Схема стабилизатора тока на lm317: Стабилизатор тока на LM317 для светодиодов
Стабилизатор тока на lm317, lm338, lm350 для светодиодов
В последнее время интерес к схемам стабилизаторов тока значительно вырос. И в первую очередь это связано с выходом на лидирующие позиции источников искусственного освещения на основе светодиодов, для которых жизненно важным моментом является именно стабильное питание по току. Наиболее простой, дешевый, но в то же время мощный и надежный токовый стабилизатор можно построить на базе одной из интегральных микросхем (ИМ): lm317, lm338 или lm350.
Datasheet по lm317, lm350, lm338
Прежде чем перейти непосредственно к схемам, рассмотрим особенности и технические характеристики вышеприведенных линейных интегральных стабилизаторов (ЛИС).
Все три ИМ имеют схожую архитектуру и разработаны с целью построения на их основе не сложных схем стабилизаторов тока или напряжения, в том числе применяемых и со светодиодами. Различия между микросхемами кроются в технических параметрах, которые представлены в сравнительной таблице ниже.
LM317 | LM350 | LM338 | |
---|---|---|---|
Диапазон значений регулируемого выходного напряжения | 1,2…37В | 1,2…33В | 1,2…33В |
Максимальный показатель токовой нагрузки | 1,5А | 3А | 5А |
Максимальное допустимое входное напряжение | 40В | 35В | 35В |
Показатель возможной погрешности стабилизации | ~0,1% | ~0,1% | ~0,1% |
Максимальная рассеиваемая мощность* | 15-20 Вт | 20-50 Вт | 25-50 Вт |
Диапазон рабочих температур | 0° — 125°С | 0° — 125°С | 0° — 125°С |
Datasheet | LM317.pdf | LM350.pdf | LM338.pdf |
* – зависит от производителя ИМ.
Во всех трех микросхемах присутствует встроенная защита от перегрева, перегрузки и возможного короткого замыкания.
Lm317, самая распространенная ИМ, имеет полный отечественный аналог — КР142ЕН12А.
Выпускаются интегральные стабилизаторы (ИС) в монолитном корпусе нескольких вариантов, самым распространенным является TO-220.
Микросхема имеет три вывода:
- ADJUST. Вывод для задания (регулировки) выходного напряжения. В режиме стабилизации тока соединяется с плюсом выходного контакта.
- OUTPUT. Вывод с низким внутренним сопротивлением для формирования выходного напряжения.
- INPUT. Вывод для подачи напряжения питания.
Схемы и расчеты
Наибольшее применение ИС нашли в источниках питания светодиодов. Рассмотрим простейшую схему стабилизатора тока (драйвера), состоящую всего из двух компонентов: микросхемы и резистора.
На вход ИМ подается напряжение источника питания, управляющий контакт соединяется с выходным через резистор (R), а выходной контакт микросхемы подключается к аноду светодиода.
Если рассматривать самую популярную ИМ, Lm317t, то сопротивление резистора рассчитывают по формуле: R=1,25/I0 (1), где I0 – выходной ток стабилизатора, значение которого регламентируется паспортными данными на LM317 и должно быть в диапазоне 0,01-1,5 А. Отсюда следует, что сопротивление резистора может быть в диапазоне 0,8-120 Ом. Мощность, рассеиваемая на резисторе, рассчитывается по формуле: PR=I02×R (2). Включение и расчеты ИМ lm350, lm338 полностью аналогичны.
Полученные расчетные данные для резистора округляют в большую сторону, согласно номинальному ряду.
Постоянные резисторы производятся с небольшим разбросом значения сопротивления, поэтому получить нужное значение выходного тока не всегда возможно. Для этой цели в схему устанавливается дополнительный подстроечный резистор соответствующей мощности.
Это немного увеличивает цену сборки стабилизатора, но гарантирует получение необходимого тока для питания светодиода. При стабилизации выходного тока более 20% от максимального значения, на микросхеме выделяется много тепла, поэтому ее необходимо снабдить радиатором.
Онлайн калькулятор lm317, lm350 и lm338
Допустим, необходимо подключить мощный светодиод с током потребления 700 миллиампер. Согласно формуле (1) R=1,25/0,7= 1.786 Ом (ближайшее значение из ряда E2—1,8 Ом). Рассеиваемая мощность по формуле (2) будет составлять: 0.7×0.7×1.8 = 0,882 Ватт (ближайшее стандартное значение 1 Ватт).
На практике, для предотвращения нагрева, мощность рассеивания резистора лучше увеличить примерно на 30%, а в корпусе с низкой конвекцией на 50%.
Кроме множества плюсов, стабилизаторы для светодиодов на основе lm317, lm350 и lm338 имеют несколько значительных недостатков – это низкий КПД и необходимость отвода тепла от ИМ при стабилизации тока более 20% от максимального допустимого значения. Избежать этого недостатка поможет применение импульсного стабилизатора, например, на основе ИМ PT4115.
Стабилизатор тока на lm317 | AUDIO-CXEM.RU
Ток на выходе блока питания может увеличиться вследствие уменьшения сопротивления нагрузки (простой пример, короткое замыкание), также изменение тока нагрузки происходит из-за изменения напряжения питания. Стабилизатор тока на lm317 обеспечивает стабильность тока (ограничение тока) на выходе в случаях описанных выше.
Данный стабилизатор может быть применён в схемах питания светодиодов, зарядных устройствах (ЗУ), лабораторных источников питания и так далее.
Если, к примеру, рассматривать светодиоды, то необходимо учитывать тот факт, что для них нужно ограничивать ток, а не напряжение. На кристалл можно подать 12В и он не сгорит, при условии, что ток будет ограничен до номинального (в зависимости от маркировки и типа светодиода).
Основные технические характеристики LM317
Максимальный выходной ток 1.5А
Максимальное входное напряжение 40В
Выходное напряжение от 1.2В до 37В
Более подробные характеристики и графики можно посмотреть в даташите на стабилизатор.
Схема стабилизатора тока на lm317
Плюс данного стабилизатора в том, что он является линейным и не вносит высокочастотные помехи, например как некоторые импульсные стабилизаторы. Минусом является низкий КПД (в счёт своей линейности), и поэтому происходит значительный нагрев кристалла микросхемы. Как вы уже поняли, микросхему необходимо обеспечить хорошим радиатором.
За величину тока стабилизации (ограничения) отвечает резистор R1. С помощью данного резистора можно выставить ток стабилизации, например 100мА, тогда даже при коротком замыкании на выходе схемы будет протекать ток, равный 100мА.
Сопротивление резистора R1 рассчитывается по формуле:
R1=1,2/Iнагрузки
Изначально необходимо определиться с величиной тока стабилизации. Например, мне необходимо ограничить ток потребления светодиодов равный 100мА. Тогда,
R1=1,2/0,1A=12 Ом.
То есть, для ограничения тока 0,1A необходимо установить резистор R1=12 Ом. Проверим на железе… Для проверки собрал схему на макетной плате. Резистор на 12 Ом искать было лень, зацепил в параллель два по 22 Ома (были под рукой).
Выставил напряжение холостого хода, равное 12В (можно выставить любое). После чего, я замкнул выход на землю, и стабилизатор LM317 ограничил ток 0,1А. Расчеты подтвердились.
При увеличении или уменьшении напряжения ток остается стабильным.
Резистор можно припаять на выводы микросхемы, но не стоит забывать, что через резистор протекает весь ток нагрузки, поэтому при больших токах нужен резистор повышенной мощности.
Если использовать данный стабилизатор тока на LM317 в лабораторном блоке питания, то необходимо устанавливать переменный резистор проволочного типа, простой переменный резистор не выдержит токи нагрузки протекающие через него.
Для ленивых представляю таблицу значений резистора R1 в зависимости от нужного тока стабилизации.
Ток | R1 (стандарт) |
0.025 | 51 Ом |
0.05 | 24 Ом |
0.075 | 16 Ом |
0.1 | 13 Ом |
0.15 | 8.2 Ом |
0.2 | 6.2 Ом |
0.25 | 5.1 Ом |
0.3 | 4.3 Ом |
0.35 | 3.6 Ом |
0.4 | 3 Ома |
0.45 | 2.7 Ома |
0.5 | 2.4 Ома |
0.55 | 2.2 Ома |
0.6 | 2 Ома |
0.65 | 2 Ома |
0.7 | 1.8 Ома |
0.75 | 1.6 Ома |
0.8 | 1.6 Ома |
0.85 | 1.5 Ома |
0.9 | 1.3 Ома |
0.95 | 1.3 Ома |
1 | 1.3 Ома |
Таким образом, применив галетный переключатель и несколько резисторов, можно собрать схему регулируемого стабилизатора тока с фиксированными значениями.
Даташит на LM317 СКАЧАТЬ
lm317 стабилизатор тока — стабилизация и защита схемы
Стабилизатор тока для светодиодов применяется во многих светильниках. Как и всем диодам, LED присуще нелинейная вольт-амперная зависимость. Что это значит? При повышении напряжения, сила тока медленно начинает набирать мощь. И только при достижении порогового значения, яркость светодиода становится насыщенной. Однако если ток не перестанет расти, то лампа может сгореть.
Правильная работа LED может быть обеспечена только благодаря стабилизатору. Эта защита необходима еще и по причине разброса пороговых значений напряжения светодиода. При подключении по параллельной схеме лампочки могут просто на просто сгореть, так как им приходится пропускать недопустимую для них величину тока.
Виды стабилизирующих устройств
По способу ограничения силы тока выделяются устройства линейного и импульсного типа.
Так как напряжение на светодиоде – неизменная величина, то стабилизаторы тока часто считают стабилизаторами мощности LED. Фактически последняя прямо пропорциональна изменению напряжения, что характерно для линейной зависимости.
Линейный стабилизатор нагревается тем больше, чем больше прилагается к нему напряжения. Это его главный недочёт. Преимущества данной конструкции обусловлены:
- отсутствием электромагнитных помех;
- простотой;
- низкой стоимостью.
Более экономичными устройствами являются стабилизаторы на основе импульсного преобразователя. В этом случае мощность прокачивается порционно – по мере необходимости для потребителя.
Схемы линейных устройств
Самая простейшая схема стабилизатора – это схема, построенная на основе LM317 для светодиода. Последний являются аналогом стабилитрона с определенным рабочим током, который он может пропускать. Учитывая малую силу тока можно собрать простой аппарат самостоятельно. Наиболее простой драйвер светодиодных ламп и лент собирают именно таким способом.
Микросхема LM317 уже не одно десятилетие является хитом среди начинающих радиолюбителей благодаря своей простоте и надежности. На её основе можно собрать регулируемый блок питания, светодиодный драйвер и другие БП. Для этого потребуется несколько внешних радиодеталей, модуль работает сразу, настройки не требуется.
Интегральный стабилизатор LM317 как никакой другой подходит для создания несложных регулируемых блоков питания, для электронных устройств с разными характеристиками, как с регулируемым выходным напряжением, так и с заданными параметрами нагрузки.
Основное назначение это стабилизация заданных параметров. Регулировка происходит линейным способом, в отличие от импульсных преобразователей.
Выпускаются LM317 в монолитных корпусах, исполненных в нескольких вариациях. Самая распространённая модель TO-220 с маркировкой LM317Т.
Каждый вывод микросхемы имеет свое предназначение:
- ADJUST. Ввод для регулирования выходного напряжения.
- OUTPUT. Ввод для формирования выходного напряжения.
- INPUT. Ввод для подачи питающего напряжения.
Технические показатели стабилизатора:
- Напряжение на выходе в пределах 1,2–37 В.
- Защита от перегрузки и КЗ.
- Погрешность выходного напряжения 0,1%.
- Схема включения с регулируемым выходным напряжением.
Мощность рассеяния и входное напряжение устройства
Максимальная «планка» входного напряжения должна быть не более заданной, а минимальная – выше желаемой выходной на 2 В.
Микросхема рассчитана на стабильную работу при максимальном токе до 1,5 А. Это значение будет ниже, если не применять качественный теплоотвод. Максимально допустимое рассеивание мощности без последнего равно примерно 1,5 Вт при температуре окружающей среды не более 300 С.
При установке микросхемы требуется изоляция корпуса от радиатора, к примеру, с помощью слюдяной прокладки. Также эффективный отвод тепла достигается путём применения теплопроводной пасты.
Краткое описание
Коротко описать достоинства радиоэлектронного модуля LM317, применяемого в стабилизаторах тока, можно так:
- яркость светового потока обеспечивается диапазоном выходного напряжения 1, – 37 В;
- выходные показатели модуля не зависят от частоты вращения вала электродвигателя;
- поддерживание выходного тока до 1,5 А позволяет подключать несколько электроприёмников;
- погрешность колебаний выходных параметров равна 0,1% от номинального значения, что является гарантией высокой стабильности;
- имеется функция защиты по ограничению тока и каскадного отключения при перегреве;
- корпус микросхемы заменяет землю, поэтому при внешнем креплении уменьшается количество монтажных кабелей.
Схемы включения
Безусловно, наипростейшим способом токового ограничения для светодиодных ламп станет последовательное включение добавочного резистора. Но данное средство подходит лишь только для маломощных LED.
Простейший стабилизированный блок питания
Чтобы сделать стабилизатор тока потребуется:
- микросхемка LM317;
- резистор;
- монтажные средства.
Собираем модель по нижеприведенной схеме:
Модуль можно применять в схемах разных зарядных устройств либо регулируемых ИБ.
Блок питания на интегральном стабилизаторе
Этот вариант более практичный. LM317 ограничивает потребляемый ток, который задается резистором R.
Помните, что максимально допустимое значение тока, которое нужно для управления LM317, составляет 1,5 А с хорошим радиатором.
Схема стабилизатора с регулируемым блоком питания
Ниже изображена схема с регулируемым выходным напряжением 1.2–30 В/1,5 А.
Переменный ток преобразуется в постоянный с помощью моста-выпрямителя (BR1). Конденсатор С1 фильтрует пульсирующий ток, С3 улучшает переходную характеристику. Это означает, что стабилизатор напряжения может отлично работать при постоянном токе на низких частотах. Выходное напряжение регулируется ползунком Р1 от 1.2 вольта до 30 В. Выходной ток составляет около 1,5 А.
Подбор резисторов по номиналу для стабилизатора должен осуществляться по точному расчету с допустимым отклонением (небольшим). Однако разрешается произвольное размещение резисторов на монтажном плате, но желательно для лучшей стабильности размещать их подальше от радиатора LM317.
Область применения
Микросхема LM317 является отличным вариантом для использования в режиме стабилизации основных технических показателей. Она отличается простотой в исполнении, недорогой стоимостью и отличными эксплуатационными характеристиками. Единственный недостаток – пороговое значение напряжения составляет лишь 3 В. Корпус в стиле ТО220 – это одна из самых доступных моделей, которая позволяет рассеивать тепло довольно хорошо.
Микросхема применима в устройствах:
Стабилизирующая схема, построенная на основе LM317 простая, дешёвая, и в то же время надежная.
LM317 регулируемый стабилизатор напряжения и тока. Характеристики, онлайн калькулятор, datasheet
Интегральный, регулируемый линейный стабилизатор напряжения LM317 как никогда подходит для проектирования несложных регулируемых источников и блоков питания, для электронной аппаратуры, с различными выходными характеристиками, как с регулируемым выходным напряжением, так и с заданным напряжением и током нагрузки.
Для облегчения расчета необходимых выходных параметров существует специализированный LM317 калькулятор, скачать который можно по ссылке в конце статьи вместе с datasheet LM317.
Электрический паяльник с регулировкой температуры
Мощность: 60/80 Вт, температура: 200’C-450’C, высококачествен…
Технические характеристики стабилизатора LM317:
- Обеспечения выходного напряжения от 1,2 до 37 В.
- Ток нагрузки до 1,5 A.
- Наличие защиты от возможного короткого замыкания.
- Надежная защита микросхемы от перегрева.
- Погрешность выходного напряжения 0,1%.
Эта не дорогая интегральная микросхема выпускается в корпусе TO-220, ISOWATT220, TO-3, а так же D2PAK.
Назначение выводов микросхемы:
[info]
Микросхема LM317
Регулируемый стабилизатор напряжения на LM317
Набор для сборки регулируемого стабилизатора напряжения на LM317
[/info]
Онлайн калькулятор LM317
Ниже представлен онлайн калькулятор для расчета стабилизатора напряжения на основе LM317. В первом случае, на основе необходимого выходного напряжения и сопротивления резистора R1, производится расчет резистора R2. Во втором случае, зная сопротивления обоих резисторов (R1 и R2), можно вычислить напряжение на выходе стабилизатора.
Калькулятор для расчета стабилизатора тока на LM317 смотрите здесь.
Примеры применения стабилизатора LM317 (схемы включения)
Стабилизатор тока
Данный стабилизатор тока можно применить в схемах различных зарядных устройств для аккумуляторных батарей или регулируемых источников питания. Стандартная схема зарядного устройства приведена ниже.
В данной схеме включения применяется способ заряда постоянным током. Как видно из схемы, ток заряда зависит от сопротивления резистора R1. Величина данного сопротивления находится в пределах от 0,8 Ом до 120 Ом, что соответствует зарядному току от 10 мА до 1,56 A:
Источник питания на 5 Вольт с электронным включением
Ниже приведена схема блока питания на 15 вольт с плавным запуском. Необходимая плавность включения стабилизатора задается емкостью конденсатора С2:
Регулируемый стабилизатор напряжения на LM317
Схема включения с регулируемым выходным напряжением
lm317 калькулятор
Для упрощения расчета номинала резистора можно использовать несложный калькулятор, который поможет рассчитать необходимые номиналы не только для LM317, но и для L200, стабилитрона TL431, M5237, 78xx.
Скачать datasheet и калькулятор для LM317 (319,9 KiB, скачано: 48 740)
Аналог LM317
К аналогам стабилизатора LM317 можно отнести следующие стабилизаторы:
- GL317
- SG31
- SG317
- UC317T
- ECG1900
- LM31MDT
- SP900
- КР142ЕН12 (отечественный аналог)
- КР1157ЕН1 (отечественный аналог)
Простой стабилизатор тока на LM317. Простой драйвер.
Приветствуем Вас уважаемый посетитель данной Интернет странички. Хотим обратить Ваше внимание, что существует множество схем и вариантов изготовления светодиодного драйвера, посредством простого стабилизатора тока на LM317. Наиболее трудоёмкие и материально затратные, представляют собой дополнительные схематические решения, позволяющие при критических перепадах напряжения и силы тока, сохранить наиболее дорогостоящие электронные компоненты.
Схема и принцип работы стабилизатора до 1.5А
Чтобы изготовить стабилизатор тока на LM317 воспользуемся следующей схемой.
Минимальное сопротивление резистора между управляющим электродом и выходным соответствует значению в 1 Ом, а максимальное значение равно 120 Ом. Сопротивление резистора можно подобрать опытным путем, или рассчитать по формуле.
I стабилизации = 1,25/R
Мощности резистора при рассеивании выделенного тепла, должно хватать, не только на рассеивание, а также учитывать возможность его перегрева, поэтому используется значение мощности с хорошим запасом. Чтобы её вычислить, необходимо использовать следующую формулу:
P вт = I² * R.
Как видно из формулы, мощность равна, квадрату силы тока умноженному на сопротивление резистора. Для выпрямления, наиболее эффективным решением будет применение стандартного диодного моста. На выходе диодного моста, устанавливают конденсатор с большой ёмкостью. При регулировке силы тока на LM317 LM317 используется линейный принцип работы. В связи с этим возможен их сильный нагрев, вследствие их низкого коэффициента полезного действия. Поэтому система охлаждения должна быть продуманной и эффективной, то есть иметь радиатор, который сможет хорошо охлаждать электронные компоненты. Если во время отслеживания температуры нагрева, была зарегистрирована низкая температура, в этом случае можно использовать менее мощную систему охлаждения.
Мы не советуем заменять постоянный резистор на переменный, так как рассеиваемая мощность переменного резистора мала и он выйдет из строя.
Стабилизатор тока до 10А
Ток стабилизации можно повысить до 10 Ампер, если будут добавлены в схему транзистор с маркировкой KT825A и сопротивление со значением 12 Ом. Такое распределение электронных компонентов используется радиолюбителями, у которых нет в наличии LM338 или LM350. Схема при силе тока в 3A собирается на основе транзистора КТ818. Нагрузочные амперы в любой из схем, рассчитываются тождественно.
Советы
Если у радиолюбителя появилось огромное желание, сделать драйвер, но в наличии нет нужного блока питания, то можно воспользоваться альтернативными возможностями.
Можно использовать вариант последовательного или параллельного подключения резисторов.
Если светодиодам требуется сила тока равная одному амперу, то при расчёте получим сопротивление равное 1,25 Oм. Подобрать резистор с таким значением Вы не сможете, потому что их не производят, поэтому необходимо взять первый ближний, с чуть большим сопротивлением.
Предложить знакомому радиолюбителю поменять подходящий по параметрам блок питания, на нужную ему радиодеталь или электронную схему. На питание собранной схемы подключить батарейку Крону или аналогичную по параметрам на 9V. Если Кроны нет, последовательно соединить 6 батарей любого размера по 1,5 V и подключить их к схеме.
Настоятельно советуем Вам, не использовать LM317 на пределе допустимых норм. Производимые в Китае электронные элементы, имеют малый запас прочности. Безусловно, тут имеется защита от короткого замыкания или от перегрева, но вот успешно она срабатывает, не во всех критических режимах и ситуациях. При подобных ситуациях, могут сгореть кроме LM317, другие электронные компоненты, а это вовсе не желательно.
Главные параметры LM317: Входное напряжение до 40 В, нагрузка до 1,5А; максимальная температура рабочая +125°С, защита от короткого замыкания.
Регулируемый стабилизатор тока LM317
Регулируемый трехвыводной стабилизатор тока LM317 обеспечивает нагрузку в 100 мА. Диапазон выходного напряжения составляет от 1,2 до 37 В. Прибор очень удобен в применении и требует только пару наружных резисторов, обеспечивающих выходное напряжение. Плюс к этому, нестабильность по рабочим показателям имеет лучшие параметры, чем у аналогичных моделей с фиксированной подачей напряжения на выходе.
Описание
LM317 – стабилизатор тока и напряжения, который функционирует даже при отсоединенном управляющем выводе ADJ. При нормальной работе прибор не нуждается в подключении к дополнительным конденсаторам. Исключение составляет ситуация, когда устройство находится на значительном расстоянии от первичного фильтрующего питания. В этом случае потребуется монтаж входного шунтирующего конденсатора.
Особенности
Стоит отметить, что стабилизатор тока LM317 удобен для создания простых регулируемых импульсных приборов. Они могут применяться в качестве прецизионного стабилизатора, посредством подсоединения постоянного резистора между двумя выходами.
Создание вторичных питающих источников, работающих при недлительных коротких замыканиях, стало возможным благодаря оптимизации показателя напряжения на управляющем выводе системы. Программа удерживает его на входе в пределах 1,2 вольта, что для большинства нагрузок очень мало. Стабилизатор тока и напряжения LM317 изготавливается в стандартном транзисторном остове ТО-92, режим рабочих температур составляет от -25 до +125 градусов по Цельсию.
Характеристики
Рассматриваемый прибор отлично подходит для проектирования простых регулируемых блоков и источников питания. При этом параметры могут быть корректируемыми и заданными в плане нагрузки.
Регулируемый стабилизатор тока на LM317 обладает следующими техническими характеристиками:
- Диапазон выходного напряжения – от 1,2 до 37 вольт.
- Нагрузочный ток по максимуму – 1,5 А.
- Имеется защита от возможного короткого замыкания.
- Предусмотрены предохранители схемы от перегрева.
- Погрешность напряжения на выходе составляет не более 0,1%.
- Корпус интегральной микросхемы – типа ТО-220, ТО-3 или D2PAK.
Схема стабилизатора тока на LM317
Максимально часто рассматриваемое устройство используется в источниках питания светодиодов. Далее представлена простейшая схема, в которой задействован резистор и микросхема.
На входе поставляется напряжение источника питания, а главный контакт соединяется с выходным аналогом при помощи резистора. Далее происходит агрегация с анодом светодиода. В самой популярной схеме стабилизатора тока LM317, описание которого приведено выше, используется следующая формула: R = 1/25/I. Здесь I – это выходной ток устройства, его диапазон варьируется в пределах 0, 01-1.5 А. Сопротивление резистора допускается в размерах 0, 8-120 Ом. Рассеиваемая резистором мощность вычисляется по формуле: R = IxR (2).
Полученная информация округляется в большую сторону. Постоянные резисторы выпускаются с малым разбросом окончательного сопротивления. Это влияет на получение расчетных показателей. Чтобы урегулировать данную проблему, в схему подключают дополнительный стабилизирующий резистор необходимой мощности.
Плюсы и минусы
Как показывает практика, мощность резистора при эксплуатации лучше увеличить по площади рассеивания на 30 %, а в отсеке низкой конвекции – на 50 %. Кроме ряда преимуществ, стабилизатор тока светодиода LM317 имеет несколько минусов. Среди них:
- Небольшой коэффициент полезного действия.
- Необходимость отвода тепла от системы.
- Стабилизация тока свыше 20 % от предельного значения.
Избежать проблем в эксплуатации прибора поможет применение импульсных стабилизаторов.
Стоит отметить, что если нужно подключить мощный светодиодный элемент мощностью 700 миллиампер, потребуется рассчитать значения по формуле: R = 1, 25/0, 7 = 1.78 Ом. Рассеиваемая мощность соответственно составит 0, 88 Ватт.
Подключение
Расчет стабилизатора тока LM317 базируется на нескольких способах подключения. Ниже приведены основные схемы:
- Если использовать мощный транзистор типа Q1, можно без радиатора микросборки получить на выходе ток 100 мА. Этого вполне хватает для управления транзистором. В качестве подстраховки от излишнего заряда используются защитные диоды D1 и D2, а параллельный электролитический конденсатор выполняет функцию по снижению посторонних шумов. При использовании транзистора Q1, предельная выходная мощность прибора составит 125 Вт.
- В другой схеме обеспечивается ограничение подачи тока и стабильная работа светодиода. Специальный драйвер позволяет запитать элементы мощностью от 0, 2 ватт до 25 вольт.
- В очередной конструкции применяется трансформатор понижения напряжения из переменной сети от 220 Вт до 25 Вт. При помощи диодного мостика переменное напряжение трансформируется в постоянный показатель. При этом все перебои сглаживаются за счет конденсатора типа С1, что обеспечивает поддержание стабильной работы регулятора напряжения.
- Следующая схема подключения считается одной из самых простых. Напряжение поступает с вторичной обмотки трансформатора на 24 вольта, выпрямляется при проходе через фильтр, и на выдаче получается постоянный показатель 80 вольт. Это позволяет избежать превышения максимального порога подачи напряжения.
Стоит отметить, что простое зарядное устройство также можно собрать на базе микросхемы рассматриваемого прибора. Получится стандартный линейный стабилизатор с регулируемым показателем выходного напряжения. В аналогичной роли может функционировать микросборка устройства.
Аналоги
Мощный стабилизатор на LM317 имеет ряд аналогов на отечественном и зарубежном рынке. Самыми известными из них являются следующие марки:
- Отечественные модификации КР142 ЕН12 и КР115 ЕН1.
- Модель GL317.
- Вариации SG31 и SG317.
- UC317T.
- ECG1900.
- SP900.
- LM31MDT.
Отзывы
Как свидетельствуют отклики пользователей, рассматриваемый стабилизатор неплохо справляется со своими функциями. Особенно если это касается агрегации со светодиодными элементами, напряжением до 50 вольт. Упрощает обслуживание и эксплуатацию прибора возможность его регулировки и подключения в разных схемах. Нарекание на данное изделие имеется в том плане, что диапазон выдаваемых и подающих напряжений для него ограничен предельными нормами.
В завершение
Регулируемый стабилизатор интегрального типа LM317 оптимально подходит для проектирования простых источников питания, включая блоки и узлы для электронной аппаратуры, оборудованные различными выходными параметрами. Это могут быть устройства с заданным током и напряжением либо с регулируемыми указанными характеристиками. Для облегчения расчета, в инструкции предусмотрен специальный калькулятор стабилизатора, позволяющий подобрать нужную схему и определить возможность приспособления.
LM317T схема включения | Практическая электроника
В случае если в схеме нужен стабилизатор на какое-то не стандартное напряжение, то прекрасное решение использование популярного интегрального стабилизатора LM317T с характеристиками:
- способен работать в диапазоне выходных напряжений от 1,2 до 37 В;
- выходной ток может достигать 1,5 А;
- максимальная рассеиваемая мощность 20 Вт;
- встроенное ограничение тока, для защиты от короткого замыкания;
- встроенную защиту от перегрева.
У микросхемы LM317T схема включения в минимальном варианте предполагает наличие двух резисторов, значения сопротивлений которых определяют выходное напряжение, входного и выходного конденсатора.
У стабилизатора два важных параметра: опорное напряжение (Vref) и ток вытекающий из вывода подстройки (Iadj).
Величина опорного напряжения может меняться от экземпляра к экземпляру от 1,2 до 1,3 В, а в среднем составляет 1,25 В. Опорное напряжение это то напряжение которое микросхема стабилизатора стремиться поддерживать на резисторе R1. Таким образом если резистор R2 замкнуть, то на выходе схемы будет 1,25 В, а чем больше будет падение напряжения на R2 тем больше будет напряжение на выходе. Получается что 1,25 В на R1 складываться с падением на R2 и образует выходное напряжение.
Второй параметр – ток вытекающий из вывода подстройки по сути является паразитным, производители обещают что он в среднем составит 50 мкА, максимум 100 мкА, но в реальных условиях он может достигать 500 мкА. Поэтому чтобы обеспечить стабильное выходное напряжение приходиться через делитель R1-R2 гнать ток от 5 мА. А это значит что сопротивление R1 не может больше 240 Ом, кстати именно такое сопротивление рекомендуют в схемах включения из datasheet.
Первый раз, когда я посчитал делитель для микросхемы по формуле из LM317T datasheet, я задавался током 1 мА, а потом я очень долго удивлялся почему напряжение реальное напряжение отличается. И с тех пор я задаюсь R1 и считаю по формуле:
R2=R1*((Uвых/Uоп)-1).
Тестирую в реальных условиях и уточняю значения сопротивлений R1 и R2.
Посмотрим какие должны быть для широко распространенных напряжений 5 и 12 В.
R1, Ом | R2, Ом | |
LM317T схема включения 5v | 120 | 360 |
LM317T схема включения 12v | 240 | 2000 |
Но я бы посоветовал использовать LM317T в случае типовых напряжений, только когда нужно срочно что-то сделать на коленке, а более подходящей микросхемы типа 7805 или 7812 нету под рукой.
А вот расположение выводов LM317T:
- Регулировочный
- Выходной
- Входной
Кстати у отечественного аналога LM317 — КР142ЕН12А схема включения точно такая же.
На этой микросхеме несложно сделать регулируемый блок питания: вместо постоянного R2 поставьте переменный, добавьте сетевой трансформатор и диодный мост.
На LM317 можно сделать и схему плавного пуска: добавляем конденсатор и усилитель тока на биполярном pnp-транзисторе.
Схема включения для цифрового управления выходным напряжением тоже не сложна. Рассчитываем R2 на максимальное требуемое напряжение и параллельно добавляем цепочки из резистора и транзистора. Включение транзистора будет добавлять в параллель к проводимости основного резистора, проводимость дополнительного. И напряжение на выходе будет снижаться.
Схема стабилизатора тока ещё проще, чем напряжения, так как резистор нужен только один. Iвых = Uоп/R1.
Например, таким образом мы получаем из lm317t стабилизатор тока для светодиодов:
- для одноватных светодиодов I = 350 мА, R1 = 3,6 Ом, мощностью не менее 0,5 Вт.
- для трехватных светодиодов I = 1 А, R1 = 1,2 Ом, мощностью не менее 1,2 Вт.
На основе стабилизатора легко сделать зарядное устройство для 12 В аккумуляторов, вот что нам предлагает datasheet. С помощью Rs можно настроить ограничение тока, а R1 и R2 определяют ограничение напряжения.
Если в схеме потребуется стабилизировать напряжения при токах более 1,5 А, то все также можно использовать LM317T, но совместно с мощным биполярным транзистором pnp-структуры.
Если нужно построить двуполярный регулируемый стабилизатор напряжения, то нам поможет аналог LM317T, но работающий в отрицательном плече стабилизатора — LM337T.
Но у данной микросхемы есть и ограничения. Она не является стабилизатором с низким падением напряжения, даже наоборот начинает хорошо работать только когда разница между выходным и выходным напряжением превышает 7 В.
Если ток не превышает 100мА, то лучше использовать микросхемы с низким падением LP2950 и LP2951.
Мощные аналоги LM317T — LM350 и LM338
Если выходного тока в 1,5 А недостаточно, то можно использовать:
- LM350AT, LM350T — 3 А и 25 Вт (корпус TO-220)
- LM350K — 3 А и 30 Вт (корпус TO-3)
- LM338T, LM338K — 5 А
Производители этих стабилизаторов кроме увеличения выходного тока, обещают сниженный ток регулировочного входа до 50мкА и улучшенную точность опорного напряжения.
А вот схемы включения подходят от LM317.
Код 404 страница не найдена. К сожалению, страница отсутствует или перемещена.Ниже приведены основные подразделы этого сайта.
Принципы работы и использования фотодиодных схем Учебное пособие по переключателю P-Channel Power MOSFET
Раскрытие »Главная
»Архив 1 Веб-сайт Авторские права Льюис Лофлин, Все права защищены. |
11 Простые схемы (с примером)
Введение
Устройство LM317 представляет собой регулируемый трехконтактный стабилизатор положительного напряжения, способный подавать более 1,5 А в диапазоне выходного напряжения от 1,25 В до 37 В. Кроме того, он обладает такими преимуществами, как широкий диапазон регулирования напряжения, хорошая стабильность напряжения, низкий уровень шума и высокий коэффициент подавления пульсаций.
Учебное пособие по регулируемому регулятору напряжения LM317
Каталог
I Базовая схема
Рисунок 1.Принципиальная схема LM317
Основная схема LM317 показана на рисунке 1. C1 — входная емкость. Когда емкостное расстояние между регулятором напряжения и фильтром выпрямителя меньше 5 ~ 10 см, использование C1 не требуется. Рекомендуемое значение — 0,1 мкФ. C2 — выходная емкость, которая может улучшить переходную характеристику. Рекомендуемое значение — 1 мкФ.
II Минимальный стабильный рабочий ток
Блок регулятора напряжения LM317 имеет минимальный стабильный рабочий ток.Некоторые данные называют это минимальным выходным током, а некоторые данные называют его минимальным током разряда. Минимальный стабильный рабочий ток обычно составляет 1,5 мА. Из-за разных производителей и моделей блока регулятора напряжения LM317 минимальный стабильный рабочий ток также отличается, но обычно он не превышает 5 мА. Когда выходной ток блока регулятора напряжения LM317 меньше его минимального стабильного рабочего тока, блок регулятора напряжения LM317 не может работать. Когда выходной ток блока регулятора напряжения LM317 больше, чем его минимальный стабильный рабочий ток, блок регулятора напряжения LM317 может выдавать стабильное напряжение постоянного тока.Если вы не обращаете внимания на минимальный стабильный рабочий ток при создании источника питания со стабилизированным напряжением с блоком регулятора напряжения LM317 (как показано на рисунке 2), в регулируемом источнике питания могут возникнуть следующие аномальные явления: напряжение нагрузки и холостого хода выходное напряжение разные.
Рис. 2. Схема регулируемого источника питания LM317
III Схема плавного пуска
На рисунке 3 показана схема плавного пуска с использованием LM317. В момент включения напряжение CE1 не может внезапно измениться.Q1 смещается R1 и R2 для насыщения и проводимости, так что RP1 закорачивается, что эквивалентно заземлению регулировочного вывода LM317. Выходная мощность 1,25 В. По мере увеличения времени зарядки C2 выходное напряжение постепенно увеличивается. Функция D1 состоит в том, чтобы быстро высвободить заряд на C2 после выключения питания, обеспечивая нормальный плавный запуск для следующего запуска.
Рисунок 3. Схема плавного пуска
IV Схема базовой защиты
D2 — входной диод защиты от короткого замыкания.CE1 — это конденсатор фильтра на регулирующем конце, который выполняет функцию стабилизации выхода и цепи плавного пуска. D1 — выходной диод защиты от короткого замыкания. Когда выходной терминал закорочен, CE1 разряжается через D1. Если D1 нет, CE1 разряжается через LM317, что легко повредить LM317. C1 — конденсатор входного фильтра, а C2 — конденсатор выходного фильтра. На практике вход и выход лучше всего подключать параллельно с помощью больших и малых конденсаторов.
Рисунок 4.Базовая схема защиты
Цепь зарядки
В
Схема зарядки постоянным током показана на рисунке 5. Постоянный ток I = I = 1,25 / R1
Рисунок 5. Принципиальная схема зарядки постоянным током
Схема зарядки с ограничением тока показана на рисунке 6. Значение ограничения тока = 0,7 / R3
Рисунок 6. Схема цепи зарядки с ограничением тока
VI Схема защиты от перегрузки по току
RSC = 0.7 / ISC (ISC — ток защиты от сверхтока)
Рисунок 7. Схема цепи защиты от перегрузки по току
VII Схема расширения тока
Когда максимальный выходной ток составляет 2 А, а выходной ток LM317 предполагается равным 1 А, Q1 включен. Значение R можно рассчитать по следующей формуле: R = UBE / (2-1) = 0,7 Ом
Рисунок 8. Удлинение цепи тока
VIII Цепь высокого напряжения на выходе
Если значение VZ трубки регулятора меньше максимальной разницы напряжений между входом и выходом (40 В), выходное напряжение может быть увеличено.При коротком замыкании выхода VZ и U1 легко повредить, что является недостатком базовой схемы выхода высокого напряжения.
Рисунок 9. Цепь выхода высокого напряжения
IX Цепь постоянного тока
Постоянный ток IL = 1,25 / R1
Рисунок 10. Цепь постоянного тока
X Программируемая цепь
Рис. 11. Программируемая схема
Регулируемый калибратор напряжения XI
Рисунок 12.Калибратор регулируемого напряжения
Лист данных на компоненты
Лист данных LM317
FAQ
LM317 обслуживает широкий спектр приложений, в том числе локальное регулирование по картам. Это устройство также можно использовать для создания программируемого выходного регулятора или, подключив постоянный резистор между регулировкой и выходом, LM317 можно использовать в качестве прецизионного регулятора тока. |
LM317 — это регулируемый линейный стабилизатор напряжения, который может выводить 1.25 — 37 В при токе до 1,5 А с диапазоном входного напряжения 3 — 40 В. |
Член. Функциональной разницы нет, они одно и то же. Буква T в конце просто указывает на то, что он находится в упаковке TO-220. Обычно они добавляют дополнительные элементы после названия детали, чтобы ссылаться на такие вещи, как пакет, временный диапазон и т. Д. |
LM317 — это регулируемый трехконтактный стабилизатор положительного напряжения, способный подавать более 1.5 А в диапазоне выходного напряжения от 1,25 В до 32 В. … Используя проходной транзистор с теплоотводом, такой как 2N3055 (Q1), мы можем производить ток в несколько ампер, намного превышающий 1,5 ампера LM317. |
Схема состоит из резистора на стороне низкого напряжения и резистора на стороне высокого напряжения, соединенных последовательно, образуя резистивный делитель напряжения, который представляет собой пассивную линейную схему, используемую для создания выходного напряжения, составляющего часть входного напряжения. |
Устройство LM317 представляет собой регулируемый трехконтактный стабилизатор положительного напряжения, способный подавать более 1.5 А в диапазоне выходного напряжения от 1,25 В до 37 В. Для установки выходного напряжения требуется всего два внешних резистора. Устройство имеет типичное регулирование линии 0,01% и типичное регулирование нагрузки 0,1%. |
Тестирование lm317t. |
LM 317 работает по очень простому принципу. Это регулятор переменного напряжения, то есть поддерживает различные уровни выходного напряжения для постоянного подаваемого входного напряжения. |
|
LM317 со схемой повышения внешнего тока
Популярная микросхема стабилизатора напряжения LM317 рассчитана на работу не более 1 шт.5 ампер, однако, добавив в схему повышающий транзистор внешнего тока, становится возможным модернизировать схему регулятора для работы с гораздо более высокими токами и до любых желаемых уровней.
Возможно, вы уже сталкивались со схемой стабилизатора постоянного напряжения 78XX, которая была модернизирована для обработки более высоких токов, добавив к ней внешний силовой транзистор, IC LM317 не является исключением, и то же самое можно применить к этой универсальной схеме переменного регулятора напряжения чтобы обновить его характеристики для обработки большого количества тока.
Стандартная схема LM317
На следующем изображении показана стандартная схема регулируемого стабилизатора напряжения IC LM317, использующая минимум компонентов в виде одного постоянного резистора и потенциометра 10 кОм.
Предполагается, что эта установка предлагает переменный диапазон от нуля до 24 В при входном напряжении 30 В. Однако, если мы рассмотрим диапазон тока, он не превышает 1,5 ампер независимо от входного тока питания, поскольку микросхема внутренне оборудована, чтобы допускать только до 1.5 ампер и подавите все, что может потребоваться выше этого предела.
Показанная выше конструкция, которая ограничена максимальным током 1,5 А, может быть модернизирована с помощью внешнего PNP-транзистора, чтобы повысить ток наравне с входным током питания, что означает, что как только это обновление будет реализовано, вышеуказанная схема сохранит свою переменную Функция регулирования напряжения, тем не менее, сможет обеспечить нагрузку полным входным током питания, минуя внутреннюю функцию ограничения тока IC.
Расчет выходного напряжения
Для расчета выходного напряжения цепи источника питания LM317 можно использовать следующую формулу
VO = VREF (1 + R2 / R1) + (IADJ × R2)
где = VREF = 1.25
Current ADJ можно фактически игнорировать, поскольку он обычно составляет около 50 мкА и, следовательно, слишком мал.
Добавление внешнего усилителя Mosfet
Это обновление повышения тока может быть реализовано путем добавления внешнего PNP-транзистора, который может быть в форме силового BJT или P-канального MOSFET, как показано ниже, здесь мы используем mosfet, сохраняющий вещи компактный и допускающий огромное обновление технических характеристик.
В приведенной выше схеме Rx становится ответственным за обеспечение триггера затвора для МОП-транзистора, так что он может проводить в тандеме с LM317 IC и усиливать устройство дополнительным током, определяемым входным источником.
Первоначально, когда входная мощность подается в схему, подключенная нагрузка, которая может быть рассчитана на гораздо более высокий, чем 1,5 А, пытается получить этот ток через LM317 IC, и в процессе на RX создается пропорциональная величина отрицательного напряжения, заставляя MOSFET реагировать и включаться.
Как только срабатывает MOSFET-транзистор, все входное питание имеет тенденцию течь через нагрузку с избыточным током, но, поскольку напряжение также начинает увеличиваться за пределы настройки потенциометра LM317, LM317 становится смещенным в обратном направлении.
Это действие на время отключает LM317, который, в свою очередь, отключает напряжение на Rx и питание затвора для МОП-транзистора.
Следовательно, МОП-транзистор также имеет тенденцию отключаться на мгновение, пока цикл снова не продлится, позволяя процессу продолжаться бесконечно с заданным регулированием напряжения и высокими требованиями к току.
Расчет резистора затвора МОП-транзистора
Rx можно рассчитать, как указано в:
Rx = 10 / 1A,
, где 10 — оптимальное напряжение срабатывания МОП-транзистора, а 1 ампер — оптимальный ток через ИС до того, как разовьется Rx. это напряжение.
Следовательно, Rx может быть резистором 10 Ом с номинальной мощностью 10 x 1 = 10 Вт
Если используется силовой BJT, цифра 10 может быть заменена на 0,7 В
Хотя приведенное выше приложение повышения тока с использованием МОП-транзистор выглядит интересно, у него есть серьезный недостаток, так как эта функция полностью лишает ИС функции ограничения тока, что может привести к перегоранию или возгоранию МОП-транзистора в случае короткого замыкания на выходе.
Чтобы противостоять этой уязвимости, связанной с перегрузкой по току или коротким замыканием, другой резистор в форме Ry может быть установлен с выводом истока МОП-транзистора, как показано на следующей схеме.
Резистор Ry должен вырабатывать противодействующее напряжение на самом себе всякий раз, когда выходной ток превышает заданный максимальный предел, так что противодействующее напряжение на источнике МОП-транзистора подавляет напряжение срабатывания затвора МОП-транзистора, вызывая полное отключение в течение МОП-транзистор, предотвращая тем самым возгорание МОП-транзистора.
Эта модификация выглядит довольно простой, однако расчет Ry может немного сбить с толку, и я не хочу исследовать его глубже, так как у меня есть более приличная и надежная идея, которая, как можно ожидать, выполнит полный контроль тока для обсуждаемого подвесного двигателя LM317. схема применения повышающего транзистора.
Использование BJT для управления током
Конструкция, позволяющая сделать вышеупомянутую конструкцию, оснащенную повышающим током, а также защитой от короткого замыкания и перегрузки, показана ниже:
Пара резисторов и BC547 BJT — все, что может потребуются для включения желаемой защиты от короткого замыкания в модифицированную схему повышения тока для LM317 IC.
Теперь вычисление Ry становится чрезвычайно простым и может быть вычислено по следующей формуле:
Ry = 0.7 / ограничение тока.
Здесь 0,7 — это напряжение срабатывания BC547, а «ограничение тока» — это максимальный допустимый ток, который может быть указан для безопасной работы МОП-транзистора, допустим, этот предел установлен равным 10 А, тогда Ry можно рассчитать как :
Ry = 0,7 / 10 = 0,07 Ом.
Вт = 0,7 x 10 = 7 Вт.
Итак, теперь, когда ток имеет тенденцию пересекать вышеуказанный предел, BC547 проводит, заземляя контакт ADJ IC и отключая Vout для LM317
Использование BJT для повышения тока
Если вы не слишком увлечены используя МОП-транзистор, в этом случае вы, вероятно, могли бы применить BJT для требуемого повышения тока, как показано на следующей диаграмме:
Предоставлено: Texas Instruments
Регулируемый регулятор напряжения / тока LM317 Сильноточный регулятор
На следующей схеме показан сильно регулируемый LM317 на основе сильноточный источник питания, который обеспечит выходной ток более 5 ампер и переменное напряжение от 1.От 2 В до 30 В.
На рисунке выше мы можем видеть, что регулирование напряжения реализовано в стандартной конфигурации LM317 через потенциометр R6, который соединен с выводом ADJ на LM317.
Тем не менее, конфигурация операционного усилителя специально включена, чтобы иметь полезную полномасштабную регулировку высокого тока в диапазоне от минимального до максимального 5 ампер.
Сильноточный импульс 5 А, доступный в этой конструкции, может быть дополнительно увеличен до 10 А путем соответствующей модернизации внешнего транзистора MJ4502 PNP.
Инвертирующий входной контакт № 2 операционного усилителя используется в качестве опорного входа, который устанавливается потенциометром R2. Другой неинвертирующий вход используется как датчик тока. Напряжение, возникающее на R6 через резистор ограничителя тока R3, сравнивается с опорным сигналом R2, который позволяет выходу операционного усилителя стать низким, как только будет превышен максимальный установленный ток.
Низкий уровень на выходе операционного усилителя заземляет вывод ADJ LM317, отключая его, а также выходной источник питания, который, в свою очередь, быстро снижает выходной ток и восстанавливает работу LM317.Непрерывный режим ВКЛ / ВЫКЛ гарантирует, что ток никогда не превысит установленный порог, регулируемый R2.
Максимальный уровень тока также можно изменить, настроив значение резистора ограничения тока R3.
Схема регулируемого стабилизатора напряжения LM317 »Источники питания
LM317 — это ИС регулируемого стабилизатора напряжения. В этом проекте мы сделаем схему регулируемого стабилизатора напряжения LM317 от 1,25 до 37 В. Эта ИС может обеспечить выходной ток до 1 Ампер.Это трехконтактная микросхема стабилизатора положительного напряжения.
Для этого регулятора напряжения требуется только два внешних резистора для установки напряжения питания. Он имеет линейное регулирование около 0,01% и регулирование нагрузки около 0,1%. Также он имеет ограничитель тока и тепловую защиту.
Особенности LM317:
Вот некоторые важные особенности стабилизатора положительного напряжения LM317:
- Регулируемый диапазон выходного напряжения от 1,25 В до 37 В
- Выходной ток более 1.5 А
- Внутренний ограничитель тока короткого замыкания
- Тепловая защита от перегрузки
- Выходная компенсация безопасной зоны
Регулятор напряжения LM317 Принципиальная схема:
Описание схемы:
Эта схема состоит из следующих компонентов
Трансформаторы:
Он понижает 220 В переменного тока до 24 В переменного тока с меньшей амплитудой.
Выпрямитель:
Он преобразует входной синусоидальный переменный ток в однонаправленное пульсирующее напряжение постоянного тока, которое нестабильно и содержит пульсации.
Емкостный фильтр:
Емкостной фильтр 1000 мкФ отфильтровывает большую часть пульсаций на выходе мостового выпрямителя.
LM317 Регулятор положительного напряжения:
Эта трехконтактная ИС может регулировать выходное напряжение от 1,25 В до 37 В. Выходное напряжение зависит от схемы делителя напряжения, образованной резистором 220 Ом и резистором 12 кОм. Потенциометр 10 кОм используется для изменения напряжения на регулирующем выводе IC. Контакт номер 3 — это входной контакт, а 2 — выходной контакт, а первый контакт — это регулировочный штифт.
Схема защиты:
Два диода 1N4007 подключены к ИС в обратном направлении. Если на микросхему подается неправильное высокое напряжение, она может быть повреждена. Эти два диода защищают ИС от повреждений, обеспечивая альтернативный путь к сильному току.
Наконец, конденсатор емкостью 470 мкФ используется параллельно, чтобы сделать выход более стабильным.
Схема регулируемого регулятора напряжения LM317
LM317 Учебное пособие:
должен посмотреть это видео
Работа цепи регулируемого регулятора напряжения LM317:
LM317 — линейный регулятор напряжения.Понижающий трансформатор дает на выходе 24 Вольт, 2 А. Этот выходной сигнал нестабилен, поэтому используется конденсатор емкостью 1000 мкФ, чтобы сделать его плавным и стабильным, удалив рябь.
Это напряжение затем подается на входной контакт ИС регулируемого стабилизатора напряжения LM317. Эта ИС выдает выходное напряжение в зависимости от клеммы настройки.
Постоянное напряжение на резисторе обратной связи R1 составляет около 1,25 В. Благодаря этому опорному напряжению через клемму регулировки протекает постоянный ток в 100 мкА.Из-за опорного напряжения 1,25 В через резистор R2 протекает ток.
Выходное напряжение пропорционально падению напряжения на резисторах R1 и R2.
Vout = Vref x {1+ (Rp / R1)
Здесь Vref = 1.25V
Rp = VR || R2, банк 10k и R2 идут параллельно
Когда мы устанавливаем потенциометр на наименьшее нулевое сопротивление, выходное напряжение становится 1,25 В. Поскольку Rp = 0 Ом из приведенной выше формулы,
Vout = 1,25 x {1+ (0/220)}
= 1.25 В
Когда мы устанавливаем потенциометр на максимальное сопротивление, параллельное сопротивление становится
.
Rp = 5,4545 кОм
Таким образом, выходное напряжение из-за этого сопротивления становится равным
.
Vout = 1,25 x {1+ (5454,5 / 220)}
= 32,2 В
Бухта, выбрав правильное значение сопротивления, можно установить выходное напряжение.
Как заставить работать от 0В?
Если вы хотите управлять выходом от 0 вольт, вы должны подключить два диода последовательно к выходу схемы.Поскольку общее падение напряжения на диоде 1N4007 составляет около 0,7 В, вы получите падение от 1,3 до 1,4 В. Используя эту технику, вы можете контролировать выходное напряжение от 0 вольт, но ток будет уменьшаться.
Также, если вы хотите настроить точное напряжение, подключите потенциометр 1 кОм последовательно с потенциометром 10 кОм.
Используйте радиатор:
Необходимо использовать радиатор, поскольку LM317 IC является линейным стабилизатором напряжения. Падение напряжения на этой ИС составляет около 2,5 вольт.Это падение напряжения вызывает сильный нагрев. Этот нагрев может превысить тепловой порог ИС, что может привести к повреждению ИС. Поэтому для защиты ИС необходимо использовать хороший радиатор и охлаждающее средство.
Итак, это схема источника питания с переменным напряжением, способная подавать более 32 В при выходном токе 1,5 А.
Применения цепи регулируемого регулятора напряжения LM317:
- Блок питания ПК
- Power Bank
- Лабораторный блок питания
- Схема зарядного устройства
- Регулятор скорости двигателя
- Генератор сигналов или осциллограмм
- Электроника и бытовая техника
Несколько схем регулятора напряжения LM317, которые имеют много применений
Некоторые схемы на базе регулятора напряжения LM317
Здесь показано несколько полезных схем, использующих микросхему регулятора напряжения LM317.LM317 — это микросхема стабилизатора напряжения с тремя выводами от National Semiconductors. ИС способна выдавать выходной ток до 1 А. Входное напряжение может составлять до 40 В, а выходное напряжение — от 1,2 В до 37 В.
Типовая схема регулятора положительного напряжения с использованием LM317.
Регулируемый регулятор
LM317
Выше показана классическая схема регулятора напряжения на LM317. Входное напряжение подается на контакт 3 (v in) IC, а регулируемое выходное напряжение поступает на контакт 2 (V out) IC.Сеть резисторов, состоящая из R1 и R2, соединенных вместе с выводом 1 (adj), используется для установки выходного напряжения. C1 — конденсатор входного фильтра, а C2 — конденсатор выходного фильтра. Выходное напряжение схемы регулятора зависит от уравнения: Vout = 1,25 В (1 + (R2 / R1)) + I adj R2.
Регулируемый регулятор с цифровым выбором выхода.
Регулятор напряжения LM317 с цифровым выбором выхода
Выше показана очень простая схема регулируемого регулятора с цифровым выбором выхода.Схема представляет собой всего лишь модификацию обычного стабилизатора напряжения на LM317. Параллельно резистору R4 добавляются еще четыре ответвления резистора, каждая с транзисторным переключателем, и эти резисторы могут быть включены или исключены из схемы путем включения соответствующего переключающего транзистора. Проще говоря, выходное напряжение будет соответствовать логическому уровню цифровых входов A, B, C и D. Высокий логический уровень на клемме A включит Q1, поэтому резистор R5 будет добавлен параллельно R4 и так далее.Добавление каждого сопротивления параллельно R4 уменьшит эффективное сопротивление пути, и, таким образом, выходное напряжение сопротивления будет уменьшаться ступенчато. Ширина каждого шага зависит от номинала резисторов, которые вы выбираете. Резистор R4 устанавливает максимальное выходное напряжение в соответствии с уравнением V out Max = 1,25 В (1 + (R4 / R3)) + (Iadj x R4).
5A стабилизатор постоянного напряжения постоянного тока.
Регулятор постоянного напряжения постоянного тока на 5 А
Схема, показанная выше, представляет собой регулятор постоянного тока / постоянного напряжения на 5 А с использованием LM317.Такая схема — неизбежный гаджет на рабочем столе энтузиаста электроники. Помимо LM317, в схеме также используется один операционный усилитель LM310. Диод D3 и конденсатор C3 образуют схему компенсации для операционного усилителя. Выходное напряжение схемы регулятора подается обратно на неинвертирующий вход операционного усилителя, в то время как выходное напряжение операционного усилителя подается обратно на инвертирующий вход самого операционного усилителя через конденсатор C7. Резистор R16 ограничивает входной ток LM317 и базовый ток транзистора Q5.C6 — это конденсатор входного фильтра, а C9 — конденсатор выходного фильтра. POT R10 можно использовать для регулировки выходного тока, а POT R11 можно использовать для регулировки выходного напряжения. Светодиод D2 обеспечивает визуальную индикацию, когда цепь работает в режиме постоянного тока.
Цепь повторителя мощности с использованием LM317.
Цепь повторителя напряжения — это цепь, которая дает значительное усиление по току, в то время как усиление по напряжению поддерживается равным единице (или близко к ней). Повторитель мощности — это не что иное, как повторитель напряжения, способный выдерживать большие токи.Типичная схема повторителя напряжения, разработанная с использованием небольшого сигнального транзистора, может выдерживать ток в несколько сотен миллиампер. Схема повторителя мощности, показанная ниже, может выдерживать выходной ток до 600 мА. Схема, показанная ниже, представляет собой не что иное, как схему эмиттерного повторителя, использующую силовой транзистор LM195 (Q6) со схемой ограничителя тока на основе LM317, подключенной к эмиттеру. Проще говоря, схема ограничения тока заменяет «эмиттерное сопротивление» классического транзисторного эмиттерного повторителя.Конденсатор С10 — входной фильтр. LM195 — это монолитный силовой транзистор с полной защитой от перегрузки.
Схема силового повторителя
Примечания.
- Все схемы, показанные выше, могут быть подключены к монтажной плате.
- В любом случае печатная плата — лучший вариант, если вы можете это сделать.
- Максимальный ток нагрузки, который может выдержать LM317, составляет 1 А.
- Радиатор должен быть установлен на LM317 во всех приложениях, где выходной ток превышает 250 мА.
- Радиатор может быть размером 2 x 2 x 2 см из ребристого алюминия.
- LM195 также требует аналогичного радиатора.
- Используйте держатель для крепления LM301.
- MJ4502 требуется радиатор из ребристого алюминия размером 6 x 6 x 2 см.
- Размеры радиатора являются приблизительными, и вы можете использовать радиаторы немного большего или меньшего размера в зависимости от наличия. Всегда больше — лучше, и нет ничего хорошего в радиаторе большего размера.
- Конденсаторы входного и выходного фильтров в этих схемах предпочтительнее твердотельного танталового типа.
Для
Похожие сообщения
Регулятор напряжения LM317: распиновка, КАЛЬКУЛЯТОР и схемы
В таком случае нам нужно создать источник переменного тока постоянного тока с выходным током 1 А и возможностью регулировки примерно до 30 В.
Большинство людей будут использовать LM317 из-за его высокой эффективности, простоты применения и дешевизны.
Неужели? Вы узнаете ниже.
Лист данных LM317
Он имеет регулируемый трехконтактный стабилизатор положительного напряжения, рассчитанный на питание более чем 1 шт.5 А тока нагрузки с регулируемым выходным напряжением в диапазоне от 1,2 В до 37 В.
Имеет внутреннее ограничение тока, обнаружение отключения по температуре и компенсацию безопасной зоны.
Распиновка LM317
Рисунок 1: Распиновка LM317 на TO-220
Посмотрите:
Схема подключения различных распиновок LM317
LM317T на TO-220: выход 92M3L
LM317L на TO-220: выход 1.5317L
выход 100 мА
LM317K на ТО-3: выход 1,5 А
LM317 на DPARK: выход 1.5A
Основные характеристики
- Выходной ток более 1,5A
- Выход, регулируемый в пределах от 1,2 В до 37 В
- Внутреннее ограничение тока короткого замыкания или выход защищен от короткого замыкания
- Внутренняя защита от тепловой перегрузки или постоянное ограничение тока с температурой
- Компенсация безопасной рабочей зоны выходного транзистора
- TO-220 Корпус аналогичен транзисторам 2SC1061.
- Есть выходное напряжение 1% Долговечность
- Есть макс.Регулировка линии 0,01% / В (LM317) и регулировка нагрузки 0,3% (LM117)
- Подавление пульсаций 80 дБ
Рис. Питающий фильтр слишком удален от IC-регулятора. Tt должен вставить Ci для снижения шума перед входом IC.
Далее на рисунке схема. Co не нужен, если вы не высокопроизводительный, но мы его лучше выразим. Это снизит пульсацию на выходе.
Поскольку Iadj контролируется до менее 100 мкА, небольшая ошибка не важна для большинства приложений.
Входное напряжение LM317 должно быть как минимум на 1,5 В выше выходного напряжения.
Калькулятор LM317
Этот калькулятор будет работать с большинством регуляторов напряжения постоянного тока с опорным напряжением (VREF) 1,25. Обычно программный резистор (R1) составляет 240 Ом для LM117, LM317, LM138 и LM150.
Некоторые говорили, что Iadj имеет очень низкий ток.
Значит, можем уменьшить.Быть короче и проще.
Vout = 1,25 В x {1 + R2 / R1}
Что лучше?
Например:
Вы используете R1 = 270 Ом и R2 = 390 Ом. Это приводит к выходу 3,06 В
Это просто? Если у вас есть выбор напряжения с большинством резисторов. В ближайших к вам магазинах.
посмотрите список:
Выходное напряжение с R1 и R2 Список
1,43 В: R1 = 470 Ом, R2 = 68 Ом
1,47 В: R1 = 470 Ом, R2 = 82 Ом
1,47 В: R1 = 390 Ом, R2 = 68 Ом
1.51 В: R1 = 330 Ом, R2 = 68 Ом
1,51 В: R1 = 390 Ом, R2 = 82 Ом
1,52 В: R1 = 470 Ом, R2 = 100 Ом
1,53 В: R1 = 390 Ом, R2 = 82 Ом
1,56 В: R1 = 330 Ом, R2 = 82 Ом
1,57 В: R1 = 270 Ом, R2 = 68 Ом
1,57 В: R1 = 470 Ом, R2 = 120 Ом
1,57 В: R1 = 390 Ом, R2 = 100 Ом
1,59 В: R1 = 390 Ом, R2 = 100 Ом
1,60 В : R1 = 240 Ом, R2 = 68 Ом
1,63 В: R1 = 330 Ом, R2 = 100 Ом
1,63 В: R1 = 270 Ом, R2 = 82 Ом
1,64 В: R1 = 390 Ом, R2 = 120 Ом
1,64 В: R1 = 220 Ом, R2 = 68 Ом
1,65 В: R1 = 470 Ом, R2 = 150 Ом
1.66 В: R1 = 390 Ом, R2 = 120 Ом
1,68 В: R1 = 240 Ом, R2 = 82 Ом
1,71 В: R1 = 330 Ом, R2 = 120 Ом
1,71 В: R1 = 270 Ом, R2 = 100 Ом
1,72 В: R1 = 220 Ом, R2 = 82 Ом
1,72 В: R1 = 180 Ом, R2 = 68 Ом
1,73 В: R1 = 470 Ом, R2 = 180 Ом
1,73 В: R1 = 390 Ом, R2 = 150 Ом
1,76 В: R1 = 390 Ом, R2 = 150 Ом
1,77 В : R1 = 240 Ом, R2 = 100 Ом
1,81 В: R1 = 270 Ом, R2 = 120 Ом
1,82 В: R1 = 150 Ом, R2 = 68 Ом
1,82 В: R1 = 330 Ом, R2 = 150 Ом
1,82 В: R1 = 180 Ом, R2 = 82 Ом
1,83 В: R1 = 390 Ом, R2 = 180 Ом
1.84 В: R1 = 470 Ом, R2 = 220 Ом
1,86 В: R1 = 390 Ом, R2 = 180 Ом
1,88 В: R1 = 240 Ом, R2 = 120 Ом
1,89 В: R1 = 470 Ом, R2 = 240 Ом
1,93 В: R1 = 330 Ом, R2 = 180 Ом
1,93 В: R1 = 150 Ом, R2 = 82 Ом
1,94 В: R1 = 270 Ом, R2 = 150 Ом
1,96 В: R1 = 390 Ом, R2 = 220 Ом
1,97 В: R1 = 470 Ом, R2 = 270 Ом
1,99 В : R1 = 390 Ом, R2 = 220 Ом
2,02 В: R1 = 390 Ом, R2 = 240 Ом
2,03 В: R1 = 240 Ом, R2 = 150 Ом
2,06 В: R1 = 390 Ом, R2 = 240 Ом
2,08 В: R1 = 330 Ом, R2 = 220 Ом
2,10 В: R1 = 220 Ом, R2 = 150 Ом
2.12 В: R1 = 390 Ом, R2 = 270 Ом
2,13 В: R1 = 470 Ом, R2 = 330 Ом
2,16 В: R1 = 330 Ом, R2 = 240 Ом
2,16 В: R1 = 390 Ом, R2 = 270 Ом
2,19 В: R1 = 240 Ом, R2 = 180 Ом
2,23 В: R1 = 470 Ом, R2 = 390 Ом
2,25 В: R1 = 150 Ом, R2 = 120 Ом
2,27 В: R1 = 270 Ом, R2 = 220 Ом
2,27 В: R1 = 330 Ом, R2 = 270 Ом
2,29 В : R1 = 470 Ом, R2 = 390 Ом
2,29 В: R1 = 180 Ом, R2 = 150 Ом
2,31 В: R1 = 390 Ом, R2 = 330 Ом
2,36 В: R1 = 270 Ом, R2 = 240 Ом
2,37 В: R1 = 390 Ом, R2 = 330 Ом
2,40 В: R1 = 240 Ом, R2 = 220 Ом
2.44 В: R1 = 390 Ом, R2 = 390 Ом
2,50 В: R1 = 470 Ом, R2 = 470 Ом
2,57 В: R1 = 390 Ом, R2 = 390 Ом
2,61 В: R1 = 220 Ом, R2 = 240 Ом
2,65 В: R1 = 330 Ом, R2 = 390 Ом
2,66 В: R1 = 240 Ом, R2 = 270 Ом
2,73 В: R1 = 330 Ом, R2 = 390 Ом
2,74 В: R1 = 470 Ом, R2 = 560 Ом
2,75 В: R1 = 150 Ом, R2 = 180 Ом
2,76 В : R1 = 390 Ом, R2 = 470 Ом
2,78 В: R1 = 270 Ом, R2 = 330 Ом
2,78 В: R1 = 220 Ом, R2 = 270 Ом
2,84 В: R1 = 390 Ом, R2 = 470 Ом
2,92 В: R1 = 180 Ом, R2 = 240 Ом
2,96 В: R1 = 270 Ом, R2 = 390 Ом
2.97 В: R1 = 240 Ом, R2 = 330 Ом
3,03 В: R1 = 330 Ом, R2 = 470 Ом
3,05 В: R1 = 390 Ом, R2 = 560 Ом
3,06 В: R1 = 270 Ом, R2 = 390 Ом
3,06 В: R1 = 470 Ом, R2 = 680 Ом
3,08 В: R1 = 150 Ом, R2 = 220 Ом
3,13 В: R1 = 220 Ом, R2 = 330 Ом
3,14 В: R1 = 390 Ом, R2 = 560 Ом
3,18 В: R1 = 240 Ом, R2 = 390 Ом
3,25 В : R1 = 150 Ом, R2 = 240 Ом
3,28 В: R1 = 240 Ом, R2 = 390 Ом
3,35 В: R1 = 220 Ом, R2 = 390 Ом
3,37 В: R1 = 330 Ом, R2 = 560 Ом
3,43 В: R1 = 270 Ом, R2 = 470 Ом
3,43 В: R1 = 390 Ом, R2 = 680 Ом
3.43 В: R1 = 470 Ом, R2 = 820 Ом
3,47 В: R1 = 220 Ом, R2 = 390 Ом
3,50 В: R1 = 150 Ом, R2 = 270 Ом
3,54 В: R1 = 180 Ом, R2 = 330 Ом
3,55 В: R1 = 390 Ом, R2 = 680 Ом
3,70 В: R1 = 240 Ом, R2 = 470 Ом
3,82 В: R1 = 180 Ом, R2 = 390 Ом
3,83 В: R1 = 330 Ом, R2 = 680 Ом
3,84 В: R1 = 270 Ом, R2 = 560 Ом
3,88 В : R1 = 390 Ом, R2 = 820 Ом
3,91 В: R1 = 470 Ом, R2 = 1K
3,92 В: R1 = 220 Ом, R2 = 470 Ом
3,96 В: R1 = 180 Ом, R2 = 390 Ом
4,00 В: R1 = 150 Ом, R2 = 330 Ом
4,02 В: R1 = 390 Ом, R2 = 820 Ом
4.17 В: R1 = 240 Ом, R2 = 560 Ом
4,33 В: R1 = 150 Ом, R2 = 390 Ом
4,36 В: R1 = 330 Ом, R2 = 820 Ом
4,40 В: R1 = 270 Ом, R2 = 680 Ом
4,43 В: R1 = 220 Ом, R2 = 560 Ом
4,44 В: R1 = 470 Ом, R2 = 1,2 К
4,46 В: R1 = 390 Ом, R2 = 1K
4,50 В: R1 = 150 Ом, R2 = 390 Ом
4,51 В: R1 = 180 Ом, R2 = 470 Ом
4,63 V: R1 = 390 Ом, R2 = 1K
4,79 В: R1 = 240 Ом, R2 = 680 Ом
5,04 В: R1 = 330 Ом, R2 = 1K
5,05 В: R1 = 270 Ом, R2 = 820 Ом
5,10 В: R1 = 390 Ом, R2 = 1,2 кОм
5,11 В: R1 = 220 Ом, R2 = 680 Ом
5.14 В: R1 = 180 Ом, R2 = 560 Ом
5,17 В: R1 = 150 Ом, R2 = 470 Ом
5,24 В: R1 = 470 Ом, R2 = 1,5 кОм
5,30 В: R1 = 390 Ом, R2 = 1,2 кОм
5,52 В: R1 = 240 Ом, R2 = 820 Ом
5,80 В: R1 = 330 Ом, R2 = 1,2 К
5,88 В: R1 = 270 Ом, R2 = 1K
5,91 В: R1 = 220 Ом, R2 = 820 Ом
5,92 В: R1 = 150 Ом, R2 = 560 Ом
5,97 В: R1 = 180 Ом, R2 = 680 Ом
6,04 В: R1 = 470 Ом, R2 = 1,8 кОм
6,06 В: R1 = 390 Ом, R2 = 1,5 кОм
6,32 В: R1 = 390 Ом, R2 = 1,5 кОм
6,46 В : R1 = 240 Ом, R2 = 1K
6,81 В: R1 = 270 Ом, R2 = 1.2K
6,92 В: R1 = 150 Ом, R2 = 680 Ом
6,93 В: R1 = 330 Ом, R2 = 1,5 К
6,94 В: R1 = 180 Ом, R2 = 820 Ом
7,02 В: R1 = 390 Ом, R2 = 1,8 кОм
7,10 В : R1 = 470 Ом, R2 = 2,2 кОм
7,33 В: R1 = 390 Ом, R2 = 1,8 кОм
7,50 В: R1 = 240 Ом, R2 = 1,2 кОм
8,07 В: R1 = 330 Ом, R2 = 1,8 кОм
8,08 В: R1 = 150 Ом, R2 = 820 Ом
8,19 В: R1 = 270 Ом, R2 = 1,5 кОм
8,30 В: R1 = 390 Ом, R2 = 2,2 кОм
8,43 В: R1 = 470 Ом, R2 = 2,7 кОм
8,68 В: R1 = 390 Ом, R2 = 2,2 кОм
9,06 В: R1 = 240 Ом, R2 = 1,5 кОм
9.58 В: R1 = 330 Ом, R2 = 2,2 кОм
9,77 В: R1 = 220 Ом, R2 = 1,5 кОм
9,90 В: R1 = 390 Ом, R2 = 2,7 кОм
10,03 В: R1 = 470 Ом, R2 = 3,3 кОм
10,37 В: R1 = 390 Ом, R2 = 2,7 кОм
10,63 В: R1 = 240 Ом, R2 = 1,8 кОм
11,25 В: R1 = 150 Ом, R2 = 1,2 кОм
11,44 В: R1 = 270 Ом, R2 = 2,2 кОм
11,48 В: R1 = 330 Ом, R2 = 2,7 кОм
11,67 В: R1 = 180 Ом, R2 = 1,5 кОм
11,83 В: R1 = 390 Ом, R2 = 3,3 кОм
12,40 В: R1 = 390 Ом, R2 = 3,3 к
12,71 В: R1 = 240 Ом, R2 = 2,2 кОм
13,75 В: R1 = 330 Ом, R2 = 3,3 кОм
15.31 В: R1 = 240 Ом, R2 = 2,7 кОм
16,25 В: R1 = 150 Ом, R2 = 1,8 кОм
16,53 В: R1 = 270 Ом, R2 = 3,3 кОм
16,59 В: R1 = 220 Ом, R2 = 2,7 кОм
18,44 В: R1 = 240 Ом, R2 = 3,3 кОм
19,58 В: R1 = 150 Ом, R2 = 2,2 кОм
20,00 В: R1 = 220 Ом, R2 = 3,3 кОм
23,75 В: R1 = 150 Ом, R2 = 2,7 кОм
24,17 В: R1 = 180 Ом, R2 = 3,3 кОм
28,75 В: R1 = 150 Ом, R2 = 3,3 кОм
Например, вам необходимо 4,5 В от AA 1,5 В x 3 последовательно. Но у вас их нет. Как сделать? У вас только LM317 и много резисторов. Да, он может использовать это вместо этого.
Посмотрите на приведенный выше список для напряжения 4,5 В, мы можем использовать R1 = 150 Ом, R2 = 390 Ом.
Это просто, правда?
Калькулятор радиатора LM317
Какого размера достаточно радиатора?
Пока LM317 работает. Это так жарко. Хотя у него есть предохранитель от перегрева. Но нам он горячий не нужен. Всегда устанавливаем радиатор.
Кто-нибудь спросит меня. Сколько стоит использовать самый маленький радиатор? LM317 имеет максимальную температуру 50 ° C / Вт без радиатора.
Я нашел этот сайт хорошим с калькулятором радиатора LM317.
Радиатор LM317, какого размера?
Вы можете найти LM317 на Amazon здесь, если вам интересно.
Например, схема LM317
- Первый блок питания постоянного тока
Это мой первый блок питания, который я построил. Хотя очень старый, все еще использую более 20 лет. Почему это здорово? - Линейный селектор Регулятор источника питания
Выход напряжения 1 легко выбрать.5 В, 3 В, 4,5 В, 5 В, 6 В, 9 В при 1,5 А - Двойной источник питания постоянного тока 30 В
Это высокое напряжение (0-60 В) при 1,5 А и пусковое напряжение с нуля! отличная работа. - Great Источник питания постоянного тока
Высококачественный регулируемый регулятор напряжения 3A. Использовать LM317 и 2N3055 так просто и дешево. Отрегулируйте напряжение с шагом 3 В, 6 В, 9 В, 12 В. И в норме от 1,25В до 20В. - 4 схемы зарядного устройства свинцово-кислотных аккумуляторов
См. 4 схемы зарядного устройства свинцово-кислотных аккумуляторов LM317 для аккумуляторов 6, 12 и 24 В.С автоматической зарядкой и индикатором полной зарядки с использованием TL431. Легко построить. - Двойной источник питания 3 В, 5 В, 6 В, 9 В, 12,15 В
Двойная цепь питания, можно выбирать уровни напряжения 3 В, 5 В, 6 В, 9 В, 12,15 В при 1 А и -3 В, -5 В, -6 В , -9V, -12V, -15V при 1A, используйте LM317 (положительный) LM337 (отрицательный) […] - Замена батареи USB
Это схема понижающего преобразователя USB 5V в 1,5V. Когда мы используем дешевый MP3-плеер, в котором в качестве источника питания используется только одна батарея AA 1,5 В. - Регулятор 5 В с низким падением напряжения
Это схема регулятора с малым падением напряжения 5 В с использованием транзистора и светодиода, очень простая, минимальное входное напряжение составляет 6 В, поэтому на нем только 1 В, выход составляет 5 В 0,5 А - Зарядное устройство для гелевых аккумуляторов схема
Он может заряжать гелевые батареи любого размера и продлевать срок службы гелевых батарей. Пока цепь работает, светодиод показывает зарядку. - Зарядное устройство Nicad для аккумуляторов с использованием LM317T
Вот схема универсального зарядного устройства для никель-кадмиевых и никель-металлгидридных аккумуляторов.Он использует ток управления IC LM317T (Hot IC) менее 300 мА, размер батареи 2,4 В, 4,8 В, 9,6 В. Недорогая схема
ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ
Я всегда стараюсь сделать Electronics Learning Easy .
Стабилизатор тока регулируемый LM317
Регулируемый регулятор тока с тремя выходами LM317 обеспечивает нагрузку 100 мА. Диапазон выходного напряжения от 1,2 до 37 В. Устройство очень удобно в использовании и требует всего лишь пару внешних резисторов, обеспечивающих выходное напряжение.К тому же нестабильность производительности имеет лучшие параметры, чем у аналогичных моделей с фиксированным выходным напряжением.
Описание
LM317 — стабилизатор тока и напряжения, который работает даже при отключенном управляющем выходе ADJ. При нормальной работе устройство не требует подключения дополнительных конденсаторов. Исключение составляет ситуация, когда устройство находится на значительном удалении от источника питания первичного фильтра. В этом случае требуется входной шунтирующий конденсатор.
Выходной аналог позволяет улучшить показатели стабилизатора тока LM317. В результате увеличивается интенсивность переходных процессов и величина коэффициента сглаживания пульсаций. Такого оптимального показателя сложно добиться в других трехвыводных аналогах.
Назначение рассматриваемого устройства заключается не только в замене стабилизаторов с фиксированным показателем мощности, но и в широком спектре применений. Например, стабилизатор тока LM317 можно использовать в высоковольтных цепях.В этом случае индивидуальная система устройства влияет на разницу между входным и выходным напряжениями. Работа устройства в этом режиме может продолжаться неограниченно долго, пока разница между двумя показателями (входным и выходным напряжением) не превысит максимально допустимую точку.
Характеристики
Следует отметить, что стабилизатор тока LM317 удобен для создания простых регулируемых импульсных устройств. Их можно использовать в качестве прецизионных стабилизаторов, подключив постоянный резистор между двумя выходами.
Создание вторичных источников питания, работающих при КЗ, стало возможным благодаря оптимизации показателя напряжения на управляющем выходе системы. Программа держит его на входе в пределах 1,2 вольт, что для большинства нагрузок очень мало. Стабилизатор тока и напряжения LM317 изготовлен на штатном транзисторном сердечнике ТО-92, диапазон рабочих температур от -25 до +125 градусов Цельсия.
Характеристики
Рассматриваемое устройство хорошо подходит для создания простых управляемых блоков и источников питания.В этом случае параметры можно откорректировать и установить в плане нагрузки.
Регулируемый регулятор тока на LM317 имеет следующие технические характеристики:
- Диапазон выходного напряжения от 1,2 до 37 вольт.
- Максимальный ток нагрузки 1,5 А.
- Имеется защита от возможного короткого замыкания.
- Предохранители цепи предусмотрены на случай перегрева.
- Погрешность выходного напряжения не более 0,1%.
- Корпус интегральной микросхемы — типа ТО-220, ТО-3 или Д2ПАК.
Схема стабилизатора тока на LM317
Чаще всего применяемый прибор применяется в блоках питания для светодиодов. Самая простая схема, в которой задействованы резистор и микросхема, представлена ниже.
Входное напряжение подается от источника, а главный контакт подключен к выходному аналогу с помощью резистора. Далее происходит агрегация с анодом светодиода. В наиболее популярной схеме стабилизатора тока LM317, описание которой дано выше, используется следующая формула: R = 1/25 / I.Здесь I — выходной ток устройства, его диапазон находится в пределах 0,01-1,5 А. Сопротивление резистора допускается типоразмером 0,8-120 Ом. Мощность, рассеиваемая резистором, рассчитывается по формуле: R = IxR (2).
Полученная информация округлена до большого размера. Постоянные резисторы производятся с небольшим разбросом конечных сопротивлений. Это влияет на получение рассчитываемых показателей. Для решения этой проблемы в схему подключается дополнительный стабилизирующий резистор необходимой мощности.
Достоинства и недостатки
Как показывает практика, мощность резистора при использовании рассеянной площади лучше увеличить на 30%, а в малоконвекционном отсеке — на 50%. Помимо ряда достоинств, светодиодный стабилизатор тока LM317 имеет ряд недостатков. Среди них:
- Небольшой КПД.
- Необходимость отвода тепла от системы.
- Стабилизация тока более 20% от предельного значения.
Избежать проблем при использовании прибора поможет использование импульсных стабилизаторов.
Стоит отметить, что при необходимости подключения мощного светодиодного элемента мощностью 700 миллиампер потребуется рассчитать значения по формуле: R = 1, 25/0, 7 = 1,78 Ом. Рассеиваемая мощность соответственно составит 0,88 Вт.
Возможности подключения
Расчет стабилизатора тока LM317 основан на нескольких методах подключения.Ниже представлены основные схемы:
- При использовании мощного транзистора типа Q1 можно получить ток 100 мА без радиатора микросборки. Этого достаточно для управления транзистором. Защитные диоды D1 и D2 используются в качестве защиты от чрезмерного заряда, а параллельный электролитический конденсатор выполняет функцию уменьшения посторонних шумов. При использовании транзистора Q1 максимальная выходная мощность устройства составляет 125 Вт.
- В другой схеме подача тока ограничена и светодиод работает стабильно.Специальный драйвер позволяет питать элементы от 0,2 Вт до 25 вольт.
- В следующей конструкции трансформатор, понижающий напряжение от переменной сети с 220 Вт до 25 Вт. С помощью диодного моста переменное напряжение преобразуется в постоянный показатель. При этом все неисправности сглаживаются конденсатором типа С1, что обеспечивает стабильную работу регулятора напряжения.
- Следующая схема подключения считается одной из самых простых.Напряжение поступает со вторичной обмотки трансформатора на 24 вольта, выпрямляется при прохождении через фильтр, а на выходе выдается постоянное значение 80 вольт. Это позволяет избежать превышения максимального порога напряжения.
Стоит отметить, что и простое зарядное устройство можно собрать на базе микросхемы рассматриваемого устройства. Получается стандартный линейный регулятор с регулируемым выходным напряжением. Микросборка устройства может выполнять аналогичную роль.
Аналоги
Мощный стабилизатор на LM317 имеет ряд аналогов на внутреннем и внешнем рынках.Наиболее известные из них:
- Отечественные модификации КР142 ЭН12 и КР115 Эх2.
- Модель GL317.
- Варианты SG31 и SG317.
- UC317T.
- ЭКГ 1900.
- СП900.
- LM31MDT.
Обзоры
Судя по отзывам пользователей, рассматриваемый стабилизатор хорошо справляется со своими функциями. Особенно если это касается агрегатирования со светодиодными элементами напряжением до 50 вольт. Упрощает обслуживание и эксплуатацию устройства, возможность его настройки и подключения в различных схемах.Проблема с этим продуктом в том, что диапазон выходного напряжения и напряжения питания для него ограничен максимальными стандартами.
Заключение
Регулируемый интегральный регулятор LM317 оптимально подходит для проектирования простых источников питания, включая блоки и узлы для электронного оборудования, оснащенных различными выходными параметрами. Это могут быть устройства с заданным током и напряжением или с регулируемыми заданными характеристиками. Для облегчения расчета в инструкции предусмотрен специальный калькулятор стабилизатора, позволяющий выбрать нужную схему и определить возможность адаптации.
.
Добавить комментарий