательных контакта: приемник RX и передатчик TX .

Важно отметить, что эти ярлыки RX и TX относятся к самому устройству. Таким образом, RX от одного устройства должен переходить в TX другого, и наоборот. Это странно, если вы привыкли подключать VCC к VCC, GND к GND, MOSI к MOSI и т. Д., Но это имеет смысл, если подумать. Передатчик должен разговаривать с приемником, а не с другим передатчиком.

Последовательный интерфейс, по которому оба устройства могут отправлять и получать данные, — это полнодуплексный или полудуплексный . Полнодуплексный режим означает, что оба устройства могут отправлять и получать одновременно. Полудуплексная связь означает, что последовательные устройства должны по очереди отправлять и получать.

Некоторые последовательные шины могут обходиться без единого соединения между отправляющим и принимающим устройством. Например, все наши ЖК-дисплеи с последовательным подключением — это уши, и на самом деле у них нет никаких данных, которые можно было бы передать обратно на управляющее устройство.Это так называемая симплексная последовательная связь . Все, что вам нужно, это один провод от TX ведущего устройства до RX линии слушателя.

Аппаратная реализация

Мы рассмотрели асинхронный последовательный порт с концептуальной стороны. Мы знаем, какие провода нам нужны. Но как на самом деле реализуется последовательная связь на уровне сигнала? На самом деле, разными способами. Существуют всевозможные стандарты для последовательной передачи сигналов. Давайте посмотрим на пару наиболее популярных аппаратных реализаций последовательного интерфейса: логического уровня (TTL) и RS-232.

Когда микроконтроллеры и другие низкоуровневые ИС взаимодействуют последовательно, они обычно делают это на уровне TTL (транзисторно-транзисторная логика). TTL последовательный сигналы существуют между диапазоном напряжения питания микроконтроллера — обычно от 0 В до 3,3 В или 5 В. Сигнал на уровне VCC (3,3 В, 5 В и т. Д.) Указывает либо на свободную линию, либо на бит со значением 1, либо на стоповый бит. Сигнал 0 В (GND) представляет либо стартовый бит, либо бит данных со значением 0.

RS-232, который можно найти на некоторых из более древних компьютеров и периферийных устройств, похож на TTL-последовательный порт, перевернутый с ног на голову.Сигналы RS-232 обычно находятся в диапазоне от -13 В до 13 В, хотя в спецификации допускается любое значение от +/- 3 В до +/- 25 В. В этих сигналах низкое напряжение (-5 В, -13 В и т. Д.) Указывает либо на свободную линию, либо на стоповый бит, либо на бит данных со значением 1. Высокий сигнал RS-232 означает либо стартовый бит, либо 0- бит данных значения. Это своего рода противоположность серийному TTL.

Между двумя стандартами последовательных сигналов, TTL намного проще реализовать во встроенных схемах. Однако низкие уровни напряжения более подвержены потерям на длинных линиях передачи.RS-232 или более сложные стандарты, такие как RS-485, лучше подходят для последовательной передачи на большие расстояния.

Когда вы соединяете два последовательных устройства вместе, важно убедиться, что их сигнальные напряжения совпадают. Вы не можете напрямую связать последовательное устройство TTL с шиной RS-232. Вам придется изменить эти сигналы!


Продолжая, мы рассмотрим инструменты, которые микроконтроллеры используют для преобразования своих данных по параллельной шине в последовательный интерфейс и обратно. UART!

UART

Последняя часть этой серийной головоломки — найти что-то для создания последовательных пакетов и управления этими физическими линиями оборудования.Введите UART.

Универсальный асинхронный приемник / передатчик (UART) — это блок схемы, отвечающий за реализацию последовательной связи. По сути, UART действует как посредник между параллельным и последовательным интерфейсами. На одном конце UART находится шина из восьми или около того линий данных (плюс несколько управляющих контактов), на другом — два последовательных провода — RX и TX.

Супер-упрощенный интерфейс UART. Параллельный на одном конце, последовательный на другом.

UART существуют как автономные ИС, но чаще встречаются внутри микроконтроллеров.Вам нужно будет проверить таблицу вашего микроконтроллера, чтобы узнать, есть ли у него какие-либо UART. У кого-то его нет, у кого-то есть, у кого-то много. Например, Arduino Uno, основанная на «старом верном» ATmega328, имеет только один UART, а Arduino Mega, построенная на ATmega2560, имеет целых четыре UART.

Как следует из аббревиатур R и T , UART отвечают как за отправку, так и за прием последовательных данных. На стороне передачи UART должен создать пакет данных — добавив биты синхронизации и четности — и отправить этот пакет по линии передачи с точным временем (в соответствии с установленной скоростью передачи).На стороне приема UART должен выполнить выборку линии RX со скоростью в соответствии с ожидаемой скоростью передачи, выбрать биты синхронизации и выдать данные.

Блок-схема внутреннего UART (любезно предоставлена ​​таблицей данных Exar ST16C550)

Более продвинутые UART могут сбрасывать полученные данные в буфер , где они могут оставаться до тех пор, пока микроконтроллер не придет за ними. UART обычно выпускают свои буферизованные данные по принципу FIFO. Буферы могут иметь размер от нескольких бит до тысяч байтов.

Программные UART

Если микроконтроллер не имеет UART (или его недостаточно), последовательный интерфейс может быть с битовой обработкой — напрямую управляться процессором. Это подход, который используют библиотеки Arduino, такие как SoftwareSerial. Bit-banging требует много ресурсов процессора и обычно не так точен, как UART, но в крайнем случае работает!

Общие ловушки

Вот и все, что касается последовательной связи. Я хотел бы оставить вас с несколькими типичными ошибками, которые легко сделать инженер с любым уровнем опыта:

RX-to-TX, TX-to-RX

Кажется достаточно простым, но я знаю, что это ошибка, которую я совершал более нескольких раз.Как бы вы ни хотели, чтобы их метки совпадали, всегда следите за тем, чтобы линии RX и TX пересекали линии между последовательными устройствами.

FTDI Базовое программирование Pro Mini. Обратите внимание на пересечение RX и TX!

Вопреки тому, что предупреждал уважаемый доктор Эгон Шпенглер, пересекает ручьи .

Несоответствие скорости передачи

Скорость передачи аналогична языкам последовательной связи. Если два устройства не разговаривают с одинаковой скоростью, данные могут быть неправильно интерпретированы или полностью пропущены.Если все принимающее устройство видит на своей линии приема мусор, убедитесь, что скорости передачи совпадают.

Данные передаются со скоростью 9600 бит / с, но принимаются со скоростью 19200 бит / с. Несоответствие бода = мусор.

Конфликт между автобусами

Последовательная связь предназначена для того, чтобы только два устройства могли обмениваться данными по одной последовательной шине. Если несколько устройств пытаются передавать по одной и той же последовательной линии, вы можете столкнуться с конфликтом на шине. Дун Дун Дун ….

Например, если вы подключаете модуль GPS к Arduino, вы можете просто подключить линию TX этого модуля к линии RX Arduino.Но этот вывод Arduino RX уже подключен к выводу TX преобразователя USB-to-serial, который используется всякий раз, когда вы программируете Arduino или используете Serial Monitor . Это создает потенциальную ситуацию, когда и модуль GPS, и чип FTDI пытаются одновременно передавать данные по одной и той же линии.

Два передатчика, отправляющие сигнал одному приемнику, создают возможность конфликта на шине.

Два устройства пытаются передавать данные одновременно по одной линии — это плохо! В «лучшем» случае ни одно из устройств не сможет отправлять свои данные.В худшем случае обе линии передачи устройства выходят из строя (хотя это редко и обычно защищено от этого).

Подключение нескольких приемных устройств к одному передающему устройству может быть безопасным. Не совсем соответствует спецификациям и, вероятно, не одобряется закаленным инженером, но это сработает. Например, если вы подключаете последовательный ЖК-дисплей к Arduino, самым простым подходом может быть подключение линии RX ЖК-модуля к линии TX Arduino. TX Arduino уже подключен к линии RX USB-программатора, но это по-прежнему оставляет только одно устройство, контролирующее линию передачи.

Такое распределение линии передачи может быть опасным с точки зрения прошивки, потому что вы не можете выбрать, какое устройство слышит какую передачу. ЖК-дисплей в конечном итоге получит данные, не предназначенные для него, что может заставить его перейти в неизвестное состояние.

В общем — одна последовательная шина, два последовательных устройства!

Ресурсы и дальнейшее развитие

Благодаря этим блестящим новым знаниям о последовательной связи есть множество новых концепций, проектов и технологий, которые необходимо изучить.

Хотите узнать больше о других стандартах связи? Может что-то синхронное? Ознакомьтесь со следующими протоколами связи.

I2C

Введение в I2C, один из основных используемых сегодня протоколов встроенной связи.

AST-CAN485 Руководство по подключению

AST CAN485 — это миниатюрная Arduino в компактном форм-факторе ProMini.В дополнение ко всем обычным функциям он имеет встроенные порты CAN и RS485, позволяющие быстро и легко взаимодействовать с множеством промышленных устройств.

Многие технологии широко используют последовательную связь:

А может, хотите посмотреть сериал в действии?

Распиновка кабеля последовательного порта RS-232

@ pinouts.ru

Назначение нуль-модемного последовательного кабеля — позволить двум устройствам RS-232 связываться друг с другом без модемов или других устройств связи между ними.Для достижения этого наиболее очевидное соединение состоит в том, что сигнал TxD одного устройства должен быть подключен к входу RxD другого устройства (и наоборот).

Последовательный кабель RS-232 (нуль-модем) DE-9 — DE-9 с подтверждением связи

Сигнал RS232

D-Sub 1

Цвет провода кабеля RS-232 * D-Sub 2 Сигнал RS232
Прием данных (RxD) 2 коричневый 3 Передача данных
Передача данных (TxD) 3 красный 2 Получение данных
Терминал данных готов (DTR) 4 оранжевый 6 + 1 Набор данных готов + обнаружение несущей
Заземление системы (Земля) 5 желтый 5 Заземление системы
Готовность набора данных + обнаружение несущей (DSR + CD) 6 + 1 зеленый + черный 4 Терминал данных готов
Запрос на отправку (RTS) 7 синий 8 Разрешить отправку
Разрешение на отправку (CTS) 8 фиолетовый 7 Запрос на отправку
Индикатор звонка (RI) 9 белый н / д

* Стандартной цветовой схемы нет.

Некоторые устройства используют другие контакты RS-232 для управления потоком. Одна из наиболее распространенных схем заключается в том, что DTE (ПК) утверждает сигнал RTS, если он готов к отправке данных, и DCE (модем), чтобы утверждать CTS, когда он может принимать данные. Подключив вывод RTS одного устройства к выводу CTS другого устройства, мы можем имитировать это рукопожатие.

Кроме того, для многих устройств является обычным соглашением утверждать сигнал DTR, когда они включены, и для многих устройств DCE подтверждать сигнал DSR, когда они включены, и подтверждать сигнал CD, когда они подключены.Подключив сигнал DTR одного DTE к входам CD и DSR другого DTE (и наоборот), мы можем обмануть каждое DTE, заставив его думать, что оно подключено к DCE, который включен и находится в режиме онлайн. Как правило, сигнал индикации кольца (RI) не проходит через нуль-модемное соединение.

Последовательный кабель RS-232 (нуль-модем) DE-9 — DE-9 без квитирования

Сигнал RS232

D-Sub 1 Цвет провода кабеля * D-Sub 2 Сигнал RS232
Прием данных (RxD) 2 коричневый 3 Передача данных
Передача данных (TxD) 3 красный 2 Получение данных
Заземление системы (Земля) 5 желтый 5 Заземление системы

* Стандартной цветовой схемы нет.

Нулевой модем Кабель DSUB9 — DSUB25

D-Sub 9 D-Sub 25
Получение данных 2 2 Передача данных
Передача данных 3 3 Получение данных
Терминал данных готов 4 6 + 8 Набор данных готов + обнаружение несущей
Заземление системы 5 7 Заземление системы
Набор данных готов + обнаружение несущей 6 + 1 20 Терминал данных готов
Запрос на отправку 7 5 Разрешить отправку
Отменить отправку 8 4 Запрос на отправку

Нулевой модем Кабель DSUB25 — DSUB25

D-Sub25 1 D-Sub25 2
Получение данных 3 2 Передача данных
Передача данных 2 3 Получение данных
Терминал данных готов 20 6 + 8 Набор данных готов + обнаружение несущей
Заземление системы 7 7 Заземление системы
Набор данных готов + обнаружение несущей 6 + 8 20 Терминал данных готов
Запрос на отправку 4 5 Разрешить отправку
Отменить отправку 5 4 Запрос на отправку

Примечание: DSR и CD переставлены, чтобы заставить программы думать, что они подключены к сети

Информация о распиновке последовательного кабеля RS232

Об авторе:

Ламмерт Бис
папа, муж и полиглот.Он занимается разработкой встраиваемых систем с восьмидесятых годов. Использовал машинное обучение до того, как получил название. Специализируется на соединении компьютеров, роботов и людей. Был сторонником Google Mapmaker и выступал на нескольких международных конференциях Google с 2011 года до тех пор, пока Mapmaker не отключили в 2017 году. Бухантер из Google. В настоящее время распространяет искусственный интеллект в самых диких местах производственной среды. Он никогда не перестает учиться.

Схема последовательного кабеля RS232

Практически ничто в компьютерном интерфейсе не сбивает с толку больше, чем выбор правильного последовательного кабеля RS232.Эти страницы предназначены для предоставления информации о наиболее распространенных последовательных кабелях RS232 при обычном использовании компьютера или, на более распространенном языке, «Как мне соединять устройства и компьютеры с помощью RS232?»

Назначение контактов последовательного разъема RS232

Разъем RS232 изначально был разработан для использования 25 контактов. Распиновка разъема DB25 предназначена для вторичного последовательного канала связи RS232. На практике присутствует только один последовательный канал связи с сопутствующим подтверждением связи.Было выпущено очень мало компьютеров, в которых реализованы оба последовательных канала RS232. Примерами этого являются модели Sun SparcStation 10 и 20 и Dec Alpha Multia. Также на ряде моделей модемов Telebit присутствует вторичный канал. Его можно использовать для запроса статуса модема, когда модем находится в сети и занят связью. На персональных компьютерах сегодня чаще используется меньшая версия DB9. На схемах черным цветом показаны сигналы, общие для обоих типов разъемов. Определенные контакты, присутствующие только на большем разъеме, показаны красным.Обратите внимание, что защитное заземление назначено контакту на большом разъеме, где внешний разъем используется для этой цели с версией разъема DB9.

Распиновка также показана для модифицированного модульного разъема DEC. Этот тип разъема использовался в системах, созданных Digital Equipment Corporation; в первые дни один из лидеров в мире мэйнфреймов. Хотя этот последовательный интерфейс является дифференциальным (прием и передача имеют свой собственный уровень плавающего заземления, чего нет в обычном RS232), с этим интерфейсом можно подключать устройства, совместимые с RS232, поскольку уровни напряжения битовых потоков находятся в одном диапазоне. .Если определение RS232 сосредоточено на соединении DTE, оконечного оборудования данных (компьютеров, принтеров и т. Д.) С DCE, оборудования передачи данных (модемов), MMJ в первую очередь определялось для соединения двух DTE напрямую.

Распиновка RS232 DB9

Распиновка DEC MMJ

Распиновка RS232 DB25

Преобразователь RS232 DB25 в DB9

Первоначальная распиновка RS232 была разработана для 25-контактного разъема типа Sub D. С момента появления на IBM-AT последовательного порта меньшего размера обычно используются 9-контактные разъемы RS232.В смешанных приложениях можно использовать преобразователь с 9 на 25 контактов для подключения разъемов разных размеров. Поскольку большинство компьютеров оснащены версией последовательного порта DB9, во всех примерах проводки на этом веб-сайте этот разъем будет использоваться по умолчанию. Если вы хотите использовать этот пример с DB25, просто замените номера контактов разъема в соответствии с приведенной ниже таблицей преобразования.

Преобразователь RS232 DB9 в DB25

DB9 DB25 Имя Функция
1 8 DCD Обнаружение носителя данных 2

9034 9034 9034 данные

5324 9034 9034

3 2 Tx Передача данных
4 20 DTR Готовность терминала данных
Заземление сигнала
6 6 DSR Набор данных готов
7 4 80009 RTS CTS Очистить для отправки
9 22 RI Кольцевой индикатор

Преобразование DB9 в DB25

Контрольные штекеры последовательного шлейфа RS232

Следующие разъемы RS232 могут использоваться для тестирования последовательного порта на вашем компьютере.Линии данных и рукопожатия были связаны. Таким образом, все данные будут немедленно отправлены обратно. ПК контролирует собственное рукопожатие. Первый тестовый штекер можно использовать для проверки работы последовательного порта RS232 с помощью стандартного программного обеспечения терминала. Вторая версия может использоваться для проверки полной функциональности последовательного порта RS232 с помощью Norton Diagnostics или CheckIt.

Разъем RS232 DB9 loopback

Разъем RS232 DB25 loopback

DB9 DB25 Функция
1 + 4 + 6 6 + 8 + 20 DTR ► CD + DSR
2 + 3 2 2 + 3 Tx ► Rx
7 + 8 4 + 5 RTS ► CTS

Шлейфовый тестовый штекер RS232 для программного обеспечения эмуляции терминала RS232 DB9 шлейфовый разъем (Norton / CheckIt)

Разъем RS232 DB25 loopback (Norton / Checkit)

0 2

DB9 DB25 Функция
1 + 4 + 6 + 9 6 + 8 + 20 + 22 DTR ► CD + DSR + RI
2 + 3 Tx ► Rx
7 + 8 4 + 5 RTS ► CTS

Тестовый разъем RS232 loopback для Norton Diagnostics и CheckIt

Тестирование выполняется в несколько этапов.Данные отправляются по линии Tx, и полученная информация на входе Rx затем сравнивается с исходными данными.

Уровень сигнала на линиях DTR и RTS также контролируется тестовым программным обеспечением, и подключенные входы считываются в программном обеспечении, чтобы увидеть, правильно ли возвращаются эти уровни сигналов. Второй тестовый штекер RS232 имеет то преимущество, что также можно тестировать входную линию RI кольцевого индикатора. Этот вход используется модемами для сигнализации о входящем звонке на подключенный компьютер.

Нуль-модемные кабели RS232

Самый простой способ соединить два ПК — использовать нуль-модемный кабель RS232. Единственная проблема заключается в большом количестве доступных нуль-модемных кабелей RS232. Для простых подключений достаточно трехлинейного кабеля RS232, соединяющего сигнальную землю и линии приема и передачи. Однако в зависимости от используемого программного обеспечения может потребоваться какое-то подтверждение связи. Используйте таблицу выбора нуль-модема RS232, чтобы найти подходящий нуль-модемный кабель для каждой цели.Для прямого кабельного соединения Windows 95/98 / ME хорошим выбором будет нуль-модемный кабель RS232 с обратной связью.

Нуль-модемные кабели

RS232 с подтверждением установления связи могут быть определены различными способами, с установлением связи с обратной связью для каждого ПК или полным установлением связи между двумя системами. Здесь показаны наиболее распространенные типы нуль-модемных кабелей.

Простой нуль-модем RS232 без квитирования
(объяснение)

► 9034 9034 9034 9034 9034 9034

Разъем 1 Разъем 2 Функция
2 3 Rx ◄ Tx
3 2 Заземление сигнала

Простой нуль-модем RS232 без квитирования RS232 нуль-модем с обратным квитированием
(объяснение)

► 9034 9034 9034 9034 9034 9034

Разъем 1 Разъем 2 Функция
2 3 Rx ◄ Tx
3 2 Заземление сигнала
1 + 4 + 6 DTR ► CD + DSR
1 + 4 + 6 DTR ► CD + DSR
7 +20 8 — RTS ► CTS
7 + 8 RTS ► CTS

Нуль-модем RS232 с обратным подтверждением связи

Разъем 1 Разъем 2 Функция
1 7 + 8 RTS 2 ► CTS 2 + CD 1

1 Rx ◄ Tx
3 2 Tx ► Rx
4 6 DTR ► DSR
5 5 DSR ◄ DTR
7 + 8 1 RTS 1 ► CTS 1 + CD 2

RS232 нуль-модем с частичным квитированием

► 9034 9034 9034 9034 9034 9034 9034

Разъем 1 Разъем 2 Функция
2 3 Rx ◄ Tx
3 2 DTR ► DSR
5 5 Заземление сигнала
6 4 DSR ◄ DTR
7 8

CTS 9034

RTS CTS ◄ RTS

Нуль-модем RS232 с полным квитированием

Если товар рекламируется как «менее 50 долларов».00 «,
Вы можете поспорить, что это не 19,95 доллара.

РОЖДЕСТВЕНСКАЯ ТОРГОВАЯ АКСИОМА МакГоуэна

прямых заявок | Последовательная проводка

Обсуждая последовательные соединения для компьютеров, вы обычно имеете в виду интерфейс RS232. Leads Direct продает широкий спектр последовательных выводов и кабелей, совместимых с RS232, в конфигурациях с 9 и 25 контактами, включая прямые и нулевые модемные провода, а также USB и Firewire, которые также являются типами последовательного соединения.

Вы можете просмотреть и приобрести эти потенциальные покупатели, посетив нашу серию потенциальных клиентов, в которой представлены буквально тысячи товаров с изображениями двух размеров каждая.

Последовательный порт RS232 передает данные в последовательном формате (1 бит за раз по одной строке). Этот порт поддерживает множество устройств, включая последовательную мышь, последовательный принтер или модем, которым требуется последовательная передача данных. Возможно, наиболее распространенным последовательным портом является 9-контактный D.

Подключения к этим разъемам обычно выполняются путем пайки кабелей к клеммам «ведра для припоя» на задней стороне разъема.Обратите внимание, что один и тот же разъем часто используется как для монтажа на шасси, так и для монтажа кабеля, в последнем случае с добавлением пластиковой или металлической крышки.

Паяльные бирки на задней панели последовательного разъема DB9

Современные компьютеры поставляются с Com1 и Com2 в этом стиле, обычно собираемые на материнскую плату как часть формата ATX.

В старых машинах используется 25-контактный D-образный разъем для Com2, вторичного последовательного порта.

Штыри пронумерованы слева направо в первом ряду, а затем во втором ряду, как показано на схеме ниже:

Номера контактов обычно выбиты на молдинге в задней части разъема, что делает выбор правильных контактов довольно простой задачей.

Стандартная 9-контактная последовательная проводка RS232

Штифт Сигнал ввод / вывод Определение
1 DCD I Обнаружение носителя данных
2 RXDA I Получить данные
3 TXDA O Передача данных
4 ДТР O Терминал данных готов
5 ЗЕМЛЯ НЕТ Сигнальная масса
6 DSR I Набор данных готов
7 РТС O Запрос на отправку
8 CTS I Отменить отправку
9 РИ I Индикатор звонка
Корпус НЕТ НЕТ Шлифовка рамы

Стандартный 9-контактный RS232, проводка нуль-модема

Нуль-модемные выводы и кабели

используются для соединения двух последовательных интерфейсов вместе, обычно для передачи данных с использованием двух гнездовых разъемов.

Они также используются для интерфейсов между компьютерами и другими продуктами, такими как сканеры штрих-кода, и для управления в системах EPOS, ниже представлена ​​стандартная распиновка нуль-модема, которая используется в наших продуктах. Leads Direct может предложить широкий ассортимент готовых нуль-модемных кабелей, а также кабелей, изготовленных по индивидуальному заказу в соответствии с вашими требованиями.

Штифт Штифт
1 н / д
2 3
3 2
4 6
5 5
6 4
7 8
8 7
9 н / д
Корпус Корпус или н / п

Стандартная 25-контактная последовательная проводка RS232

Штифт Сигнал В / В Описание

1

ЗЕМЛЯ НЕТ Щит заземления

2

TXD

O

Передача данных

3

RXD

Я

Получение данных

4

РТС

O

Запрос на отправку

5

CTS

Я

Разрешить отправку

6

DSR

Я

Набор данных готов

7

ЗЕМЛЯ НЕТ Заземление системы

8

CD

Я

Обнаружение несущей

9

Н / Д

ЗАБРОНИРОВАН

10

Н / Д

ЗАБРОНИРОВАН

11

STF

O

Выбрать канал передачи

12

С.CD

Я

Обнаружение вторичной несущей

13

S.CTS

Я

Вторичный Очистить для отправки

14

S.TXD

O

Данные вторичной передачи

15

TCK

Я

Синхронизация элемента сигнала передачи

16

С.RXD

Я

Данные вторичного приема

17

RCK

Я

Синхронизация элемента сигнала приемника

18

LL

O

Управление по местному контуру

19

С.РЦ

O

Вторичный запрос на отправку

20

ДТР

O

Терминал данных готов

21

RL

O

Дистанционное управление по контуру

22

РИ

Я

Индикатор звонка

23

DSR

O

Селектор скорости передачи сигналов данных

24

XCK

O

Синхронизация элемента сигнала передачи

25

ТИ

Я

Тестовый индикатор

Если вам нужно преобразовать кабель DB25 для работы с портом DB9, следующая распиновка позволит вам сделать такой кабель.Кроме того, его легко может сделать для вас команда Leads Direct.

Последовательная связь и схемы расположения выводов

Заглушки батарей

RBR производит заглушки батарей USB, RS-232 и RS-485. Все трое выглядят одинаково, однако их внутренняя проводка несовместима и имеет соответствующую маркировку.

UART доступен на некоторых платах приборов OEM с RS-232 для передачи сигналов от 0 В до + 3 В по специальному запросу.

Подробная информация

Данные

9034 Connector

RS-232

RS-485

9018

+4.От 5 до +30 В постоянного тока ~ 4 мА

от +4,5 до +30 В постоянного тока ~ 4 мА НЕТ
Внешнее питание (Gen1 и 2) Номинальное 12 В (9-15 В) Номинальное 24 В (21-27 В ) Номинальное 12 В (9-15 В)

Номинальное 24 В (21-27 В)

НЕТ
Протокол RS-232 полнодуплексный RS-485 USB
Запрашиваемая или автономная потоковая передача Опрашиваемая или автономная потоковая передача Опрашиваемая или автономная потоковая передача
Скорость передачи данных 1200–115k 1200–115k N / A
MCBH-6MP MCBH-6MP
Расстояние 0-50 м 0-850 м * 0-5 м

* RBR протестировал со скоростью передачи от 9600 до 850 бод возможно большее расстояние.

Кабели

Коммутационные кабели предназначены для соединения между прибором и компьютером. Подводные удлинительные кабели могут использоваться для последовательного вывода прибора для увеличения расстояния между компьютером и прибором. RS-232 может использоваться на расстоянии до 50 м (дольше с более низкой скоростью передачи). RS-485 — это выбор для междугородних звонков.

Соединительные кабели могут использоваться для RS-232 и питания или общих аналоговых сигналов, обычно между двумя подводными устройствами.

В зависимости от заказанной конфигурации прибор может поставляться с кабелем RS-232 или RS-485, который может иметь разъем DB-9 (RS-232 P / N 0003970 или RS-485 P / N 0004126) для подключения к вашему компьютеру через соответствующий адаптер или встроенный преобразователь и разъем USB (RS-232 P / N 0003664 или RS-485 P / N 0003663).

Схема расположения выводов разъема DB-9 на кабелях MCIL — DB-9, поставляемых RBR для связи RS-232 (P / N 0003970) и RS-485 (P / N 0004126), показана ниже.

0

Контакт #

Распиновка RS-232 DB-9

Распиновка RS-485 DB-9

9034 9034 9034

Rx- ДАННЫЕ В RBR

2 Tx ДАННЫЕ ИЗ RBR

Rx + ДАННЫЕ В RBR

3 Rx ДАННЫЕ Rx 90 Tx Rx 90 Tx DATA

4 N / C

Tx- ДАННЫЕ ИЗ RBR

5 ЗЕМЛЯ ЗЕМЛЯ

Как работают последовательные порты | HowStuffWorks

Все используемые сегодня компьютерные операционные системы поддерживают последовательные порты, поскольку последовательные порты существуют уже несколько десятилетий.Параллельные порты являются более поздним изобретением и намного быстрее последовательных портов. Портам USB всего несколько лет, и они, вероятно, полностью заменят как последовательные, так и параллельные порты в течение следующих нескольких лет.

Название «последовательный» происходит от того факта, что последовательный порт «сериализует» данные. То есть он берет байт данных и передает 8 бит в байте по одному. Преимущество состоит в том, что для последовательного порта требуется только один провод для передачи 8 бит (в то время как для параллельного порта требуется 8). Недостатком является то, что для передачи данных требуется в 8 раз больше времени, чем при использовании 8 проводов.Последовательные порты снижают стоимость кабеля и уменьшают размер кабеля.

Перед каждым байтом данных последовательный порт отправляет стартовый бит, который представляет собой единственный бит со значением 0. После каждого байта данных он отправляет стоповый бит, чтобы сигнализировать, что байт завершен. Он также может отправить бит четности.

Последовательные порты, также называемые портами связи (COM) , являются двунаправленными . Двунаправленная связь позволяет каждому устройству как принимать данные, так и передавать их. Последовательные устройства используют разные контакты для приема и передачи данных — использование одних и тех же контактов ограничит связь до полудуплекса , что означает, что информация может перемещаться только в одном направлении за раз.Использование разных контактов обеспечивает полнодуплексную связь , при которой информация может передаваться в обоих направлениях одновременно.

Последовательные порты зависят от специальной микросхемы контроллера, универсального асинхронного приемника / передатчика (UART) , для правильной работы. Микросхема UART принимает параллельный вывод системной шины компьютера и преобразует его в последовательную форму для передачи через последовательный порт. Чтобы работать быстрее, большинство микросхем UART имеют встроенный буфер объемом от 16 до 64 килобайт.Этот буфер позволяет микросхеме кэшировать данные, поступающие с системной шины, пока он обрабатывает данные, поступающие на последовательный порт. В то время как большинство стандартных последовательных портов имеют максимальную скорость передачи 115 Кбит / с (килобит в секунду), высокоскоростные последовательные порты, такие как Enhanced Serial Port (ESP) и Super Enhanced Serial Port (Super ESP) , могут достигать передачи данных. скорости 460 Кбит / с.

Расположение выводов разъема последовательного порта RS232

RS-232 — это стандарт последовательной связи, который обеспечивает возможности асинхронной и синхронной связи, такие как аппаратное управление потоком данных,
программное управление потоком и проверка четности.Он широко используется на протяжении десятилетий.
Практически все редукторы, приборы с цифровым интерфейсом управления и устройства связи оснащены интерфейсом RS-232.
Типичная скорость передачи для соединения RS-232 составляет 9600 бит / с на максимальном расстоянии 15 метров.

В следующем документе описываются функции контактов 9- и 25-контактных разъемов Sub-D RS232, используемых в последовательной связи.
Контакты на изображениях показаны со стороны контактов (не со стороны припоя или печатной платы).Штекерные разъемы используются на стороне DTE (оконечного оборудования данных) или ПК.
Гнездовые гнезда находятся на стороне DCE (оборудование передачи данных) или на стороне модема.

Используя компонент последовательного порта ActiveXperts, вы можете отправлять и получать данные и управлять портом RS232.

9-контактный разъем RS232 (DB-9)

1 DCD Обнаружение носителя данных
2 RD Полученные данные
3 TD Переданные данные 9034 9034 9034 DATA Терминал
5 GND Сигнальная земля
6 DSR Набор данных готов
7 RTS RTS 9034 9034 9034 9034 Очистить
9 RI Кольцевой индикатор

25-контактный разъем RS232 (DB-25)

1 PG Защитное заземление
2 TD Переданные данные
3 RD Полученные данные 4
Кому

5 CTS Готово для отправки
6 DSR Набор данных готов
7 SG Заземление сигнала
Заземление сигнала

9034 Вторичный

Вторичный

Готовность

9034 DTR 9034 Данные 9034 DTR 9034

Обнаружение носителя

9 Зарезервировано
10 Зарезервировано
11 Не назначено
SCC SCTS 9 0344

Вторичная очистка для передачи
14 STD Вторичная передача данных
15 TC Часы передатчика
16 9034 Данные 9034 9034 Вторичная 9034 9034

RC Часы приемника
18 Неназначенный
19 SRTS Вторичный запрос для отправки
20 SO Детектор качества сигнала
22 RI Индикатор звонка
23 DRS Селектор скорости передачи данных
9034 9034 9034 9034 9034 9034 9034 9034 9034 9034 9034 9034 9034 9034 Селектор скорости передачи данных 9034 9 0344

Без назначения

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *