Тиристорный регулятор мощности схема: Тиристорный регулятор мощности своими руками: схемы

Схема

Содержание

Схема тиристорного регулятора мощности без помех

Для того, чтобы получить качественную и красивую пайку требуется правильно подобрать мощность паяльника и обеспечить определенную температуру его жала в зависимости от марки применяемого припоя. Предлагаю несколько схем самодельных тиристорных регуляторов температуры нагрева паяльника, которые с успехом заменят многие промышленные несравнимые по цене и сложности.

Внимание, нижеприведенные тиристорные схемы регуляторов температуры гальванически не развязаны с эклектической сетью и прикосновение к токоведущим элементам схемы может привести к поражению электрическим током!

Для регулировки температуры жала паяльника применяют паяльные станции, в которых в ручном или автоматическом режиме поддерживается оптимальная температура жала паяльника. Доступность паяльной станции для домашнего мастера ограничена высокой ценой. Для себя я вопрос по регулированию температуры решил, разработав и изготовив регулятор с ручной плавной регулировкой температуры. Схему можно доработать для автоматического поддержания температуры, но я не вижу в этом смысла, да и практика показала, вполне достаточно ручной регулировки, так как напряжение в сети стабильно и температура в помещении тоже.

Классическая тиристорная схема регулятора

Классическая тиристорная схема регулятора мощности паяльника не соответствовала одному из главных моих требований, отсутствию излучающих помех в питающую сеть и эфир. А для радиолюбителя такие помехи делают невозможным полноценно заниматься любимым делом. Если схему дополнить фильтром, то конструкция получится громоздкой. Но для многих случаев использования такая схема тиристорного регулятора может с успехом применяться, например, для регулировки яркости свечения ламп накаливания и нагревательных приборов мощностью 20-60вт. Поэтому я и решил представить эту схему.

Для того, что понять как работает схема, остановлюсь подробнее на принципе работы тиристора. Тиристор, это полупроводниковый прибор, который либо открыт, либо закрыт. чтобы его открыть, нужно на управляющий электрод подать положительное напряжение 2-5 В в зависимости от типа тиристора, относительно катода (на схеме обозначен k). После того, как тиристор открылся (сопротивление между анодом и катодом станет равно 0), закрыть его через управляющий электрод не возможно. Тиристор будет открыт до тех пор, пока напряжение между его анодом и катодом (на схеме обозначены a и k) не станет близким к нулевому значению. Вот так все просто.

Работает схема классического регулятора следующим образом. Сетевое напряжение переменного тока подается через нагрузку (лампочку накаливания или обмотку паяльника), на мостовую схему выпрямителя, выполненную на диодах VD1-VD4. Диодный мост преобразует переменное напряжение в постоянное, изменяющееся по синусоидальному закону (диаграмма 1). При нахождении среднего вывода резистора R1 в крайнем левом положении, его сопротивление равно 0 и когда напряжение в сети начинает увеличиваться, конденсатор С1 начинает заряжаться. Когда С1 зарядится до напряжения 2-5 В, через R2 ток пойдет на управляющий электрод VS1. Тиристор откроется, закоротит диодный мост и через нагрузку пойдет максимальный ток (верхняя диаграмма).

При повороте ручки переменного резистора R1, его сопротивление увеличится, ток заряда конденсатора С1 уменьшится и надо будет больше времени, чтобы напряжение на нем достигло 2-5 В, по этому тиристор уже откроется не сразу, а спустя некоторое время. Чем больше будет величина R1, тем больше будет время заряда С1, тиристор будет открываться позднее и получаемая мощность нагрузкой будет пропорционально меньше. Таким образом, вращением ручки переменного резистора, осуществляется управление температурой нагрева паяльника или яркостью свечения лампочки накаливания.

Выше приведена классическая схема тиристорного регулятора выполненная на тиристоре КУ202Н. Так как для управления этим тиристором нужен больший ток (по паспорту 100 мА, реальный около 20 мА), то уменьшены номиналы резисторов R1 и R2, а R3 исключен, а величина электролитического конденсатора увеличена. При повторении схемы может возникнуть необходимость увеличения номинала конденсатора С1 до 20 мкФ.

Простейшая тиристорная схема регулятора

Вот еще одна самая простая схема тиристорного регулятора мощности, упрощенный вариант классического регулятора. Количество деталей сведено к минимуму. Вместо четырех диодов VD1-VD4 используется один VD1. Принцип работы ее такой же, как и классической схемы. Отличаются схемы только тем, что регулировка в данной схеме регулятора температуры происходит только по положительному периоду сети, а отрицательный период проходи через VD1 без изменений, поэтому мощность можно регулировать только в диапазоне от 50 до 100%. Для регулировки температуры нагрева жала паяльника большего и не требуется. Если диод VD1 исключить, то диапазон регулировки мощности станет от 0 до 50%.

Если в разрыв цепи от R1 и R2 добавить динистор, например КН102А, то электролитический конденсатор С1 можно будет заменить на обыкновенный емкостью 0,1 mF. Тиристоры для выше приведенных схем подойдут, КУ103В, КУ201К (Л), КУ202К (Л, М, Н), рассчитанные на прямое напряжение более 300 В. Диоды тоже практически любые, рассчитанные на обратное напряжение не менее 300 В.

Приведенные выше схемы тиристорных регуляторов мощности с успехом можно применять для регулирования яркости свечения светильников, в которых установлены лампочки накаливания. Регулировать яркость свечения светильников, в которых установлены энергосберегающие или светодиодные лампочками, не получится, так как в таких лампочках вмонтированы электронные схемы, и регулятор просто будет нарушать их нормальную работу. Лампочки будут светить на полную мощность или мигать и это может даже привести к преждевременному выходу их из строя.

Схемы можно применять для регулировки при питающем напряжении в сети переменного тока 36 В или 24 В. Нужно только на порядок уменьшить номиналы резисторов и применить тиристор, соответствующий нагрузке. Так паяльник мощностью 40 Вт при напряжении 36 В будет потреблять ток 1,1 А.

Тиристорная схема регулятора не излучающая помехи

Главное отличие схемы представляемого регулятора мощности паяльника от выше представленных, это полное отсутствие радиопомех в электрическую сеть, так как все переходные процессы происходят во время, когда напряжение в питающей сети равно нулю.

Приступая к разработке регулятора температуры для паяльника, я исходил из следующих соображений. Схема должна быть простой, легко повторяемой, комплектующие должны быть дешевыми и доступными, высокая надежность, габариты минимальными, КПД близок к 100%, отсутствие излучающих помех, возможность модернизации.

Работает схема регулятора температуры следующим образом. Напряжение переменного тока от питающей сети выпрямляется диодным мостом VD1-VD4. Из синусоидального сигнала получается постоянное напряжение, изменяющееся по амплитуде как половина синусоиды с частотой 100 Гц (диаграмма 1). Далее ток проходит через ограничительный резистор R1 на стабилитрон VD6, где напряжение ограничивается по амплитуде до 9 В, и имеет уже другую форму (диаграмма 2). Полученные импульсы заряжают через диод VD5 электролитический конденсатор С1, создавая питающее напряжение около 9 В для микросхем DD1 и DD2. R2 выполняет защитную функцию, ограничивая максимально возможное напряжение на VD5 и VD6 до 22 В, и обеспечивает формирование тактового импульса для работы схемы. С R1 сформированный сигнал подается еще на 5 и 6 выводы элемента 2ИЛИ-НЕ логической цифровой микросхемы DD1.1, которая инвертирует поступающий сигнал и преобразовывает в короткие импульсы прямоугольной формы (диаграмма 3). С 4 вывода DD1 импульсы поступают на 8 вывод D триггера DD2.1, работающего в режиме RS триггера. DD2.1 тоже, как и DD1.1 выполняет функцию инвертирования и формирования сигнала (диаграмма 4).

Обратите внимание, что сигналы на диаграмме 2 и 4 практически одинаковые, и казалось, что можно сигнал с R1 подавать прямо на 5 вывод DD2.1. Но исследования показали, что в сигнале после R1 находится много приходящих из питающей сети помех и без двойного формирования схема работала не стабильно. А ставить дополнительно LC фильтры, когда есть свободные логические элементы не целесообразно.

На триггере DD2.2 собрана схема управления регулятора температуры паяльника и работает она следующим образом. На вывод 3 DD2.2 с вывода 13 DD2.1 поступают прямоугольные импульсы, которые положительным фронтом перезаписывают на выводе 1 DD2.2 уровень, который в данный момент присутствует на D входе микросхемы (вывод 5). На выводе 2 сигнал противоположного уровня. Рассмотрим работу DD2.2 подробно. Допустим на выводе 2, логическая единица. Через резисторы R4, R5 конденсатор С2 зарядится до напряжения питания. При поступлении первого же импульса с положительным перепадом на выводе 2 появится 0 и конденсатор С2 через диод VD7 быстро разрядится. Следующий положительный перепад на выводе 3 установит на выводе 2 логическую единицу и через резисторы R4, R5 конденсатор С2 начнет заряжаться.

Время заряда определяется постоянной времени R5 и С2. Чем величина R5 больше, тем дольше будет заряжаться С2. Пока С2 не зарядится до половины питающего напряжения на выводе 5 будет логический ноль и положительные перепады импульсов на входе 3 не будут изменять логический уровень на выводе 2. Как только конденсатор зарядится, процесс повторится.

Таким образом, на выходы DD2.2 будет проходить только заданное резистором R5 количество импульсов из питающей сети, и самое главное, перепады этих импульсов будут происходить, во время перехода напряжения в питающей сети через ноль. Отсюда и отсутствие помех от работы регулятора температуры.

С вывода 1 микросхемы DD2.2 импульсы подаются на инвертор DD1.2, который служит для исключения влияния тиристора VS1 на работу DD2.2. Резистор R6 ограничивает ток управления тиристором VS1. Когда на управляющий электрод VS1 подается положительный потенциал, тиристор открывается и на паяльник подается напряжение. Регулятор позволяет регулировать мощность паяльника от 50 до 99%. Хотя резистор R5 переменный, регулировка за счет работы DD2.2 нагрева паяльника осуществляется ступенчато. При R5 равному нулю, подается 50% мощности (диаграмма 5), при повороте на некоторый угол уже 66% (диаграмма 6), далее уже 75% (диаграмма 7). Таким образом, чем ближе к расчетной мощности паяльника, тем плавне работает регулировка, что позволяет легко отрегулировать температуру жала паяльника. Например, паяльник 40 Вт, можно будет настроить на мощность от 20 до 40 Вт.

Конструкция и детали регулятора температуры

Все детали тиристорного регулятора температуры размещены на печатной плате из стеклотекстолита. Так как схема не имеет гальванической развязки с электрической сетью, плата помещена в небольшой пластмассовый корпус бывшего адаптера с электрической вилкой. На ось переменного резистора R5 надета ручка из пластмассы. Вокруг ручки на корпусе регулятора, для удобства регулирования степени нагрева паяльника, нанесена шкала с условными цифрами.

Шнур, идущий от паяльника, припаян непосредственно к печатной плате. Можно сделать подключение паяльника разъемным, тогда будет возможность подключать к регулятору температуры дру

Регулятор мощности тиристорный, схемы регуляторов напряжения на тиристорах

В статье стоит раскрыть тему того, как совершает работу тиристорный регулятор напряжения, схему которого можно более подробно осмотреть в интернете.

В повседневной жизни в большинстве случаев может развиться особая необходимость в регулировании общей мощности бытовых приборов, к примеру, электроплит, паяльника, кипятильника, а также ТЭНов, на транспорте — оборотов двигателя и прочего. В этом случае на помощь нам придёт простая и радиолюбительская конструкция — это особый регулятор мощности на тиристоре.

Создать такое устройство не составит особого труда, оно может стать тем первым самодельным прибором, который будет выполнять функцию регулировки температуры жала в паяльнике у любого начинающего радиолюбителя. Нужно отметить и тот факт, что готовые паяльники на станции с общим контролем температуры и остальными особенными функциями стоят намного больше, чем самые простые модели паяльников. Минимальное число деталей в конструкции поможет собрать несложный тиристорный регулятор мощности с навесным монтажом.

Следует отметить, что навесной тип монтажа — это вариант осуществления сборки радиоэлектронных компонентов без использования при этом специальной печатной платы, а при качественном навыке он помогает быстро собрать электронные устройства со средней сложностью производства.

Также вы можете заказать электронный тип конструктора тиристорного типа регулятора, а тот, кто хочет полностью разобраться во всём самостоятельно, должен изучить некоторые схемы и принцип функционирования прибора.

Между прочим, такое устройство является регулятором общей мощности. Такое устройство может быть применимо для управления общей мощностью либо управлением числа оборотов. Но для начала нужно полностью разобраться в общем принципе функционирования такого устройства, ведь это поможет понять, на какую нагрузку стоит рассчитывать при использовании такого регулятора.

Как совершает свою работу тиристор?

Тиристор — это управляемый полупроводниковый прибор, который способен быстро провести ток в одну сторону. Слово управляемый обозначает тиристор не просто так, так как с его помощью, в отличие от диода, который также проводит общий ток лишь к одному полюсу, можно выбирать отдельный момент, когда тиристор начнёт процесс проведения тока.

Тиристор обладает сразу тремя выводами тока:

  1. Катод.
  2. Анод.
  3. Управляемый электрод.

Чтобы осуществить течение тока через такой тиристор, стоит выполнить следующие условия: деталь обязана в обязательном порядке расположена на самой цепи, которая будет находиться под общим напряжением, на управляющую часть электрода должен быть подан нужный кратковременный импульс. В отличие от транзистора, управление таким тиристор не будет требовать от пользователя удержания управляющего сигнала.

Но в этом все трудности использования такого прибора заканчиваться не будут: тиристор можно легко закрыть, если прервать поступление в него тока по цепи, либо создав обратное напряжение анод — катод. Это будет значить то, что применение тиристора в цепях постоянного тока считается довольно специфичным и в большинстве случаев полностью неблагоразумно, а в цепях переменного, к примеру, в таком устройстве как тиристорный регулятор, схема создана таким методом, чтобы было полностью обеспечено условие для закрытия прибора. Любая данная полуволна будет полностью закрывать соответствующий отдел тиристора.

Вам, скорее всего, сложно понять схему его строения. Но, не нужно расстраиваться — ниже будет более подробно описан процесс функционирования такого устройства.

Область использования тиристорных устройств

В каких целях можно использовать такое устройство, как регулятор мощности тиристор. Такой прибор позволяет более эффективно регулировать мощность нагревательных приборов, то есть осуществлять нагрузку на активные места. Во время работы с высокоиндуктивной нагрузкой тиристоры способны просто не закрыться, что может приводить к выходу такого оборудования из нормальной работы.

Можно ли самостоятельно осуществить регулирование оборотов в двигателе прибора?

Многие из пользователей, которые видели или даже на практике применяли дрели, углошлифовальные машины, которые по-другому называются болгарками, и другими электроинструментами. Они могли легко увидеть, что число оборотов в таких изделиях зависит, главным образом, от общей глубины нажатия на кнопку-курок в устройстве. Такой элемент как раз и будет находиться в тиристорном регуляторе мощности (общая схема такого прибора указана в интернете), при помощи которого и происходит изменение общего числа оборотов.

Стоит обратить своё внимание на то, что регулятор не может самостоятельно менять свои обороты в асинхронных двигателях. Таким образом, напряжение будет полноценно регулироваться на коллекторном двигателе, который оборудован специальным щелочным узлом.

Как работает такое устройство?

Описанные ниже характеристики будет соответствовать большинству схем.

  1. Тиристорный регулятор общей мощности, принцип и особенности работы которого будут основаны на фазовости управления величиной напряжения, изменяет и общую мощность в приборах. Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Выше, при описании принципа функционирования работы тиристора было сказано о том, что любой тиристор включает в себя функционирование лишь в одном направлении, то есть осуществляет управление своей полуволной от синусоидов. Что же это может означать?
  2. Если при помощи такого прибора, как тиристор со временем подключать нагрузку в строго определённое время, то показатель действующего напряжения будет довольно низким, так как половина от напряжения (действующее значение, которое и воспроизводит нагрузку) будет намного меньше, чем световое. Такое явление можно рассмотреть на графиках движения.

При этом происходит определённая область, которая будет находиться под особым напряжением. Когда воздействие положительной полуволны окончится и начнётся новый период движения с отрицательно полуволной, то один из таких тиристоров начнёт закрываться, и в это же время откроется новый тиристор.

Вместо слов положительная и отрицательная волна стоит использовать первая и вторая (полуволна).

В то время как на схему начинает своё воздействие первая полуволна, происходит особая зарядка ёмкости С1, а также С2. Скорость их полной зарядки будет ограничена потенциометром R 5. Такой элемент будет полностью переменным, и при его помощи будет задаваться выходное напряжение. В тот момент, когда на поверхности конденсатора С1 появится нужное для открытия диристора VS 3 напряжения, весь динистор откроется, а через него начнёт проходить ток, при помощи которого откроется тиристор VS 1.

Во время пробоя динистра и образуется точка на общем графике. После того как значение напряжение перейдёт нулевую отметку, и схема будет находиться под воздействием второй полуволны, тиристор VS 1, закроется, а процесс будет повторяться, только уже для второго динистра, тиристора, а также конденсатора. Резисторы R 3 и R 3 нужны для ограничения общего тока управления, а R 1 и R 2 — для процесса термостабилизации всей схемы.

Принцип действия второй схемы будет точно такой же, но в ней будет происходить управление лишь одной из полуволн переменного тока. После того, как пользователь будет понимать принцип работы устройства и его общую схему строение, он сможет понять как собрать или же в случае необходимости починить тиристорный регулятор мощности самостоятельно.

Тиристорный регулятор напряжения своими руками

Нельзя сказать о том, что данная схема не обеспечит гальваническую развязку от источника питания, поэтому есть определённая опасность поражения электрическими разрядами тока. Это будет означать то, что не нужно касаться руками элементов регулятора.

Следует спроектировать конструкцию вашего прибора таким образом, чтобы по возможности вы смогли спрятать её в регулируемом устройстве, а также найти более свободное место внутри корпуса. Если регулируемое устройство будет расположено на стационарном уровне, то имеет определённой смысл осуществить его подключение через выключатель с особым регулятором уровня яркости света. Такое решение сможет частично обезопасить человека от поражения током, а также избавит его от необходимости поиска подходящего корпуса у прибора, обладает привлекательным внешним строением, а также создано с использованием промышленных технологий.

Способы регулирования фазового напряжения в сети

  1. Есть сразу несколько способов осуществления регуляции переменного напряжения в тиристорах: можно совершать пропуск или же запрещать выход на регуляторе целых четыре полупериода (либо периода) переменного напряжения. Можно включать не в начале совершения полупериода сетевого напряжения, а с совершением некоторой задержки. В течение данного времени напряжение на выходе из регулятора будет равняется отметки нуль, а общая мощность не будет передаваться на выход устройства. Вторую часть полупериода тиристор начнёт проводить ток и на выходе регулятора будет возникать особое входное напряжение.
  2. Время задержки в большинстве случаев именуют углом открывания тиристора, так как во время нулевого значения угла почти всё напряжение от входа будет переходить к выходу, только падение на открытой области тиристора начнёт теряться. Во время увеличения общего тиристорного угла регулятор напряжения будет значительно снижать выходной параметр напряжения.
  3. Регулировочная характеристика у такого прибора во время своей работы, во время активной нагрузки осуществляется особо интенсивно. При угле равному 90 градусов (электрических) на выходе из разъёма будет половина входного напряжения, а при общем угле в 180 электрических градусов на выходе будет показатель нуль.

На основе принципов и особенностей фазового регулирования напряжения можно построить определённые схемы регулирования, стабилизации, а в отдельных случаях с плавного пуска. Для осуществления более плавного пуска напряжение стоит со временем повышать от нуля до максимального показателя. Таким образом, во время открывания тиристора максимальный показатель значения должен изменяться до отметки нуль.

Схемы на тиристорах

Регулировать общую мощность паяльника можно довольно просто, если использовать для этого аналоговые или же цифровые паяльные станции. Последние довольно дорогие совершать использование, и собрать их, не имея особого опыта, довольно сложно. В то время как аналоговые приборы (считаются по своей сути регуляторами общей мощности) не составит труда создать самостоятельно.

Довольно простая схема прибора, которая поможет регулировать показатель мощности на паяльнике.

  1. VD — КД209 (либо близкие по его общим характеристикам).
  2. R 1 — сопротивление с особым номиналом в 15 кОм.
  3. R 2 — это резистор, который обладает особым показателем переменного тока около 30 кОм.
  4. Rn — это общая нагрузка (в этом случае вместо неё будет использован особый маятник).

Такое устройство для регуляции может контролировать не только положительный полупериод, по этой причине мощность паяльника будет в несколько раз меньше номинальной. Управляется такой тиристор с помощью специальной цепи, которая несёт в себе два сопротивления, а также ёмкость. Время зарядки конденсата (оно будет регулироваться особым сопротивлением R2) влияет на длительность открытия такого тиристора.

схема, принцип работы и применение

В статье рассказывается о том, как работает тиристорный регулятор мощности, схема которого будет представлена ниже

В повседневной жизни очень часто возникает необходимость регулирования мощности бытовых приборов, например электроплиты, паяльника, кипятильников и ТЭНов, на транспорте — оборотов двигателя и т.д. На помощь приходит простейшая радиолюбительская конструкция – регулятор мощности на тиристоре. Собрать такое устройство не составит труда, оно может стать тем самым первым самодельным прибором, который будет выполнять функцию регулировки температуры жала паяльника начинающего радиолюбителя. Стоит отметить, что готовые паяльные станции с контролем температуры и прочими приятными функциями стоят на порядок дороже простого паяльника. Минимальный набор деталей позволяет собрать простой тиристорный регулятор мощности навесным монтажом.

К сведению, навесной монтаж — это способ сборки радиоэлектронных компонентов без применения печатной платы, а при хорошем навыке он позволяет быстро собрать электронные устройства средней сложности.

Вы также можете заказать электронный конструктор тиристорного регулятора, а для тех, кто хочет разобраться во всём самостоятельно, ниже будет представлена схема и объяснён принцип работы.

Область применения тиристорных регуляторов

Между прочим, это однофазный тиристорный регулятор мощности. Такой прибор может быть использован для управления мощностью или количеством оборотов. Однако для начала следует разобраться в принципе работы тиристора, ведь это позволит нам понять, на какую нагрузку лучше использовать такой регулятор.

Как работает тиристор?

Тиристор – это управляемый полупроводниковый прибор, способный проводить ток в одном направлении. Слово «управляемый» употреблено неспроста, поскольку с его помощью, в отличие от диода, который тоже проводит ток только к одному полюсу, можно выбирать момент, когда тиристор начнет проводить ток. Тиристор имеет три вывода:

  • Анод.
  • Катод.
  • Управляющий электрод.

Для того чтобы ток начал течь через тиристор, необходимо выполнить следующие условия: деталь должна стоять в цепи, находящейся под напряжением, на управляющий электрод должен быть подан кратковременный импульс. В отличие от транзистора, управление тиристором не требует удержания управляющего сигнала. На этом нюансы не заканчиваются: тиристор можно закрыть, лишь прервав ток в цепи, или сформировав обратное напряжение анод — катод. Это значит, что использование тиристора в цепях постоянного тока весьма специфично и часто неблагоразумно, а вот цепях переменного, например в таком приборе как тиристорный регулятор мощности, схема построена таким образом, что обеспечено условие для закрытия. Каждая из полуволн будет закрывать соответствующий тиристор.

Вам, скорее всего, не всё понятно? Не стоит отчаиваться — ниже будет подробно описан процесс работы готового устройства.

Область применения тиристорных регуляторов

В каких цепях эффективно использовать тиристорный регулятор мощности? Схема позволяет отлично регулировать мощность нагревательных приборов, то есть воздействовать на активную нагрузку. При работе с высокоиндуктивной нагрузкой тиристоры могут просто не закрыться, что может привести к выходу регулятора из строя.

Я думаю, многие из читателей видели или пользовались дрелями, углошлифовальными машинами, которые в народе именуют «болгарками», и прочим электроинструментом. Вы могли заметить, что количество оборотов зависит от глубины нажатия на кнопку-курок прибора. Вот в этот элемент как раз и встроен такой тиристорный регулятор мощности (схема которого приведена ниже), с помощью которого осуществляется изменение количества оборотов.

Обратите внимание! Тиристорный регулятор не может изменять обороты асинхронных двигателей. Таким образом, напряжение регулируется на коллекторных двигателях, оборудованных щёточным узлом.

Типовая схема для того, чтобы собрать тиристорный регулятор мощности своими руками изображена на рисунке ниже.

Выходное напряжение у данной схемы от 15 до 215 вольт, в случае применения указанных тиристоров, установленных на теплоотводах, мощность составляет порядка 1 кВт. Кстати выключатель с регулятором яркости света сделан по подобной схеме.

Если у вас нет необходимости полной регулировки напряжения и достаточно получать на выходе от 110 до 220 вольт, воспользуйтесь этой схемой, которая показывает однополупериодный регулятор мощности на тиристоре.

Как это работает?

Описанная ниже информация справедлива для большинства схем. Буквенные обозначения будут браться в соответствии первой схемы тиристорного регулятора

Тиристорный регулятор мощности, принцип работы которого основан на фазовом управлении величиной напряжения, изменяет и мощность. Данный принцип заключается в том, что в нормальных условиях на нагрузку действует переменное напряжение бытовой сети, изменяющееся по синусоидальному закону. Выше, при описании принципа работы тиристора, было сказано, что каждый тиристор работает в одном направлении, то есть управляет своей полуволной от синусоиды. Что это значит?

Если с помощью тиристора периодически подключать нагрузку в строго определенный момент, величина действующего напряжения будет ниже, поскольку часть напряжения (действующая величина, которая «попадёт» на нагрузку) будет меньше, чем сетевое. Данное явление проиллюстрировано на графике.

Заштрихованная область – это и есть область напряжения, которое оказалось под нагрузкой. Буквой «а» на горизонтальной оси обозначен момент открытия тиристора. Когда положительная полуволна закончится и начнется период с отрицательной полуволной, один из тиристоров закрывается, и в тот же момент открывается второй тиристор.

Разберемся, как работает конкретно наш тиристорный регулятор мощности

Схема первая

Оговорим заранее, что вместо слов «положительная» и «отрицательная» будут использованы «первая» и «вторая» (полуволна).

Итак, когда на нашу схему начинает действовать первая полуволна, начинают заряжаться ёмкости C1 и C2. Скорость их заряда ограничена потенциометром R5. данный элемент является переменным, и с его помощью задаётся выходное напряжение. Когда на конденсаторе C1 появляется необходимое для открытия динистора VS3 напряжение, динистор открывается, через него поступает ток, с помощью которого будет открыт тиристор VS1. Момент пробоя динистора и есть точка «а» на графике, представленном в предыдущем разделе статьи. Когда значение напряжения переходит через ноль и схема оказывается под второй полуволной, тиристор VS1 закрывается, и процесс повторяется заново, только для второго динистора, тиристора и конденсатора. Резисторы R3 и R3 служат для ограничения тока управления, а R1 и R2 — для термостабилизации схемы.

Принцип работы второй схемы аналогичен, но в ней идёт управление только одной из полуволн переменного напряжения. Теперь, зная принцип работы и схему, вы можете собрать или починить тиристорный регулятор мощности своими руками.

Применение регулятора в быту и техника безопасности

Нельзя не сказать о том, что данная схема не обеспечивает гальванической развязки от сети, поэтому существует опасность поражения электрическим током. Это значит, что не стоит касаться руками элементов регулятора. Необходимо использовать изолированный корпус. Следует проектировать конструкцию вашего прибора так, чтобы по возможности вы могли спрятать её в регулируемом устройстве, найти свободное место в корпусе. Если регулируемый прибор располагается стационарно, то вообще имеет смысл подключить его через выключатель с регулятором яркости света. Такое решение частично обезопасит от поражения током, избавит от необходимости поиска подходящего корпуса, имеет привлекательный внешний вид и изготовлено промышленным методом.

Тиристорный регулятор мощности | Радиобездна

Друзья, приветствую вас! Сегодня я хочу рассказать о самой распространенной самоделки радиолюбителей. Речь пойдет о тиристорном регуляторе мощности.Благодаря способности тиристора мгновенно открываться и закрываться, его с успехом применяют в различных самоделках. При этом он обладает низким тепловыделением. Схема тиристорного регулятора мощности достаточно известна, но она имеет отличительную особенность от подобных схем. Схема построена таким образом, что при первоначальном включении устройства в сеть отсутствует скачок тока через тиристор, благодаря чему через нагрузку не протекает опасный ток.

Ранее я рассказывал о регуляторе температуры для паяльника, в котором в качестве регулирующего устройства используется тиристор. Данный регулятор может управлять нагрузкой мощностью 2 киловатта. Если силовые диоды и тиристор заменить на более мощные аналоги, то нагрузку можно увеличить в несколько раз. И можно будет использовать этот регулятор мощности для электрического тэна. Я же использую данную самоделку для пылесоса.

Схема регулятора мощности на тиристоре

Сама схема проста до безобразия. Я думаю, что не стоит объяснять принцип её работы:

Детали устройства:

  • Диоды; КД 202Р, четыре выпрямительных диода на ток не меньше 5 ампер
  • Тиристор; КУ 202Н, или другой с током не меньше 10 ампер
  • Транзистор; КТ 117Б
  • Резистор переменный; 10 Ком, один
  • Резистор подстроечный; 1 Ком, один
  • Резисторы постоянные; 39 Ком, мощностью два ватта, два штуки
  •  Стабилитрон: Д 814Д, один
  • Резисторы постоянные; 1,5 Ком, 300 Ом, 100 Ком
  • Конденсаторы; 0,047 Мк, 0,47 Мк
  • Предохранитель; 10 А, один

Тиристорный регулятор мощности своими руками

Готовое устройство, собранное по этой схеме выглядит вот так:

Так как деталей в схеме используется не очень много, можно применить навесной монтаж. Я же использовал печатный:

Регулятор мощности собранный по этой схеме очень надежен. Сначала этот тиристорный регулятор использовался для вытяжного вентилятора. Эту схему я реализовал около 10 лет назад. Первоначально я не использовал радиаторы охлаждения, так как ток потребления вентилятора очень мал. Затем я стал использовать эту электронную самоделку для пылесоса мощностью 1600 ватт. Без радиаторов силовые детали нагревались значительно, рано или поздно они вышли бы из строя. Но и без радиаторов это устройство проработало целых 10 лет. Пока не пробило тиристор. Первоначально я использовал тиристор марки ТС-10:

Теперь я решил поставить теплоотводы. Не забываем нанести тонкий слой теплопроводящей пасты КПТ-8 на тиристор и 4 диода:

Если у вас не окажется однопереходного транзистора КТ117Б:

то его можно заменить двумя биполярными собранными по схеме:

Сам я такую замену не производил, но должно получиться.

По данной схеме в нагрузку поступает постоянный ток. Это не критично, если нагрузка активная. Например: лампы накаливания, нагревательные тэны, паяльник, пылесос, электродрель и другие устройства, имеющие коллектор и щетки. Если же вы планируете, данный регулятор использовать для реактивной нагрузки, например электродвигателя вентилятора, то нагрузку стоит включить перед диодным мостом,  как это показано на схеме:

Резистором R7 регулируют мощность на нагрузке:

а резистором R4 устанавливают границы интервала регулирования:

При таком положении движка резистора на лампочку приходит  80 вольт:

Внимание! Будьте внимательны, эта самоделка не имеет трансформатора, поэтому некоторые радиодетали  могут находиться под высоким потенциалом сети. Будьте осторожны при настройке регулятора мощности.

Обычно тиристор не открывается из-за малости напряжение на нём и скоротечности процесса, а если и откроется, то будет закрыт при первом же переходе напряжения сети через 0. Таким образом, использование однопереходного транзистора решает задачу принудительной разрядки накопительного конденсатора, в конце каждого полупериода питающей сети.

Собранное устройство я поместил в старый ненужный корпус от трансляционного радио. Переменный резистор R7 я установил на штатное место. Осталось поставить на него ручку и проградуировать шкалу напряжения:

Корпус слегка великоват, но зато тиристор и диоды охлаждаются просто великолепно:

С боку устройства я поместил розетку, чтобы можно было подключить вилку от любой нагрузки. Для подключения собранного устройство к электросети я использовал шнур от старого утюга:

Как я говорил ранее, этот тиристорный регулятор мощности очень надёжен. Я им пользуюсь уже не один год. Схема очень проста, её сможет повторить даже начинающий радиолюбитель.

Тиристорный регулятор напряжения простая схема, принцип работы

Тиристор это один из мощнейших полупроводниковых приборов, именно поэтому он часто используется в мощных преобразователях энергии. Но он обладает своей спецификой управления: его можно открыть импульсом тока, а вот закроется он только когда ток опуститься почти до нуля (если быть точнее, то ниже тока удержания). Из этого тиристор в основном применяются для коммутирования переменного тока.

Фазовое регулирование напряжения

Существует несколько способов регулирования переменного напряжения тиристорами: можно пропускать или запрещать на выход регулятора целые полупериоды (или периоды) переменного напряжения. А можно включать не в начале полупериода сетевого напряжения, а с некоторой задержкой — ‘a’. В течении этого времени напряжение на выходе регулятора будет равно нулю, а мощность не будет передаваться на выход. Вторую часть полупериода тиристор будет проводить ток и на выходе регулятора появиться входное напряжение.

Время задержки ещё часто называют углом открывания тиристора, так вот при нулевом угле практически всё напряжение со входа будет попадать на выход, только падение на открытом тиристоре будет теряться. При увеличении угла тиристорный регулятор напряжения будет снижать выходное напряжение.

Регулировочная характеристика тиристорного преобразователя при работе на активную нагрузку приведена на следующем рисунке. При угле равном 90 электрических градусов на выходе будет половина входного напряжения, а при угле 180 эл. градусов на выходе будет ноль.

На основе принципов фазового регулирования напряжения можно построить схемы регулирования, стабилизации, а также плавного пуска. Для плавного пуска напряжение нужно повышать постепенно от нуля до максимального значения. Таким образом угол открывания тиристора должен изменяться от максимального значения до нуля.

Схема тиристорного регулятора напряжения

Таблица номиналов элементов

  • C1 – 0,33мкФ напряжение не ниже 16В;
  • R1, R2 – 10 кОм 2Вт;
  • R3 – 100 Ом;
  • R4 – переменный резистор 33 кОм;
  • R5 – 3,3 кОм;
  • R6 – 4,3 кОм;
  • R7 – 4,7 кОм;
  • VD1 .. VD4 – Д246А;
  • VD5 – Д814Д;
  • VS1 – КУ202Н;
  • VT1 – КТ361B;
  • VT2 – КТ315B.

Схема построена на отечественной элементной базе, собрать её можно из тех деталей, которые провалялись у радиолюбителей 20-30 лет. Если тиристор VS1 и диоды VD1-VD4 установить на соответствующие охладители, то тиристорный регулятор напряжения будет способен отдавать в нагрузку 10А, то есть при напряжении 220 В получаем возможность регулировать напряжение на нагрузке в 2,2 кВт.

В устройстве всего два силовых компонента диодный мост и тиристор. Они рассчитаны на напряжение 400В и ток 10А. Диодный мост превращает переменное напряжение в однополярное пульсирующее, а фазовое регулирование полупериодов осуществляет тиристор.

Параметрический стабилизатор из резисторов R1, R2 и стабилитрона VD5 ограничивает напряжение, которое подается на систему управления на уровне 15 В. Последовательное включение резисторов нужно для увеличения пробивного напряжения и увеличения рассеиваемой мощности.

В самом начале полупериода переменного напряжения С1 разряжен и в точке соединения R6 и R7 тоже нулевое напряжение. Постепенно напряжения в этих двух точках начинают расти и чем меньше сопротивление резистора R4, тем быстрее напряжение на эмиттере VT1 перегонит напряжение на его базе и откроет транзистор.
Транзисторы VT1, VT2 составляют маломощный тиристор. При появлении напряжения на база-эмиттерном переходе VT1 больше порогового, транзистор открывается и открывает VT2. А VT2 отпирает тиристор.

Представленная схема достаточно проста, её можно перевести на современною элементную базу. Также можно при минимальных переделках снизить мощность или напряжение работы.

Тиристорный регулятор напряжения своими руками: конструктивные особенности

Содержание статьи:

Из-за использования в повседневной жизни большого количества электрических приборов (микроволновок, электрочайников, компьютеров и т.д.) нередко возникает необходимость регулировки их мощностей. Для этого применяют регулятор напряжения на тиристоре. Оно имеет простую конструкцию, поэтому собрать его самостоятельно несложно.

Нюансы в конструкции

Регулятор напряжения на тиристоре

Тиристор – это управляемый полупроводник. При необходимости он может очень быстро провести ток в нужном направлении. От привычных диодов устройство отличается тем, что имеет возможность контролировать момент подачи напряжения.

Регулятор состоит из трех компонентов:

  • катод – проводник, подключаемый к отрицательному полюсу источника питания;
  • анод – элемент, присоединяемый к положительному полюсу;
  • управляемый электрод (модулятор), который полностью охватывает катод.

Регулятор функционирует при соблюдении нескольких условий:

  • тиристор должен попадать в схему под общее напряжение;
  • модулятор должен получать кратковременный импульс, позволяющий устройству контролировать мощность электроприбора. В отличие от транзистора регулятору не требуется удержание этого сигнала.

Тиристор не применяется в схемах с постоянным током, поскольку он закрывается, если нет напряжения в цепи. В то же время в приборах с переменным током регистр необходим. Это связано с тем, что в подобных схемах имеется возможность полностью закрыть полупроводниковый элемент. С этим справится любая полуволна, если возникнет такая потребность.

Тиристор обладает двумя устойчивыми положениями («открыто» или «закрыто»), которые переключаются при помощи напряжения. При появлении нагрузки он включается, при пропадании электрического тока выключается. Собирать подобные регуляторы учат начинающих радиолюбителей. Заводские паяльники, имеющие регулировку температуры жала, стоят дорого. Гораздо дешевле купить простой паяльник и самому собрать для него регистр напряжения.

Существует несколько схем монтажа устройства. Самый несложный – это навесной тип. При его сборке не используют печатную плату. Не потребуется также специальные навыки при монтаже. Сам процесс занимает мало времени. Поняв принцип работы регистра, будет просто разобраться в схемах и рассчитать оптимальную мощность для идеальной работы оборудования, где тиристор установлен.

Область применения и цели использования

Применение тиристорного регулятора мощности

Используют тиристор во многих электроинструментах: строительных, столярных бытовых и прочих. Он играет в схемах роль ключа при коммутации токов, при этом работая от малых импульсов. Выключается только при нулевом уровне напряжении в цепи. К примеру, тиристор контролирует скорость работы ножей в блендере, регулирует быстроту нагнетания воздуха в фене, координирует мощность нагревательных элементов в приборах, а также выполняет другие не менее важные функции.

В схемах с высокоиндуктивной нагрузкой, где ток отстает от напряжения, тиристоры могут не закрываться полностью, что приведет к поломке оборудования. В строительных приборах (дрелях, шлифовальных машинах, болгарках и т.д.) тиристор переключается при нажатии кнопки, которая находится в общем с ним блоке. При этом происходят изменения в работе двигателя.

Тиристорный регулятор отлично работает в коллекторном двигателе, где есть щёточный узел. В асинхронных движках устройство менять обороты не сможет.

Принцип действия

Специфика работы прибора заключается в том, что напряжение в нем регулируется мощностью, в также электроперебоями в сети. Регулятор тока на тиристоре при этом пропускает его только в одном конкретном направлении. Если устройство не отключить, оно так и будет продолжать работать, пока его не выключат после определенных действий.

Изготавливая тиристорный регулятор напряжения своими руками, в конструкции следует предусмотреть достаточно свободного места для установки управляющей кнопки или рычага. При сборке по классической схеме имеет смысл использовать в конструкции специальный выключатель, который при изменении уровня напряжения светит разными цветами. Это обезопасит человека от возникновения неприятных ситуаций, поражений током.

Способы закрывания тиристора

Выключение тиристора путем изменения полярности напряжения между катодом и анодом

Подача импульса на управляющий электрод неспособна прекратить его работу или закрыть. Модулятор только включает тиристор. Прекращение действия последнего происходит только после того, как на ступени катод-анод прерывается подача тока.

Регулятор напряжения на тиристоре ку202н закрывается следующими способами:

  • Отключить схему от блока питания (батарейки). Устройство при этом не заработает до тех пор, пока не будет нажата специальная кнопка.
  • Размокнуть соединение анод-катод с помощью проволоки или пинцета. Через эти элементы идет все напряжение, поступая в тиристор. Если перемычку разомкнуть, уровень тока окажется нулевым и устройство выключится.
  • Уменьшить напряжение до минимального.

Простой регулятор напряжения

Схема регулятора мощности для паяльника

Даже самая простая радиодеталь состоит из генератора, выпрямителя, аккумулятора, а также переключателя напряжения. Такие устройства обычно не содержат стабилизаторов. Сам же тиристорный регулятор тока состоит из таких элементов:

  • диод – 4 шт.;
  • транзистор – 1 шт;
  • конденсатор – 2 шт.;
  • резистор – 2 шт.

Чтобы избежать перегрева транзистора, к нему устанавливают систему охлаждения. Желательно, чтобы последняя имела большой запас мощности, которая позволит заряжать в дальнейшем аккумуляторы с невысокой емкостью.

Способы регулирования фазового напряжения в сети

Изменяют переменное электрическое напряжение при помощи таких электрических приборов, как: тиратрон, тиристор и прочие. При изменении угла этих структур на нагрузку подаются неполными полуволнами, а в результате регулируется действующее напряжение. Искажение вызывает возрастание тока и падение напряжения. Последнее меняет форму из синусоидальной в несинусоидальную.

Схемы на тиристорах

Система включится после того, как на конденсаторе соберется достаточно напряжения. При этом момент открытия контролируется при помощи резистора. На схеме он обозначен как R2. Чем медленнее заряжается конденсатор, тем больше сопротивления у этого элемента. Регулируется электроток через управляющий электрод.

Эта схема дает возможность контролировать полную мощность в устройстве, так как регулируются два полупериода. Это возможно благодаря установке в диодном мосте тиристора, который воздействует на одну из полуволн.

Регулятор напряжения, схема которого представлена выше, имеет упрощенную конструкцию. Контролируется здесь одна полуволна, в то время как другая без изменений проходит через VD1. Работает по аналогичному сценарию.

При работе с тиристором импульс на управляющий электрод следует подавать в определенный момент, чтобы срез фаз достиг требуемой величины. Нужно определять переход полуволны в нулевой уровень, иначе регулировка не будет эффективной.

Схема тиристорного регулятора больших выпрямленных токов

Испытанная временем схема регулирования тока мощных потребителей отличается простотой в наладке, надежностью в эксплуатации и широкими потребительскими возможностями. Она хорошо подходит для управления режимом сварки, для пуско-зарядных устройств и для мощных узлов автоматики.

Принципиальная схема

При питании мощных нагрузок постоянным током часто применяется схема (рис.1) выпрямителя на четырех силовых вентилях. Переменное напряжение подводится к одной диагонали «моста», выходное постоянное (пульсирующее) напряжение снимается с другой диагонали. В каждом полупериоде работает одна пара диодов (VD1-VD4 или VD2-VD3).

Это свойство выпрямительного «моста» существенно: суммарная величина выпрямленного тока может достигать удвоенной величины предельного тока для каждого диода. Предельное напряжение диода не должно быть ниже амплитудного входного напряжения.

Поскольку класс напряжения силовых вентилей доходит до четырнадцатого (1400 В), с этим для бытовой электросети проблем нет. Существующий запас по обратному напряжению позволяет использовать вентили с некоторым перегревом, с малыми радиаторами (не злоупотреблять!).

Рис. 1. Схема выпрямителя на четырех силовых вентилях.

Внимание! Силовые диоды с маркировкой «В» проводят ток, «подобно» диодам Д226 (от гибкого вывода к корпусу), диоды с маркировкой «ВЛ» — от корпуса к гибкому выводу.

Использование вентилей различной проводимости позволяет выполнить монтаж всего на двух двойных радиаторах. Если же с корпусом устройства соединить «корпуса» вентилей «ВЛ» (выход «минус»), то останется изолировать всего один радиатор, на котором установлены диоды с маркировкой «В». Такая схема проста в монтаже и «наладке», но возникают трудности, если приходится регулировать ток нагрузки.

Если со сварочным процессом все понятно (присоединять «балласт»), то с пусковым устройством возникают огромные проблемы. После пуска двигателя огромный ток не нужен и вреден, поэтому необходимо его быстро отключить, так как каждое промедление укорачивает срок службы батареи (нередко батареи взрываются!).

Очень удобна для практического исполнения схема, показанная на рис.2, в которой функции регулирования тока выполняют тиристоры VS1, VS2, в этот же выпрямительный мост включены силовые вентили VD1, VD2. Монтаж облегчается тем, что каждая пара «диод-тиристор» крепится на своем радиаторе. Радиаторы можно применить стандартные (промышленного изготовления).

Другой путь — самостоятельное изготовление радиаторов из меди, алюминия толщиной свыше 10 мм. Для подбора размеров радиаторов необходимо собрать макет устройства и «погонять» его в тяжелом режиме. Неплохо, если после 15-минутной нагрузки корпуса тиристоров и диодов не будут «обжигать» руку (напряжение в этот момент отключить!).

Корпус устройства необходимо выполнить так, чтобы обеспечивалась хорошая циркуляция нагретого устройством воздуха. Не помешает установка вентилятора, который «помогает» прогонять воздух снизу вверх. Удобны вентиляторы, устанавливаемые в стойках с компьютерными платами либо в «советских» игровых автоматах.

Рис. 2. Схема регулятора тока на тиристорах.

Возможно выполнение схемы регулируемого выпрямителя полностью на тиристорах (рис.3). Нижняя (по схеме) пара тиристоров VS3, VS4 запускается импульсами от блока управления.

Импульсы приходят одновременно на управляющие электроды обоих тиристоров. Такое построение схемы «диссонирует» с принципами надежности, но время подтвердило работоспособность схемы («сжечь» тиристоры бытовая электросеть не может, поскольку они выдерживают импульсный ток 1600 А).

Тиристор VS1 (VS2) включен как диод — при положительном напряжении на аноде тиристора через диод VD1 (или VD2) и резистор R1 (или R2) на управляющий электрод тиристора будет подан отпирающий ток. Уже при напряжении в несколько вольт тиристор откроется и до окончания полуволны тока будет проводить ток.

Второй тиристор, на аноде которого было отрицательное напряжение, не будет запускаться (это и не нужно). На тиристоры VS3 и VS4 из схемы управления приходит импульс тока. Величина среднего тока в нагрузке зависит от моментов открывания тиристоров — чем раньше приходит открывающий импульс, тем большую часть периода соответствующий тиристор будет открыт.

Рис. 3. Схемы регулируемого выпрямителя полностью на тиристорах.

Открывание тиристоров VS1, VS2 через резисторы несколько «притупляет» схему: при низких входных напряжениях угол открытого состояния тиристоров оказывается малым — в нагрузку проходит заметно меньший ток, чем в схеме с диодами (рис.2).

Таким образом, данная схема вполне пригодна для регулировки сварочного тока по «вторичке» и выпрямления сетевого напряжения, где потеря нескольких вольт несущественна.

Эффективно использовать тиристорный мост для регулирования тока в широком диапазоне питающих напряжений позволяет схема, показанная на рис.4,

Устройство состоит из трех блоков:

  1. силового;
  2. схемы фазоимпульсного регулирования;
  3. двухпредельного вольтметра.

Трансформатор Т1 мощностью 20 Вт обеспечивает питание блока управления тиристорами VS3 и VS4 и открывание «диодов» VS1 и VS2. Открывание тиристоров внешним блоком питания эффективно при низком (автомобильном) напряжении в силовой цепи, а также при питании индуктивной нагрузки.

Рис. 4. Тиристорный мост для регулировки тока в широком диапазоне.

Тиристорный регулятор мощности — Трехфазный тиристорный регулятор Оптовый продавец из Ченнаи

000 TPR-3SL040H

000 TPR-3SL040H

3SL090H

Модель Низкая TPR-3SL040L TPR-30008000 TPR-3SL0000

-3SL090L TPR-3SL130L TPR-3SL160L
Высокий TPR-3SL040H 000 TPR-3SL040H TPR-3SL130H TPR-3SL160H
Напряжение питания 100 — 240 В a.c (Низкий)
380 — 440 В переменного тока (Высокий)
Входная мощность цепи 100–240 В переменного тока
Частота мощности 50 Гц / 60 Гц (двойное использование)
Номинальный ток 40 A, 55 A, 70 A, 90 A, 130 A, 160 A
Приложение нагрузки Активная нагрузка
Управляющий вход Ток вход 4-20 мА постоянного тока (сопротивление: 100 Ом)
Вход напряжения 1-5 В d.c
Контактный вход ВКЛ / ВЫКЛ
Внешний VR Внешний объем (10)
Метод управления Управление фазой, управление фиксированным циклом, управление переменным циклом, Управление ВКЛ / ВЫКЛ
Тип движения МЯГКИЙ ПУСК, МЯГКИЙ ВВЕРХ / ВНИЗ
Выходное напряжение Более 98% напряжения источника питания (в случае максимального входного тока)
Метод охлаждения Естественное охлаждение (40 A, 55 A), принудительное охлаждение (70 A, 90 A, 130 A, 160 A)
Метод отображения Светодиодный дисплей
Сопротивление изоляции 1 мин. 100 МОм (основание на 500 В пост. Тока, мега-)
Диапазон регулирования выхода 0 ~ 100%

.

Тиристорный электронный регулятор напряжения 4000 Вт Ac220v Вход 0-220 В Выход 12 В Схема регулятора напряжения

Тиристорный электронный регулятор напряжения 4000 Вт Вход 220 В переменного тока Выход 0-220 В Схема регулятора напряжения 12 В

Основная функция:

Тиристорный электронный регулятор напряжения в основном используется для резистивных нагрузок (лампы накаливания и т. Д.), Одиночных. Фазовый бесщеточный двигатель переменного тока, регулируемый диапазон давления от 20 до 220 В, больше подходит для низковольтного нагревательного провода.Фабричное использование: например, резка пенополистирола, жемчужного хлопка, плащей позволяет регулировать напряжение, снижать мощность и так далее.Благодаря новому двунаправленному тиристору большой мощности ток составляет до 40 ампер, что решает проблему перегрузки по току, вызванную электрическим сопротивлением провода электропечи, когда охлаждение слишком мало; он может легко регулировать выходное напряжение сети на уровне 10 В. Постоянная регулировка между 220 В, нулевой задержкой, нулевым гистерезисом. Вариант использования: регулирование температуры электрической плиты и водонагревателя, затемнение ламп и фонарей, регулировка скорости небольшого двигателя, термостат электрического утюга и т. Д. Для достижения эффекта регулировки температуры, затемнения, регулирования скорости и регулирования давления.

Основная спецификация:

Название продукта Тиристорный электронный регулятор
Номер продукта WBT-4000W
Входное напряжение AC220V
10 Выходное напряжение -220 В регулируемое (выходное напряжение меньше входного)
Максимальная мощность 4000 Вт (при 220 В)
Диапазон регулирования напряжения 0–220 В плавно регулируемое (с условиями нагрузки) понижающее может быть 0, увеличить пуск 20В или около того.
Номинальный ток 9A
Максимальный ток 18A
Характеристики продукта Нулевой гистерезис, нулевая задержка, с пиковым напряжением для привлечения цепи для эффективной защиты мощного тиристора от перенапряжения, анти-спайк, поглощение RC многократной защиты

Основное применение:

Электрическая печь, водонагреватель, лампы и латунки, которые перемещают свет, небольшой двигатель, контроль температуры паяльника и т. д. (Индуктивный или мощность нагрузки должна быть уменьшена, регулятор напряжения оснащен двусторонним тиристером высокой мощности, не добавляйте никаких компонентов, которые можно использовать, очень удобно и практично.)

Схема регулятора напряжения 12 В

Схема регулятора напряжения 12 В

Схема регулятора напряжения 12 В

Любой вопрос просто не стесняйтесь меня!

Схема регулятора напряжения 12 В

.

Corey Полнофункциональный тиристорный тиристорный регулятор Половина регулятора Триггерная плата Регулировка напряжения Контроль температуры KCZ2B | |

KCZ2B Инструкция по использованию двухимпульсного синхронизируемого фазосдвигающего регулятора напряжения

KCZ2ByesKCZ2Усовершенствованный компонент триггера ИС триггера с отличной производительностьюKC785 Прохождение импульса запуска 5 ~ 10 кГц Модуляция последовательности импульсов Устройство расширяет контур напряжения на основе прототипа платы.、 Токовая петля , Плавный запуск (Пользователям необходимо , Жесткий запуск также является необязательным) 、 Регулировка сигнала управления Настройка ограничения тока Блокировка отключения при переполнении и другие функции , Это значительно улучшает технические характеристики прототипной платы. , Расширение объема приложение , Широко используется в однофазном мостовом полностью управляемом выпрямителе 、 Полууправляемый выпрямитель мостового типа , Двухполупериодное выпрямление 、 Источник питания 、 Источник постоянного тока 、 Стабилизация переменного напряжения с односторонним или двусторонним тиристором 、 Регулировка напряжения двигателя постоянного тока и Регулировка скорости в оборудовании управления SCR。

KCZ2B Может быть в состоянии замкнутого контура., Он также может работать в состоянии разомкнутого кольца. (Это эквивалент KCZ2plate) , Пользователь выбирает。

  • Основные технические показатели :
  • Источник питания : Однофазный 220 В или двухфазный 380 В
  • Управляющее напряжение фазового сдвига : 0 ~ +8 В (изменяется в соответствии с различными требованиями)
  • Диапазон фазового сдвига : ≥170 °
  • Форма запускающего импульса 5 ~ 10 кГц Модуляция последовательности импульсов
  • Выходной импульсный ток запуска : 500 мА (макс.)
  • Выходной импульс запуска ≤1 мкс
  • Обратная связь по напряжению : Двусторонняя : 1 、 VFYesGNDInput3VAbout AC / DC Feedback Voltage Автогенератор в системе регулирования скорости (удельный потенциал7V / 1000оборотов / ветвь) , Но пора измениться.R56 Сопротивление , Удовлетворение максимального значения напряжения обратной связи 3 В Требования 2 、 Прямая обратная связь по напряжению переменного и постоянного тока на обоих концах нагрузки V0 + 、 V0- (независимо от + -) , Через самогенерируемую обратную связь VOFEnd приём VFend , Реализация обратной связи по напряжению。
  • обратная связь по току : Номинальный ток / 0,1 A или 75 мВ Shunt
  • Нарушение равновесия каждого фазового импульса : <± 3 o
  • мягкий старт : 5S
  • Настройка ограничения тока : Установите номинальный ток при отправке с завода1.Примерно 1 раз , Пользователи также могут установить его самостоятельно. (TransferP2)
  • Защита от перегрузки по току : 150% Действия при номинальном токе , Блокирующий пусковой импульс фазового сдвига Время действия 10 мс И держите его выключенным Включите питание снова после выключения , Для перехода в рабочее состояние。
  • Стабилизация напряжения 、 точность стабилизации тока быть лучше 1%
  • Выходная изоляция : Быть лучше, чем 2500VAC
  • Габаритный размер : 125 × 138
  • Монтажное отверстие (φ3.5) размер : 112 × 110
  • температура окружающей среды : -10 ℃ 70 ℃

Инструкции : При отправке с завода устройство находится в состоянии приложения с обратной связью. , Необходима обратная связь по напряжению JK1 на соответствующих клеммах 、 Обратная связь может работать правильно。 Если пользователь выбирает рабочее состояние без обратной связи , Просто потяните переключатель K1 Вытяните напечатанный плата。 тогда KCZ2B эквивалент блока KCZ2 пластина plate

JK1OfCREnd to earth , Блокирующий пусковой импульс Нормальная работа CRSдолжна быть приостановлена ​​Метод подключения фазосдвигающего управляющего потенциометра иллюстрируется следующими примерами применения.。Использование пользователем 0 ~ 10 мА Автоматическое управление фазовым сдвигом сигнала , Потенциометр фазового сдвига без подключения stayJK1OfIN2end

Один за другим между землей и другим 820 Ом Сопротивление При использовании 4 ~ 20 мА Когда автоматический сигнал управляется фазовым сдвигом , Он будет отлажен отдельно на нашем заводе для пользователей. 3KCZ2B При использовании в качестве источника постоянного тока , Просто получите доступ к сигналу обратной связи по току ( Приходите от CTor75mVShunt) ,

И будет JK1TerminalIFO 、 VFShort connection。

KCZ2B Используется для регулирования скорости двигателя постоянного тока , Если двигатель запускается под большой нагрузкой , Для предотвращения блокировки , Дополнительный жесткий запуск。 На этом этапе просто приварите его.R4, что подойдет。

.

Тайвань FOTEK ACR 80LA Регулятор мощности / Тиристорный регулятор мощности / Твердотельный модуль линейного управления | |

Добро пожаловать в магазин оборудования Lixinsheng P

Тайвань FOTEK ACR-80LA регулятор мощности / тиристорный регулятор мощности / твердотельный модуль линейного управления

Fotek Dual Thyristors Modules ACR-80LA +

Серия ACR усиливает тип рассеивания тепла

Торговая марка: FOTEK / yangming

Тип №: ACR-80LA

Контактная форма: кристалл

Защитные функции: IP58

Применение: механическое оборудование, пластмассовые машины, химическое оборудование и т. Д.

Характеристики продукта:

1. Высокая электрическая средняя прочность превышает 4КВ

2. высокая изоляционная прочность превышает 100 МОм / 500 В постоянного тока.

3. Мгновенный ток сопротивления превышает номинальный ток более чем в десять раз.

4. С двойным контуром поглощения перенапряжения используется для предотвращения повреждения

5.Соответствует стандартам EN60947-4-3 и En609500

Технические параметры:

Модель ACR-80LA ACR-40LA
Тип Тип линейного управления Линейный тип управления
Номинальный ток 64A 32A
Ток сопротивления удару 850A 410A
Напряжение нагрузки Стандартное напряжение Стандартное напряжение
Максимальная загрузка 80А 40А
Минимальное давление 1200 В переменного тока 600 В переменного тока
Выходное напряжение 90 ~ 250 В переменного тока 90 ~ 250 В переменного тока
Входное напряжение 4 ~ 20 мА 4 ~ 20 мА
Направленное управление Фазовый контроль Фазовый контроль
Время отклика 1 мс макс. 1 мс макс.
Ток утечки 5 мА макс. 5 мА макс.
Волна входного сопротивления 2кВ (EN6100-4-4) 2кВ (EN6100-4-4)
Диэлектрическая прочность 4 кВ среднеквадратичное значение (EN60950 / VDE0805) 4 кВ среднеквадратичное значение (EN60950 / VDE0805)
Диэлектрическая прочность 100 МОм / 500 В постоянного тока (EN60950 / VDE0805) 100 МОм / 500 В постоянного тока (EN60950 / VDE0805
Рабочая среда -40 ℃ ~ + 80 ℃ 35 ~ 85% относительной влажности -40 ℃ ~ + 80 ℃ 35 ~ 85% относительной влажности
Граничное измерение 100 * 98 * 125 71 * 72 * 102 (мм)
Охлаждающий вентилятор

Стандартная конфигурация 80 * 80 (220 В переменного тока) не включает вентилятор, при необходимости вентилятор необходимо указать перед заказом

(к цене вентилятора добавляется 13 долларов.8)

Больше продуктов, пожалуйста, нажмите здесь: Магазин Lixinsheng Packing Equipment Co., Ltd

Ниже приводится таблица других спецификаций. Пожалуйста, выберите идеальный стандарт соответствия, который вам нужен.

.

0 0 vote
Article Rating
Подписаться
Уведомление о
guest
0 Комментарий
Inline Feedbacks
View all comments