Схема подключения светильника люминесцентного светильника: Схемы подключения люминесцентных ламп: обзор популярных методов

Схема

Содержание

Простая Схема Подключения Люминесцентных Ламп

ЭкономияSavedRemoved 0




Обычные лампы накаливания малоэффективны – они выделяют больше тепла, чем света. Да и срок службы их невелик. Подключение люминесцентных ламп позволяет почти в 3 раза сэкономить на оплате электроэнергии. Плюс подобные источники освещения имеют больший диапазон цветов и менее вредны для глаз. Однако для их монтажа требуется приобретение специальных устройств: дросселей или электронных плат ЭПРА.

Читайте также:
Что можно построить на дачном участке? | ТОП-9 Распространенных дачных построек | (75 Фото & Видео) +Отзывы

Особенности люминесцентных светильников

Читайте также:  Какая должна быть электропроводка в частном доме, укладка своими руками, инструкция для новичков

Устройство люминесцентной лампы

Чтобы понять, каким образом осуществляется подключение люминесцентных ламп, требуется понять принцип их работы. Внешне они выглядят как стеклянные цилиндры, воздух в которых полностью заменен инертным газом, находящимся под небольшим давлением. Здесь же находится небольшое количество паров ртути, способных ускорять ионизацию – движение электронов.

С двух сторон цилиндра расположены электроды. Между ними находится вольфрамовая спираль, покрытая оксидами веществ, способных при пропускании тока и нагреве легко перемещаться на довольно большие расстояния, создавая ультрафиолетовое излучение (УФ).

Читайте также:  [Инструкция] Соединение проводов в распределительной коробке: типы соединений и их применение

Электромагнитный ПРА

Но, так как этот вид излучения невидим, его преобразуют с помощью люминофора (особого состава на основе галофосфата кальция, которым покрыты стенки цилиндра), способного поглощать УФ, взамен выделяя видимые лучи света. Именно от вида люминофора зависит цвет освещения.

После включения устройства и перехода в рабочее состояние сила тока в нем может возрастать за счет падения сопротивления газов. Если не ограничить этот процесс, оно может быстро сгореть.

Для снижения силы тока используют дроссели (ограничители) – винтоспиральные катушки индуктивности, дающие дополнительную нагрузку и способные сдвигать фазу переменного тока и поддерживать желаемую мощность на весь период включения. Ограничительные устройства имеют и иное название: балласты или ПРА (пускорегулирующие аппараты).

Читайте также:  Двухтрубная система отопления частного дома: устройство, типы систем, схемы, компоновка, разводка, монтаж и запуск системы (Фото & Видео) +Отзывы

Электронный пускорегулирующий аппарат

Более совершенными видами балласта являются электронные механизмы (ЭПРА), принцип работы которых будет описан в следующей главе. Для запуска разряда используется пусковое устройство, называемоестартером.


Электромагнитный дроссель или ЭПРА следует подбирать в зависимости от количества ламп и их мощности. Подсоединять предназначенное для двух ламп устройство к одной запрещено. Во избежание выхода прибора из строя подключать ЭПРА без нагрузки, то есть лампы, также не следует.

Читайте также:
Картофель: описание 73 лучших сортов (Фото & Видео) +Отзывами огородников

Принцип действия

Читайте также:  Установка газового котла в частном доме: все необходимые требования для быстрого и законного запуска системы отопления (Фото & Видео) +Отзывы

Принцип действия люминесцентных ламп

Опишем кратко схему взаимодействия стартера, балласта и светильника:

Читайте также:
Интересные идеи для украшения любимой дачи своими руками | 150+ оригинальных фото подсказок для умельцев

Основные этапы подключения

Читайте также:  Газовый баллон на даче: для плиты, обогревателя и других нужд: правила пользования (Фото & Видео) +Отзывы

Схема подключения одного источника освещения к одному дросселю

Схема подключения люминесцентной лампы с дросселем довольно проста:

К сожалению, стартер – не слишком надежное устройство. Плюс при работе лампа может мерцать, негативно влияя на зрение. В принципе, возможно и подключение без него. Заменить эту деталь можно подпружинной кнопкой-выключателем.

Читайте также:
Ландшафтный дизайн вашего участка своими руками – (130+ Фото идей & Видео) +Отзывы

Монтаж двух ламп

Читайте также:  Секреты шумоизоляции стен в квартире: используем современные материалы и технологии (25+ Фото & Видео) +Отзывы

Варианты подключений

Какое бы количество источников света не требовалось включить в осветительную систему, все они подключаются последовательно. Для запуска двух ламп потребуется соответственно два стартера. Их подсоединяют параллельно.

Итак, опишем процесс подключения сразу 2 люминесцентных ламп:

Если вы поняли принцип этой схемы, то легко сможете этим же способом подключить 3 или 4 люминесцентных лампы.

Читайте также:
Многолетние цветы (ТОП-50 видов): садовый каталог для дачи с фото и названиями | Видео + Отзывы

Пара ламп и один дроссель

Читайте также:  Обогрев теплицы: виды отопления, пошаговые рекомендации обустройства своими руками (20 Фото & Видео) +Отзывы

Схема с одним дросселем

Стартеров здесь понадобится два, а вот дорогостоящий ПРА вполне можно использовать один. Схема подключения в этом случае будет чуть сложней:

Читайте также:
Изготовление теплицы своими руками из профильной трубы и поликарбоната: полное описание процесса, чертежи с размерами, полив и обогрев (Фото & Видео)

Подключение без дросселя

Читайте также:  Инфракрасный потолочный обогреватель с терморегулятором — современные технологии в вашем доме (Цены) +Отзывы

В данном подключении дроссель не используется

Этот способ используется в основном в старых лампах при выходе из строя балласта. Сделать это можно посредством использования постоянного тока, номинал которого выше обычного. То есть напряжение в момент пуска следует повысить. Сила этого напряжения подбирается исходя из характеристик как сети, так и самого источника света.

Для подключения люминесцентной лампы без дросселя требуется подсоединение диодного моста (или пары диодов). Контакты замыкаются с обеих сторон попарно. На одну сторону источника освещения должен приходиться плюс, на другую минус.

Подобную схему можно использовать даже при сгоревшей нити накаливания. Ведь цилиндр с газом при этом способе будет подпитываться за счет постоянного напряжения. Учтите лишь, что данный способ можно использовать на короткий период – со временем труба быстро потемнеет, а затем из-за выгорания люминофора вовсе перестанет излучать свет.

Читайте также:
56 Самых лучших урожайных сортов огурцов для теплицы: описание и фото | +Отзывы

Подключение ЭПРА

Читайте также:  Как сделать монтаж водяного теплого пола своими руками: пошагавшая инструкция монтажа на все виды покрытий (20+ Фото & Видео) +Отзывы

Подсоединение ЭПРА (электронного пускового механизма)

Дроссели являются довольно шумными устройствами. Поэтому их последние годы подключают в систему люминесцентного освещения нечасто, заменяя их ЭПРА, цифровыми или аналоговыми.

В стартере подобные устройства уже не нуждаются. По сути, электронные пусковые устройства – это небольшие электронные платы. Они сами способны регулировать уровень напряжения и обеспечивают ровный свет, без мерцания. Плюс они более безопасны и менее пожароопасны в эксплуатации и имеют больший срок службы.

Вариантов реализации ЭПРА может быть немало, но основных способов запуска два:

  • источники предварительно разогревают; это помогает увеличить КПД прибора и снизить его мерцание
  • с использованием колебательного контура; нить накала в этом случае является его частью; при прохождении разряда параметры контура меняются, в результате напряжение падает до требуемого уровня

Избавиться от надоедливого гудения и моргания можно, заменив старый дроссель на современный электронный пускорегулирующий механизм. Для этого следует:

Достоинства и недостатки люминесцентных источников света

Читайте также:  Печь на отработке: виды, устройство, чертежи, инструкция по изготовлению своими руками (Фото & Видео) +Отзывы

Использование ламп для тепличного выращивания растений

ПЛЮСЫ:

  • Первым значительным плюсом таких устройств является существенная экономия электроэнергии. Источники света последнего поколения, работающие по этому принципу, тратят ее в 4-5 раз меньше, чем обычные лампы накаливания.
  • Кроме высокой светоотдачи, положительным моментом является длительный срок службы. Он может составлять 12-25 тыс. часов. Подобные устройства часто используют для контрастного освещения помещений большой площади (офисов, торговых центров, школ) или уличного освещения. Используют их на транспорте, в уличных фонарях, туннелях.

МИНУСЫ:

  • Необходимость подключения дополнительных устройств (стартеров и дросселей)
  • Доминирование в спектре желтого света и искажение цветопередачи освещаемых предметов
  • Значительные габариты колбы, из-за чего становится сложно равномерно перераспределить поток света
  • На силу света в таких источниках способна влиять температура окружающей среды
  • Разогрев лампы происходит не сразу; полную яркость она набирает спустя некоторое время, иногда оно может длится 10-15 минут
  • значительная пульсация света, что может сказаться отрицательно на зрении
  • Наличие, пусть в минимальных количествах ртути, опасной для здоровья человека, растений и животных

Последними разработками ученых стали компактные люминесцентные источники освещения, внешне схожие с обычными лампами накаливания. Они снабжены стандартным патроном, и их можно легко вкрутить в любую люстру или торшер. Никакой модернизации при этом не требуется.

Вся пускорегулирующая аппаратура (ПРА) в них расположена в самом патроне или выносится отдельно в небольшие блоки. Подобные устройства часто называют энергосберегающими.

Сравнение параметров разных источников освещения

Но все же последние годы пользователи предпочитают подключать вместо люминесцентных ламп современные светодиодные. Принцип работы этих устройств существенно отличается. Люминесцентные колбы заполняются газом и парами ртути, и световое излучение образуется за счет разогревания вольфрамовой спирали. В светодиодных устройствах излучателем света является группа диодов или единичный светодиод. Именно он преобразует ток в световые лучи при протекании его через полупроводник.

Подобные устройства не только более прочны и менее опасны (повреждение люминесцентных же грозит попаданием в организм человека ртути). КПД светодиодных источников освещения гораздо больше, поэтому они более экономичны. Схема подключения люминесцентной или светодиодной лампы в обеих случаях максимально проста – достаточно лишь вкрутить ее патрон в цоколь.

Подробно о способах подключения люминесцентных ламп смотрите на следующем видео:

5.5
Total Score

Для нас очень важна обратная связь с нашими читателями. Если Вы не согласны с данными оценками, оставьте свой рейтинг в комментариях с аргументацией Вашего выбора. Благодарим за ваше участие. Ваше мнение будет полезно другим пользователям.

БЕЗОПАСНОСТЬ

6

Оценки покупателей: 2 (1 голосов)

Схемы подключения люминесцентных ламп | ehto. ru

Вступление

Существует два способа подключения люминесцентных ламп: при помощи стартера и дросселя (ЭМПРА) и при помощи электронного пускового аппарата (ЭПРА). Нельзя сказать, что они отличаются принципиально, но в схемах подключения задействованы различные устройства.

Схемы подключения люминесцентных ламп при помощи ЭМПРА

ЭМПРА это электромагнитный пускорегулирующий аппарат, а по сути, обычный дроссель. В схеме подключения ЭМПРА обязательно задействуется стартер, который создает первый импульс для начала свечения люминесцентной лампы.

Читать, ЭПРА и ЭмПРА. В чем отличия пускорегулирующих аппаратов

Схема подключения люминесцентной лампы ЭМПРА

Данная схема подключения используется в большинстве стандартных одноламповых светильниках местного освещения эконом класса.

Схема индуктивная реализация

  • Напряжение питания 220 Вольт;
  • Дроссель (LL) подключается последовательно к проводу питания и выводу 1 лампы;
  • Стартер подключается параллельно к выводам 2 и 3 лампы;
  • Вывод  4 лампы подключается ко второму проводу питания;
  • В схеме участвует конденсатор, который снижает импульс напряжения, увеличивает срок службы стартера и снижает радиопомехи при работе светильника.

Схема индуктивно-ёмкостная реализация

Вторая схема подключения называется индуктивно-ёмкостной. В ней дроссель и конденсатор (индуктивное и ёмкостное сопротивление схемы) включаются последовательно. Стартер по-прежнему подключен параллельно вывода 2-3 лампы.

Схема подключения 2-х люминесцентных ламп до 18 Вт (ЭМПРА)

Несколько меняются схемы подключений при двух лампах. Наиболее распространены две схемы для ламп до 18 Вт (последовательная) и ламп 36 Вт (параллельная).

В первой схеме, по-прежнему участвуют два стартера, один стартер для каждой лампы. Дроссель подключается, как в схеме с индуктивной реализацией. Мощность дросселя подбирается суммированием мощности ламп.

Важно! В данной (последовательной) схеме необходимо использовать стартеры на 127 (110-130) Вольт. Мощность ламп не может быть больше 22 Вт.

Во второй параллельной схеме, участвуют уже два дросселя (LL1 и LL2). Стартеров по-прежнему два, один стартер для каждой лампы.

Важно! В данной схеме используются стартеры на 220-240 Вольт. Мощность ламп до 80 Вт.

Важно замечание. Современные ЭмПРА выпускаются в едином корпусе. Для подключения на корпусе есть только выводы контактов. Схема подключения ламп указывается на корпусе.

Схемы подключения люминесцентных ламп при помощи ЭПРА

ЭПРА это электронное пускорегулирующие устройство. По сути это сложная электронная схема которая обеспечивает и запуск и стабильную работу люминесцентных ламп (светильников).

Отмечу, что каждый производитель ЭПРА по-своему выводит контакты для подключения к ним ламп. Схема подключения люминесцентных ламп указана на корпусе или в паспорте ЭПРА Пример на фото.

Для информации публикую подбор схем подключения различных ламп к ЭПРА различной маркировки.

Схемы подключения компактных люминесцентных ламп к нерегулируемым ЭПРА (OSRAM), марки QT-ECO

Схемы подключения нерегулируемым ЭПРА QTP-DL, QTP-D/L, QTP-DVE, лампы 2х55, 1х10-13, 2х16-42.

Схемы подключения нерегулируемым ЭПРА QTP5 лампы 2х14-35Вт, 2х24-39Вт, 2х54Вт, 1х14-35Вт, 1х24-39Вт, 1х54Вт, 1х80.

Схемы подключения ЭПРА QT-FQ, QT-FC ламп Т5 (трубчатые)

©Ehto.ru

Еще статьи

Похожие посты:

Схемы подключения люминесцентных ламп дневного света

Схема включения люминесцентных ламп гораздо сложнее, нежели у ламп накаливания.
Их зажигание требует присутствия особых пусковых приборов, а от качества исполнения этих приборов зависит срок эксплуатации лампы.

Чтоб понять, как работают системы запуска, нужно до этого ознакомиться с устройством самого осветительного устройства.

Люминесцентная лампа представляет из себя газоразрядный источник света, световой поток которого формируется в главном за счёт свечения нанесённого на внутреннюю поверхность колбы слоя люминофора.

При включении лампы в парах ртути, которыми заполнена пробирка, случается электронный разряд и возникшее при всем этом уф-излучение воздействует на покрытие из люминофора. При всем этом происходит преобразование частот невидимого уф-излучения (185 и 253,7 нм) в излучение видимого света.
Ети лампы обладают низким потреблением электроэнергии и пользуются большой популярностью, особенно в производственных помещениях.

Схемы

При подключении  люминесцентных ламп используется особая пуско-регулирующая техника – ПРА. Различают 2 вида ПРА : электронная – ЭПРА (электронный балласт) и электромагнитная – ЭМПРА (стартер и дроссель).

Схема подключения с применением электромагнитный балласта или  ЭмПРА (дросель и стартер)

Более распространённая схема подключения люминесцентной лампы – с использованием ЭМПРА. Это стартерная схема включения.






Принцип работы:  при подключении электропитания в стартере появляется разряд и
замыкаются накоротко биметаллические электроды, после этого ток в цепи электродов и стартера ограничивается лишь внутренним сопротивлением дросселя, в следствии чего же возрастает практически втрое больше  рабочий ток в лампе и мгновенно нагреваются электроды люминесцентной лампы.
Одновременно с этим остывают биметаллические контакты стартера и цепь размыкается.
В то же время разрыва дроссель, благодаря самоиндукции создает запускающий высоковольтный импульс (до 1 кВольта), который приводит к разряду в газовой среде и загорается лампа. После чего напряжение на ней станет равняться половине от сетевого, которого станет недостаточно  для повторного замыкания электродов стартера.
Когда лампа светит стартер не будет участвовать в схеме работы и его контакты будут и останутся разомкнуты.

 Основные недостатки

  • В сравнении со схемой с электронным балластом на 10-15 % больший расход электричества.
  •  Долгий пуск  не менее 1 до 3  секунд (зависимость от износа лампы)
  •  Неработоспособность при низких температурах окружающей среды. К примеру, зимой в неотапливаемом гараже.
  • Стробоскопический результат мигания лампы, что плохо оказывает влияние на зрение, при чем  детали станков, вращающихся синхронно с частотой сети-  кажутся неподвижными.
  • Звук от гудения пластинок дросселя, растущий со временем.

Схема включения с двумя лампами но одним дросселем. Следует заметить что индуктивность дросселя должна быть достаточной по мощности етих двух ламп.
Следует заметить что в последовательной схеме включения  двох ламп применяются стартеры на 127 Вольт,  они не будут работать в одноламповой схеме, для которой понадобятся стартеры на 220 Вольт

Ета схема где, как видите, нет ни стартера ни дроселя, можна применить если у ламп перегорели нити накала. В таком случае зажечь ЛДС можно при помощи повышающего трансформатора Т1 и конденсатора С1 который ограничит ток протекающий через лампу от сети 220вольт.

Ета схема подойдет все для тех же ламп у которых перегорели нити накала, но сдесь уже ненада повышающего трансформатора что явно упрощает конструкцию устройства

А вот такая схема с применением диодного выпрямительного моста устраняет ее мерцание лампы с частотой сети, которое снановится очень заметным при ее старении.

или сложнее

Если в вашем светильнике вышел с строя стартер или мигает постоянно лампа (вместе с стартером если присмотрется под корпус стартера) и под рукой нечем заменить, зажечь лампу можна и без него — достаточно на 1-2 сек. закоротить контакты стартера или поставить кнопку S2 (осторожно опасное напряжение)

тот же случай но уже для лампы с перегоревшей нитей накала

Схема подключения с применением электронного балласта или ЭПРА

Электронный Пускорегулирующий Аппарат (ЭПРА) в отличии от электромагнитного  подает на лампы  напряжение не сетевой частоты, а высокочастотное от 25 до 133 кГц. А это полностью исключает вероятность появления приметного для глаз мерцания ламп. В ЭПРА используется автогенераторная схема, включающая трансформатор и выходной каскад на транзисторах.

Основные преимущества схем с ЭПРА

  •   Повышение срока эксплуатации люминесцентных ламп, благодаря особому режиму работы и пуска. 
  •   В сравнении с ПРА до 20% экономия электричества.
  •   Отсутствие в ходе работы шума и мерцания. 
  •   Отсутствует в схеме  стартер, который часто ломается.
  •   Особые модели выпускаются с возможностью диммирования  либо регулировки яркости свечения.

Схема подключения конкретного электронного балласта изображена на каждом конкретном устройстве и не составляет особой проблемы в подключении 

Внутри такого электронного «дросселя» как правило схема на подобие етой…

Подключение люминесцентного светильника — Всё о электрике

Обзор схем подключения люминесцентных ламп

Конструкция люминесцентной лампы, со времени своего изобретения в 19 веке, практически не претерпела изменений. Изменялись и совершенствовались приборы и схемы для их подключения в сеть. В настоящее время актуальны и надежно работают электромагнитные и электронные устройства для люминесцентных светильников. У каждого из них есть свои достоинства и недостатки.

Варианты соединения светильника дневного света

Люминесцентная лампа (дневного света) представляет собой герметичный сосуд наполненный газом. С двух сторон в него впаяны электроды с вольфрамовыми нитями. Свечение газа под воздействием электричества и позволяет получить освещение.

Чтобы газ в колбе начал светиться, на электроды подается и кратковременно поддерживается высокое напряжение.

Вольфрамовые нити разогревают газ, и он начинает светиться. Когда газ разгорится и начнет источать свет, напряжение спадает и поддерживается в так называемом, тлеющем режиме.

Для запуска и поддержания свечения в люминесцентных лампах были разработаны несколько схем подключения к электрической сети:

  1. С использованием классического электромагнитного балласта (ЭмПРА) – одна лампа и один дроссель.
  2. Две трубки и два дросселя.
  3. Подключения двух ламп от одного дросселя.
  4. Электронный балласт.
  5. Используя умножитель напряжения.

Использование электромагнитного балласта (ЭмПРА)

Стандартная схема с использованием электромагнитного балласта была придумана в 1934 году американцами, и в 1938 уже повсеместно использовалась в США. Она проста и включает в себя помимо лампы дроссель, стартер и конденсатор.

Одна лампа и один дроссель

Дроссель представляет собой индуктивное сопротивление и может накапливать ЭДС самоиндукции. Стартер — это небольшая неоновая лампочка, имеющая биметаллический контакт и конденсатор. Конденсатор стартера служит для подавления радиопомех, а параллельный дросселю для коррекции мощности.

После включения в сеть ток течет через дроссель на спираль лампы, потом через стартер на вторую спираль. Дроссель начинает накапливать электрический заряд. По схеме вначале течет слабый ток, ограниченный сопротивлением стартера. Контакты стартера нагреваются и замыкаются. Ток в схеме резко возрастает, но его безопасную величину обеспечивает дроссель.

Поэтому дроссель и называют – пускорегулирующий аппарат. Большой ток позволяет спиралям разогреть газ в колбе. В это время, контакты стартера остывают и размыкаются, через стартер ток уже не течет. Но дроссель успел накопить энергию и уже отдает ее на спирали лампы. Она начинает светиться. Дроссель, отдав накопленный заряд, в дальнейшем выступает как сопротивление. Поддерживает только тлеющий разряд, позволяя лампе гореть. Стартер уже выключен из схемы и не работает до следующего пуска.

Процесс пуска занимает доли секунды, но может незаметно для глаз, повторится несколько раз.

Достоинства и недостатки

Схема обладает рядом достоинств:

  • Дешевые и доступные комплектующие.
  • Достаточно проста.
  • Надежна.

По сравнению с современным электронным, дроссельное устройство имеет весомые недостатки:

  • Избыточный вес.
  • довольно продолжительное время запуска.
  • Небольшую надежность при низкой температуре.
  • Большее потребление энергии.
  • Шумный дроссель.
  • Нестабильный световой поток.

Две трубки и два дросселя

Применение в одном светильнике двух пар дросселей и ламп ведет к утяжелению и увеличению конструкции. Каждая из пар, имеет свой стартер. Мощность дросселя и лампы в этом случае совпадает, стартер применяется на 220 вольт.

Две схемы с использованием электромагнитного балласта работают в таком случае параллельно.

Достоинством этого варианта является его надежность. Выход из строя одной из веток не влияет на работу другой. Светильник будет работать, хотя бы и наполовину мощности.

Главный недостаток – очень громоздкая конструкция.

В остальном, имеет такие же плюсы и минусы, как и все ЭмПРА.

Включение двух ламп от одного дросселя

Дроссель является самой дорогостоящей деталью люминесцентного светильника. В целях экономии, иногда используется схема подключения двух ламп от одного дросселя.

Две лампы от одного дросселя можно запитать двумя способами:

Последовательное соединение двух ламп

Копируется схема стандартного подключения с использованием электромагнитного балласта.

Вторая лампа со своим стартером подключается последовательно первой. Светильник получается дешевле. Но, возникает несколько конструктивных и эксплуатационных проблем.

  • Мощность дросселя должна соответствовать суммарной мощности ламп.
  • Стартеры должны быть однотипными, рассчитанными на пониженное напряжение.
  • При выходе из строя одной из ламп или стартеров не будет работать весь светильник.
  • Усложняется поиск неисправности.

Конструктивные проблемы решаются просто. Необходимо только подобрать из имеющихся в наличии или приобрести подходящие по характеристикам комплектующие.

Кроме удешевления конструкции, последовательное соединение имеет те же достоинства и недостатки, что и классическое ЭмПРА подключение.

Параллельное соединение

Такую схему собрать несложно. Вторая лампа подключается параллельно и имеет отдельный стартер. К одной из ламп, при таком соединении, целесообразно подсоединить фазосдвигающий конденсатор. Это позволит нивелировать один из недостатков схем ЭмПРА – мерцание. Конденсатор сдвинет фазу одной лампы, сгладит общий световой поток и сделает его приятнее для зрения.

К плюсам электромагнитных схем, параллельное соединение добавляет еще два:

  1. Экономия средств на одном дросселе.
  2. Сглаженный световой поток.

Электронный балласт

Электронный запуск и поддержание горения люминесцентных ламп разработали еще в восьмидесятые и начали применять в начале девяностых годов ХХ века. Использование электронного балласта позволило сделать люминесцентное освещение на 20% экономичнее.

При этом сохранились и улучшились все характеристики светового потока. Равномерное, без характерного мерцания освещение стабильно даже при колебаниях напряжения в сети.

Этого удалось достичь благодаря повышенной частоте тока, подаваемого на лампы и большим коэффициентом полезного действия электронных устройств.

Плавный запуск и мягкий рабочий режим позволили почти вдвое увеличить срок эксплуатации ламп. Дополнительно появилась возможность плавного управления яркостью светильника. Необходимость использования стартеров исчезла. С ними пропали и радиопомехи.

Принцип работы электронного балласта отличается от электромагнитного. При этом, выполняет те же функции: разогрев газа, розжиг и поддержание горения. Но, делает это точнее и мягче. В различных схемах используются полупроводники, конденсаторы, сопротивления и трансформатор.

Электронные балласты могут иметь разные схематические исполнения в зависимости от применяемых компонентов. Упрощенно, прохождение тока по схеме можно описать следующим алгоритмом:

  1. Напряжение поступает на выпрямитель.
  2. Выпрямленный ток обрабатывается электронным преобразователем, посредством микросхемы или автогенератора.
  3. Далее напряжение регулируется тиристорными ключами.
  4. Впоследствии один канал фильтруется дросселем, другой конденсатором.
  5. И по двум проводам напряжение поступает на пару контактов лампы.
  6. Другая пара контактов лампы замкнута через конденсатор.

Выгодным отличием электронных систем является то, что напряжение, поступающее на контакты ламп имеет большую, чем у электромагнитных, частоту. Она варьируется от 25 до 140 кГц. Именно поэтому в системах ЭПРА мерцание светильников сведено к минимуму и их свет менее утомителен для человеческих глаз.

Схемы подключения ламп к ЭПРА и их мощность, большинство производителей указывают на верхней стороне устройства. Поэтому потребители имеют наглядный пример, как правильно собрать и подключить прибор в сеть.

В электронных балластах предусмотрено различное количество подключаемых ламп разной мощности, например:

  • К дросселям Philips серии HF-P можно подключить от 1 до 4 трубок, мощностью от 14 до 40 Вт.
  • Дроссели Helvar серии EL предусмотрены для одной – четырех ламп, мощностью от 14 до 58 Вт.
  • QUICKTRONIC торговой марки Osram типа QTР5 также имеют возможность управлять одной – четырьмя лампами, мощностью 14 – 58 Вт.

Электронные приборы имеют массу достоинств, из которых можно выделить следующие:

  • небольшой вес и малую величину устройства;
  • быстрое и сберегающее люминесцентную лампу, плавное включение;
  • отсутствует видимое глазу мерцание света;
  • большой коэффициент мощности, примерно 0,95;
  • прибор не греется;
  • экономия электроэнергии в размере 20%;
  • высокий уровень пожарной безопасности и отсутствие рисков в процессе работы;
  • большой срок службы люминесцентов;
  • отсутствие высоких требований к температуре окружающей среды;
  • способность автоматической подстройки к параметрам колбы;
  • отсутствие шумов во время работы;
  • возможность плавной регулировки светового потока.

Отмечаемый многими, единственный минус электронных систем это их цена. Но она оправдывается достоинствами.

Использование умножителей напряжения

Умножители напряжения для запуска люминесцентных ламп не получили широкого распространения. Такие схемы применяют любители, собирая их кустарным способом.

Они просты, дешевы и достаточно стабильны. Состоят из четырех конденсаторов и четырех диодов. Иногда дополняются конденсаторами.

Принцип работы заключается в ступенчатом увеличении величины напряжения на контактах лампы. Высокое напряжение вызывает пробой газовой среды без ее разогрева, и позволяет запустить даже вышедшие из строя лампы.

Но, умножитель напряжения имеет один большой минус.

Учитывая опасность поражения электрическим током, умножители напряжения не используются в промышленных разработках.

Люминесцентные светильники постепенно уступают свои позиции более современным LED приборам освещения. Но пока еще достаточно популярны благодаря своей экономичности, простоте эксплуатации, надежности и приемлемой стоимости. Простота схем подключения, позволяет самостоятельно устанавливать люминесцентные приборы либо выполнять их замену в случае выхода из строя.

Устройство и схема включения люминесцентной лампы

Люминесцентные лампы обычно используют для освещения супермаркетов, учебных аудиторий, промышленных объектов, общественных закрытых помещений и прочего. С появлением более современных видов, которые выпускаются со стандартным цоколем E27, их начали использовать и в домашних условиях.

По истечении времени они набирают всё большей популярности. Но схема включения люминесцентных ламп достаточно сложная и требует особых познаний в этой области. Обычно подключают двумя схемами, о которых мы и поговорим дальше. Но сначала следует разобраться в принципе работы и строении такого светильника.

Принцип работы

Давайте разберём, что такое люминесцентная лампа, и как она работает. Представляет из себя стеклянную трубку, которая начинает работать за счёт разряда, который зажигает газы внутри её оболочки. На обоих концах установлен катод и анод, именно между ними и происходит разряд, который вызывает пусковое загорание.

Пары ртути, которые помещают в стеклянный футляр, при разряде начинаю излучать особый невидимый свет, который активизирует работу люминофора и других дополнительных элементов. Именно они и начинают излучать тот свет, который нам необходим.

Принцип работы лампы

Благодаря разным свойствам люминофора, такой светильник излучать большой спектр разнообразных цветов.

Подключаем, используя электромагнитный балласт

Электромагнитный Пускорегулирующий аппарат, сокращённой аббревиатурой для него является ЭмПРА . Также часто называют дросселем. Мощность такого устройства должна быть равной той мощности, которую потребляют лампы при работе. Довольно старая схема, с помощью которой раньше подключали люминесцентные лампы.

Схема с электромагнитным балластом

Принцип работы такого устройства состоит в следующем. После начала подачи тока, он попадает на стартер, после чего на небольшой период времени биметаллические электроды замыкаются. Благодаря этому, весь ток, который появляется в цепи, замыкается между электродами и ограничивается только сопротивлением дросселя.

Таким образом, он возрастает примерно в три-четыре раза, и электроды начинают практически моментально разогреваться.

Таким образом, именно дроссель образует сильный разряд в среде газов, и они начинают выделять свой свет. После включения, напряжение в схеме будет равно примерно половине от входящего с сети.

Такого показателя мало для создания повторного импульса, из-за чего лампа начинает стабильно работать.

Какими недостатками она обладает:

  1. Сравнивая со схемой, где применяется электронный балласт, расход электроэнергии выше на десять-пятнадцать процентов.
  2. В зависимости от того, сколько лампа уже проработала времени, период запуска будет увеличиваться и может дойти до трёх-четырёх секунд.
  3. Такая схема подключения люминесцентных ламп со временем способствует появлению гудения. Такой звук будет исходить от пластин дросселя.
  4. В процессе работы светильника будет довольно высокий коэффициент пульсации света. Такое явление негативно сказывается на зрении человека, а при продолжительном нахождение действие таких мерцающих лучей может стать причиной ухудшения зрения.
  5. Неспособны работать при низкой температуре. Таким образом, отпадает возможность использовать такие лампы на улице или в неотапливаемых помещениях.

Подключаем лампу, используя электронный балласт

Главным отличием такой системы от электромагнитной то, что напряжение, которое доходит до самой лампы имеет повышенную частоту начиная от 25 и доходит до 140 кГц. Благодаря повышению частоты тока, значительно уменьшается показатель мерцания, и он находит на таком уровне, который уже не является слишком вредным для человеческого глаза.

Подключение с ЭПРА

Система ЭПРА используется специальный автогенератор в своей схеме, такое дополнение включает трансформатор и выходной каскад на всех транзисторах. Зачастую производители указывают схему прямо на задней части блока светильника. Таким образом, у вас сразу есть наглядный пример, как правильно подключить и установить устройство для работы от сети.

Преимуществами стартерной схемы подключения

  • Стартерная система продлевает период работы светильника.
  • Особый принцип работы также продлевает период службы примерно на десять процентов.
  • Благодаря принципу действия, устройство экономит около двадцати-тридцати процентов потребляемой электроэнергии.
  • Облегчённая установка, так как производитель указывает схему, по которой должна происходить установка взятого вами светильника.
  • Во время работы практически полностью отсутствует мерцание и шум от светильника. Такие явления присутствуют, но они незаметны для человека и никак не влияют на здоровье.

Существуют модели, которые поддерживают установку диммера в качестве регулятора. Установка таких приборов несколько отличается от стандартной установки.

Подведём итог

Мы постарались раскрыть вопрос как подключить люминесцентную лампу, показали схемы, с помощью которых происходит подключение люминесцентных ламп. Разобравшись со схемой электромагнитного и электронного балласта, вы можете решить какую лучше использовать именно в вашем случае. Но так как первая имеет ряд значительных недостатков, то скорей всего выбор ляжет именно на электронный балласт.

Причины неисправностей — решение проблем

Схема электронного дросселя была придумана позже, и разрабатывалась специально для того, чтобы убрать все недостатки электромагнитного аналога, с целью максимального повышения качества освещения с помощью люминесцентных ламп.

Установка таких устройств уже не составляет особого труда, как это было раньше. Производители начали указывать схему, по которой производится установка на тыльной стороне прибора что значительно облегчает работу монтажника.

3 схемы подключения люминесцентной лампы без дросселя и стартера.

Лампы дневного света несмотря на всю их «живучесть», по сравнению с обычными лампочками накаливания, в один прекрасный момент также выходят из строя и перестают светить.

Конечно, срок их службы не сравнить со светодиодными моделями, но как оказывается, даже при серьезной поломке, все эти ЛБ или ЛД светильники опять можно восстановить без каких либо серьезных капитальных затрат.

В первую очередь вам нужно выяснить, что же именно сгорело:

    сама люминесцентная лампочка

Как это сделать и быстро проверить все эти элементы, читайте в отдельной статье.

Если сгорела сама лампочка и вам надоел такой свет, то вы легко можете перейти на светодиодное освещение, без какой-либо серьезной модернизации светильника. Причем делается это несколькими способами.

Одна из наиболее серьезных проблем – это вышедший из строя дроссель.

Большинство при этом считают такой люминесцентный светильник полностью негодным и выбрасывают его, либо перемещают в кладовку на запчасти для остальных.

Сразу оговоримся, что запустить ЛБ светильник без дросселя, просто выкинув его из схемы и не поставив туда чего-нибудь другого, у вас не получится. В статье пойдет речь об альтернативных вариантах, когда этот самый дроссель можно заменить другим элементом, имеющимся у вас под рукой дома.

Что советуют делать в таких случаях самоделкины и радиолюбители? Они рекомендуют применить, так называемую бездроссельную схему включения люминесцентных ламп.

В ней используется диодный мост, конденсаторы, балластное сопротивление. Несмотря на некоторые преимущества (возможность запуска сгоревших ламп дневного света), все эти схемы для рядового пользователя темный лес. Ему гораздо проще купить новый светильник, чем паять и собирать всю эту конструкцию.

Поэтому сперва рассмотрим другой популярный способ запуска ЛБ или ЛД ламп со сгоревшим дросселем, который будет доступен каждому. Что вам для этого потребуется?

Вам понадобится старая сгоревшая энергосберегающая лампочка с обычным цоколем Е27.

Конечно, схему с ее использованием нельзя считать абсолютно бездроссельной, так как на плате энергосберегайки дроссель все таки присутствует. Просто он по габаритам гораздо меньше, так как экономка работает на частотах до нескольких десятков килогерц.

Этот минидроссель ограничивает ток через лампу и дает высоковольтный импульс для зажигания. Фактически это ЭПРА в миниатюрном варианте.

Раньше была большая рекламная компания по замене ламп накаливания на энергосберегающие. Сегодня уже их активно меняют на светодиодные.

Выкидывать в мусорку экономки не рекомендуется, впрочем как и отдельные модели светодиодных.

Поэтому некоторые сознательные и бережливые граждане, которые еще не сдали их в специальные пункты приема, хранят подобные изделия у себя на полках в шкафчиках.

Меняют их не зря. Эти лампочки в рабочем состоянии очень вредны для здоровья, как в плане пульсаций света, так и в отношении излучения опасного ультрафиолета.

Хотя ультрафиолет не всегда бывает вреден. И порой приносит нам много пользы.

При этом не забывайте, что теми же самыми негативными факторами, в равной степени обладают и линейные люминесцентные модели. Именно ими активно пугают любителей выращивать растения под светом фитоламп.

Но вернемся к нашим энергосберегайкам. Чаще всего у них перестает работать светящаяся спиральная трубка (пропадает герметичность, разбивается и т.д.).

При этом схема и внутренний блок питания остаются целыми и невредимыми. Их то и можно использовать в нашем деле.

Сперва разбираете лампочку. Для этого по линии разъема, тонкой плоской отверткой вскрываете и разделяете две половинки.

При разделении ни в коем случае не держитесь за стеклянную трубчатую колбу.

Далее вытаскиваете плату. На ней находите места, к которым подключаются проводки от “нитей накала” колбы. Они обычно идут в виде штырьков.

При разборе запомните, какая пара куда подключена. Эти штырьки могут находиться как с одной стороны платы, так и с разных сторон.

Всего у вас должно быть 4 контакта, куда вам и следует подпаять в дальнейшем провода.

Ну и естественно не забываем про питание 220В. Это те самые жилки, которые идут от цоколя.

Все что нужно сделать далее, это припаять по два проводника к каждому контакту на плате (от бывших нитей накала трубок) и вывести их к боковым штырькам лампы дневного света.

То есть, отдельно два провода справа и два провода слева. После чего, остается только подать напряжение 220В на схему энергосберегайки.

Лампочка дневного света будет прекрасно гореть и нормально работать. Причем для запуска вам даже не нужен стартер. Все подключается напрямую.

Если стартер в схеме присутствует, его придется выкинуть или зашунтировать.

Запускается такой светильник моментально, в отличие от долгих морганий и мерцаний привычных ЛБ и ЛД моделей.

Какие есть недостатки у такой схемы подключения? Во-первых, рабочий ток в энергосберегайках при равной мощности, меньше чем у линейных ламп дневного света. Чем это чревато?

А тем, что выбрав экономку равной или меньшей по мощности с ЛБ, ваша плата будет работать с перегрузкой и в один прекрасный момент бабахнет. Чтобы этого не случилось, мощности плат от экономок в идеале должны быть на 20% больше, чем у ламп дневного света.

То есть, для модели ЛДС на 36Вт, берите плату от лапочки на 40Вт и выше. Ну и так далее, в зависимости от пропорций.

Если вы переделываете светильник с одним дросселем на две лампочки, то учитывайте мощности обеих.

Почему еще нужно брать именно с запасом, а не подбирать мощность КЛЛ равную мощности ламп дневного света? Дело в том, что в безымянных и недорогих лампочках КЛЛ, реальная мощность всегда на порядок меньше заявленной.

Поэтому не удивляйтесь, когда подключив к старому советскому светильнику ЛБ-40, плату от китайской экономки на те же самые 40Вт, вы в итоге получите негативный результат. Это не схема не работает – это качество товаров из поднебесной не соответствует “железобетонным” советским гостам.

Если вы все таки намерены собрать более сложную конструкцию, при помощи которой запускаются даже сгоревшие линейные светильники, то давайте рассмотрим и такие случаи.

Самый простейший вариант – это диодный мост с парой конденсаторов и подключенная последовательно в цепь в качестве балласта, лампочка накаливания. Вот схема такой сборки.

Главное преимущество ее в том, что подобным образом можно запустить светильник не только без дросселя, но и перегоревшую лампу, у которой вообще нет целых спиралей на штырьковых контактах.

Для трубок мощностью 18Вт подойдут следующие компоненты:

    диодный мост GBU408

    конденсатор 2нФ (до 1кв)
    конденсатор 3нФ (до 1кв)
    лампочка накаливания 40Вт

Для трубок в 36Вт или 40Вт емкости конденсаторов следует увеличить. Все элементы соединяются вот таким образом.

После чего схемка подключается к лампе дневного света.

Вот еще одна подобная бездроссельная схема.

Диоды подбираются с обратным напряжением не менее 1kV. Ток будет зависеть от тока светильника (от 0,5А и более).

В данной схеме при сгоревшей лампе двойные штырьки на концах замыкаются между собой.

Подбор компонентов в зависимости от мощности лампы, делайте ориентируясь на табличку ниже.

Если лампочка целая, перемычки все равно устанавливаются. При этом не требуется предварительный разогрев спиралей до 900 градусов, как в исправных моделях.

Электроны необходимые для ионизации, вырываются наружу и при комнатной температуре, даже если спираль и перегорела. Все происходит за счет умноженного напряжения.

{SOURCE}

Схема подключения люминесцентной лампы с дросселем и стартером, с двумя лампами

Содержание статьи:

Качественное равномерное освещение можно создать с помощью разных источников света. В домах, офисах, производствах активно устанавливаются энергосберегающие люминесцентные лампы. Их установка и схема сложнее, чем у лампочек накаливания. Для корректного монтажа мастер должен знать, как функционирует устройство, какие виды бывают и какую схему использовать для подсоединения.

Устройство лампы

Люминесцентные лампы цилиндрической формы

Люминесцентный источник счета – это осветительный прибор, в котором ультрафиолетовое излучение преобразуется в видимый свет определенного спектра. Свечение достигается благодаря электрическому разряду, который появляется при подаче электричества в газовой среде. Образуется ультрафиолет, который воздействует на люминофор. В результате лампочка загорается и начинает светить.

Большая часть люминесцентных ламп изготавливается в форме цилиндрических трубок. Могут встречаться более сложные геометрические формы колбы. По краям трубки располагаются вольфрамовые электроды, которые припаяны к наружным штырькам. Именно к ним подается напряжение.

Колба наполняется смесью инертных газов с отрицательным сопротивлением и парами ртути.

Строение люминесцентной лампы

Стандартная схема лампочки состоит из стартера и дросселя. Дополнительно могут использоваться различные управляющие механизмы. Основной задачей дросселя является образование импульса необходимой величины, которое сможет включить лампу. Стартер представляет собой тлеющий разряд, у которого электроды находятся в инертной среде из газов. Обязательное условие – один электрод должен быть биметаллической пластиной. Если лампа выключена, электроды разомкнуты. При подаче напряжения они замыкаются.

Классификация проводится по разным критериям. Основной из них – свет. Он может быть дневным или белым с разной цветовой температурой. Разделение производится и по ширине трубки. Чем она больше, тем выше мощность лампы и площадь освещаемого участка. Люминесцентные лампы делятся по числу контактов, рабочему напряжению, наличию стартера, форме.

Принцип работы

Принцип работы люминесцентной лампы

Подается питающее напряжение. В начальный момент электрический ток не протекает, так как среда обладает высоким сопротивлением. Ток движется по спиралям, нагревает их и подается на стартер. Появляется тлеющий разряд. После нагрева контактов биметаллические пластины замыкаются. Температура на биметаллической части падает и контакт в сети размыкается. Это приводит к тому, что дроссель создает необходимый импульс в результате самоиндукции, и лампа начинает светить. Дуговой разряд поддерживается за счет термоэлектронной эмиссии, происходящей на на поверхности катода. Электроны разогреваются под действием тока, величину которого ограничивает балласт.

Свет появляется за счет того, что на лампу нанесено специальное вещество – люминофор. Он поглощает ультрафиолетовое излучение и дает свечение определенной гаммы. Цвет можно менять, нанося на колбу различные по составу люминофоры. Они могут быть из галофосфата кальция, ортофосфата кальция-цинка.

Основные преимущества лампы – экономия электроэнергии, долгий срок службы, яркое свечение. Из недостатков можно выделить невозможность прямого подключения к сети и наличие ртути внутри колбы. Лампы стоят дороже лампочек накаливания, но дешевле светодиодных источников света.

Способы подключения

Существуют различные варианты подключения люминесцентной лампы к сети. Самая популярная схема люминесцентного светильника — подсоединение с использованием электромагнитного балласта.

Схема с электромагнитным балластом (ЭмПРА)

Схема с электромагнитным балластом (ЭмПРА)

Принцип работы данной схемы основывается на том, что при подаче напряжения в стартере возникает разряд, приводящий к замыканию биметаллических электродов. Электрический ток в цепи ограничен внутренним дроссельным сопротивлением. Это приводит к тому, что рабочий ток возрастает почти в 3 раза, электроды резко нагреваются, а после уменьшения температуры возникает самоиндукция, приводящая к зажиганию стартерной люминесцентной лампы.

Минусы схемы люминесцентной лампы с ЭмПРА:

  • Высокие затраты на электроэнергию по сравнению с другими способами.
  • Долгое время запуска – примерно 1-3 секунды. Чем выше износ лампочки, тем дольше она будет зажигаться.
  • Не работает при низких температурах. Это приводит к невозможности использования в подвале или гараже, которые не отапливаются.
  • Стробоскопический эффект. Мерцание негативно сказывается на человеческом зрении и психике, поэтому подобное освещение не рекомендуется использовать на производстве.
  • Гудение при работе.

В схеме предусмотрен один дроссель для двух лампочек. Его индуктивности хватает на оба источника света. Напряжение стартера – 127 В, для светильника с одной лампой потребуется напряжение 220 В.

Есть схема люминесцентной лампы на 220 в с бездроссельным подключением. В ней отсутствует стартер. Такое бесстартерное подключение применяется при перегорании нити накала у лампочки. В конструкции также есть трансформатор и конденсатор для ограничения тока. Для ламп с перегоревшей нитью накала существуют переделки схемы и без трансформатора. Это облегчает конструкцию.

Два дросселя и две трубки

Дроссель

Этот метод применяется для двух ламп. Подключать элементы нужно последовательно:

  • Фаза – на вход дросселя.
  • От выхода дросселя один контакт подсоединить к первой лампе, второй – к первому стартеру.
  • С первого стартера провода идут на вторую пару контактов первой лампы, свободный провод нужно подсоединять к нулю.

Аналогичным образом подключается вторая лампа.

Подключение двух ламп от одного дросселя

Схема на две люминесцентные лампы

Этот вариант используется нечасто, но реализовать его несложно. Двухламповое последовательное подсоединение отличается своей экономностью. Для реализации потребуется индукционный дроссель и пара стартеров.

Схема подключения ламп дневного света от одного дросселя:

  • На штыревой выход ламп параллельным соединением подключается стартер.
  • Свободные контакты подсоединяются к электрической сети через дроссель.
  • Параллельно источникам света подключаются конденсаторы.

Бюджетные выключатели периодически могут залипать из-за повышения стартовых токов. В таком случае рекомендуется использовать высококачественные коммутационные устройства. Это обеспечит долгую и стабильную работу люминесцентной лампы.

Схема с электронным балластом

Схема подключения электронного балласта

Все минусы ЭмПРА привели к тому, что пришлось искать другой способ подключения. В результате электромагнитный балласт был заменен на электронный, работающий не на сетевой частоте 59 Гц, а на высокой 20-60 кГц. Благодаря этому решению исключается моргание света. Такие схемы применяются на производствах.

Визуально балласт представляет собой блок с клеммами. Внутри располагается печатная плата, на которой собирается электронная схема. Важное преимущество электронного балласта – миниатюрные размеры. Поместить блок можно даже в небольшой источник света. Также время запуска меньше, а работает устройство беззвучно. Метод с электронным балластом еще называется бесстартерным.

Собрать схему такого устройства несложно. Обычно она размещена на обратной стороне прибора. На схеме обозначается число лампочек для подсоединения, все поясняющие надписи, информация о технических характеристиках.

Как подключить светильник люминесцентный:

  • Контакты 1 и 2 – к паре контактов с лампы.
  • Контакты 3 и 4 – на оставшуюся пару.

На вход необходимо подать питающее напряжение.

Схема с умножителями напряжения

Для увеличения срока действия  может применяться способ без электромагнитного балласта. Время эксплуатации продляется при условии, что мощность лампы не превышает 40 Вт. Нити накала могут быть перегоревшими – их при любой ситуации следует закоротить.

Такая схема позволяет выпрямить напряжение и повысить его в два раза. Лампа загорается сразу же. Для реализации схемы нужно правильно подобрать конденсаторы. 1 и 2 выбираются на 600 В, 3 и 4 – на 1000 В. Недостаток – большие размеры конденсаторов.

Подсоединение без стартера

Стартер вызывает дополнительный нагрев у люминесцентной лампы. Также он часто выходит из строя, из-за чего эту деталь приходится заменять. Существуют схемы, в которых люминесцентный источник света работает без стартера. Электроды подогреваются до нужного уровня при помощи трансформаторных обмоток, выступающих в роли балласта.

При покупке лампочки нужно обратить внимание на надпись RS – быстрый старт. Именно такие изделия работают без стартера.

Схема с последовательным подключением двух ламп

Схема для последовательного подключения двух ламп

Есть две лампы, которые необходимо соединить при помощи одного балласта последовательным образом. Для выполнения подобных работ потребуются следующие компоненты:

  • Индукционный дроссель.
  • Два стартера.
  • Два люминесцентных светильника.

Схема подключения люминесцентной лампы следующая:

  • К каждой лампе подключается стартер параллельно на штыревой вход на торце колбы.
  • Оставшиеся контакты следует подключить в электрическую сеть через дроссель.
  • На контакты лампочек подключаются конденсаторы. Они необходимы для того, чтобы уменьшить интенсивность помех и реактивную мощность.

Конденсаторы выбираются с учетом нагрузки.

Замена люминесцентных ламп

Чтобы снять люминесцентную лампу, необходимо повернуть в том направлении, которое указано на держателе

Люминесцентный источник света отличается от классических галогеновых ламп и изделий с нитью накала длительным сроком службы. Но даже такие надежные лампочки могут выйти из строя, из-за чего их приходится заменять.

Выполнить замену можно следующим образом:

  • Разобрать светильник. Важно аккуратно снимать все детали, чтобы прибор не повредился. Люминесцентные трубки нужно поворачивать вокруг оси в отмеченном направлении. Оно указывается на держателе стрелками.
  • После поворота на 90 градусов трубку следует опустить. Тогда контакты легко выйдут из соответствующего отверстия.
  • Визуально осмотреть целостность лампочки, нитей накала. Если зрительных проблем нет, поломка может быть вызвана внутренними компонентами.
  • Следует взять новый источник света. Его контакты должны находиться в вертикальном положении и помещаться в отверстие. После установки лампочки ее нужно прокрутить в обратном положении.

Снимать прибор нужно аккуратно, чтобы не разбить стеклянную колбу. Внутри находится ртуть, которая опасна для здоровья.

После того как система собрана, можно подавать питающее напряжение, выполнять включение и приступать к тестированию. Финальным шагом будет установка защитного плафона на светильник.

Проверка работоспособности

Прозвонка электродов мультиметром

Выполнить проверку собранной системы можно с помощью тестера, который проверяет нити накала. Его допустимое сопротивление должно составлять 10 Ом.

Если тестирующее устройство показало бесконечное сопротивление, лампочка подходит только для использования в режиме холодного запуска. Также бесконечность может показываться при неисправности источника света. Нормальное сопротивление, которое должен показывать тестер, достигает несколько сотен Ом. Это связано с тем, что в обычном состоянии контакты стартера находятся в разомкнутом виде. При этом конденсатор не пропускает постоянный ток.

Если коснуться щупами мультиметра дроссельных выводов, сопротивление будет постепенно падать до постоянного значения в несколько десятков Ом.

Точное значение определить нельзя при помощи обычного тестера. Но на некоторых приборах есть функция измерения индуктивности. Тогда по данным ЭмПРА можно проверить значения. В случае их несовпадения можно судить о проблемах с прибором.

Подключение люминесцентных ламп — схема и варианты монтажа

Отличительный принцип схемы подключения люминесцентных светильников заключается в необходимости включения в нее приборов пускового типа, от них зависит длительность эксплуатации.

Для того чтобы разбираться в схемах необходимо понимать принцип работы данных светильников.

Технические характеристики люминесцентных ламп

Устройство светильника люминесцентного типа – это герметичный сосуд, наполненный особой консистенцией из газа. Расчёт смеси производился с целью растрачивания меньшей энергии ионизации газов в сравнении с обычными лампами, за счет этого можно хорошо сэкономить на освещении дома или квартиры.

Для постоянного освещения необходимо удержание тлеющего разряда. Этот процесс обеспечивается с помощью подачи нужного напряжения. Проблема заключается лишь в следующей ситуации — такой разряд появляется от подающего напряжения, которое выше рабочего. Но и эта задача была решена производителями.

На двух сторонах лампы устанавливаются электроды, которые принимают напряжение, и поддерживают разряд. Каждый электрод имеет два контакта, с которыми происходит соединение источника тока. За счет этого происходит нагревание зоны, которая окружает электроды.

Светильник загорается впоследствии нагрева каждого электрода. Происходит это за счет воздействия на них высоковольтных импульсов и последующей работы напряжения.

При воздействии разряда газы находящиеся в емкости лампы активизируют излучение ультрафиолетового света, который не воспринимается глазом человека. Для того чтобы зрение человека различало это свечение колба внутри покрыта люминофорным веществом, которое смещает частотный интервал освещения в видимый интервал.

Изменяя структуру данного вещества происходит изменение гаммы цветовых температур.

Важно! Нельзя попросту включить светильник в сеть. Дуга появится после обеспечения прогревания электродов и импульсного напряжения.

Специальные балласты помогают обеспечить такие условия.

Подключение через электромагнитный балласт

Нюансы схемы подключения

Цепь данного вида должна включать в себя наличие дросселя и стартера.

Стартер выглядит как небольшой по мощности источник неонового освещения. Для его питания необходима электросеть с переменным значением тока, также он оснащен некоторым количеством биметаллических контактов.

Подключение дросселя, стартерных контактов и электродных нитей происходит последовательно.

Другой вариант возможен при замещении стартера на кнопку от входного звонка.

Напряжение будет осуществляться удержанием кнопки в состоянии нажатия. Когда светильник зажжётся ее необходимо отпустить.

1-й способ подключения люминесцентных ламп

  • подключенный дроссель сохраняет электромагнитную энергию;
  • с помощью стартерных контактов поступает электричество;
  • перемещение тока осуществляется с помощью вольфрамовых нитей нагревания электродов;
  • нагрев электродов и стартера;
  • затем размыкаются контакты стартера;
  • энергия, которая аккумулируется с помощью дросселя освобождается;
  • светильник включается.

Для того чтобы увеличить показатель полезного действия, уменьшить помехи в модель схемы вводятся два конденсатора.

Плюсы данной схемы:

— простота;

— демократичная цена;

— она надежна;

Недостатки схемы:

— большая масса устройства;

— шумная работа;

— лампа мерцает, что не хорошо сказывается на зрении;

— потребляет большое количество электроэнергии;

— включается устройство около трех секунд;

— плохое функционировании при минусовых температурах.

Очередность подключения

Подключение с помощью вышеописанной схемы происходит со стартерами. Рассматриваемый ниже вариант имеет модель стартера S10 мощностью 4-65Вт., лампу на 40Вт и такую же мощность у дросселя.

Этап 1. Подключение стартера к штыревым контактам лампы, которые имеют вид нитей накаливания.

Этап 2. Остальные контакты подключается к дросселю.

Этап 3. Конденсатор подключается к контактам питания параллельным образом. За счет конденсатора компенсируется уровень реактивной мощностью, и происходит уменьшение количества помех.

Подключение люминесцентных ламп через электронный балласт

Особенности схемы подключения

За счет электронного балласта лампе обеспечивается долгий период функционирования и экономия затрат электроэнергии. При работе с напряжением до 133 кГц свет распространяется без мерцания.

Микросхемами обеспечивается питание светильников, подогрев электродов, тем самым повышается их продуктивность и увеличиваются сроки эксплуатации. Имеется возможность совместно с лампами данной схемы подключения использовать диммеры – это устройства, которые плавно регулируют яркость свечения.

Электронный балласт преобразует напряжение. Действие постоянного тока трансформируется в ток высокочастотного и переменного вида, который переходит на нагреватели электродов.

Повышается частота за счет этого происходит уменьшение интенсивности нагревания электродов. Использование электронного балласта в схеме подключения позволяет подстроиться под свойства светильника.

Плюсы схемы данного вида:

  • большая экономия;
  • лампочка плавно включается;
  • отсутствует мерцание;
  • бережно прогреваются электроды лампы;
  • допустимая эксплуатация при низких температурах;
  • компактность и маленькая масса;
  • долговременный срок действия.

Минусы схемы данного вида:

  • усложненность схемы подключения;
  • большая требовательность к установке.
Порядок подключения ламп

Светильник подключается в три этапа:

— происходит прогревание электродов, за счет чего аккуратно и размеренно запускается устройство;

— создается мощный импульс, который требуется для поджигания;

— рабочее напряжение балансируется и подается на лампу.

Подключение люминесцентных ламп последовательно

Очередность подключения

Этап 1. Параллельное подсоединение стартера к каждой лампе.

Этап 2. Последовательное подсоединение с помощью дросселя свободных контактов к сети.

Этап 3. Параллельное подсоединение конденсаторов к контактам лампы. За счет этого происходит снижение помех, а также компенсирование реактивной мощности.

Видео — Подключение люминесцентных ламп


Поделитесь если вам понравилось:









Похожие материалы

Электропроводка люминесцентного патрона — электрическая 101

Схема подключения балласта с мгновенным запуском 2 ламп с шунтированными патронами не

Схема подключения балласта для быстрого запуска 2 ламп с шунтированными патронами не

Как извлечь провод из проталкивания — в соединителе

Возьмитесь за провод и скрутите его (поверните), осторожно потянув за провод, пока он не выйдет.Если не сделать это правильно, провод может оборваться до того, как он отсоединится от разъема.

Люминесцентные патроны для замены клемм на шунтированных патронах не

Люминесцентные патроны удерживают люминесцентные лампы на осветительной арматуре. Провода от штепсельной вилки балласта вставить в разъемы в патронах, которые подключаются к контактам лампы.

Шунтированные патроны

Шунтированные патроны для пусковых балластов с мгновенным запуском вмещают до двух проводов 18 AWG, соединены между собой внутри и подключаются к обеим сторонам патрона патрона.

На схеме ниже (балласт для мгновенного запуска 2 ламп) отдельные синие провода подключаются от балласта к каждому из патронов на одной стороне каждой лампы.

Общий красный провод соединяет балласт с обоими патронами на другой стороне каждой лампы. Дополнительный красный провод соединяет вместе два общих боковых патрона.

Схема подключения балласта с двумя лампами мгновенного пуска с шунтированными патронами

Шунтированные патроны без

Шунтируемые патроны без для балластов с быстрым пуском, каждый удерживает четыре провода 18 AWG.Два разъема push- in на левой стороне соединены вместе и с левой стороны держателя внутри. Два разъема push- in на правой стороне соединены вместе и с правой стороны держателя внутри.

На схеме ниже отдельные синие провода подключаются от балласта к вставкам в разъемы на каждой стороне левого патрона лампы 1. Другие отдельные красные провода подключаются от балласта к разъемам на каждой стороне лампы. левый патрон лампы 2.

Общие желтые провода подключаются от балласта к вставным разъемам на одном из правых держателей лампы 1 или 2. Два желтых провода соединяют общие патроны вместе.

Диммирование флуоресцентных ламп Принцип работы люминесцентных светильников

Регулирование яркости флуоресцентных ламп Как работают люминесцентные светильники

Люминесцентная лампа работает так же, как неоновая лампа. На каждом конце есть электроды, которые нагреваются, чтобы уменьшить величину ударного тока, необходимого для возбуждения газа в трубке.После возбуждения трубки электроды продолжают оставаться нагретыми из-за передачи тока, но напряжение, необходимое для поддержания возбуждения газа, значительно падает по сравнению с напряжением удара.

Внутренняя часть лампы покрыта смесью люминофора, которая загорается при контакте УФ-излучения со стеклом. Поскольку свет не является прямым результатом свечения нити накала, люминесцентные лампы по своей природе более эффективны, чем лампы накаливания.

Магнитные и электронные балласты используются с люминесцентными лампами.Электронные балласты предпочтительнее, поскольку они легче по весу, выделяют меньше тепла и используют высокочастотные формы волны напряжения для устранения видимого мерцания лампы. Электронные балласты обычно работают в диапазоне 32 кГц, например, а не в диапазоне 120 Гц, используемом в магнетиках. Известно, что это иногда вызывает другие проблемы, такие как увеличение гармоник в линии и помехи для инфракрасных устройств управления, но плюсы перевешивают минусы.

Компактные флуоресцентные лампы

Компактные люминесцентные лампы относятся к люминесцентной лампе, размер которой уменьшен за счет сворачивания спирали или складывания для создания эффекта длинной трубки в небольшом пространстве.

Есть два типа компактных люминесцентных ламп:

Интегрированный

Балласт встроен в цоколь лампы. Такие типы могут использоваться как прямая замена стандартных ламп Эдисона с винтом или байонетом. Однако диммирование оставляет желать лучшего. Даже версии встроенного CFL с регулируемой яркостью не обеспечивают плавного затемнения в широком диапазоне.

Неинтегрированный

Неинтегрированные компактные люминесцентные лампы

имеют отдельный балласт, аналогичный стандартной люминесцентной лампе.

Диммируемые балласты доступны для неинтегрированных компактных люминесцентных ламп и обеспечивают разумные характеристики затемнения.

Компактные флуоресцентные лампы необходимо полностью прожечь в течение 100 часов перед затемнением (см. Дополнительную информацию ниже). Несоблюдение этого правила приведет к потемнению и преждевременному выходу лампы из строя.

Как затемняют люминесцентные светильники

При затемнении флуоресцентных ламп важно понимать, что невозможно создать плавный переход между выключенным режимом и уровнем.Поскольку свет генерируется разрядом через газ, подобно дуговой лампе или неоновой трубке, всегда будет «скачок» уровня света при первом ударе трубки. Яркость, до которой «подскакивает» уровень, определяется балластом — см. Раздел ниже о регулируемых процентах. Всегда помните, что при уменьшении яркости люминесцентных ламп характеристики не будут такими же, как у традиционных ламп накаливания с регулируемой яркостью.

Для люминесцентных светильников используется специальный регулируемый балласт. Это связано с тем, что стандартные балласты обычно не способны поддерживать тепло электрода в степени, необходимой для надлежащего возбуждения газа при изменении входного напряжения.Хотя магнитные балласты с регулируемой яркостью существуют, почти все балласты с регулируемой яркостью в наши дни являются электронными.

Электронные балласты изменяют частоту, с которой работают лампы, без изменения напряжения на электродах, и поэтому могут иметь гораздо более широкий диапазон регулирования яркости. В то время как магнитные поля действительно позволяли снизить мощность лампы до 20-40%, электронные балласты могут уменьшаться до 1% на некоторых моделях.

О различных балластах с регулируемой яркостью

Балласты обычно называют количеством проводов, которые их питают.На рынке США доступны три различных типа балласта (110 В, 60 Гц). Балласты бывают 2-проводные, 3-проводные и 4-проводные модели. Двухпроводные балласты крайне редки в Европе (более низкая частота означает, что они не работают правильно), поэтому практически все диммируемые флуоресцентные лампы являются трех- или четырехпроводными.

2-проводной

Это очень распространенные балласты, которые проще всего установить. Для них требуется приглушенный горячий и нейтральный (подразумевается заземление), и они доступны в моделях с 5% -ным затемнением от таких компаний, как Lutronand Advance (Philips).Они устанавливаются и управляются на одном диммере так же, как и источник лампы накаливания, за исключением того, что установлен нижний порог. Эта настройка предотвращает работу ламп ниже рекомендованного напряжения, предотвращая преждевременный выход из строя как ламп, так и балластов.

2-проводные пускорегулирующие устройства выпускаются как с прямой, так и с обратной фазой. Чтобы уменьшить яркость балласта с обратной фазой, вам необходимо использовать модуль диммера с обратной фазой, такой как диммер ETC ELV10, в совместимой диммерной стойке.

3-проводной

Эти балласты также распространены и обычно довольно недорогие.Тем не менее, они используют два регулятора яркости для управления и питания, поскольку им требуются приглушенный горячий, переключаемый горячий и нейтраль (понимается заземление). Advance и Lutron производят их в моделях 1%, 5% и 10%. Используется порог, подобный 2-проводным моделям, и в момент, когда один диммер переходит в полную мощность (не тусклый), а другой начинает плавное уменьшение до полного. Модуль диммера является особенным, поскольку по коду у него должен быть только один выключатель для обоих выходов.

4-проводный

В 4-проводном балласте

используются горячий (не тусклый) и нейтральный (понимается заземление) плюс два низковольтных провода для управления 0-10 В постоянного тока (аналоговый) или протоколы управления DSI или DALI (цифровые).Доступны модели с контролем 5% и 10%. Опять же, порог используется для установки минимальной мощности и управляющего напряжения. Используйте стандартные модули диммера в сочетании с платой управления 0–10 В постоянного тока, такой как плата FLO, при диммировании Unison. Обратите внимание, что ток поступает от балласта и опускается на плату FLO, поэтому стандартный ЦАП может не работать. Подробнее об этом позже.

О различных процентах диммирования

Всегда есть много вопросов, связанных с процентами диммирования, которые производители публикуют в отношении балластов.Проценты основаны на светоотдаче, измеренном люксметром. Человеческий глаз воспринимает увеличение света не линейно, а как функцию, близкую к «квадратичному закону», но люксметры действительно используют линейную шкалу. Поэтому, глядя на минимальный уровень яркости люминесцентного светильника, глаз будет видеть больше света, чем заявленный процент. Вот таблица, которая поможет вам лучше сравнить рекламируемый или измеренный свет с воспринимаемым светом.

Тип балласта (то, что продают производители) Измеряемый свет (то, что видит метр) Воспринимаемый свет (то, что вы видите)
1% 1% 10%
5% 5% 22.4%
10% 10% 32%
20% 20% 46%

Балласт 5% является наиболее распространенным из всех типов балласта. Покупатели систем часто не понимают, почему их люминесцентные лампы не тускнеют до 5%. Пожалуйста, помогите им понять, почему 5% означает светоотдачу, а не воспринимаемый свет или контрольный уровень.

Важные советы по установке

  • Хорошая идея — «приправить» лампы на 100 часов перед тем, как погаснуть. Хотя он больше не требуется производителями ламп или балластов, он имеет тенденцию к повышению производительности. Рекомендуется приобрести и установить в кладовке несколько запасных светильников, чтобы обеспечить зону выгорания лампы. Единственным исключением из вышеперечисленного являются компактные люминесцентные лампы, которые необходимо обязательно прогреть в течение 100 часов, прежде чем затемнить. Несоблюдение этого правила приведет к потемнению и преждевременному выходу лампы из строя.
  • Убедитесь, что светильники надежно заземлены. Лампа должна находиться в непосредственной близости от металлической заземляющей пластины, чтобы уменьшить мерцание и увеличить срок службы лампы. Расстояние должно быть 0,5 дюйма в пределах +/- 0,25 дюйма.
  • Не используйте в одной цепи разные типы балластов или ламп. Вопреки распространенному мнению, балласты могут взаимодействовать друг с другом по одной цепи. То же самое и с лампами, поскольку они горят по-разному, и их нельзя смешивать в одном светильнике.
  • Используйте следующую таблицу, чтобы определить правильный модуль диммера ETC для ваших балластов:
2-проводный (прямая фаза) 2-проводный (обратная фаза) 3-проводный 4-х проводный
120 В переменного тока (США) D15 / D20 ELV10 D15F / D20F D15 / D20
230VAC (CE, Европа) ED15 / Матрица iSCR Матрица iSine ED15AFRF / Матричный флуоресцентный ED15 / ER15
277VAC (США) AD20 AD20F AD20

ETC в прошлом производила несколько модулей прямой фазы, которые лучше справлялись с низкими нагрузками, известные как L10 (110 В) и AL5 (277 В).В серии L использовались технологии MOSFET и IGBT для более точного регулирования маломощных нагрузок. Из-за улучшений управления затемнением в корпусе Unison DRd и модулях управления Sensor CEM + / CEM3 эти модули были сняты с производства и больше не нужны.

Как настроить систему ETC Legacy Unison для затемнения люминесцентных ламп

При настройке модуля затемнения на процессоре Unison убедитесь, что вы выбрали правильный тип модуля и соответствующий тип нагрузки. Когда вы выбираете люминесцентные лампы, вас спросят, какой процент балласта вы используете.Кривая и порог будут установлены автоматически. Рекомендуется установить уровень% немного выше требуемого значения от производителя балласта, это позволит избежать мерцания в будущем.

Как настроить систему датчика ETC для затемнения люминесцентных ламп

Датчик

немного отличается тем, как его следует настроить для правильного затемнения флуоресцентных ламп. Сначала вы должны установить кривую, которую хотите использовать. Большинство людей выбирают линейный, но есть и модифицированный линейный, у которого более мягкий нижний конец кривой.После этого установите порог примерно на 60% и измерьте выходное среднеквадратичное напряжение для диммера при его минимальном значении. Требуется, чтобы напряжение в 0,47 раза превышало входное линейное напряжение. Если 60% неверно, выберите другой порог, который ближе к желаемому выходу, и проверьте его с помощью измерителя. С этим типом настройки (допустим, 60% порог) ваш фейдер будет иметь большую область перемещения (от 0 до 59%), где ничего не произойдет.

Другая информация

В устаревших системах Unison вы можете установить для зоны минимальный уровень 60, максимальный или полный и установить флажок «Использовать ноль как выключенный».«Это даст фейдеру настенной станции полный контроль над балластом во всем диапазоне фейдера и при этом отключится в нижней части хода фейдера. Это очень хорошее решение.

При запуске балластов с консоли управления DMX найдите время, чтобы запрограммировать профиль, имитирующий программирование Unison, или запишите все ваши реплики с затронутыми каналами в диапазоне от 59 до полного. Таким образом, синхронизированное затухание по-прежнему будет работать со всеми флуоресцентными и нефлуоресцентными каналами параллельно.

Устранение неисправностей при затемненных флуоресцентных лампах

1. Лампы разного уровня на разных балластах

  • Смесь ламп разных типов и возрастов.

2. Концы ламп почернели

  • Лампы не были полностью выключены в течение 100 часов.
  • Лампы работали в течение длительного времени на очень низких уровнях.
  • Лампы отработали ниже рекомендованного уровня.

3. Лампы мигают или мигают только на низком уровне

  • Лампы не были полностью выключены в течение 100 часов.
  • Балласт загоняется слишком низко.Проверьте настройку нижнего среднеквадратичного напряжения.

4. Лампы мерцают или мигают на всех уровнях

  • 3-проводной балласт потускнел, и переключенные провода поменялись местами.
  • Лампы не были полностью выдержаны в течение 100 часов.
  • Лампы и пускорегулирующие устройства не согласованы.
5.Лампы включаются на полную мощность на нижнем уровне управления и не гаснут.
  • У 4-проводного балласта отсутствует или неправильная проводка управления

6. Лампы не тускнеют до минимального уровня

  • Лампы не были полностью выключены в течение 100 часов.
  • Светильники неправильно заземлены.
  • Старые лампы.

Какие балласты нельзя использовать с оборудованием ETC

Убедитесь, что вы используете правильный модуль (ELV10) при диммировании управляющих балластов с обратной фазой. Все остальные диммерные модули Sensor и Unison обеспечивают управление прямой фазой. Использование балластов, не предназначенных для этих систем, вызовет множество проблем и приведет к неправильному затемнению. Самый распространенный производитель этих балластов — ESI. Lightolier производит блок преобразователя в одно- и двухканальных моделях для адаптации управляющего сигнала прямой фазы к управлению обратной фазой, но стоимость весьма значительна.Большинство выпускаемых сегодня балластов с регулируемой яркостью являются электронными, и с ними легко работать. Однако, поскольку люди модернизируют старые объекты, также используются регулируемые магнитные балласты. Большинство магнетиков можно приглушить, но, как всегда, если есть сомнения, сначала проверьте их. (С вопросами обращайтесь к разработчикам приложений) Магнитные балласты должны иметь термическую защиту для предотвращения перегрева несинусоидальных сигналов.

Существует множество стандартов наименования люминесцентных ламп; вот краткое изложение

Диаметр

Число с префиксом T указывает диаметр трубы.

Т-номер

Диаметр

Т12

1,5 дюйма

Т8

1,0 дюйма

T5

0.5 дюймов

Длина и мощность

Длина и мощность трубки взаимозависимы.

Мощность

Длина

40 Вт

48 дюймов (1220 мм)

30 Вт

36 дюймов (910 мм)

20 Вт

24 дюйма (610 мм)

13 Вт

21 дюйм (530 мм)

15 Вт

18 дюймов (460 мм)

14 Вт

15 дюймов (380 мм)

8 Вт

12 дюймов (300 мм)

6 Вт

8 дюймов (230 мм)

4 Вт

6 дюймов (150 мм)

Fatalii’s Empire — Как создать индивидуальную систему люминесцентных ламп (T5)

Создание индивидуальной системы люминесцентных ламп (T5)

При выращивании рассады и растений на стадии вегетации использование флуоресцентных ламп — отличный способ обеспечить любимые растения ярким и сбалансированным светом.В этом руководстве показано, как построить систему, которая подойдет практически для любых растущих потребностей в помещении.

Введение

Системы люминесцентных ламп используются в садоводстве, где очень важно, чтобы лампа не излучала чрезмерное тепло. Например, в закрытых камерах для выращивания или там, где температура уже высока и не может быть понижена. Кроме того, из-за относительно низкого тепловыделения люминесцентных ламп лампы можно устанавливать довольно близко к верхушкам растений, не сжигая нежные кончики.

Общее использование электричества и преобразование в свет превосходно с флуоресцентными лампами. Хотя светоотдача флуоресцентных ламп действительно хорошо сбалансирована между стоимостью и удобством использования, установка системы, которую можно использовать в течение всего сезона перца чили, на мой взгляд, не стоит того. Если планируется полностью закрытое помещение в течение всего сезона, тогда для фазы плодоношения потребуется лампа высокого давления на основе паров металла, такая как Son-T, поскольку флуоресцентный свет не будет достаточно проникать в верхние слои листвы и, как правило, будет недостаточно для правильный процесс созревания.Но одним из лучших вариантов для стадии рассады и вегетативного роста в первые три-четыре месяца по-прежнему является флуоресцентная установка.

T5 — Новый король горы

Практически во всех используемых сегодня флуоресцентных системах используются стандартные флуоресцентные лампы T8. Признаком Т8 является диаметр 26 мм. Хотя T8 по-прежнему имеет очень хорошую светоотдачу для потраченной электроэнергии, они
действительно страдают от нескольких недостатков, таких как мерцание при обычных настройках («холодные» балласты со стартерами) или самозатухание из-за относительно толстой лампы накаливания.Удобные установки — это те, которые можно найти в недорогих универсальных дешевых решениях, которые можно найти в хозяйственных магазинах. Их приспособление содержит рядом с гнездами для крепления лампочек также стартер и балласт.
Нормальная работа этих систем — мерцание при включении, а также характерное гудение балласта во время работы. Особенно жужжание может сильно раздражать при выращивании растений в квартирах.
Кроме того, мерцание влияет на долговечность ламп — это не фактор затрат при использовании дешевых ламп, но почти наверняка проблема при использовании более дорогих ламп, которые излучают прекрасный спектр, необходимый для здоровых растений.Подробнее о световом спектре и типах ламп позже.

Устранение недостатков перечисленных схем решено в виде «новых» люминесцентных систем Т5. T5 работает по тому же принципу, что и T8 — пропускает ток по трубке, заполненной газом, вызывая разряды, излучающие свет. Но T5 имеют более новый дизайн и тонкие по сравнению с T8 — их диаметр составляет 16 мм. Они излучают больше света по сравнению с T8 для использованного электричества из-за меньшего самозатенения, а также меньших потерь затраченной энергии из-за чрезмерного тепла.Ситуация для существующих систем заключается в том, что T5 несовместим с T8 и требует исключительно относительно дорогих электрических балластов. Но с другой стороны, им больше не нужны стартеры, и они сразу включаются без раздражающего мерцания. Это также относится к концу их срока службы — они просто отключаются, в отличие от обычных установок T8, которые сильно мерцают и могут этим наверняка беспокоить растения. Даже если в системах T8 можно заменить обычные пусковые установки и обычные балластные устройства на электронный балласт, почему бы не воспользоваться этой возможностью и не переключиться также на лучшую тонкую лампу T5?
В целом T5 излучает больше света, чем T8 при той же мощности, одновременно потребляет меньше энергии и не мерцает, что может вызвать стресс для глаз и вызвать головные боли.Те из вас, кто долгое время работал с дешевыми флуоресцентными лампами, знают об этом — головные боли и усталость в конце дня. Ссылаясь на более длительный срок службы ламп, экономия энергии в целом также компенсирует в долгосрочной перспективе высокую цену на электрические балласты — особенно с учетом роста счетов за электроэнергию в последние пару лет.

Типы ламп

Как и в случае с T8, лампы T5 бывают разных вариантов — нормальная, высокая эффективность (HE), высокая мощность (HO) и очень высокая мощность (VHO), а также различные мощности.Для старых систем T8 мощность также означала длину трубок.
Теперь это также изменилось с момента введения различных типов, упомянутых ранее. Конечно, HE, VHO и HO, будучи «особенными», стоят немного дороже, но, на мой взгляд, они того стоят.
Для выращивания я выбрал HO, поскольку эксплуатационные расходы на VHO легко утроятся при инвестициях в энергию — на мой взгляд, лучше добавить больше HO. Тем не менее, сравнение между T5 и T8 все еще сохраняется при наблюдении преобразования энергии в световой поток.При использовании трубки одного типа соотношение между длиной и мощностью снова становится верным. Но, конечно, сложное никогда не бывает достаточно сложным — поэтому теперь мы вводим «светлый цвет». В то время как интенсивность света измеряется в «люменах», цвет света измеряется в Кельвинах, обычно используемых для измерения тепла. Обычные типы люминесцентных источников света, используемых для выращивания растений, находятся в диапазоне 6000 К. Наилучший спектр составляет около 6500K с естественным балансом красного и синего. Это отражено на типах люминесцентных ламп с трехзначным кодом (трехполосные люминесцентные лампы).Наилучший спектр с наиболее пригодным для использования растениями светом излучается из лампы типа 865 — излучающей свет 6500K, упомянутой ранее (тип 865 будет действителен для производителей Philips, Osram, Sylvania и GE).
Здесь мы имеем чрезвычайно хороший баланс света в спектре красного и синего — единственные цвета, которые действительно необходимы для здоровых растений.

Для сравнения световых температур

  • Обычный офисный флуоресцентный 4000K
  • Солнце рано утром / поздно вечером 5000K
  • Облачное небо 6000K
  • Ярко-синее летнее небо 12000K-15000K

Зеленый свет полностью отражается растениями, и именно поэтому растения кажутся нам в основном зелеными.
И в качестве примечания ко всем «специальным» пробиркам, рекламируемым для отличных условий выращивания, например, GRO-Lux — они слишком дороги, и даже несмотря на то, что они излучают «хороший» полезный свет, они излучают меньше, чем стандартные, с точки зрения просвета более короткая продолжительность жизни.
Проданные лампы типа 865 отличаются отличным освещением и непревзойденными по преобразованию энергии в свет при соответствующем балласте, например, с большим световым потоком при той же мощности.

Балласт

Как уже упоминалось, системе T5 нужны исключительно электронные балласты.Однако им больше не нужны дополнительные стартеры. Если вы читаете это и планируете создать свою собственную систему, подобную моей, тогда возникает вопрос, какой балласт нужен для выбора количества ламп и их мощности.
Обычные электронные балласты (ЭПРА) поставляются с возможностью поддержки одной или двух ламп. Чтобы снизить затраты на еще более дорогой EB, я предлагаю установку с четным числом трубок и половину этого количества с EB, которые поддерживают две лампы.Двухтрубная версия EB не стоит значительно дороже, чем однотрубная версия.
Кроме того, некоторые EB поставляются с переменным диапазоном ватт, поэтому вы не настроены на ту трубку, для которой изначально купили EB. В моем случае у меня есть Philips H-Performer II, который поддерживает две лампы в диапазоне от 14 Вт до 39 Вт, что означает, что если я решу накапливать ватт позже, я смогу поддерживать длинные лампы T5 только с небольшой модификацией моей настроить.
Другой производитель EB в Европе — Osram.Поскольку все становится более современным, вы также можете встретить некоторые типы EB, которые поддерживают затемнение. Если вы НЕ специалист по освещению или электричеству, я рекомендую держаться от них подальше, поскольку их установка быстро усложняется — особенно те, которые предназначены для интеграции в системы DALI (цифровая шина для управления всей средой), не предназначены для садоводов-любителей; ).
Однако, по крайней мере, некоторые знания электрической схемы и мер предосторожности необходимы для следующего. Цепь между EB и лампами почти всегда печатается рядом с гнездами, соединяющими лампы.

Если вы никогда раньше не создавали подобную систему, я настоятельно рекомендую потратить время на создание небольшой тестовой установки, прежде чем вы действительно попытаетесь установить всю систему на место. Также очень важно отметить понятие «горячих» проводов.
Эти провода в данном случае предназначены для подключения к гнездам 1, 2, 6 и 7. Соответствующий им номер гнезда вашей марки EB должен быть напечатан где-нибудь на EB. Скорее всего, где-то напечатано «Держите провода x, y короткими», так что x и y — это горячие провода.
Горячие провода — это те провода, через которые проходит большая часть энергетической нагрузки. Я выбрал в своей настройке, чтобы отслеживать тех, кто решил использовать для них исключительно красные провода, а также разместить EB таким образом, чтобы красные провода могли быть как можно более короткими.

Отражатели

Трубки круглые, поэтому они излучают свет на 360 ° и тратят много энергии, вложенной в световой поток, если свет не достигает растений. Теперь есть несколько решений этой проблемы — одни лучше, другие хуже.Вы, конечно, можете попытаться сократить расходы и просто закрасить область над трубками белой краской. Это обязательно будет отражать часть света, но не в оптимальном процентном соотношении. На мой взгляд, единственный жизнеспособный ответ — использовать отражатели, подобные тем, что используются в лампах на парах металла. Рефлекторы нельзя превзойти по отражаемому свету — разве что полированные зеркала. Некоторые даже говорят, что отражатели могут удвоить просвет, достигающий растений. Сейчас существуют довольно дешевые отражатели для ламп T5 — я купил свой на удивление дешево в аквариумистике всего за 8 евро за штуку.Более дешевые поставляются с двумя зажимами, с помощью которых они прикрепляются непосредственно к самой трубке и могут быть повернуты, чтобы отражать свет в нужном направлении.

Отражатель и зажим T5

После сборки рефлектора нужно позаботиться о том, чтобы стереть лишние жирные пятна на поверхности рефлектора, оставшиеся от пальцев — воткните, они есть, даже если вы не ели шашлык, работая с лампами.
Конечно, есть возможность просто построить свои собственные отражатели.Я слышал, что это довольно простой процесс, если у вас есть доступ к листам отражающего металла и некоторым инструментам — ножницам для резки металлических листов, полировальным станкам и так далее. Я оставляю это на ваше усмотрение.
Кроме того, гроубокс должен быть заключен в светоотражающий материал, чтобы отражать световые лучи, которые пытаются проникнуть в вашу квартиру. Есть также несколько хороших и несколько плохих вариантов. Хуже всего, очевидно, алюминиевая фольга, которая не только мнется и, следовательно, больше рассеивает свет, чем отражает, но и легко рвется.
На мой взгляд, лучший вариант — это светонепроницаемая белая полиэтиленовая пленка. Эта фольга имеет хороший коэффициент отражения, не рвется и легко стирается. Если вам попалась только очень тонкая белая пластиковая пленка, возможно, вам придется укладывать ее в два слоя.

Электропроводка

Для EB требуется два типа проводов. Один предназначен для подключения ЭБ к общей цепи 220 В (в некоторых странах может отличаться), другой — для подключения ламп к ЭБ. Для первого можно использовать стандартный электрический провод, если он имеет три вывода для подключения заземляющих контактов, что является обязательным условием для таких конструкций влажных помещений, как установка для выращивания растений.
Я также настоятельно рекомендую соединитель, подходящий для конструкций влажных помещений. Но будьте осторожны, чтобы не использовать слишком прочный кабель — разъемы EB, которые я видел, поддерживают только отдельные провода сечением до 1 мм! Для цепей между EB и трубками я выбрал провод звонка диаметром 0,6 мм, который поставляется в рулоне длиной около 10 м с одним выводом. Я получил это в двух цветах, чтобы различать горячие и длинные провода — см. Раздел «Балласт» для объяснения этого.
Убедитесь, что вы не выбрали более тонкую проволоку, так как это будет означать большее сопротивление в проводе и большие потери тепла и меньше света.Внимательно прочтите информацию на вашем EB, чтобы узнать, какой тип провода они предлагают использовать. Хорошей отправной точкой может стать сайт производителя.

Самодельная система освещения — План

Итак, вы определили место где-нибудь, чтобы начать выращивание перца чили в наступающем сезоне. Теперь, прежде чем бежать в хозяйственный магазин, нужно немного спланировать, как максимально использовать компоненты освещения и в то же время сохранить минимальные затраты.
Он начнется с измерения доступной площади и проверки того, что можно установить.
Как вы уже узнали, люминесцентные лампы имеют фиксированную мощность, указывающую на их размер — или размер указывает на мощность? ,) Просматривая несколько веб-сайтов производителя, вы заметите, что существует только четыре размера для T5 HO — 24 Вт с 549 мм, 39 Вт с 849 мм, 54 Вт с 1149 мм и 80 Вт с 1449 мм. Вам нужно будет добавить примерно 10-15 мм с каждой стороны трубки для розеток.
Вам следует максимально увеличить доступное пространство и выбрать такую ​​длину, которая соответствует вашему пространству с самой длинной стороны.У меня есть гроубокс размером 70 см x 70 см, поэтому я вынужден использовать 24 Вт. Но, как вы убедитесь, при использовании Т5 и отражателей этого более чем достаточно для выращивания чили.
Теперь о расстоянии между трубками. Размещение трубок слишком близко друг к другу — потеря большого потенциала. Зачем? Сначала их излучение перекрывается и дает участки с недостаточным освещением и участки с избытком. Во-вторых, это затрудняет или даже делает невозможным установку отражателей, которые должны устанавливаться отдельно для каждой трубки.Трубки не отражают свет, поэтому свет от двух слишком близко расположенных трубок будет теряться в пространстве между трубками.

Обратите внимание на равномерное расстояние между трубками. Я выбрал расстояние между лампами около 12 см, оставив 6 ламп по 24 Вт.
Каждая трубка излучает около 1900 лм, что на 100% может быть использовано для растений благодаря отражателям. Это дает мне 11,400 лм для съемки на площади 0,49 м². Он преобразован в Lux 23265Lx. Конечно, это совсем недалеко от трубок — интенсивность света быстро уменьшается по мере удаления от трубок.Но опять же, Т5 не нагревается, и трубки можно повесить на несколько сантиметров выше самых высоких побегов. Я рекомендую вам, если вы нашли установку фитинга, тогда нарисуйте план, чтобы у вас была надежная ссылка на будущее … это сэкономит вам много дополнительных поездок в строительный магазин. Примерный план может выглядеть следующим образом:

Доморощенная система освещения — Компоненты

На следующем рисунке я разместил вместе компоненты, необходимые для создания системы освещения из шести трубок с каждой трубкой типа 24W HO — единственное, чего не хватает, — это плата, на которой все крепится, и два рулона сигнальной проволоки.

Компоненты 6-трубной системы HO 24 Вт

Полный список включает:

  1. 3x EB для 24 Вт T5
  2. 12 розеток T5 (G5)
  3. Крючки для подвешивания установки к потолку
  4. Кусачки для толстых проводов
  5. Провод звонка, по 10 м, желтый и красный
  6. Соединители для влажных помещений
  7. Тяжелый кабель, 3-жильный
  8. Деревянная доска для крепления всего на
  9. Отражатели (не показаны)
  10. и винты, достаточно маленькие, чтобы пробивать отверстия 1 и 2, а также достаточно длинные, чтобы поддерживать на плате

Инструменты, необходимые для сборки всего:

  1. Отвертки
  2. Сверло — сверло должно быть достаточно маленьким, чтобы шурупы не теряли опоры в древесине
  3. Молот
  4. Термоклей и «пистолет»
  5. Линейка складная или выдвижная
  6. Маркер
  7. Тестер валюты (в виде отвертки с лампочкой в ​​ручке, светящейся при касании при наличии электричества)

Для деревянной доски настоятельно рекомендуется, чтобы доска не была слишком тонкой и качественной.Особенно отслаивающиеся доски, такие как те, что можно найти в товарах из ИКЕА, совершенно непригодны, поскольку они больше одного раза не поддерживают винты. Например, однажды просверленное отверстие нехорошо, чтобы снова вытащить его для внесения изменений, поскольку отверстие будет быстро расширяться. 1,5 — 2 см идеально, а
Доска будет не слишком тяжелой, даже если она хорошего качества.
Не забывайте брать винты не слишком долго, иначе вы можете в конечном итоге затянуть тот «последний» винт с одной стороны, который затем, по невезению, проткнет трубку или, что еще хуже, EB.
Так что рядом с этим также важно спланировать, где разместить компоненты перед этим.

В целом я вложил от 160 до 180 евро во всю установку, но когда я проверяю цены на простые установки с двумя лампами в некоторых магазинах, я знаю, что это все равно непревзойденно, если основная проблема не в внешности. Если посмотреть в аквариумных магазинах, то комплекты только для двухтрубных систем, включая балласт и розетки, обычно начинаются где-то от 80 €, в полностью собранном виде легко вложить вдвое больше.Также я знаю, что при некоторой осторожности система будет держать меня счастливым, по крайней мере, в следующие два сезона, без каких-либо дополнительных покупок. Наконец, я ожидаю, что система окупит часть первоначальных затрат за счет экономии энергии, если я буду использовать обычный T8 или, что еще хуже, по энергии лампу на парах металла.

Самодельная система освещения — Genesis

Я начал с размышлений о периоде выращивания и меняющихся потребностях в освещении.
Я полагал, что на стадии проращивания не потребуется много света, и поэтому включения одного ЭБ с двумя трубками будет достаточно в течение первых нескольких недель, чтобы растения оставались густыми и короткими.Я хочу, чтобы растения на этом этапе были прямо в центре моего гроубокса, так далеко от черных фольгированных стен того, что в конечном итоге станет моей зоной затопления. Так что сначала это должны были быть две самые внутренние лампы.
Затем план состоит в том, чтобы начать прореживание и разместить выживших по отдельным кубикам, заполняющим территорию. Поэтому, чтобы выровнять свет в коробке, я бы включил дополнительно внешние огни и так далее. Все это означало, что мне придется соединять каждую пару трубок через проводку для двух других пар.Это должно быть

Powerline. для линейных люминесцентных и 4-контактных ламп CFL ОСОБЕННОСТИ ДИЗАЙНА: ПРИМЕНЕНИЕ:

Импульсный силовой модуль

369357e 1 06.22.16 Описание Обеспечивает возможность зоны на блоке управления GRAFIK Eye (или другом продукте) переключать полностью загруженную цепь освещения. Может использоваться для включения ламп накаливания, электронных

Дополнительная информация

Как использовать блок питания Lutron

Модуль диммирования Модуль питания диммирования для 3-проводных диммирующих балластов Lutron 16A Модуль-1 09.27.07 Индикатор мощности (PW) Индикатор мощности (PW) Индикатор питания (PW) Индикатор состояния () Индикатор

Дополнительная информация

Модуль питания с фазовой адаптацией

369356c 1 06.22.16 Описание Обеспечивает возможность зоны на блоке управления GRAFIK Eye (или другом продукте) затемнять полностью нагруженную цепь освещения. Может использоваться для управления лампами накаливания, электронная

Дополнительная информация

ОСВЕЩЕНИЕ И ОСВЕЩЕНИЕ

ОСВЕЩЕНИЕ и СИСТЕМЫ ОСВЕЩЕНИЯ Введение Освещение — важная область возможностей для экономии энергии, поскольку на него приходится значительная часть электроэнергии в жилых и коммерческих зданиях.Освещение

Дополнительная информация

Ретранслятор дистанционного управления

Ретранслятор дистанционного управления Модель: 40430 Руководство по эксплуатации, версия 1.0 Руководство по эксплуатации Ретранслятор дистанционного управления Модель: 40430 Благодарим вас за покупку ретранслятора дистанционного управления. Рекомендуем прочитать данное руководство

Дополнительная информация

ПОЛЕЗНОЕ РУКОВОДСТВО ПО УМЕНЬШЕНИЮ СВЕТОДИОДОВ …

ПОЛЕЗНОЕ УПРАВЛЕНИЕ… Введение В этом документе описаны пять типов интерфейсов управления затемнением: 2-проводная прямая фаза, 2-проводная обратная фаза, 3-проводная (Lutron), 4-проводная (0 10 В) и

Дополнительная информация

Электрические характеристики

Электрические характеристики 913701213402 Макс. Выходная мощность (Вт) Выходное напряжение (В) Выходной ток (A) Tcase Макс. Макс. Входной ток при 120 В (A) Макс. Входная мощность (Вт) Пусковой ток (A pk — 50% мкс) Макс.THD

Дополнительная информация

Август 2001 PMP Low Power SLVU051

Руководство пользователя Август 2001 PMP Low Power SLVU051 ВАЖНОЕ ПРИМЕЧАНИЕ Texas Instruments и ее дочерние компании (TI) оставляют за собой право вносить изменения в свои продукты или прекращать выпуск любого продукта или услуги

Дополнительная информация

Совместимость диммера и лампы

Руководство по покупке диммеров За счет уменьшения количества энергии, потребляемой осветительными приборами, которыми они управляют, диммеры являются простым и эффективным способом экономии энергии и продления срока службы лампы.Еще они предлагают

Дополнительная информация

Я СТАР КОМПЬЮТЕР КО., ООО

I STAR COMPUTER CO., LTD Мини-резервный источник питания 300 Вт + 300 Вт для IPC-компьютера № модели TC-300R8 Содержание 1. Введение … 1 2. Технические характеристики 2.1 Входное напряжение … 1 2.2 Выход постоянного тока … 1 2.3 ПС-ОН

Дополнительная информация

Руководство по эксплуатации. Транс-Фло

Руководство по эксплуатации Trans-Flo Система TRANS-FLO SYSTEM представляет собой балласт со стандартным выходом, который можно регулировать в большинстве распространенных театральных систем регулирования яркости SCR.Модульная конструкция набора обтекаемых линий TRANS-FLO SYSTEM

Дополнительная информация

Цифровая ПРА для люминесцентных ламп

Каталог 2000/2001 Цифровые ПРА для люминесцентных ламп Обширная литература: ПРА магнитные для люминесцентных ламп ПРА для разрядных ламп высокого давления Трансформаторы

Дополнительная информация

DVI DA2 и DVI DA 4 Руководство пользователя

Руководство пользователя DVI DA2 и DVI DA 4 В этом руководстве описывается установка и работа усилителей-распределителей DVI DA2 и DVI DA4 от Extron.Если не указано иное, усилитель-распределитель или блок

Дополнительная информация

Шасси тройного расширения

Шасси тройного расширения AP9604 Руководство по установке Содержание Введение ……………………….. 1 Установка ……….. ………………. 2 Требования к питанию …………………. 5 Операции …. ……………………..

Дополнительная информация

Advantium 2 Plus Сигнализация

ADI 9510-B Advantium 2 Plus Alarm ИНСТРУКЦИИ ПО УСТАНОВКЕ И ЭКСПЛУАТАЦИИ Внимательно прочтите эти инструкции перед эксплуатацией Внимательно прочтите эти Controls Corporation of America 1501 Harpers Road Virginia

Дополнительная информация

Характеристики продукта

Washer Allegro AC XB — компактный светильник высокой яркости с питанием от сети переменного тока.Эта серия регулируется по фазе и доступна с цветовыми температурами 3000K / 4000K и оптикой. Простота

Дополнительная информация

СИСТЕМА ВЫБОРА ДИНАМИКОВ

M O D E L SPS-4 SPS-4 СИСТЕМА ВЫБОРА ДИНАМИКОВ NILES РУКОВОДСТВО ПО УСТАНОВКЕ И ЭКСПЛУАТАЦИИ Система выбора акустической системы SPS-4 СОДЕРЖАНИЕ Введение 1 Характеристики и преимущества 2 Рекомендации по установке 4

Дополнительная информация

Светодиод-INTA-0024V-41-F-O

Электрические характеристики LED-INTA-0024V-41-F-O Выходная мощность (Вт) Выходное напряжение (В) Выходной ток (A) Tcase Макс. Входной ток (A) Макс.Входная мощность (Вт) Пусковой ток (пик / мкс) Макс. THD (%) Мин. Мощность

Дополнительная информация

Комплект для монитора TLM051

1 (5) 1 ОБЩЕЕ ОПИСАНИЕ Это рабочий монитор с громкоговорителем или без него. Моно аудиоусилитель мощностью 1 Вт отправлял свой выходной сигнал на стереофоническую оболочку PCB ø 3,5 мм и разъемы на одной плате. Здесь

Дополнительная информация

Модуль управления ADACSNET USB

Руководство по установке USB-модуля управления ADACSNET Оконечный переключатель 2-контактные функции подключения SensorNet и подключение Модуль управления USB содержит следующее: — Порт USB: подключается к главному компьютеру.

Дополнительная информация

Комплект 27. УСИЛИТЕЛЬ МОЩНОСТИ 1Вт TDA7052

Комплект 27. УСИЛИТЕЛЬ МОЩНОСТИ TDA7052 мощностью 1 Вт Это модуль моноусилителя мощностью 1 Вт, использующий TDA7052 от Philips. (Обратите внимание, без суффикса.) Он предназначен для использования в качестве строительного блока в других проектах, где

Дополнительная информация

MEDMASTER ВНЕШНИЙ БЛОК ПИТАНИЯ

ИНФОРМАЦИЯ О ПРОЕКТЕ Название работы ИСТОЧНИК ВНЕШНЕГО ПИТАНИЯ MEDMASTER СЕРИЯ MRIPS-312 ХАРАКТЕРИСТИКИ ПРОДУКТА: Рекомендуется для MRI CleanScene, Downlight, Auracyl Sconce, Stratalume Undercabinet и Envela Remote с установленным

Дополнительная информация

Драйвер с регулируемой яркостью 12 В EL-TMDRVR

Сайт ООО «Элементаль LED»: элементаллед.com 11 9 5 P a r k A v e., S u i t e 2 11 Emeryville, CA 94608, бесплатный звонок 877.564.5051 факс 510.740.4457 Драйвер с регулируемой яркостью 12 В EL-TMDRVR ETL Listed # 4001928 CSA Listed

Дополнительная информация

RF Maestro Local Controls

Локальные элементы управления RF Maestro Локальные элементы управления беспроводной серии RF Link-8.1 Локальные элементы управления в дизайнерском стиле Локальные элементы управления RF Maestro работают так же, как стандартные диммеры и переключатели, но могут управляться

Дополнительная информация

Техническое руководство по применению

Руководство по техническому применению Philips MASTER LEDspot D PAR20 Светодиод с регулируемой яркостью, заменяющий галогенное (50 Вт) световое пятно, обеспечивающее интенсивный луч белого света.Конструкция MASTER LEDspot PAR20 объединяет

Дополнительная информация

Новые роликовые датчики XUY

Вы хотите упростить интеграцию датчиков в свои конвейерные системы? Новые роликовые датчики XUY для пакетов, ящиков, писем на роликовых конвейерах. Telemecanique Sensor s OsiSense TM XUY фотоэлектрические датчики

Дополнительная информация

Люминесцентные лампы на заказ | Источники света

Размер
Ниже приводится список общепринятых диапазонов диаметров трубок, номеров трубок и диапазонов линейной длины для различных категорий ламп.

Тип лампы Диаметр
(Мин. — Макс.)
Трубка
Номер
Длина
(Мин. — Макс.)
Формы
Миниатюрный 2,0 мм -10 мм 1,5 ″ (38 мм) — 21,5 ″ (550 мм) Все
Миниатюра 6,0 мм — 20 мм 1.5 ″ (38 мм) — 72 ″ (1830 мм) Все
Авионика 6,0 мм — 20 мм 1,5 ″ (38 мм) — 72 ″ (1830 мм) Все
Диафрагма и отражатель 3,0 мм — 38 мм Т2 -Т12 1,5 ″ (38 мм) — 96 ″ (3048 мм) Прямой
Компактный
Флуоресцентный
Т4 -Т5 Вт: 5, 7, 9, 13, 18,
24 и 36
Все
Общее
Освещение
2.0 мм — 38 мм Т2 -Т8 1,5 ″ (38 мм) — 96 ″ (3048 мм) Все
Специальность 2,0 мм — 254 мм Т2 -Т8 1,5 ″ (38 мм) — 96 ″ (3048 мм) Все


Электрооборудование

Мы предлагаем люминесцентные лампы с холодным катодом (CCFL) и горячим катодом (HCFL) в тонком исполнении, высокой мощности и очень высокой мощности.


Цвета

Стандартные люминофоры могут быть смешаны для индивидуальной настройки, в соответствии с вашими требованиями к цвету в широком диапазоне видимого спектра.Стандартные цвета включают холодный белый, теплый белый, дневной, синий, зеленый, красный, ультрафиолетовый, инфракрасный и трехдиапазонный.

Наша запатентованная цветопередача (CRI) с большим количеством трифосфоров из редкоземельных элементов обеспечивает естественные и естественные цвета, которым нет равных у других производителей люминесцентных ламп.


Определение цвета люминесцентных ламп

Когда дело доходит до выбора наилучшего цвета для люминесцентных ламп, наиболее распространенным ответом является: «Неважно, если он белый.«Поскольку у нас есть более 100 различных« оттенков белого »или смесей люминофора на выбор, небольшое изменение может иметь большое значение для многих приложений. Лучше всего определить цвет по цветовым координатам. Ниже представлен C.I.E. 1976 года выпуска. U.C.S. Диаграмма цветности, чтобы помочь в выборе определенного цвета. Мы выберем наш ближайший из существующих люминофоров по выбранным вами цветовым координатам. Если, однако, один из наших широко используемых люминофоров не соответствует вашим потребностям, мы можем разработать новую смесь специально для вас.Для получения дополнительной информации о выборе цвета посетите нашу страницу часто задаваемых вопросов.



Формы

Мы предлагаем специальные люминесцентные лампы различных форм, в том числе «U», «L», круглые, штанги для полотенец, с одним углом изгиба от 5 ° до 175 ° и сложными диаметрами от 2,0, 2,6, 3,0, 3,8, 4,8, 6,5, от 7,0 до 38 мм.


Прямые, L- и U-образные лампы

Прямые лампы могут быть практически любой длины, но обычно ограничиваются максимальной длиной стандартных ламп.Лампы «L» и «U» имеют одинарный изгиб.

Несколько изгибов, сеточные лампы

Сеточные лампы имеют более одного изгиба в одной или нескольких плоскостях. Ножки электродов могут находиться в одной плоскости, в параллельной плоскости или под прямым углом к ​​плоскости сетки.

Круглые лампы

Круглые лампы могут быть круглыми или овальными практически любого размера.Ножки электрода могут быть параллельны плоскости окружности или находиться в плоскости под прямым углом к ​​плоскости окружности.

Лампы блокировки

Лампы блокировки предназначены для применений, требующих резервирования; используется более одной лампы, так что дисплей продолжает гореть, если одна лампа выходит из строя. Лампы предназначены для блокировки (т.е. перекрываются в одной плоскости для обеспечения оптимальной однородности света).


Индивидуальные конструкции люминесцентных ламп

Независимо от того, какой размер или форма миниатюрной, субминиатюрной люминесцентной лампы или лампы с диафрагмой и отражателем вам нужны — мы можем спроектировать, спроектировать и изготовить лампы, которые будут соответствовать вашим уникальным требованиям. .За более чем 27-летний опыт производства группа компаний LightSources и LCD Lighting разработали индивидуальные решения практически для любого рыночного применения, о котором вы только можете подумать.

Загрузите лист технических требований к конструкции сегодня или свяжитесь с нами для получения дополнительной информации.

инструкций по замене предохранителя в люминесцентном светильнике | Руководства по дому

Люминесцентные лампы обычно используются в фотографических осветительных приборах и кухонных осветительных приборах. Предохранитель — это первое место, где нужно проверить, когда люминесцентный светильник не загорается после включения переключателя.Когда предохранитель перегорел, электричество не может течь от источника питания к лампам внутри колбы. Предохранитель — это самый дешевый и простой в ремонте ремонт. Если предохранители продолжают перегорать, это означает, что транзистор или балласт неисправен.

Отключите электрический ток на свет в коробке выключателя. Проверьте выключатель света, чтобы убедиться, что на него не подается питание, повернув его в положение «Вкл.». Отключите светильник от стены, если он не подключен к электрической системе вашего дома.

Осторожно возьмитесь за концы лампы и поверните ее вверх и вперед, чтобы вынуть ее из приспособления. В качестве альтернативы, на некоторых осветительных приборах лампа сначала слегка поворачивается наружу, а затем отрывается от светильника.

Отвинтите колпачок на конце лампы и выньте патрон предохранителя. Вытащите старый предохранитель и поищите признаки повреждения. Многие новые предохранители имеют наклейку, которая смещается или меняет цвет, когда предохранитель неисправен.

Сравните его с новым предохранителем, чтобы убедиться, что они того же размера, номинального напряжения и мощности.Сравните мощность нового предохранителя с максимальной мощностью, указанной на паспортной табличке прибора. Перегрев проводов и возгорание могут возникнуть из-за предохранителей со слишком большим номинальным током. Выбросьте старый предохранитель и вставьте новый.

Установите держатель обратно в конец приспособления и закройте крышкой. Плотно закрутите крышку.

Вытрите лампу полностью сухой тряпкой, чтобы удалить скопившуюся пыль. Очистите внутреннюю часть осветительного прибора соответствующим очистителем для материала, из которого он отлит.Вытрите прибор насухо.

При необходимости выпрямите штифты на конце светового стержня с помощью плоскогубцев. Осторожно протрите штифты и контакты гнезда мелкозернистой наждачной бумагой, чтобы удалить ржавчину или прилипший мусор, который препятствует подаче энергии к лампе. Протрите булавки сухой тряпкой, чтобы удалить пыль.

Вставьте лампу обратно в приспособление. Поверните, чтобы закрепить, или аккуратно нажмите на него, не нажимая на стекло. Осторожно потяните за концы лампы, чтобы убедиться, что она надежно закреплена.

Снова включите питание на выключателе и проверьте светильник. Если свет по-прежнему не включается, подумайте о замене балласта или стартера.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *